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Abstract. Carbon stored in coastal wetland ecosystems is
of global relevance to climate regulation. Broadscale inven-
tories of this “blue” carbon store are currently lacking and
labour intensive. Sampling 23 salt marshes in the United
Kingdom, we developed a Saltmarsh Carbon Stock Predictor
(SCSP) with the capacity to predict up to 44 % of spatial vari-
ation in surface soil organic carbon (SOC) stock (0—10cm)
from simple observations of plant community and soil type.
Classification of soils into two types (sandy or not-sandy)
explained 32 % of variation in SOC stock. Plant community
type (five vegetation classes) explained 37 % of variation.
Combined information on soil and plant community types
explained 44 % of variation in SOC stock. GIS maps of sur-
face SOC stock were produced for all salt marshes in Wales
(~ 4000 ha), using existing soil maps and governmental veg-
etation data and demonstrating the application of the SCSP
for large-scale predictions of blue carbon stores and the use
of plant community traits for predicting ecosystem services.

1 Introduction

Implementation of environmental policy and management
via “the ecosystem approach” requires a broadscale knowl-
edge of the distribution of natural stocks and ecosystem ser-
vices (McKenzie et al., 2014; Meiner et al., 2013; TEEB,
2010; UK National Ecosystem Assessment, 2014). Spatial
information is often patchy and for some ecosystem stocks
and services it is almost entirely lacking. The “predictive

tool”” approach, based on mathematical modelling, was tradi-
tionally used in population and resource distributional map-
ping (Cuddington et al., 2013) and has recently been applied
to the predictive mapping of ecosystem services (McHenry et
al., 2017). Significant advances have been made in predict-
ing ecosystem service provision in terrestrial systems, such
as agricultural landscapes, freshwater habitats, and forests
(Ding and Nunes, 2014; Emmett et al., 2016; Vigerstol and
Aukema, 2011). In contrast, there are few predictive tools for
coastal systems, which, combined with a shortage of base-
line data for many environmental variables (Robins et al.,
2016), means that distributional maps of ecosystem services
and stocks are lacking for global coastlines (Meiner et al.,
2013).

Coastal wetlands (mangroves, tidal marshes, and sea-
grasses) sequester significant amounts of “blue carbon”, par-
ticularly below ground, in long-lived soil organic carbon
(S0OC) stores (Chmura et al., 2003; Howard et al., 2017,
Luisetti et al., 2013). Global strategies for integrating blue
carbon storage into greenhouse-gas accounting have been
proposed (IPCC, 2014). However, a global inventory of blue
carbon remains a challenge, as empirical observations of
SOC stocks in coastal wetlands are expensive, scarce, and
unevenly distributed, with few records even for relatively
well-studied areas such as Europe (Beaumont et al., 2014).
Ecosystem service maps for the UK National Ecosystem As-
sessment (NEA) for Wales, the focal region of the present
study, characterised salt marshes as coastal margin habitat,
assigned the lowest category of carbon storage relative to all
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other terrestrial habitats (Scholefield, 2013). SOC stocks in
Welsh salt marshes may be underestimated due to incomplete
habitat mapping of intertidal areas. Rolling out empirical ob-
servations of below-ground SOC stock across large scales
of blue carbon systems is not a practicable and affordable
short-term solution to the lag between management ambi-
tion and carbon inventorying. Predictive mapping of carbon
stocks holds great promise; it has been extensively trialled
for terrestrial systems (Emmett et al., 2016; Gray et al., 2013;
Rossel et al., 2014), but rarely applied to blue carbon ecosys-
tems (Gress et al., 2017; Meiner et al., 2013).

Predictive models of ecosystem services typically use a
combination of predictor variables (Posner et al., 2016).
For carbon storage, predictors such as climate, soil type,
sedimentary classification, and habitat or land management
type are commonly used (Chaplin-Kramer et al., 2015; Jar-
dine and Siikamiki, 2014; Kelleway et al., 2016). Many
ecosystem service models that include carbon storage pre-
dictions are computationally sophisticated and operationally
time consuming and require specialists for their operation
and interpretation (Posner et al., 2016), all of which reduces
the scope for their use by landscape managers. Simple pre-
dictive tools that incorporate readily available spatial infor-
mation with ground-truthed field measurements might be a
more attractive option for use in the field. For example, a re-
cent study by Emmett et al. (2016) proposed soil pH as a po-
tential metric for ecosystem service provision, at the catch-
ment scale, accounting for 45 % of variation in ecosystem
service supply.

Recent work has explicitly linked SOC stock to both soil
properties and plant community parameters for terrestrial
and coastal grasslands (Bai et al., 2016; Manning et al.,
2015). In addition, these SOC stores are further mediated
by climatic factors (e.g. precipitation) and land-use man-
agement (e.g. livestock grazing intensity) (Ford et al., 2012;
Tanentzap and Coomes, 2012; Yang et al., 2010). Classifi-
cation of soils by texture can be useful for quantifying soil
organic matter (SOM) content and therefore indicating SOC
stock (O’Brien et al., 2015). In particular, a strong posi-
tive correlation between clay content and SOC stock is ap-
parent due to the adsorption of organics to clay particles
(Arrouays et al., 2006; Hassink, 1997; Oades, 1988). The
composition of the plant community, presence of dominant
species, and plant diversity largely determine root properties
(e.g. biomass, turnover, and exudates), which further influ-
ence SOM content and SOC stock (De Deyn et al., 2008;
Ford et al., 2016). Species-rich plant communities are also
often functionally diverse, with differing root strategies lead-
ing to enhanced root biomass (Loreau et al., 2001) and con-
sequent impacts on SOC stock (Jones and Donnelly, 2004).
Moreover, particular life history strategies or plant traits can
also be associated with enhanced carbon capture and storage,
for example fast growth rates or the production of recalci-
trant litter that is slow to break down (Yapp et al., 2010). The
ability to easily and quickly predict salt-marsh SOC stock
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from plant community assemblages and/or soil type would
provide the potential to update the current inventory (IPCC,
2014) of blue carbon on a regional, biogeographical, or na-
tional scale. This would be of interest to a wide group of
stakeholders including academics, the IPCC, the Blue Car-
bon Initiative (http://thebluecarboninitiative.org/, last access:
8 January 2019), and governmental and non-governmental
land managers. Here we present a range of predictive mod-
els for surface SOC stock (0—10 cm) based on plant (vegeta-
tion type, class, species richness, root biomass) and soil (sim-
plified type or texture category) parameters measured across
23 salt marshes in Wales, UK. In addition, we used a sub-
set of these models to create a novel tool for practitioners
— the Saltmarsh Carbon Stock Predictor (SCSP) — for pre-
dicting and mapping the SOC stock of Welsh salt marshes
(https://www.saltmarshapp.com/saltmarsh-tool/, last access:
8 January 2019), alongside a simplified version designed
for use by the general public — the Saltmarsh App (https:
/fwww.saltmarshapp.com/, last access: 8 January 2019).

2 Materials and methods
2.1 Site selection

A total of 23 salt-marsh sites were sampled for vegetation
and soil properties in July 2015: 10 in north or mid-Wales
and 13 in south Wales, UK (Fig. 1), representing a range
of marsh typologies. The Severn Estuary in the south-east
was excluded due to nesting bird restrictions. The British Na-
tional Vegetation Classification (NVC) scheme was used to
characterise vegetation communities (Rodwell, 2000). Four
of the most common vegetation types (five NVC classes)
were assessed in this study (Table 1); they were chosen as
they are widespread and common the UK and present at all
study sites according to governmental (Natural Resources
Wales, NRW) NVC maps (e.g. Fig. S1, Supplement). At each
study site, four 1 x 1 m quadrat areas were sampled per vege-
tation type (each quadrat ca. 10 m apart along a transect line).
In some specific locations, where extent was limited, only
two quadrats per vegetation type were assessed. Note that the
four vegetation types equate to five NVC classes as the Jun-
cus maritimus community is divided into two distinct classes
(Table 1). The four vegetation types focused on in this study
were located using governmental maps based on vegetation
surveys from 1996 to 2003 (detailed in Sect. 2.6). Vegetation
type was therefore validated on the ground as species extent
could have altered between the survey date and the present
day.

2.2 Plant community and root biomass

Above-ground vegetation characteristics were measured
within each 1 x 1 m quadrat. Percentage cover of each plant
species was estimated by eye. Plant species richness was
recorded as the number of species present per quadrat.

www.biogeosciences.net/16/425/2019/
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Table 1. Salt-marsh vegetation types, associated National Vegetation Classification (NVC) class, and marsh intertidal position (zone) (http:
//jncc.defra.gov.uk/pdf/Salt-marsh_Comms.pdf, last access: 8 January 2019).

NVCclass  Plant community Commonly co-occurring species Marsh position

SM13 Puccinellia maritima Festuca rubra, J. gerardii, Agrostis stolonifera, Low marsh to mid-
Plantago maritima, species poor when inten- marsh
sively grazed

SM14 Atriplex portulacoides  Partial or total dominance of A. portulacoides Mid-marsh to high
with species similar to SM13 marsh

SM16 Juncus gerardii P. maritima, F. rubra, A. stolonifera, Glaux Low marsh to high
maritima, Triglochin maritima, Armeria mar- marsh
itima, P. maritima

SM15 Juncus maritimus Partial or total dominance of J. maritimus, with  Low marsh to mid-
T. maritima and J. gerardii marsh

SM18 Juncus maritimus E rubra, A. Stolonifera, J. gerardii, Atriplex ~Mid-marsh to high

prostrata, P. maritima

marsh

Ynys Hir

Pembrey
Burrows

Laugharne
Castle

Gowerton

Gwendraeth

Figure 1. The 23 Welsh salt marshes included in the study.

Shannon—Wiener index (S—W index, H') was calculated as
a measure of plant diversity based on species cover. NVC
classes associated with each vegetation type (Table 1) were

www.biogeosciences.net/16/425/2019/

verified for each quadrat using the TABLEFIT v1.1 software
(Hill, 2011). Root dry biomass was determined for 0—10 cm
in depth using a 2.6 cm diameter corer: roots were removed
from sediment, washed, and then dried at 60 °C for 72 h. All
plant nomenclature followed Stace (2010).

2.3 Soil characteristics, SOC stock, and field texture
test

Soil characteristics were measured from within each 1 x 1 m
quadrat. Soil samples, of ~ 10g (fresh mass) from the top
10 cm, were taken from within each quadrat, diluted to a ra-
tio of 1:2.5 by volume with deionised water, and measured
for electrical conductivity (EC) and pH (Jenway 4320 con-
ductivity meter, Hanna pH 209 pH meter). EC was used as a
proxy for salinity. Soil bulk density samples were taken us-
ing a stainless-steel ring (3.1 cm height, 7.5 cm diameter) in-
serted horizontally into the soil (from a depth of 2 to 9.5cm
deep) to quantify the top 10cm of soil (Fig. S2). Samples
were dried at 105°C for 72h to assess soil moisture con-
tent and soil bulk density. The dried samples were ground
and subsampled for loss-on-ignition analysis (375 °C, 16h)
to estimate SOM content (Ball, 1964). SOC stock was cal-
culated from bulk density and SOM with SOC content es-
timated as 55 % of SOM, as determined with an elemental
analyser (Emmett et al., 2010).

Root-free soil samples (one per quadrat at 5 cm in depth)
were classified into 12 soil texture categories using the
British Columbia protocol for estimating soil texture in the
field (https://www.for.gov.bc.ca/isb/forms/lib/fs238.pdf, last
access: 8 January 2019) based on graininess, moistness,
stickiness, and ability to hold a form without breaking apart
when rolled. Soil was also assigned a simplified soil type of
sandy or non-sandy (Table 2). These approaches were chosen
over conventional soil grain-size assessment as they facili-

Biogeosciences, 16, 425-436, 2019
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tate inexpensive broadscale observations in which soils can
be classified by non-experts in a few minutes in the field.

2.4 Analysis: explanatory variables and prediction of
SOC stock

The relationship between the response variable “surface SOC
stock” and the explanatory variables was determined using
uni- or bivariate linear mixed-effect models. This was per-
formed in order to keep the models as simple as possible,
to be able to scale the results up to the landscape-scale us-
ing available GIS layers (see Sect. 2.6) and with the final
aim of being of direct use for practitioners. The explana-
tory variables we entered in the models were the fixed cat-
egorical variables “vegetation type” (four levels: P. maritima
community, A. portulacoides community, J. gerardii com-
munity, J. maritimus community), “NVC class” (five lev-
els: SM13, SM14, SM16, SM15, SM18), “simplified soil
type” (two levels: sandy, non-sandy), “soil texture” (12 lev-
els: sand, sandy loam, fine sandy loam, sandy clay, silt,
silt loam, loam, clay loam, silty clay loam, silty clay, clay,
organic), and the continuous variables “root biomass” and
“plant species richness”. Livestock-grazing intensity (two
levels: grazed versus un-grazed), EC, and pH were not used
as explanatory variables in the uni- or bivariate models pre-
sented here as they were not found to be significant ex-
planatory variables of surface SOC stock, nor are they eas-
ily assessed by practitioners. The categorical variable vege-
tation type was nested within salt-marsh site to take into ac-
count data structure and avoid pseudo replication. Inspection
of residuals and Bartlett’s test detected a clear violation of
the assumption of homoscedasticity. We addressed this issue
by adding a constant variance function to the linear mixed-
effect models to take into account the differences in variance
across groups (e.g. vegetation type, NVC class, simplified
soil type). Final models were selected on the basis of the low-
est Akaike’s information criterion (AIC) (Zuur et al., 2009).
Likelihood-ratio-based pseudo R? values were calculated for
final models (Gromping, 2006). The final uni- and bivari-
ate models we tested were the following: (i) NVC_model
(NVC class only), (ii) Soil_model (simplified soil type only),
(iii) Veg_soil_model (vegetation type and simplified soil
type combined), and (iv) NVC_soil_ model (NVC class and
simplified soil type combined). Surface SOC stock predic-
tions were calculated from the coefficients of the final lin-
ear mixed-effect models. For example, the NVC_soil_model
values for each explanatory variable for coefficient 1 (i.e.
simplified soil type: sandy, non-sandy) and coefficient 2
(i.e. NVC class: SM13, SM14, SM15, SM16, SM18) were
summed and added to the model intercept, giving a model
prediction of surface SOC stock for each model in tonnes of
carbon per hectare (t Cha™!) for the top 10cm of soil. All
analysis was carried out in R (R Core Team, 2016).

Biogeosciences, 16, 425-436, 2019

2.5 Model selection justification for the SCSP tool and
the Saltmarsh App

The SCSP tool (Skov et al., 2016; https://www.saltmarshapp.
com/saltmarsh-tool/) was designed to be used primarily
by expert practitioners whereas the Saltmarsh App (https:
/Iwww.saltmarshapp.com/, last access: 8 January 2019) was
aimed at the general public. Therefore the models they utilise
to predict salt-marsh SOC stock (0—10cm) differ based on
access to data sources. The SCSP tool offers two types of in-
formation: (i) a lookup table for predicted surface SOC stock
(tCha™h provided NVC class (NVC_model), simplified soil
type (Soil_model), or both (NVC_ soil_model) are known
and (ii) a GIS map layer and series of maps (see Sect. 2.6).
The NVC_soil_model was used for the SCSP tool as ex-
isting governmental maps are already categorised by NVC
class. The carbon calculator component of the Saltmarsh App
was based on the Veg_soil_model. This model was selected
as vegetation type was assessed as easier to determine than
NVC class by non-experts (e.g. citizen scientists) in the field.
For both the SCSP tool and the Saltmarsh App simplified soil
type was used instead of soil texture category as simplified
soil type was both easier to assess in the field by non-experts
and more straightforward to map using existing soil maps.
For both the SCSP tool and the Saltmarsh App, surface SOC
stock predictions are provided, either directly or via lookup
tables, without the need for the user to carry out their own
analysis.

2.6 Scaling-up: SOC stock mapping

As part of the SCSP tool, a GIS shapefile (referred to as the
SCSP shapefile) was developed to illustrate how information
on NVC class and simplified soil types (sandy vs. non-sandy)
can be integrated into broadscale mapping of surface SOC
stocks in salt marshes across Wales, UK. The SCSP shapefile
illustrated surface SOC stocks for marshes across Wales util-
ising the predictive power of the linear mixed effects models
obtained in the statistical analyses (Sect. 2.4) for (a) “NVC
class” only (NVC_model); (b) “Simplified soil type” only
(Soil_model); (c) “NVC and simplified soil type” combined,
(NVC_soil_model); (d) “NVC and simplified soil type” com-
bined (NVC_soil_model) plus predictions based on “simpli-
fied soil type” (Soil_model) where SOC predictions for NVC
pioneer communities were not known. Estimates of the to-
tal amount of salt-marsh carbon stock (tC), present within
the top 10cm of soil, for the area of the salt marsh (%)
for which we had the necessary information to make predic-
tions were calculated for each map. For example, Laugharne
marsh (Fig. 2) included NVC classes for which the study did
not have predictive SOC to NVC relationships; hence, shape-
files (a) and (c) (detail above) included areas without surface
SOC stock predictions so the percentage of the marsh area
for which SOC predictions were made was < 100 %.

www.biogeosciences.net/16/425/2019/
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Table 2. Soil texture categories (British Columbia protocol for estimating soil texture in the field (https://www.for.gov.bc.ca/isb/forms/lib/

fs238.pdf)) and simplified soil type.

Soil texture category

Soil category description

Simplified soil type

S Sand 85 %—100 % sand Sandy
SL Sandy loam 45 %-80 % sand Sandy
FSL  Fine sandy loam 46 %—80 % fine sandy Sandy
SC Sandy clay 45 %—65 % clay Sandy
Si Silt 0 %-20 % sand Non-sandy
SiL Silt loam 0%-50 % sand Non-sandy
L Loam 20 %-50 % sand Non-sandy
CL Clay loam 20 %-45 % sand Non-sandy
SiCL  Silty clay loam 0%-20 % sand Non-sandy
SiC Silty clay 0%-20 % sand Non-sandy
C Clay >40 % clay (0 %—45 % sand)  Non-sandy
o Organic >30% OM Non-sandy

The SCSP shapefile was built by combining three GIS
layers: (i) the first layer provided the distribution of salt-
marsh areas in England and Wales, and is distributed by the
Environmental Agency (EA) (available at https://data.gov.
uk/dataset/saltmarsh-extents1, last access: 8 January 2019);
(ii) the second layer gave the distribution of NVC classes
in Welsh salt marshes, and was provided by Natural Re-
sources Wales (“Intertidal Phase-2” shapefile); and (iii) the
third layer provided simplified soil type information, and
was obtained from “Soilscapes”, a 1:250000 scale, soil
map covering England and Wales, and developed by Lan-
dIS (http://www.landis.org.uk/, last access: 8 January 2019).
The EA shapefile (i) represented salt-marsh areal extent as
measured between 2006 and 2009 across England and Wales
(Phelan et al., 2011). The phase-2 survey data of NVC com-
munities (ii) were derived from 1996-2003 surveys of salt-
marsh plant carried out for all of Wales (Brazier et al., 2007).
Soils of the Soilscapes map (iii) were simplified into the two
types used in surface SOC stock predicting algorithms: sandy
or non-sandy soil. Comparison between mapped soil types
and simplified soil types measured in the field are shown in
Table S1 (Supplement). The SCSP shapefile and instructions
on how to use it are available at https://www.saltmarshapp.
com/saltmarsh-tool/.

3 Results
3.1 Site characterisation

Plant and soil characteristics for each vegetation type of the
23 salt-marsh sites are shown in Table S2. Surface SOC
stock (to 10 cm depth) was often greater in both J. gerardii
(SM16) and J. maritimus (SM15; SM18) plant communities
(40-60tCha~!) than in the Arriplex (SM14) and Puccinel-
lia (SM13) communities (20=50tCha~1). Soil pH of 6-7.5
was common throughout, but EC (a proxy for soil salinity)
was more variable, depending on specific position and ele-
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vation relative to the tidal frame. Plant species richness was
consistent across P. maritima, J. gerardii, and J. maritimus
communities (4—10 species m~2) with only A. portulacoides
occurring commonly as a monoculture. Plant height was vari-
able, between 3 and 30 cm for P. maritima and J. gerardii,
with shorter swards when grazers were present. A. portula-
coides shrubs were consistently 20-30 cm high, with J. mar-
itimus tussocks 40-70 cm tall. Root biomass of between 1
and 5kg DW m~2 was common, with J. gerardii and J. mar-
itimus communities typically having greater root biomass
than the other two community types.

3.2 Surface SOC stock: explanatory variables and
model predictions

The relationship between the response variable surface SOC
stock and the plant and soil explanatory variables was quan-
tified by six uni- and four bivariate models (Table 3). As-
sessment of vegetation type (Veg_model) or NVC class
(NVC_model) alone accounted for 36 %—37 % of the varia-
tion in surface SOC stock. Root biomass alone (Root_model)
explained 32% of variation. Simplified soil type alone
(Soil_model), for which soil was divided into sandy or non-
sandy groups, explained 32 % of variation, rising to 45 %
when texture categories (Text_model) were considered. Plant
species richness alone (Species_model) explained 41 % of
variation in surface SOC stock (Fig. S3). Bivariate mod-
els including plant community variables (vegetation type
or NVC class) and simplified soil type (Veg_soil_model
and NVC_soil_model) explained 40 %—44 % of surface SOC
stock, rising to 51 %-52% when plant variables were
coupled with soil texture category (Veg_text_model and
NVC_text_model).

Biogeosciences, 16, 425-436, 2019



430 H. Ford et al.: Large-scale predictions of salt-marsh carbon stock

Table 3. Six explanatory variables of surface SOC stock (tC ha=!; top 10 cm of soil) in Welsh salt marshes, based on ANOVA output from

mixed-effect models, with F statistic values presented.

Model name Vegetation type NVCclass  Plant species  Root biomass  Simplified  Soil texture R?
richness (m2) (kgDW m_z) soil type category

Surface SOC stock prediction: six single-variable models

Veg_model 9.33%k* - - - - 036
NVC_model - 7.84%* - - - - 037
Species_model - 9.61** - - - 041
Root_model - - 15.0%%* - - 032
Soil_model - - - 12.52%%* - 032
Text_model - - - - 2.90**  0.45
Surface SOC stock prediction: four bivariate models

Veg_soil_model 10.18*** - - 22.39%** - 040
Veg_text_model 10.66*** - - - 3.84** (.51
NVC_soil_model - 9.17%** - - 22.54%%% - 044
NVC_text_model - 7.927%%* - - - 3.63%* (.52

Significance (** = p <0.01. *** = p <0.001). Vegetation type (four levels: P. maritima; A. portulacoides; J. maritimus; J. gerardii). NVC class (five levels:
SM13; SM14; SM15; SM16; SM18). Simplified soil type (two levels: sandy soil with > 45 % sand; non-sandy soils with <45 % sand including loam, clay,

organic soils). Soil texture category (12 levels; see Table 2).

3.3 Prediction of surface SOC stock: the SCSP tool and
Saltmarsh App

The SCSP tool lookup table (Table 4) provides a straight-
forward way to determine surface SOC stock (top 10cm
of soil) in a UK salt marsh based on information on sim-
plified soil type, plant community (NVC class or vegeta-
tion type), or both. For convenience the SCSP lookup ta-
ble also contains the model used in the carbon calculator
component of the Saltmarsh App (Veg_soil_model). Predic-
tions of surface SOC stock based on plant NVC commu-
nities (five classes) produced SOC stock predictions (top
10cm of soil) varying from 32 tCha~! for the A. por-
tulacoides NVC class to 50tCha~! for the J. gerardii
NVC class (Table 4). Predictions based on simplified soil
types (two types) predicted that sandy soils store less SOC
(29tCha~") than non-sandy soils (43tCha~!). A series of
GIS-based maps, illustrating surface SOC stock (tCha™!;
top 10cm of soil) and total surface SOC stored per marsh
(tC) for all Welsh salt marshes (based on three models:
NVC_model; Soil_model; NVC_soil_model) can be viewed
in the Supplement, Figs. S7-S29 inclusive (exemplar Fig. 2)
or online at https://www.saltmarshapp.com/saltmarsh-tool/.

4 Discussion

The accurate prediction of blue carbon stock is of interest to
a wide range of stakeholders including the IPCC (2014). This
study has demonstrated that a large proportion of the varia-
tion in surface layers of SOC stock in salt-marsh habitats can
be predicted from just two easy-to-measure variables, plant
community (vegetation type or NVC class) and simplified
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soil type, which together accounted for close to half of the
variation in SOC stock in 23 Welsh salt marshes. Associa-
tions of SOC with plant and soil characteristics have been
demonstrated in other ecosystems (Amundson, 2001; Bai et
al., 2016; Manning et al., 2015), although this study is the
first to use such relationships to produce a national inventory
of blue carbon storage in surface soil layers.

4.1 Ecological observations

Whilst surface SOC stock in UK salt marshes was broadly
predicted by soil type, with non-sandy soils being more
carbon rich, there remained a clear association between
SOC stock and plant community type, with rush-dominated
J. maritimus and J. gerardii communities associated with
greater surface SOC stocks than either A. portulacoides or
P. maritima communities. The deep-rooted salt-marsh shrub
A. portulacoides (Decuyper et al., 2014) occurred predom-
inantly as a near monoculture (Ford et al., 2016), with
the shallow-rooted salt-marsh grass P. maritima community
found alongside simple-rooted plants such as Plantago mar-
itima. In contrast, the rushes J. gerardii and J. maritimus,
characterised by extensive laterally creeping rhizomes with
thick anchors and many shallow fine roots, commonly grew
alongside the grasses Festuca rubra and Agrostis stolonifera
and various other forbs. The diverse Juncus communities are
known to have a wide variety of rooting strategies (Minden et
al., 2012) that lead to greater root biomass and consequently
greater SOC stock (Jones and Donnelly, 2004; Loreau et al.,
2001). Higher SOC stock in Juncus areas might also arise as
these species grow in waterlogged conditions that limit aero-
bic breakdown of organic material (Ford et al., 2012), while
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Table 4. SCSP tool lookup table based on models of surface SOC stock (tC ha=l; top 10 cm of soil) prediction in Welsh salt marshes (using

output of a subset of models from Table 3).

Vegetation type NVC class

Simplified soil type

Predicted SOC
stock (tCha™1)

Model coefficient(s) | Model intercept

NVC_model: NVC class only (p <0.001, r2 = 0.37, mean model standard error (SM13+2.9, SM14 £3.9, SM15 +4.9,

SM18 +3.4, SM16 +3.2))

— (P. maritima) SM13 - - - 39.5 40
— (A. portulacoides) SM14 - - —-7.8 39.5 32
— (J. maritimus) SM15 - - —-2.3 39.5 37
— (J. maritimus) SM18 - - 9.3 39.5 49
— (J. gerardii) SM16 - - 10.4 395 50
Soil_model: simplified soil type only (p <0.001, 2 = 0.32, mean model standard error +3.9)

- - Sandy - - 29.4 29
- - Non-sandy - 13.7 29.4 43

Veg_soil_model: vegetation type and simplified soil type (p <0.001, r2 = 0.4, mean model standard error)
(P. maritima £2.7, A. portulacoides 3.3, J. maritimus £3.3, J. gerardii £3.0)]

P. maritima - (SM13) Sandy
P. maritima - (SM13) Non-sandy
A. portulacoides - (SM14) Sandy
A. portulacoides - (SM14) Non-sandy
J. maritimus — (SM15 & SM18)  Sandy
J. maritimus —(SM15 & SM18) Non-sandy
J. gerardii — (SM16) Sandy
J. gerardii - (SM16) Non-sandy

8 -12.9 32.7 28
8 12.9 19.8 41
- —-12.9 32.7 20
- 12.9 19.8 33
15.1 —-12.9 32.7 35
15.1 12.9 19.8 48
16.3 —-12.9 32.7 36
16.3 12.9 19.8 49

NVC_soil_model: NVC class and simplified soil type (p <0.001, r2 = 0.44, mean model standard error)

(SM13 £3.3,SM14 £3.7, SM15 £5.2, SM18 £3.3, SM16 £3.4)

— (P. maritima) SM13 Sandy - —14.1 40.4 26
— (P. maritima) SM13 Non-sandy - 14.1 26.3 40
— (A. portulacoides) SM14 Sandy 7.2 —14.1 40.4 19
— (A. portulacoides) SM14 Non-sandy —-7.2 14.1 26.3 33
— (J. maritimus) SM15 Sandy 2.4 —14.1 40.4 29
— (J. maritimus) SM18 Sandy 10.1 —14.1 40.4 36
— (J. maritimus) SM15 Non-sandy 2.4 14.1 26.3 43
— (J. maritimus) SM18 Non-sandy 10.1 14.1 26.3 50
— (J. gerardii) SM16 Sandy 9.5 —14.1 40.4 36
— (J. gerardii) SM16 Non-sandy 14.1 9.5 26.3 50
Variables not in model denoted by “~". Variables related to vegetation type or NVC class but not included in analysis in parentheses “()”. Vegetation type (four levels: P.

maritima; A. portulacoides; J. maritimus; J. gerardii). NVC class (five levels: SM13; SM14; SM15; SM16; SM18). Simplified soil type (two levels: sandy soil with

> 45 % sand; non-sandy soils with <45 % sand including loam, clay, organic soils).

A. portulacoides is known to colonise relatively well-aerated
and drained areas (Armstrong et al., 1985). We did not find an
effect of grazing occurrence on SOC stocks in this study, de-
spite a significant interaction between plant community type
(a clear indicator of surface SOC stock) and livestock graz-
ing. Our results are, therefore, in line with the subset of Euro-
pean salt-marsh studies (n = 75) from a recent meta-analysis
that only found an effect of grazing on SOC stock in North
American salt marshes (Davidson et al., 2017).
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4.2 Tools for broadscale predictions of salt-marsh SOC
stock

The study findings were used to develop two practical tools
for predicting the surface SOC stocks of salt marshes: the
SCSP tool for expert stakeholders (i.e. [PCC, blue carbon
initiatives, academics, policy makers, and land managers)
and the Saltmarsh App for the general public (find both at
https://www.saltmarshapp.com, last access: 8 January 2019).
All of the univariate and bivariate models tested in this study
explained > 32 % of the variation in salt-marsh surface SOC
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Figure 2. Predictions of surface SOC stock (tC ha~!; 0-10 cm) for
salt marshes at Laugharne in south Wales. SOC stock was pre-
dicted by (a) NVC class only (NVC_model), (b) simplified soil
type only (Soil_model), (¢) NVC and simplified soil type combined
(NVC_soil_model), and (d) NVC_soil_model (used where NVC
communities were mapped), combined with Soil_model (remain-
ing salt-marsh area where NVC community information was not
available). Inserted into maps are estimates of the total amount of
surface SOC (tC) (0-10cm) for the area of the salt marsh (%) for
which we had the necessary information to make predictions, with
panel (d) illustrating best practice. Laugharne marsh included NVC
communities for which the study did not have predictive surface
SOC stock-to-NVC relationships; hence, panels (a) and (c) include
areas without SOC predictions (white colour) and the percentage of
the marsh area for which SOC predictions were made is < 100 %.

stocks; however not all were of practical use for the tool or
app, which required variables that were either easy to mea-
sure or readily available as GIS layers. For example, the
characterisation of soils into 12 soil texture categories pro-
duced consistently better univariate and bivariate predictions
of SOC (~50% of variation explained) than simple clas-
sification into sandy or non-sandy soils (~ 33 %), as tex-
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ture classification allowed a more accurate assessment of the
clay-to-sand ratio, a key indicator of SOC (Arrouays et al.,
2006; O’Brien et al., 2015). However, the two-class simpli-
fied soil type classification was selected for use in the tools,
as existing UK soil maps categorised salt-marsh soils in these
terms and because non-specialists can distinguish sandy from
non-sandy soils in the field. For plant community type, pre-
dictions by vegetation type or NVC class performed equally
well, both explaining over a third of variation in surface SOC
stock in univariate models, rising to nearly half when com-
bined with either simplified soil type or texture classification.
NVC class was selected as a key variable for SCSP as it is
often mapped at the UK level by national agencies, whereas
the easier to identify vegetation type was chosen for the Salt-
marsh App. In summary, the SCSP tool generates predictions
and maps of saltmarsh SOC stock from existing mapped in-
formation on soil type, NVC classification, or both. The Salt-
marsh App predicts SOC stock from field-based information
on vegetation type and simplified soil type combined.

4.3 Advantages and limitations of predicting blue
carbon from vegetation and soil types

Coastal vegetated habitats are now increasingly acknowl-
edged as important carbon sinks (Howard et al., 2017), based
on their high primary production, sediment trapping capacity,
and the biogeochemical conditions of their sediments, which
slow the decay of organic material (Kelleway et al., 2016,
McLeod et al., 2011). The contribution of coastal habitats,
such as salt marshes, to climate change mitigation had previ-
ously been underestimated (Scholefield et al., 2013), mainly
due to their relatively small area cover relative to the open
ocean or terrestrial vegetated ecosystems. However, on a per
area basis, coastal wetlands are more efficient carbon sinks
than most terrestrial forests (McLeod et al., 2011; Pan et al.,
2011) due to their ability to accrete vertically in response
to sea level rise. Indeed, this study shows Welsh marshes
hold up to 50tCha~! in the top 10cm of soil, equivalent
to carbon densities in habitats such as freshwater wetlands,
semi-natural grasslands, and woodlands (Ostle et al., 2009).
The SOC predictive models and associated tool presented in
this paper are widely applicable to other UK salt marshes
(Fig. S4), but also throughout north-western European salt
marshes (from Portugal to the Baltic), due to the similarity
of common and widespread vegetation types (Adam, 1990).
However, for use in other biogeographical regions, particu-
larly North America, where salt marshes are dominated by
large Spartina species that produce organogenic soils (Adam,
1990), the methods would need further ground-truthing.
IPCC (2014) guidelines suggest that the accurate assess-
ment of blue carbon stocks involves measurement to a depth
of 1 m. However, as this study focused on the principal of
predicting salt-marsh SOC stock from easy-to-measure met-
rics, only the surface layer (top 10cm) of soil was consid-
ered. Although this approach does not allow direct prediction
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of total SOC stock throughout the soil profile, it is in line with
reviews from terrestrial habitats that tend to focus on shal-
low soil layers (top 10-15 cm of soil; Ostle et al., 2009). For
minerogenic salt marshes, SOC stock in the top layer of soil
is generally indicative of SOC stock in deeper soil layers (Bai
et al., 2016; Drake et al., 2015), with nearly three-quarters of
total SOC and over half of the total root biomass in UK salt
marshes captured by sampling to a depth of 10 cm (based on
measurement to 45 cm, Figs. S5-S6). We therefore argue that
surface SOC stock can provide a reliable predictor of deeper
carbon stores and is therefore a useful indicator of total SOC
stock for UK salt marshes.

The SCSP tool provides surface SOC stock predictions for
salt-marsh plant communities indicative of the low marsh,
mid-marsh, and high marsh zones, representing around two-
thirds of the total Welsh salt-marsh area, calculated di-
rectly from map summary data (Figs. S7-S29). However,
future work could boost the scope of the SCSP by validat-
ing SOC stock predictions for pioneer communities com-
mon across Europe (Spartina and Salicornia), which may
differ markedly in biotic indicators of SOC stock such as root
biomass (Keiffer and Ungar, 2002; Schwarz et al., 2015). At
present, pioneer communities are defined by simplified soil
type alone (see Fig. 2d). Common to many ecosystem service
mapping tools, the SCSP tool assumes linearity of the rela-
tionship between area and ecosystem service; this however is
uncertain (Barbier et al., 2008; Koch et al., 2009) and should
be the next frontier of ecosystem service research.

While the SCSP tool has advantages in terms of translating
ecology into practitioner-ready information, something that
is increasingly being demanded of ecologists (see Chapin,
2017, and the special issue on “translational ecology” in
Frontiers in Ecology and Environment, December 2017),
such an approach also has some limitations. Namely, in the
process of translating ground-level observations of ecosys-
tem benefits (e.g. SOC stocks) into large-scale maps, there is
some information that gets “lost in translation” (sensu Jack-
son et al., 2017). In the case of this study, we were inherently
limited by the need to use a reduced number of the simplest
variables available to any practitioner (e.g. vegetation com-
munity type), and at the same time, variables that feature in
national cartographic programmes (e.g. coarse soil category
maps). Even so, the simple models selected for the SCSP
tool explained ~ 50 % of the variation in surface SOC stock
in the studied salt marshes. However, there is still another
50 % that we do not account for in this work. We know some
of this variation is explained by the need to use simplified
soil categories (instead of soil texture) and the inability to
use root biomass and plant species richness as variables in
the final tool (as these variables need more expertise to esti-
mate and do not feature in an available GIS layer). The rest
of the variation in surface SOC stock might be attributed to
differences in marsh elevation within the tidal frame or in
the geomorphological context of the marsh (e.g. fringing or
estuarine, and if estuarine, near the mouth of the estuary or
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towards the head of the estuary) (Arriola and Cable, 2017),
level of urbanisation of the catchment (Deegan et al., 2012),
past history of the marsh (Kelleway et al., 2016), whether the
marsh sits in a dynamic or stable area, a level of disturbance
or exposure it is being subjected to (Macreadie et al. 2013),
among other factors. Despite the caveats listed above, this
study has demonstrated the ability to predict up to half the
variation in salt-marsh surface SOC stock from very simple
environmental metrics.
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