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Abstract

To help create a comfortable and healthy indoor and outdoor environment in which to live, there

is a need to understand turbulent air flows within the urban environment. To this end, build-

ing on a previously reported method [1], we develop a fast-running Non-Intrusive Reduced Order

Model (NIROM) for predicting the turbulent air flows found within an urban environment. To

resolve larger scale turbulent fluctuations, we employ a Large Eddy Simulation (LES) model and

solve the resulting computational model on unstructured meshes. The objective is to construct

a rapid-running NIROM from these results that will have ‘similar’ dynamics to the original LES

model. Based on Proper Orthogonal Decomposition (POD) and machine learning techniques, this

Reduced Order Model (ROM) is six orders of magnitude faster than the high-fidelity LES model

and we demonstrate how ‘similar’ it can be to the high-fidelity model by comparing statistical quan-

tities such as the mean flows, Reynolds stresses and probability densities of the velocities. We also

include validation of the high-fidelity model against data from wind tunnel experiments.

This paper represents a key step towards the use of reduced order modelling for operational purposes

with the tantalising possibility of it being used in place of Gaussian plume models, and the potential

for greatly improved model fidelity and confidence.
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1. Introduction1

Turbulent flows are important in many engineering fields such as geophysics, astrophysics and2

meteorology [2]. For example, understanding how turbulent flow moves around buildings or cities3

is increasingly important to policy makers and environmental engineers for designing new urban4

spaces that provide comfortable and healthy indoor and outdoor built environments [3]. Numerical5

simulation is one of the main tools allowing us to understand urban turbulent flows and has demon-6

strated its importance for a wide range of research areas such as atmospheric physics [4], pollution7

dispersion [5, 6, 7] and urban planning [8, 9].8

The prediction of air flow around buildings and in street canyons is challenging due to the chaotic9

nature of turbulent flows [5] and the complexity of geometries in the urban environment [3, 10].10

These flows have a wide range of spatial and temporal scales [11, 5], all of which influence the local11

flow dynamics. A detailed description of turbulent flow is important in order to model accurately12

the dispersion or accumulation of pollution. However, capturing the higher order moments that con-13

tribute to turbulence represents a challenge for any numerical model as they are notoriously difficult14

to reproduce [6]. Two main approaches exist for the modelling of turbulent flows: the Reynolds-15

Averaged Navier-Stokes (RANS) approach and the Large Eddy Simulation (LES) approach. It has16

been shown that LES methods are more accurate than RANS methods and are able to capture17

the unsteady fluctuation terms of turbulence, the turbulent mixing processes and the transport of18

pollution in an urban landscape [12, 13, 14, 15, 11, 16].19

In comparison with 2D modelling, 3D urban flow modelling provides better understanding and20

much more information about local flow structure, vertical inertia, unsteady dynamics and pollution21

fluctuations. However, the majority of existing 3D Computational Fluid Dynamics (CFD) urban22

flow models suffer from an extremely high computational cost and cannot respond rapidly enough for23

real-time forecasting [17, 18]. Model reduction technology is therefore being developed to mitigate24

the computational cost, since it offers the potential to simulate complex systems with substantially25

reduced computational requirements.26

Among model reduction methods, Proper Orthogonal Decomposition (POD) has proven to be27

an efficient means of deriving the reduced basis functions for physical systems [19, 20]. In this work28

we choose to derive POD basis functions of all velocity components combined, motivated by the fact29

that the velocity components are physically correlated. This will reduce the amount of training data30

required and also the number of POD basis functions required, see [21, 22]. POD and its variants31

have been successfully applied to a number of research fields, for example, pattern recognition [23],32

fluids problems [24, 25], air pollution [26], shape optimisation [27], aerospace design and optimi-33

sation [28], and shallow water equations [29, 21, 22, 30]. POD is often used in combination with34

Galerkin projection to form intrusive ROMs, however, for non-linear problems, the resulting model35

can suffer from instability and inefficiency issues. Various methods for improving stability have36

been proposed such as Petrov−Galerkin projection [24, 31], regularisation methods [32], the intro-37

duction of numerical diffusion [33, 34] and Fourier expansion of transfer functions [35]. To increase38

the efficiency of the solution of the non-linear terms, a number of methods have been proposed,39
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such as the empirical interpolation method [36], the discrete empirical interpolation method [37],40

Gauss−Newton method with approximated tensors [38], the quadratic expansion method [39, 40]41

and the residual discrete empirical interpolation method [41]. Intrusive ROMs have been developed42

to model air flows inside and outside of buildings and also for environmental modelling. For ex-43

ample, Wu et al. [42] proposed a fast and accurate method to model turbulent flows in a square44

duct with high Reynolds numbers using improved wall-modelled LES. Cao et al. [17] used a dis-45

crete Green’s function method to derive a low dimensional indoor ventilation model. Liu et al. [18]46

used a fast fluid dynamics and a local searching method to derive a fast model for indoor airflow47

simulation. Vervecken et al. [43] proposed a stable ROM for pollutant dispersion outdoors, which48

is derived by projecting the transient advection-diffusion equation onto a Krylov subspace with an49

Arnoldi algorithm. Cao et al. [44] proposed a ROM for indoor pollutant dispersion using a number50

of eigenmodes to represent the system in a manner similar to POD. Fang et al. [26] produced an51

intrusive ROM which was capable of modelling tracer dispersion in urban street canyons.52

Intrusive ROMs require modification of the source code of the high-fidelity model. For complex53

codes this can be troublesome, and, furthermore, maintaining these modifications can be cumber-54

some [45]. To circumvent this shortcoming, non-intrusive model reduction approaches have been55

developed. As a precursor to such methods, Wirtz et al. [46, 47] proposed kernel methods, based56

on support vector machines and a vectorial kernel greedy algorithm. Audouze et al. [48] proposed a57

NIROM for nonlinear parametrised time-dependent PDEs using radial basis functions (RBF) and58

POD. Walton et al. [49] developed a NIROM for unsteady fluid flows using the RBF interpolation59

and POD. Noori et al. [50] and Noack et al. [51] chose a neural network from which to construct a60

NIROM. Xiao et al. [25] presented a NIROM for the Navier-Stokes equations based on POD and61

RBF interpolation and applied it successfully to fluid-structure interaction problems [52].62

Machine learning is gaining more and more attention, and has been applied successfully to a63

number of research fields, such as image recognition [53, 54], driver-less cars [55], assessing the64

visual environment of cities [56], personal comfort model [57], speech recognition [58], language65

processing [59] and the control of complex non-linear systems [60]. There exist a number of open-66

source machine learning libraries, for example, TensorFlow [61] and Keras [62], both used here. In67

this work, to construct our NIROM, we use a machine learning method called Gaussian Process68

Regression (GPR). Although the NIROM could be formed by other means, such as Smolyak sparse69

grids [63] or the quadratic perturbation approach [41], in this paper we exploit the high-dimensional70

surface fitting capabilities of machine learning. The GPR method captures the uncertainty in the71

data directly, and produces good fits when the number of data points is not large [64].72

The aim of this work is to demonstrate a key step towards the use of Reduced Order Models73

(ROMs) in operational modelling with the tantalising possibility, for urban flows, of replacing Gaus-74

sian plume models [65]. The introduction of ROMs could lead to greatly improved model fidelity75

and confidence for air flow and pollution modelling in urban environments. When developing an op-76

erational model based on ROM, the model should (1) be able to reproduce the high-fidelity solutions77

that have been used to train/develop the model and (2) have ‘similar’ dynamics to the high-fidelity78
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model for as long a time as the NIROM is run. In this paper we demonstrate that the proposed79

NIROM has both these properties, by comparing the statistics of mean flows and Reynolds stress80

distributions as well as velocity time series, probability density functions and frequency spectra.81

Our ultimate goal is to model a range of parameters of interest, such as wind direction, buoyancy82

and inlet conditions. This is beyond the scope of the current paper, which focuses on urban planning83

or operational modelling applications where one wind direction is sufficient. To this end, buoyancy84

is neglected, and the inlet conditions and wind direction are fixed. We also fix the geometry and as-85

sume incompressible flow. Future studies will introduce these effects as part of the parametrisation86

of the physics.87

In this work, a Gaussian Process Regression (GPR) machine learning method is combined with88

POD to construct a NIROM, which is applied to urban flows. It is able to provide us a real-time tool89

to understand the urban turbulence flows and help us live in a comfortable and healthy indoor and90

outdoor built environments. The structure of the paper is as follows. Section 2 presents the gov-91

erning equations of urban flows. Section 3 presents the derivation of the POD model reduction and92

re-formulation of the governing equations using the Gaussian Process Regression method. Section 493

illustrates the methodology derived above through the challenging problem of modelling urban air94

flow in the neighbourhood of London South Bank University. We also include a validation of the95

high-fidelity model against physical measurements from a wind tunnel experiment. In section 5, we96

discuss the results and in section 6, conclusions are presented and the novelty of the manuscript is97

highlighted.98

2. Governing equations of a 3D large eddy simulation model99

This work considers the 3D non-hydrostatic Navier-Stokes (NS) equations describing the con-100

servation of mass and momentum of a fluid,101

∇ · u = 0, (1)102

∂u

∂t
+ u · ∇u = −∇p+∇ · τ , (2)103

where u ≡ (u, v, w)T denotes the velocity vector, p = p̃/ρ0 denotes the normalised pressure, p̃104

denotes the pressure, ρ0 represents the constant reference density and τ represents the stress tensor.105

We apply filtering to the NS equations in order to model the fine scale behaviour (i.e. the fluctuations106

that occur on scales smaller than the grid scale), so the stress tensor includes an LES sub-grid scale107

viscosity calculated by an anisotropic Smagorinsky model [66].108

The discretised form of the system can be written as109

CTu = 0, (3)110

M
∂u

∂t
+A(u)u+Ku+ Cp = 0, (4)111

where C denotes a pressure gradient matrix, M is the mass matrix, A(u) is the solution-dependent112
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streaming operator and K is the matrix related to the remaining linear velocity terms. The velocity,113

u, is now a vector containing nodal values of all three components, likewise, p is a vector containing114

the nodal pressure values.115

3. Reduced Order Modelling116

In this section, we derive a Reduced Order Model for 3D flows in the urban environment using117

POD and a machine learning method called Gaussian Process Regression (GPR). First, we describe118

how POD is used to obtain basis functions from the high-fidelity model. We briefly describe GPR119

and then explain the construction of the NIROM which is done by training a neural network using120

GPR with data from the high-fidelity model. These two steps (finding the POD basis functions121

and training the neural network) make up the off-line stage of the reduced order model, which is122

expected to be computationally intensive. The on-line stage, which involves running the NIROM,123

is much less computationally intensive due to the reduced dimension of the model. We finish this124

section by presenting the algorithm which describes the on-line stage.125

3.1. Proper Orthogonal Decomposition126

In order to obtain the POD basis functions that are used to represent the behaviour of the

system, we apply a Singular Value Decomposition (SVD) to a snapshots matrix, whose columns are

snapshots of the solution to the high-fidelity model taken at certain times. Rather than finding basis

functions for each velocity component independently, we consider all the components simultaneously.

This approach was motivated by the desire to capture the physical correlations which arise naturally

between the velocity components. This may lead to less data being required to train the neural

network and fewer basis functions being required to represent the model (to a given accuracy). The

form of the snapshots matrix is therefore

S =
[

u1 u2 · · · uNs

]

(5)

where Ns is the total number of snapshots and the velocity at the nth time level, un, has the form

un = {un1 , u
n
2 , . . . , u

n
N , vn1 , v

n
2 , . . . , v

n
N , wn

1 , w
n
2 , . . . , w

n
N }T , (6)

in which N is the number of nodes and uni is the value of the horizontal velocity component at time127

level n and node i.128

Applying an SVD to the snapshots matrix results in129

S = UΣV T , (7)130

where U ∈ R
3N×3N and V ∈ RNs×Ns are matrices whose columns are orthogonal, and Σ ∈ R

3N×Ns

has zero entries except for the leading diagonal, on which are the singular values in order of de-

creasing magnitude. The POD basis functions are the first Ns columns of U . The number of basis
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functions can be reduced if some singular values are small in comparison with a given tolerance.

For instance, for a tolerance η . 1, we set the number of POD basis functions to be the smallest

integer value of m 6 Ns such that
∑m

j=1 σ
2
j

∑Ns

j=1 σ
2
j

> η , (8)

where the quantity on the left-hand side of the equation is the fraction of total energy captured by131

the first m POD basis functions. With only m non-zero singular values, the truncated snapshots132

matrix, Sm, formed by taking the product of U , Σ (with m non-zero entries) and V T is a rank m133

approximation of S. This is an optimal approximation in the sense that no other rank m matrix can134

be closer to the snapshot matrix S in the Frobenius norm. For computational efficiency, we carry135

out an eigen-decomposition of the matrix STS rather than performing an SVD upon S. For more136

details on this procedure see algorithm 1 in [22] for instance. Although we solve for velocity and137

pressure in the high-fidelity model, the reduced model is formulated entirely in terms of velocity, so138

we only require POD basis functions and coefficients for velocity.139

In POD, a variable v can be expressed by the expansion,

v = v +

m
∑

j=1

αjφj (9)

where αj denotes the jth coefficient of the POD expansion, φj represents the jth POD basis function140

and v is the mean of snapshots for the variable v. The snapshots satisfy this expression to machine141

precision if no truncation takes place, that is m = Ns. For the velocity solution at other time142

levels, this is an approximation. In some cases, the results may be more accurate if the mean of143

snapshots is not included in the above expansion [67], and indeed, we omit the mean value in the144

model formulation presented here.145

3.2. Using Gaussian Process Regression to Construct the NIROM146

Gaussian Process Regression (GPR) uses a linear combination of Gaussian-shaped basis func-147

tions to provide the surface representation necessary for this application [68]. The main advantages148

of GPR are that: it typically does not require much data to provide accurate surfaces; it is linear149

and, thus, does not require extensive training. By contrast, feed-forward neural networks require150

large amounts of data. They involve the solution of an optimisation problem to form the surface151

fitting, and there can be hard-to-tune generalisation parameters, e.g. based on weight decay. How-152

ever, feed-forward neural networks are often effective at very high-dimensional surface fitting. In153

this paper, just 500 data points are used in training by the GPR. This is shown to be sufficient in154

the results section, where it is seen that the NIROM has enough information in order to exhibit155

the same quasi-steady-state statistics as the high-fidelity model. To perform the GPR required to156

generate our NIROMs we used the open-source Keras library [62].157
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3.3. Producing a Non-Intrusive Reduced Order Model158

Having obtained the POD basis functions in section 3.1 we complete the off-line stage of NIROM

by approximating the governing equations. We do this by training a neural network to predict how

the governing equations would behave. All snapshots are projected onto reduced space (spanned by

the POD basis functions) and are used to train the neural network. This training procedure results

in a function fj for each POD basis function, which maps the set of POD coefficients from one time

level (αk−1) to the associated POD coefficient at the next time level (αk
j ), i.e.

αk
j = fj(α

k−1) = fj(α
k−1
1 , αk−1

2 , . . . , αk−1
m ), ∀k ∈ {1, 2, . . . ,Ns} . (10)

By including the initial condition, we have Ns pairs of input and output data that are used to form159

the function fj160

input: αk−1 =
(

αk−1
1 , αk−1

2 , . . . , αk−1
m

)

(11)161

output: αk
j , (12)162

for all k ∈ {1, 2, . . . ,Ns}. This procedure is repeated for each POD coefficient (i.e. for j ∈163

{1, 2, . . . ,m}), and once all the functions {fj}
m
j=1 have been determined, the off-line stage is com-164

plete. It is summarised in the flowchart given in figure 1.165

solve the high-fidelity model to generate snapshots

calculate the POD basis functions by applying
an SVD to the snapshots matrix, equation (7)

calculate the POD coefficients of the snapshots

train the GPR network using the inputs and
outputs given in equations (11) and (12)
to obtain the functions fj in equation (10)

Figure 1: The off-line stage of the NIROM as described in sections 3.1 and 3.3.

3.4. Running simulations with the non-intrusive reduced order model166

For running the NIROM (i.e. the on-line stage), the functions {fj}
m
j=1 are treated as response

functions allowing the POD coefficients at one time level to be predicted given those at a previous
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time level

αj(t+∆t) = fj(α(t)) ∀j ∈ {1, 2, . . . ,m} . (13)

We remark that when running the NIROM, the time step, ∆t, will coincide with that of the high-167

fidelity model. The procedure of on-line prediction using the NIROM is summarised in Algorithm 1.168

The number of time levels used in the on-line stage, Nt, is independent of the number of time levels169

used in training. That is, the NIROM can be run for as short a time or as long a time as desired.170

The initial condition can be different to that used in the high-fidelity model.171

172

Algorithm 1: On-line NIROM calculation

!! The hypersurfaces, {fj}
m
j=1, and the POD basis functions, {φj}

m
j=1, are known.

!! The initial condition (α0), time step (∆t), initial time (t0) and number of time steps (N t)

are given.

for n = 1 to Nt do

t = t0 + n∆t !! Current time

!! Step (a): calculate the POD coefficients, αn, at the current time step:

for j = 1 to m do

αn
j = fj(α

n−1
1 , αn−1

2 , . . . , αn−1
m )

endfor

!! Step (b): obtain the solution un in the full space at the current time, t, by projecting αn
j

onto the full space using un =
∑m

j=1 α
n
j φj:

un = 0

for j = 1 to m do

un = un + αn
j φj

endfor

endfor

173
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4. Modelling air flow around London South Bank University174

In this section we study the air flow around buildings in an area around London South Bank175

University (LSBU). We present a validation of the high-fidelity model; we demonstrate the ability176

of NIROM to reproduce snapshots; and we show that NIROM is capable of making predictions177

beyond the range of the snapshots.178

The system of equations we solve is chaotic, so mesh convergence studies cannot be easily179

performed [69]. In order to mitigate this fact we use mesh adaptivity to optimise the initial mesh180

and we also compare the high-fidelity model to time-averaged data from wind tunnel experiments.181

Given the complexity of the LSBU test case, presenting a full validation of the high-fidelity model182

represents a large undertaking and will therefore be the subject of a future paper. In addition,183

performing error analyses both of the high-fidelity model and the NIROM is complicated and outside184

the scope of this paper.185

4.1. Validation of the high-fidelity model186

The LSBU test site covers a region of 1 km in diameter with the tallest building measuring 81m187

in height. A scaled down version of the test site has been constructed at the EnFlo Meteorological188

Wind Tunnel, a UK National Centre for Atmospheric Sciences facility at the University of Surrey,189

shown in figure 2. Vertical profiles of mean velocity and turbulence intensity were generated in the190

laboratory (see figure 3) in order to simulate the atmospheric boundary layer winds that approach191

buildings in London Southwark. Appropriate flow profiles were developed using a suckdown fan to192

draw air through a wind tunnel working section of 20m length, and over spires at the inlet of the193

working section and roughness elements in staggered arrangement along the initial 12m of fetch.194

The width and height of the working section were 3.5m and 1.5m respectively. Lengths in the wind195

tunnel model were reduced from full-scale by a factor of 200. The mean wind speed at the top of196

the boundary layer was set to 2.00m s−1. Wind speeds near ground level in the building array were197

highly variable and typically in the range of 0.5m s−1 to 1m s−1. The test conditions corresponded198

to neutral atmospheric stability.199

The high-fidelity model results used in to construct the NIROM are generated by Fluidity, a finite200

element code with the ability to solve on unstructured meshes, developed by the Applied Modelling201

and Computation Group at Imperial College London [70]. For the purposes of the validation, the202

computational domain is set to be the same size as the wind tunnel, and the mean streamwise203

velocity and turbulence intensities at the inlet are shown in Figure 3. In the computational model,204

the other velocity components were set to zero. The xx, yy and zz components of Reynolds stresses205

and turbulent length scales are also given in this figure. Off diagonal terms are taken to be zero. The206

filled circles represent measurements from the wind tunnel, and these are linearly interpolated to207

form the inlet conditions for the computational model. Zero velocity is prescribed on the bottom and208

wall boundaries and zero stress conditions at the outlet which sets p = 0 at the outflow boundary.209

Perfect slip conditions are used on the vertical lateral boundaries as well as top boundary of the210

domain. This is because we are not interested in the far field flows generated by these boundary211

9



Figure 2: The photograph shows the wind tunnel model of turbulent atmospheric boundary-layer wind approaching
London Southwark from the northwest.

conditions and perfect slip reduces the length scales that need to be resolved. The P1-P1 finite212

element pair is used for the spatial discretisation and the Crank-Nicolson scheme is used for the213

temporal discretisation. For more details see [70].214
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Figure 3: Vertical profiles of mean streamwise velocity (left), Reynolds stresses (middle) and their associated length
parameters (right) used at the inlet. The measurements taken from the wind tunnel are shown as filled circles. These
points are linearly interpolated and imposed at the inlet of the computational model.

Mesh adaptivity is used here to refine the mesh in regions where important small-scale physical215

processes occur, and to coarsen elements elsewhere, see [71]. The transition from finer to coarser re-216

gions is kept smooth by using an anisotropic gradation parameter in the adaptivity algorithm. Mesh217

adaptivity has a large number of associated parameters: maximum and minimum edge lengths, gra-218

dation parameter, interpolation errors, maximum aspect ratio. We will not explore this parameter219
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space here as it is an involved procedure and is not the focus of this paper. Such a study has220

been performed in [72] in which a range of adaptivity settings are investigated for the test case of221

air flow around a building. In the example considered here, the mesh was adapted every 10 time222

levels with a minimum edge length of 1.47 × 10−3 m and a maximum edge length of 0.15m. The223

velocity interpolation error bound was set to 0.05m s−1 and the maximum number of nodes was set224

to 2 million.225

Two wind directions were used for the validation seen in figure 5, north-westerly (left) and226

south-westerly (right). The plots show the mean streamwise velocity profiles after normalisation at227

two points in the domain (see figure 4). There is promising agreement between the experiment and228

computations for the general profile shapes. The LES model (high-fidelity model) underpredicts229

the velocity at street level and slightly overpredicts at heights above the urban canopy. For more230

information about the wind tunnel experiments and the computational modelling, the reader is231

referred to [7].232

Figure 4: This figure shows the two points where the validation is performed: a pink dot represents point 1 and a
blue dot represents point 2.

4.2. NIROM results233

To generate the high-fidelity model results required for the NIROM, we use the Fluidity code

as in the previous section. The computational model used to generate the snapshots is at the full

scale using a domain size of [0, 2041] × [0, 2288] × [0, 250] (metres). In keeping with standard CFD

conventions, the distance between the buildings and the boundaries is larger than in the previous

section, where the purpose was to model the set-up in the wind tunnel as closely as possible. For

further information about accepted CFD practices is outlined in [73]. The boundary conditions

are those given in the previous section with two exceptions. First, the wind direction is westerly

and second, the turbulent inlet boundary condition is now based on a synthetic eddy method as

presented in [74]. It was demonstrated that this method is able to reproduce the atmospheric
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Figure 5: Streamwise mean velocity profiles from the wind tunnel experiment (solid lines) and the high-fidelity model
(dotted lines) are shown at two points shown in figure 4. The plot on the left shows results for a north-westerly wind
direction and the plot on the right shows results for a south-westerly wind.
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boundary layer accurately. This method is based on four given parameters: the number of eddies

(a large number taken to be 4000 in our simulations); the mean velocity profiles

(u, v, w) =
(

0.97561 ln
( z

0.01

)

, 0, 0
)

, (14)

where z is the height; profiles of the Reynolds stresses, u′u′, and the associated length scales, L,234

u′u′ =







0.8 0 0

0 0.8 0

0 0 0.8






, (15)235

L =







100 0 0

0 100 0

0 0 100






. (16)236

Ideally, the snapshot solutions will all reside on the same mesh. Therefore, unlike the validation237

results, in this section the use of mesh adaptivity is confined to an ‘initialisation period’. During238

this period, an adaptive mesh LES simulation was performed for one hour (in real time), which is239

sufficient for the flow statistics to reach a quasi-steady state. From this point onwards, the mesh is240

fixed, as shown in Figure 6. The adaptivity settings used in this case were a minimum edge length241

of 0.3m and a maximum edge length of 50m. The velocity interpolation error bound was set to242

0.3m s−1 and the maximum number of nodes was set to 1 million.243

After the initialisation stage, the simulation is continued for 2000 seconds with a time-step size244

of ∆t = 4/3 s on the fixed (unstructured) mesh of 767, 559 nodes. During this time, snapshots were245

taken every 4 seconds from the high-fidelity simulation results and used to train the NIROM. Once246

the NIROM has been constructed, it is then used to predict for a further 2000 seconds, over the247

time period [2000, 4000] seconds. During this time the NIROM is purely predicting and has seen no248

results from the high-fidelity model. Times within the training period are often referred to as ‘seen’,249

whereas times that have not been used to train the NIROM are referred to as ‘unseen’. Figure 7250

illustrates when both the high-fidelity model and NIROM were active.251

Figure 8 shows the singular values and logarithmic singular values of the snapshots. The initial,252

rapid reduction in the magnitude of the singular values, flattens off considerably after about the253

8th POD basis function. This suggests that one needs to have a large number of basis functions254

to accurately represent the dynamics, and this is borne out by the results shown later in this255

section. We will construct NIROM models with 24, 96, 192, and 382 POD basis functions, which256

corresponds to capturing 29.06%, 50.537%, 70.91%, 88.63% and 97.3% respectively of the energy of257

the snapshots, see equation (8).258

In order to visualise the jth POD basis function, in a similar manner to taking the magnitude

of a vector field, we plot the following quantity

√

(φu
j,i)

2 + (φv
j,i)

2 + (φw
j,i)

2 ∀i ∈ {1, 2, . . .N} (17)
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(a) Computational domain of LSBU test site (b) Surface mesh of LSBU test site

(c) Vertical slice (d) Horizontal slice

Figure 6: The plots show (a) the computational domain of the LSBU test site (b) the surface mesh of the test site
(c) the mesh on a vertical slice through the centre-line of the tallest building and parallel to the streamwise direction
and (d) a horizontal slice at a height of 15m above the ground.

time (s)

−3600 0 2000 4000

high-fidelity
model

NIROM

initialisation

adaptive mesh

snapshots

fixed mesh

training predicting

Figure 7: This figure indicates which models are active during the three time periods shown. For the first, initialisation
period, t ∈ [−3600, 0], the high-fidelity model is run with adaptive meshing until it reaches a quasi-steady state. For
t ∈ [0, 2000] the high-fidelity model continues with a fixed mesh. Snapshots are taken from these results and will be
used to train the NIROM. For t ∈ [2000, 4000] the NIROM is used to predict into the future.
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Figure 8: This figure shows the singular values and logarithmic singular values.

where i represents a node and the structure of the jth basis function is φj = (φu
j ,φ

v
j ,φ

w
j )

T . Vi-259

sualised in this way, Figure 9 shows the first, second, third, fourth, fifth and seventh POD basis260

functions of the velocity field on a horizontal plane at 15m above ground level, and Figure 10 shows261

the same, but on a vertical plane that passes through the centre-line of the tallest building and262

is parallel to the streamwise direction. In these figures, we see the vortex-dominated areas popu-263

lated with highly oscillatory distributions. Some of the POD basis functions appear similar (at this264

height, at least) as they are focused on resolving the detailed eddy structures that are advected265

downstream. These eddies can be picked out in the POD basis functions and can be seen to be266

slightly displaced from one basis function to the next (e.g. compare the first basis function with the267

second, and the third basis function with the fourth).268

Figures 11 and 12 show the speed of the flow on a horizontal plane at a height of 15m above the269

ground and on a vertical plane through the centre-line of the tallest building (where the turbulent270

intensity is at its highest). Results were obtained from the high-fidelity model and NIROM with271

24, 96, 192 and 382 basis functions at a ‘seen’ time level equivalent to 26.6 minutes. The NIROM272

with 382 basis functions exhibits excellent agreement with the high-fidelity model.273

While the POD basis functions may not be ideally suited for representing the individual eddies274

that are shed off the tall building, the NIROM does capture these eddies more satisfactorily as275

the number of POD basis functions is increased, the best result being obtained with 382 basis276

functions. Using fewer basis functions tends to lead to either a misrepresentation of the smaller277

eddies or a reduction in intensity of the larger eddies. However, even with a smaller number of278

basis functions, the NIROM is often able to predict the propagation and position of the largest279

eddies when compared with the high-fidelity model. In addition, the coarser models seem to be280

more dissipative than the finer models, which, we speculate, contributes to their stability.281

Having compared the high-fidelity model and NIROMs over the training period in Figures 11282

and 12, we now assess how well the NIROM predicts for times outside the training period, i.e. during283

the interval [2000, 4000], in which NIROM is predicting rather than reproducing training data. We284
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(a) First basis function (b) Second basis function (c) Third basis function

(d) Fourth basis function (e) Fifth basis function (f) Seventh basis function

Figure 9: The plots displayed above show the first, second, third, fourth, fifth and seventh POD basis functions of
velocity, on a horizontal plane at a height of 15m above the ground. The results were visualised using equation (17).
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Figure 10: The plots displayed above show, from top to bottom, the first, second, third, fourth, fifth and seventh POD
basis functions of velocity on a plane through the centre-line of the tallest building and parallel to the streamwise
direction. The results were visualised using equation (17).

compare statistics from the high-fidelity model taken over the time interval [0, 2000] and from285

NIROM taken over [2000, 4000]. Figures 13 and 14 show the magnitude of the time-averaged286

velocity field for the high-fidelity model over the time period [0, 2000] seconds, and for NIROM with287

24 and 382 POD basis functions over the predictive time period of [2000, 4000] seconds. Figure 13288

shows the results on a horizontal plane at a height of 15m, Figure 14, a vertical plane parallel to289

the streamwise direction and passing through the centre-line of the tallest building. As shown in290

these figures, the time-averaged velocity field predicted by both NIROMs that are shown is in close291

agreement with the high-fidelity model, even though the time period over which the averaging is292

performed is different (i.e. over [0, 2000] for the high-fidelity model and over [2000, 4000] for the293

NIROMs). This confirms that the models have reached a quasi-steady state statistically.294

Figure 15 shows a comparison between the high-fidelity model and the NIROM with 382 basis295

functions of the mean streamwise velocity profile for a westerly wind direction, taken at the two296

observation points indicated in figure 4. The models are in extremely close agreement as expected,297

as all the NIROMs predict the mean velocity profiles very well (figures 13 and 14).298

Figure 16 shows the magnitude of the instantaneous velocity obtained from the high-fidelity299

model at time levels t = 400 s, 404 s, 408 s, 412 s, 416 s, whilst Figure 17 shows the magnitude of300

instantaneous velocity obtained from the NIROM using 382 basis functions at time levels t = 2200 s,301

2204 s, 2208 s, 2212 s, 2216 s. Both the high-fidelity model and the NIROMs show the propagation302

of the complex eddies through the domain in a similar manner. Comparing the high-fidelity model303
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(a) High-fidelity model (b) NIROM, 24 basis functions (c) NIROM, 96 basis functions

(d) NIROM, 192 basis functions (e) NIROM, 382 basis functions

Figure 11: The plots displayed above show the magnitude of the velocity field on a horizontal plane, 15m above the
ground, obtained from the high-fidelity model, and from NIROM with 24, 96, 192 and 382 basis functions at the seen
time of 26.6min.
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Figure 12: The plots displayed above show the magnitude of the velocity field on a plane through the centre-line of
the tallest building and parallel to the streamwise direction. Results from the high-fidelity model, and from NIROM
with 24, 96, 192 and 382 basis functions (from top to bottom) are shown at time 26.6min .

(a) High-fidelity model (b) NIROM, 24 basis functions (c) NIROM, 382 basis functions

Figure 13: The plots show the magnitude of the time-averaged velocity field on a horizontal plane, at 15m above the
ground, for the high-fidelity model over a time period of [0, 2000] seconds and for NIROM with 24 and 382 POD basis
functions over the time period [2000, 4000] seconds.
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Figure 14: The plots show the magnitude of the time-averaged velocity fields on a vertical plane through the centre-
line of the tallest building and parallel to the streamwise direction. The plots show the high-fidelity model averaged
over time period [0, 2000] seconds and NIROM averaged over the time period [2000, 4000] seconds with 24 and 382
POD basis functions (top to bottom).
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Figure 15: Streamwise mean velocity profiles are shown from the high-fidelity model and NIROM (with 382 basis
functions) for a westerly wind at two points (see figure 4). The results have been normalised. The high-fidelity model
is shown by solid lines and the NIROM is represented by filled circles.
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Figure 16: The plots displayed above show the magnitude of the instantaneous velocity field of the high-fidelity model
on a vertical plane through the centre-line of the tallest building and parallel to the streamwise direction, obtained
from the high-fidelity model at times t = 400 s, 404 s, 408 s, 412 s, 416 s.

and the NIROM over different time intervals, supports our claim that the NIROM runs as a model304

in its own right, with its own dynamics, but, that, over time, can have similar statistics as the305

high-fidelity model.306

We perform a time series analysis near the large junction in the centre of the domain at two307

observation points, see figure 18. Here flow prediction is important as this is where we expect a308

high density of people). The time series of the x-component of the velocity at these two points309

are shown in Figure 19, for the high-fidelity model over the time interval [0, 2000] seconds and for310

the ‘predictive’ NIROM over [2000, 4000] seconds with 24 and 382 basis functions. As shown in311

Figure 19, the time series of the high-fidelity model and the NIROM are obviously different, due to312

the chaotic nature of turbulent flows, however some characteristics are similar, such as the frequency313

and the magnitude of peaks. NIROM with 382 basis functions matches the time series data of the314

high-fidelity model much better than the NIROM with just 24 basis functions. Qualitatively, the315

NIROM with 382 basis functions and high-fidelity model have a similar frequency of peaks which316

have similar magnitudes. The time series show that the magnitude of the oscillations in the x-317

component of velocity increases with height. This is because the speed of the flow also increases318

with height, as, the further away from the ground, the less shelter there is from the buildings. Closer319

to ground level the velocity oscillates about zero, whereas, higher up, the velocity oscillates about320

a positive value.321

Probability density functions (PDFs) of the x-component of the velocity from the high-fidelity322

model and the predicting NIROM (i.e. for NIROM over the time period [2000, 4000]) are given323
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Figure 17: The figures displayed above show the magnitude of the instantaneous velocity field on a vertical plane,
through the tallest building parallel to the streamwise direction, obtained from the NIROM with 382 basis functions
at times t = 2200 s, 2204 s, 2208 s, 2212 s, 2216 s.

in Figure 20 for all the four observation points shown in figure 18. The histograms in Figure 20324

show the number of times that the velocity component falls within a certain interval. As shown in325

Figure 20, the distribution of the velocities for NIROM with 382 basis functions is similar to that326

of the high-fidelity model at all four points. The PDFs show that the fewer basis functions that327

are used in NIROM, the narrower (and less fluctuating) the velocity component is. Although the328

NIROM with 24 basis functions represents the mean flow well (see Figures 13 and 14), the PDFs329

reveal that it will struggle to represent the higher frequency fluctuations.330

The power spectra at the lowest and highest observation points are shown in Figure 21, which331

highlight, as expected, that the NIROM with more basis functions matches the high-fidelity model332

better. The NIROM with 382 basis functions does not quite represent the high frequency com-333

ponents of these velocities as seen by the fact that the magnitude of the power spectra graphs334

for the NIROM is lower than for the high-fidelity model at the higher frequencies. This suggests335

that the NIROM, even with 382 POD basis functions, is slightly under resolved. With a small336

number of basis functions, the NIROM is not able to capture the high frequency components. The337

x-component of the velocity is smaller at the lower level (the yellow point), see Figure 20, due to338

the general trend of higher velocities occurring further away from the ground. This results in more339

highly peaked velocity PDFs (centred on zero). It can also be seen that the higher frequencies have340

lower amplitudes closer to the ground (Figure 21). Strong peaks in the power spectra at both points341

can be seen at a frequency of approximately 1/70Hz (the dashed line shown on the plots), which342

ties in with the times series plots, where periodicity over 70 s is in evidence.343
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Figure 18: The plots displayed above show locations of four points (red, blue, green, yellow) at coordinates of
(4.660, 11.301, 25.9), (4.660, 11.301, 20.9), (4.660, 11.301, 15.9) and (4.660, 11.301, 10.9) respectively.
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Figure 19: The plots displayed above show the time series of the x-component of the velocity from the high-fidelity
model and from NIROM (in the predicting time interval) with 24 and 382 basis functions. The upper plot is the time
series taken at the highest point shown in Figure 18 (the red point), the lower plot was taken at the lowest point (the
yellow point).
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(a) HFM (red point) (b) NIROM 24 basis functions (c) NIROM 382 basis functions

(d) HFM (blue point) (e) NIROM 24 basis functions (f) NIROM 382 basis functions

(g) HFM (green point) (h) NIROM 24 basis functions (i) NIROM 382 basis functions

(j) HFM (yellow point) (k) NIROM 24 basis functions (l) NIROM 382 basis functions

Figure 20: The plots displayed above show the probability density function of the x-component of the velocity at the
four points shown in Figure 18 (red, blue, green and yellow) from the high-fidelity model (HFM) and the predicting
NIROM solutions with 24 and 382 basis functions.
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Figure 21: The plots displayed above show the power spectra of the time series for the highest and lowest points
shown in Figure 18 (the red and yellow points). The dashed line corresponds to a frequency of 0.014 Hz.

Figures 22 and 23 show the xx-component of the Reynolds stress (u′u′) from the high-fidelity

model and the NIROM solutions with 24, 96, 192 and 382 basis functions. The LES statistics

are obtained from the high-fidelity model for t ∈ [0, 2000] seconds and from the NIROM for t ∈

[2000, 4000] seconds in order to study the ‘predictive’ NIROM. The xx-component of the Reynolds

stress is defined as

u′u′ =
1

t2 − t1

∫ t2

t1

(u− u)2dt , (18)

for a time interval of [t1, t2], u is the x-component of pointwise velocity and the over-bar denotes344

the time average. Notice that the magnitude of the fluctuations (as characterised by u′u′) is greatly345

reduced when fewer basis functions are used. This is also consistent with the PDFs of the x-346

component of velocity at the 4 points of interest shown in Figure 20. We also observe that the347

Reynolds stresses are captured very well by the NIROM with 382 basis functions as they closely348

approach the Reynolds stresses of the high-fidelity model.349

Table 1 shows the average CPU cost required by both the high-fidelity model and NIROM (with350

382 basis functions) to solve for 4 seconds in real time (which corresponds to three time steps351

for the high-fidelity model and one time step for the NIROM). It is worth noting that the CPU352

time required to solve the NIROM over this time interval is only 0.004 s, whereas the high-fidelity353

model requires 1555 s running in parallel on 10 cores of a workstation with Intel(R) Xeon(R) X5680354

CPU processors of 3.3GHz and 512GB RAM. The total amount of time required to generate the355

snapshots for this example was 9 days.356

5. Discussion357

The results show that NIROM (with 382 POD basis functions) is able to represent, accurately,358

most of the dynamics seen in the high-fidelity solutions of the urban flows. We now comment on359

how the accuracy of the NIROM dynamics is related to the rate of decrease of the singular values.360

It was observed that all the NIROMs reproduced the mean flows well, even those using as few as361
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(a) High-fidelity model (b) NIROM, 24 basis functions (c) NIROM, 96 basis functions

(d) NIROM, 192 basis functions (e) NIROM, 382 basis functions

Figure 22: The plots displayed above show the Reynolds stresses from the high-fidelity model and NIROM (predicting)
with 24, 96, 192 and 382 basis functions. These are shown on a horizontal plane at a height of 15m above ground
level.
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Figure 23: The plots displayed above show the Reynolds stresses of the high-fidelity model and NIROM (predicting)
with 24, 96, 192 and 382 basis functions. These results are shown on a vertical plane through the centre-line of the
tallest building and parallel to the streamwise direction.
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Table 1: Comparison of the CPU time (in seconds) required to solve the high-fidelity model and NIROM (with 382
basis functions) in 4 s of real time. For the NIROM, ‘solution’ in the left column corresponds to step (a) in Algorithm 1
and ‘projection’ corresponds to step (b).

high-fidelity model NIROM

assembly
}

1555
n/a

solution 0.001

projection n/a 0.003

total 1555 0.004

24 basis functions. However, the Reynolds stresses, which express the fluctuations from the mean362

velocities, are not represented well, unless one is willing to use larger numbers of basis functions.363

In this case we found that, with 382 basis functions, one can capture the Reynolds stresses very364

well and still have a rapid model that is six orders of magnitude times faster than the high-fidelity365

model. This is supported by the probability distribution plots of the velocities, which are much366

narrower when fewer basis functions are used. This may be due to the fact that the lower order367

modes are simply unable to represent the small scale fluctuations and are only able to represent368

the fluctuations in the larger scale motions. Using 382 basis functions produces PDFs that are very369

similar to those of the high-fidelity model. Also, the power spectra of the time series show, again,370

that the higher fidelity NIROMs are able to capture the higher frequencies whereas the lower fidelity371

NIROMs cannot, due to their inadequate spatial resolution. All these findings are a consequence372

of the slow rate of decrease of the singular values seen after the 8th POD basis function index in373

Figure 8.374

Parametrising the NIROM will be the focus of our next research effort, which will have as375

its objective to solve for air flows within a neighbourhood, with varying wind directions, varying376

statistics of the urban boundary layer, and varying traffic and temperature conditions.377

6. Conclusions378

We have developed a non-intrusive reduced order model (NIROM) for modelling flows in the379

urban environment using machine learning. The proposed NIROM was constructed from a high-380

fidelity model which uses a Large Eddy Simulation approach to capture larger scale, turbulent381

fluctuations implemented in a code called Fluidity. We have presented a validation of Fluidity382

against data collected from experiments conducted at the Enflo Meteorological Wind Tunnel in the383

University of Surrey. The NIROM was able to replicate accurately the data used in its training,384

but also was able to predict beyond the training data, displaying flow statistics that were close to385

those of the high-fidelity model. Furthermore, the NIROM ran six orders of magnitude times faster386

than the high-fidelity model.387

When forming the basis functions by performing a singular value decomposition, we found it388

best to use information from all velocity components simultaneously, rather than separating the389

components and deriving basis functions for each component. The improvement found in this case390
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might due to the fact that we retain aspects of the differential equation such as correlations between391

the velocity components. This, together with the use of a Gaussian Regression Process machine392

learning method, has contributed to the ability of the NIROM to reproduce the results of the393

high-fidelity model and to predict into the future, as a model in its own right.394
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