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Abstract  

Acyl-ghrelin has various peripheral effects including the potential role in mediating cellular 

lipid removal and macrophage polarization. Previous reports are contradictory as to how 

glycaemia and acyl-ghrelin mediates lipid retention and inflammation within individuals with 

Type 2 diabetes (T2D). Our aim was to explore acyl-ghrelin levels and ghrelin expression in 

relation to lipid and inflammatory markers within an ex vivo human model, biopsied visceral 

adipose tissue.  

Results indicated that acyl-ghrelin was associated with a decline in key lipid homeostasis 

genes ABCG1 and LXRβ expression. Within T2D there was also a down regulation of these 

genes which was independent of acyl-ghrelin levels. Circulatory pro-inflammatory markers 

(IL-6 and TNFα) had no association with ghrelin expression nor circulating acyl-ghrelin levels. 

Anti-inflammatory marker (IL-10) and total antioxidant status (TAOS%) were positively 

associated with ghrelin expression across samples from all groups combined (total sample 

cohort) and specifically within the obesity sample cohorts.  

Data supported the hypothesis that hyperglycaemia and acyl-ghrelin have a regulatory role 

in lipid retention. Furthermore, that both acyl- and desacyl-ghrelin is responsible for a 

protective inflammatory response; however this response is diminished in T2D. 

Key words- Acyl-ghrelin; Type 2 Diabetes; Lipid retention; Inflammation 
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Introduction 

The metabolic syndrome has a strong association with developing Type 2 diabetes (T2D). 

This syndrome is characterised by elevated blood pressure and glucose levels, abdominal 

adiposity and abnormal HDL-cholesterol or triglyceride levels [1]. Within the last decade, the 

orexigenic hormone ghrelin has gained scientific interest due to its association with the 

metabolic syndrome. Secreted from the X/A-like cells of the oxyntic glands of the gastric 

fundus, the 28 amino acid protein undergoes post-translational octanoylation to produce 

acyl-ghrelin (AG), which binds to growth hormone secretagogue receptors; 1α (GHSR1α) and 

1β (GHSR1β) [2-4]. The unique post-translational modification of desacyl-ghrelin (DAG) into 

AG is dependent upon the bioavailability of a key octanoylation agents and de-octanoylating 

agent:- ghrelin O-acyltransferase (GOAT) and acyl-protein thioesterase 1 (APT1), 

respectively [5-7]. AG is often referred to as the active form, however recent studies suggest 

an independent role in homeostatic regulation for DAG [8-10]. Ghrelin has been reported to 

be present throughout the human body, indicative of a global homeostatic role, including an 

association with lipid and endocrine homeostasis [11, 12].   

 

Acyl-ghrelin & lipogenesis 

Peroxisome proliferator-activated receptor γ (PPARy) induces the removal of cellular lipids 

by high density lipoproteins via the activation of liver X receptor isoform β (LXRβ) and in 

turn, ATP binding cassette G1 (ABCG1). The relationship between AG, lipid retention and 

lipid biosynthesis, is unclear within published studies discussed in detail within previous 

review [13]. This may be due to variations in dose and route of AG administration and 

evidence for a species-specific effect arising from murine data. Chronic intravenous 
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administration of centrally acting AG has been implicated in having a detrimental effect on 

the transcription of the PPAR-LXR-ABC pathway, resulting in increased white adipose tissue 

(WAT) depots in rodents [14]. Furthermore, AG administration is reported to activate the 

LXR-ABC pathway in a dose dependant manner in human THP-1 macrophages [15].  

 

Acyl-ghrelin & inflammation 

It is noted that AG and its target receptors (GHSR1α and GHSR1β) have been localized within 

various immune cells including macrophages, neutrophils and lymphocytes [16, 17]. 

Emerging evidence has linked GHSR1 presence to M1 and M2 macrophages, which might 

alter adipose tissue inflammation via macrophage polarization [18]. Alterations in 

macrophage polarization can result in changes in key pro-inflammatory cytokines such as 

TNFα and IL-6, and the anti-inflammatory cytokine IL-10 [19]. In addition to inflammatory 

markers, increased plasma levels of AG have been associated with a decrease in oxidative 

burden within obese subjects [20]. Furthermore, evidence linking AG to an increased 

adipose tissue mass may provide a plausible role for AG interaction within systemic 

oxidative stress, due to biomarkers of oxidative stress being correlated with fat 

accumulation [21, 22]. 

 

Acyl-ghrelin & endocrine homeostasis 

Peripheral AG has been shown to have a direct metabolic action that influences 

endopancreatic function, altering glucose diabetogenic action [23, 24]. In obese individuals 

with T2D, a decreased plasma level of combined AG and DAG is associated with an increase 
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in abdominal adiposity and insulin resistance [25]. As previously mentioned, ghrelin’s 

homeostatic action may play a role in T2D through lipid and glucose metabolism cross-talk. 

An increase in hepatic free fatty acid (FFA) oxidation as a result of adiposity, triggers insulin 

resistance and increased glucose output [26]. An AG infusion in healthy volunteers has been 

shown to increase circulating FFA levels [27], which promotes insulin resistance and a 

decline in insulin sensitivity via an increase of FFA, physical stress and reactive oxygen 

species associated with adipocyte hypertrophy. In line with this, ghrelin mediated-lipid 

retention, inflammation and glucose homeostasis may contribute to the pathophysiology of 

T2D. However, little data has been published to support the interaction of AG, lipid 

retention, inflammation and glucose homeostasis in humans.  

 

Materials and Methods 

Sample collection 

30 human visceral adipose tissue (hVAT) samples categorised as; non-obese (BMI<30 kg/m2 

(NO [n=10])), obese (BMI > 30 kg/m2 (O [n=10])), and obese with T2D (BMI > 30 kg/m2, T2D 

diagnosis >6 months (OT2D [n=10])) were collected, with a corresponding fasting blood 

sample and additional clinical information (age, body weight, height, medical history and 

prescribed medication). All of which were collected within 24 hours prior of undergoing 

routine abdominal operations at Morriston and Singleton Hospitals, Swansea and after 

informed consent was retrieved. A hVAT biopsy was taken from the greater omentum 

during surgery and placed immediately into RNALater® (Ambion Inc, UK) to preserve tissue 

stability and RNA integrity. Analytical chemistries (glucose, total cholesterol, high density 

lipoproteins (HDL), low density lipoproteins (LDL) and triglycerides) were measured using 
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the Randox Daytona Plus and HbA1c measured using Tosoh GX HLC-723 (Tosoh Bioscience 

Ltd) from whole blood samples collected in Vacutainer™ EDTA-plasma tubes. 

Real Time-PCR gene expression analysis 

Expression of ghrelin axis and lipid profile genes were measured in hVAT samples. RNA was 

extracted using Qiagen™ Lipid extraction kits via standard manufacturers protocol. Reverse 

transcription was performed using 1000ng/µl of total RNA and reverse transcriptase kit 

(Ambion™) with oligo d(T) primers. Real Time-PCR was performed using SYBR Green 

chemistries on thermocycler (CFX connect; Biorad™). Primer sequences are reported in 

Table 1, for genes of interest analysed for exploration of ghrelin axis and lipid retention. The 

average CT value was taken from triplicate assays and normalised against the invariant 

expression of β-actin housekeeper gene. Result were analysed using the 2-ΔΔCT method to 

produce relative fold change values in comparison between groups, standard error of the 

mean (SEM) was calculated from the average CT value for each sample produced within the 

experiment cohort. Fold change range of -1.5 to 1.5 is indicative of no overall change in 

gene expression levels.  

Measure of plasma acyl-ghrelin  

AG was measured in plasma taken from whole blood sample treated with an irreversible 

serine protease inhibitor, 4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride (AESBF) 

[0.02mg/ml], using a Human Ghrelin (active) ELISA (Merck Millipore™) following the 

manufacturer instructions.  The complete assay was read at 450 nm and 590 nm absorbance 

on a SkanIt™ plate reader (ThermoScientific™).  
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Primer  Forward Primer  Reverse Primer  

Β-actin  GATGGCCACGGCTGCTTC  TGCCTCAGGGCAGCGGAA  

GHRL  TGAGCCCTGAACACCAGAGAG  AAAGCCAGATGAGCGCTTCTA  

PPARγ  ACAGCGACTTGGCAATATTTATTG  AGCTCCAGGGCTTGTAGCA  

ABCG1  TCCTATGTCAGGTATGGGTTCG  GTCCAGGTACAGCTTGGCAT  

LXRβ  CCTGCAGGTGGAGTTCATCA  CAGCTGGTCCTGCGGC  

LYPLA1  GGTCCTATCGGTGGTGCTAA  ACATCCATCATTTCCTGTTGACAC  

mBOAT4  TCTTTGTCTGAGCATGTGTGTAA  AAGCACTGGACCCTTGAACA  

Table 1. Primer sequences generated through NCBI primer tools and PrimerDesign  

Measure of plasma cytokine levels  

IL-6, TNFα and IL-10 were measured in fasting plasma taken from whole blood sample using 

ELISA (R&D systems™) following the manufacturer instructions.  The complete assay was 

read at 450 nm and 590 nm absorbance on a SkanIt™ plate reader (ThermoScientific™).  

Measure of total antioxidant status 

Relative total antioxidant status percentage (TAOS%) analysis was measured in plasma 

taken from whole blood sample. Plasma TAOS, which is inversely related to oxidative stress, 

was measured using the Sampson et al [28] protocol, a modification of Laight's photometric 

microassay and as published by Prior et al [29, 30].  
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Statistical analysis 

For gene expression data, statistical analysis (SPSS™; version 21) was run using one-way 

analysis of variance (ANOVA) on CT data normalised against β-actin housekeeper. All 

baseline characteristics were analysed using one-way ANOVA for parametric data and 

Kruskal Wallis for non-parametric data. Parametric data is given as mean and standard 

deviation shown in brackets. Non-paramteric data is presented as median and interquartile 

ranges [IQR] are shown in square brackets. Correlation analysis was performed using linear 

regression and Spearmans rank. P values less than 0.05 were deemed statistically significant. 

 

Results 

Total Sample Cohort 

Baseline characteristics were compared across all three groups indicating significant 

differences in key metabolic markers (Table 2). Within the total sample cohort, circulating 

acyl-ghrelin levels were associated with ΔCt values of GHRL expression (rs= -0.41, p<0.05), 

however, there was no association between circulating acyl-ghrelin levels and key 

octanoylation genes; LYPLA1 (rs= -0.01, p=0.62) or mBOAT4 (rs= -0.11, p=0.59). Baseline 

plasma acyl-ghrelin levels were significantly decreased in OT2D compared to both O 

(p<0.05) and NO groups (p<0.05) (Table 2). As shown in Figures 1A and 1B, acyl-ghrelin 

concentrations were inversely correlated with plasma glucose levels (rs=-0.41, p<0.05) and 

body weight (rs=-0.42; p<0.05), respectively. However, a positive correlation was seen when 

comparing plasma acyl-ghrelin levels with total cholesterol (rs = 0.38, p<0.05) and LDL (rs = 

0.39, p<0.05) (Figures 1C and 1D respectively). In the total sample cohort, there was no 
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significant associations between inflammatory markers and plasma acyl-ghrelin (IL-6, rs= -

0.28, p=0.16; TNFα, rs= 0.02, p=0.96; IL-10, rs= 0.13, p=0.63; TAOS, rs= 0.26, p=0.19). 

However, when inflammatory markers were analysed against GHRL, increased gene 

expression or a decline in ΔCt value as shown, was associated with increased plasma IL-10 

(rs= -0.48, p<0.05) and TAOS% (rs= -0.40, p<0.05) and a non-significant reduction in TNFα (rs 

= 0.44, p=0.06). 

 

Non Obese    
(NO) 

(n=10) 

Obese                  
(O) 

(n=10) 

Obese Type 2 
(OT2D) 

(n=10) 

P-value 

Age (Years) 
Mean (SD) 

51.8 (15.5) 51.1 (12.0) 45.5 (6.8) 0.44 

Weight (Kg)* 
Median [IQR] 

72.2 [64-81] 90.7 [86-122] 131.4 [114-152] <0.001 

BMI (Kg/m2)* 
Median [IQR] 

26.2 [24-28] 34.9 [32-42] 47.3 [42-51] <0.001 

Glucose 
(mmol/L)* 
Median [IQR] 

4.8 [4.5-6.5] 5.4 [4.9-6.5] 6.7 [6.0-12.6] <0.01 

HbA1c (%)* 
Median [IQR] 

5.1 [4.6-5.7] 5.2 [4.9-5.5] 7.0 [5.4-8.4] <0.05 

HbA1c 
(mmol/mol)* 

Median [IQR] 

30.6 [26-39] 36.1 [30-37] 52.5 [36-68] <0.05 

Statin 
prescription#     

%  (n) 
20 (2) 10 (1) 50 (5) 0.11 

Acyl-ghrelin  

(pg/mL)*   
Median [IQR] 

467.2 [326-508] 515.5 [309-701] 228.5 [98-439] <0.05 

Table 2. Baseline characteristics for total sample cohort. Mean and standard deviation (SD) shown for normally 

distributed data & p-value determined using one-way ANOVA (Age; F(1,28)=0.58, p=0.44). * Median and 

interquartile range [IQR] shown for data that is not normally distributed and non-parametric Kruskal Wallis 

used for p-value determination. #Categorical data tested using Pearson Chi-square analysis. Significant p-value 

are shown in bold.  
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Figure 1. Scatter graphs showing correlations between AG levels and baseline characteristics. (A) Plasma 

glucose (R² = 0.113; p<0.05). (B) Body weight (R² = 0.2007; p<0.05). (C) Plasma total cholesterol  

(R² = 0.2301; p<0.05). (D) Plasma LDL (R² = 0.2437; p<0.05).  

 

Since the baseline characteristics showed a significant difference in weight between O and 

OT2D (p<0.05), the total cohort was split into two further groups for data analysis to enable 

the investigation and exploration of adiposity versus glycaemic state (i) obesity effect 

([OT2D+O] v NO) and (ii) diabetes effect ([O+NO] v OT2D). 

 

Obesity effect 

We observed that obese (OT2D+O) individuals had a significantly higher blood glucose 

concentration when compared to NO (6.1 [5.4-7.5] v 4.8 [4.5-5.7] mmol/L; p<0.05). Lipid 

profiles of total cholesterol (F (1,28)=0.6, p=0.45), HDL (F (1,28)=0.6, p=0.43), LDL (F 
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(1,28)=1.4, p=0.25) and triglycerides were unaltered (F (1,28)=2.3, p=0.14) (Figure 2A-

D)(Table 3). LXRβ, ABCG1, GHRL, mBOAT4, PPARγ and LYPLA1 gene expression showed no 

difference between obese (OT2D+O) and NO individuals (Figure 3A). Plasma AG showed no 

significant association with inflammatory cytokines within the obese group (IL-6, rs=0.14, 

p=0.59; TNFα, rs=0.26, p=0.47; IL-10, rs=0.18, p=0.63). Furthermore, inflammatory cytokines, 

IL-6 (rs=-0.03, p=0.92) and TNFα (rs=0.42, p=0.20) had no association with GHRL expression, 

However, the pro-inflammatory marker IL-10, demonstrated a significant association with 

GHRL expression (rs=-0.57, p<0.05). Additionally, TAOS% indicates oxidative stress was also 

associated with GHRL expression (rs=-0.54, p<0.01), however, further down-stream when 

TAOS% is analysed versus circulating AG levels, no association was observed (rs=0.24, 

p=0.32). 

 

Diabetes effect 

OT2D individuals, when compared with those with normoglycaemia (NO+O), were 

significantly different in weight (131.4 [116-148] v 82.0 [72-100] Kg: p<0.01), BMI (47.3 [43-

50] v 29.9 [43-50] Kg/m2; p<0.01), plasma glucose (6.7 [6.0-11.1] v 5.3 [4.6-5.9] mmol/L: 

p<0.01) and HbA1c (7.0 [5.5-7.6] v 5.2 [4.6-5.6] %: p<0.01). Lipid profiles of total cholesterol 

(F (1,28)=9.5, p<0.01), HDL (F (1,28)=7.1, p<0.05) and LDL (F (1,28)=12.4, p<0.01) were 

significantly decreased in the OT2D group, while triglycerides showed a non-significant 

increase (F (1,28)=3.0, p=0.10)(Figure 2A-D). However, gene expression data for diabetes 

effect (OT2D) indicated a marked decrease in LXRβ, ABCG1 and GHRL expression levels 

(p<0.05) (Figure 3B). During analysis of inflammatory markers association with AG and GHRL 

gene expression, it was evident that within a diabetes effect all associations previously seen 
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had been diminished. AG showed no significant association with inflammatory cytokines (IL-

6; rs=-0.04, p=0.30, TNFα; rs=-0.60, p=0.29 and IL-10; rs=-0.70, p=0.19), nor with oxidative 

stress marker (TAOS%; rs=-0.42, p=0.23). In addition, GHRL expression had also diminished 

all associations with inflammatory and oxidative stress markers, showing no significant 

correlation with IL-6 (rs=-0.31, p=0.42), TNFα (rs=0.67, p=0.22), IL-10 (rs=0.82, p=0.09) or 

TAOS% (rs=-0.17, p=0.65). 

 

 

Figure 2. (A) Mean and standard error of total cholesterol levels (mmol/L) in comparison of control for the 

two-arm data analysis of obesity and diabetes effect. (B) Mean and standard error of LDL levels (mmol/L) in 

comparison of control for the two-arm data analysis of obesity and diabetes effect. (C) Mean and standard 

error of triglycerides levels (mmol/L) in comparison of control for the two-arm data analysis of obesity and 

diabetes effect. (D) Mean and standard error of HDL levels (mmol/L) in comparison of control for the two-arm 

data analysis of obesity and diabetes effect. P value determined using one-way ANOVA. * p <0.01. ** p <0.05.  
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  Non-Obese (NO) Obese (O) Obese Type 2 (OT2D) P-value 

Cholesterol 

(mmol/L)  
4.4 (1.2)  4.8 (1.7)  3.1 (0.7)  <0.05  

HDL          

(mmol/L)  
1.1 (0.4)  1.3 (0.8)  0.7 (0.2)  <0.05  

LDL          

(mmol/L)  
2.7 (0.9)  2.8 (1.1)  1.5 (0.5)  <0.01  

Triglycerides 

(mmol/L)  
1.2 (1.0)  1.5 (0.6)  1.9 (0.8)  0.19  

Table 3. Mean and standard deviation shown for lipid profiles for total cohort. Mean and standard deviation 

shown for normally distributed data & p-value determined using one way ANOVA. Significant values are shown 

in bold.  

 

Figure 3. Relative fold change values for gene expression data; negative fold change indicates down-regulation, 

positive fold change indicates up-regulation and fold change between -1.5 and 1.5 is classed as no fold change, 

indicated by shaded area. (A) Obesity effect (NO v [O+OT2D]). (B) Diabetes effect ([NO+O] v OT2D). * indicates 

statistical significance (p<0.05) between ΔCt values between sample cohort for gene of interest. 

 

Discussion 

To date, pre-clinical studies into the regulation of lipid homeostasis via the ghrelin axis have 

yielded contradictory findings. The translation of these studies to humans suggests ghrelin is 

a mediator of lipid homeostasis, at least in hVAT. Correlation of AG with key lipid profile 
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markers advocates that in a high AG environment there is an increase in plasma lipid 

profiles. These findings are consistent with published data in humans, in the presence of low 

AG, suggesting there is a diminished LXR-ABC response [15], which could result in an 

increase in cellular lipid retention. However, it is important to acknowledge the significance 

of cell specific responses, and due to the complex make-up of hVAT it merely represents the 

profile of gene expression in adipose tissue. The down regulation of LXRβ within the 

diabetes cohort (OT2D) could indicate that AG promotes an altered immune function, as LXR 

isoforms have an anti-inflammatory response [31]. In accordance with published data, 

individuals with T2D have a significantly decreased level of circulating AG [25], which 

appears to be dependent on plasma glucose levels. With increased endogenous glucose 

levels present in those with T2D already shown to increase lipid concentrations within the 

cell, data suggests the cellular export mechanism that counterbalances the lipid increase is 

impaired due to the lack of AG present. These findings correspond to the observed low 

plasma lipid concentrations due to detainment, trapping lipids within the cell, and lowering 

the rate of release into the circulation, independently of statin usage. 

Upon elucidation of a diabetes versus obesity effect, it is apparent that both obesity and 

T2D caused a marked decline in anti-inflammatory markers i.e. plasma IL-10 [32, 33], and an 

increase in surrogate oxidative stress markers  i.e. TAOS levels [29, 34]. Furthermore, within 

both the total sample and obese effect cohorts, there was a significant association between 

GHRL expression and IL-10. However, when explored within the diabetes effect cohort it 

was apparent this association was diminished. Improvements in both IL-10 and TAOS% 

levels were associated with the up regulation of GHRL expression, corresponding with 

published studies that indicate a promotion of inflammatory health in the presence of 

ghrelin [20, 35]. It is not determined whether this inflammatory protection is due to an 
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increase in both AG and DAG via increased GHRL expression, or whether is the result of a 

shift in DAG or AG concentrations. Previous studies have linked AG with a plausible role in 

protecting human lens epithelial cells [36] and osteoblastic cells [37] against reactive oxygen 

species accumulation. In addition to AG, DAG treatment has also established a protective 

role from oxidative stress in microvascular endothelial cells via regulation of sirtuin 1 (SIRT1) 

catalytic activity [38] and within osteoblastic cells independent of GHSR1α [37].  

Data demonstrates that circulatory AG concentration and action are dependent upon the 

mRNA expression of the GHRL gene. Furthermore, it is not altered due to the availability of 

APT1 or GOAT, with LYPLA1 and mBOAT4 gene expression remaining unchanged across the 

cohorts, respectively. However, an expansion of this analysis into the activity of the key des-

octanoylation and octanoylation genes may elucidate a regulatory role. Further work is key 

to the exploration of whether endogenous glucose levels within T2D effects the ratio of AG 

to DAG and how this effects hypertrophy and consequent comorbidities. 

 

Acknowledgements  

I would like to acknowledge Health and Care Research Wales funded by the Welsh 

government (HS­14­40) for funding this work. Also, the Welsh Institute of Metabolic & 

Obesity Surgery for assisting in sample collection. There is no conflict of interest to declare.   

 

References 

1. Alberti, K.G.M.M., P. Zimmet, and J. Shaw, Metabolic syndrome—a new world‐wide 
definition. A consensus statement from the international diabetes federation. Diabetic 
medicine, 2006. 23(5): p. 469-480. 



 16 

2. Kojima, M. and K. Kangawa, Ghrelin: structure and function. Physiological reviews, 2005. 
85(2): p. 495-522. 

3. Garin, M.C., et al., Clinical review; The human experience with ghrelin administration. The 
Journal of Clinical Endocrinology & Metabolism, 2013. 98(5): p. 1826-1837. 

4. Dixit, V.D., et al., Ghrelin inhibits leptin-and activation-induced proinflammatory cytokine 
expression by human monocytes and T cells. Journal of Clinical Investigation, 2004. 114(1): p. 
57. 

5. Yang, J., et al., Identification of the acyltransferase that octanoylates ghrelin, an appetite-
stimulating peptide hormone. Cell, 2008. 132(3): p. 387-396. 

6. Shanado, Y., et al., Lysophospholipase I identified as a ghrelin deacylation enzyme in rat 
stomach. Biochemical and biophysical research communications, 2004. 325(4): p. 1487-
1494. 

7. Satou, M., et al., Identification and characterization of acyl-protein thioesterase 
1/lysophospholipase I as a ghrelin deacylation/lysophospholipid hydrolyzing enzyme in fetal 
bovine serum and conditioned medium. Endocrinology, 2010. 151(10): p. 4765-4775. 

8. Chabot, F., et al., Interrelationships between ghrelin, insulin and glucose homeostasis: 
Physiological relevance. World journal of diabetes, 2014. 5(3): p. 328. 

9. Kirchner, H., K.M. Heppner, and M.H. Tschöp, The role of ghrelin in the control of energy 
balance, in Appetite Control. 2012, Springer. p. 161-184. 

10. Tong, J., et al., Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates 
glucose tolerance in healthy humans. Diabetes, 2010. 59(9): p. 2145-2151. 

11. Müller, T., et al., Ghrelin. Molecular Metabolism, 2015. 4(6): p. 437-460. 
12. Ghelardoni, S., et al., Ghrelin tissue distribution: comparison between gene and protein 

expression. Journal of endocrinological investigation, 2006. 29(2): p. 115-121. 
13. Churm, R., et al., Ghrelin function in human obesity and type 2 diabetes: a concise review. 

Obesity Reviews, 2017. 18(2): p. 140-148. 
14. Davies, J.S., et al., Ghrelin induces abdominal obesity via GHS-R-dependent lipid retention. 

Molecular endocrinology, 2009. 23(6): p. 914-924. 
15. Demers, A., et al., A concerted kinase interplay identifies PPARγ as a molecular target of 

ghrelin signaling in macrophages. PloS one, 2009. 4(11): p. e7728. 
16. Waseem, T., et al., Exogenous ghrelin modulates release of pro-inflammatory and anti-

inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. 
Surgery, 2008. 143(3): p. 334-342. 

17. Hattori, N., et al., GH, GH receptor, GH secretagogue receptor, and ghrelin expression in 
human T cells, B cells, and neutrophils. The Journal of Clinical Endocrinology & Metabolism, 
2001. 86(9): p. 4284-4291. 

18. Lin, L., et al., Ghrelin receptor regulates adipose tissue inflammation in aging. Aging (Albany 
NY), 2016. 8(1): p. 178. 

19. Lumeng, C.N., J.L. Bodzin, and A.R. Saltiel, Obesity induces a phenotypic switch in adipose 
tissue macrophage polarization. The Journal of clinical investigation, 2007. 117(1): p. 175-
184. 

20. Suematsu, M., et al., Decreased circulating levels of active ghrelin are associated with 
increased oxidative stress in obese subjects. European journal of endocrinology, 2005. 
153(3): p. 403-407. 

21. Matsuda, M. and I. Shimomura, Increased oxidative stress in obesity: implications for 
metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. 
Obesity research & clinical practice, 2013. 7(5): p. e330-e341. 

22. Keaney, J.F., et al., Obesity and systemic oxidative stress: clinical correlates of oxidative stress 
in the Framingham Study. Arteriosclerosis, thrombosis, and vascular biology, 2003. 23(3): p. 
434-439. 



 17 

23. Benso, A., et al., Metabolic effects of overnight continuous infusion of unacylated ghrelin in 
humans. European Journal of Endocrinology, 2012. 166(5): p. 911-916. 

24. Gasco, V., et al., Endocrine and metabolic actions of ghrelin, in Pediatric Neuroendocrinology. 
2010, Karger Publishers. p. 86-95. 

25. Katsuki, A., et al., Circulating levels of active ghrelin is associated with abdominal adiposity, 
hyperinsulinemia and insulin resistance in patients with type 2 diabetes mellitus. European 
Journal of Endocrinology, 2004. 151(5): p. 573-577. 

26. Lam, T.K., G. Van de Werve, and A. Giacca, Free fatty acids increase basal hepatic glucose 
production and induce hepatic insulin resistance at different sites. American Journal of 
Physiology-Endocrinology And Metabolism, 2003. 284(2): p. E281-E290. 

27. Huda, M., et al., Ghrelin restores ‘lean-type’hunger and energy expenditure profiles in 
morbidly obese subjects but has no effect on postgastrectomy subjects. International Journal 
of Obesity, 2009. 33(3): p. 317-325. 

28. Sampson, M.J., et al., Plasma F2 isoprostanes: direct evidence of increased free radical 
damage during acute hyperglycemia in type 2 diabetes. Diabetes care, 2002. 25(3): p. 537-
541. 

29. Prior, S.L., et al., Temporal changes in plasma markers of oxidative stress following 
laparoscopic sleeve gastrectomy in subjects with impaired glucose regulation. Surgery for 
Obesity and Related Diseases, 2017. 13(2): p. 162-168. 

30. Prior, S.L., et al., Adiponectin, total antioxidant status, and urine albumin excretion in the 
low-risk “Golden Years” type 1 diabetes mellitus cohort. Metabolism-Clinical and 
Experimental, 2011. 60(2): p. 173-179. 

31. Zelcer, N. and P. Tontonoz, Liver X receptors as integrators of metabolic and inflammatory 
signaling. The Journal of clinical investigation, 2006. 116(3): p. 607-614. 

32. van Exel, E., et al., Low production capacity of interleukin-10 associates with the metabolic 
syndrome and type 2 diabetes. Diabetes, 2002. 51(4): p. 1088-1092. 

33. Esposito, K., et al., Association of low interleukin-10 levels with the metabolic syndrome in 
obese women. The Journal of Clinical Endocrinology & Metabolism, 2003. 88(3): p. 1055-
1058. 

34. Fenkci, V., et al., Decreased total antioxidant status and increased oxidative stress in women 
with polycystic ovary syndrome may contribute to the risk of cardiovascular disease. Fertility 
and sterility, 2003. 80(1): p. 123-127. 

35. Harvey, R.E., et al., The ghrelin/GOAT system regulates obesity-induced inflammation in male 
mice. Endocrinology, 2017. 

36. Bai, J., et al., Ghrelin Protects Human Lens Epithelial Cells against Oxidative Stress-Induced 
Damage. Oxidative Medicine and Cellular Longevity, 2017. 2017. 

37. Dieci, E., et al., Acylated and unacylated ghrelin protect MC3T3-E1 cells against tert-butyl 
hydroperoxide-induced oxidative injury: pharmacological characterization of ghrelin receptor 
and possible epigenetic involvement. Amino acids, 2014. 46(7): p. 1715-1725. 

38. Shimada, T., et al., Des-acyl ghrelin protects microvascular endothelial cells from oxidative 
stress-induced apoptosis through sirtuin 1 signaling pathway. Metabolism, 2014. 63(4): p. 
469-474. 

 


