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Abstract 49 

Parasites with low host specificity (e.g. infecting a large diversity of host species) are of special 50 

interest in disease ecology, as they are likely more capable of circumventing ecological or 51 

evolutionary barriers to infect new hosts than are specialist parasites. Yet for many parasites, 52 

host specificity is not fixed and can vary in response to environmental conditions. Using data on 53 

host associations for avian malaria parasites (Apicomplexa: Haemosporida), we develop a 54 

hierarchical model that quantifies this environmental dependency by partitioning host specificity 55 

variation into region- and parasite-level effects. Parasites were generally phylogenetic host 56 

specialists, infecting phylogenetically clustered subsets of available avian hosts. However, the 57 

magnitude of this specialization varied biogeographically, with parasites exhibiting higher host 58 

specificity in regions with more pronounced rainfall seasonality and wetter dry seasons. 59 

Recognizing the environmental dependency of parasite specialization can provide useful 60 

leverage for improving predictions of infection risk in response to global climate change. 61 

62 
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INTRODUCTION 63 

Global disease burdens commonly reflect host range expansions (termed herein as ‘host 64 

shifting’) by multi-host parasites (Han et al. 2015; Wells et al. 2018a). Host specificity (e.g. the 65 

diversity of host species a parasite is capable of infecting) is a useful metric to describe 66 

differences among parasites in their capacity to infect novel hosts or trigger parasitic disease 67 

emergence events (Poulin et al. 2011). With the majority of emerging infectious diseases thought 68 

to result from shifting host associations by parasites with low host specificity, a major goal in 69 

disease ecology is to apply host specificity metrics using observed host association data to 70 

identify ‘generalist’ parasites before they cause disease outbreaks (Cooper et al. 2012; Brooks et 71 

al. 2014; Dallas et al. 2017). However, mounting experimental and theoretical evidence suggests 72 

that host specificity is not a fixed trait (Poulin & Mouillot 2005; Brooks & Hoberg 2007; Agosta 73 

et al. 2010; Nylin et al. 2018). Instead, a parasite’s local host specificity (herein termed ‘realized 74 

host specificity’) can be considered the product of a hierarchical process involving both regional 75 

and evolutionary forces (Wells et al. 2018b). For host range expansions to occur, a parasite must 76 

first be exposed to a novel host species. This exposure will be influenced by environmental 77 

conditions that determine host community composition, as spatiotemporal variation in host 78 

occurrences alters host-parasite contact rates (Canard et al. 2004). Second, adaptation to a new 79 

host is required to facilitate transmission. For many parasites, this process is expected to adhere 80 

to the principle of ‘ecological fitting’ (Janzen 1985), which states that sharing certain 81 

characteristics with previous host species is necessary for successful infection (Brooks et al. 82 

2006; Davies & Pedersen 2008; Poulin et al. 2011; Clark & Clegg 2017). Yet host traits that 83 

influence susceptibility, such as clutch size or breeding behavior, can fluctuate in response to 84 

environmental conditions (Møller et al. 2013). Despite an accelerated focus on describing host 85 

specificity for a multitude of parasites (de Vienne et al. 2009; Hellgren et al. 2009; Farrell et al. 86 

2013; Clark et al. 2018; Doña et al. 2018; Park et al. 2018), few empirical studies recognize this 87 

environmental dependency by treating specificity as a geographically labile trait (but see 88 

Krasnov et al. 2004a, b; Well et al. 2018b).  89 

The challenge of assessing variation in realized host specificity is understandable. This 90 

requires detailed information about the host distributions of parasites across climatically variable 91 

bioregions, which is difficult to acquire for many parasites (Murray et al. 2015). Nevertheless, 92 

the lack of a comprehensive assessment of how climate variation influences host specificity 93 
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presents an impediment for both predicting the emergence of infectious diseases and developing 94 

mitigation strategies (Altizer et al. 2013; Brooks et al. 2014). We address this gap by using a 95 

hierarchical modelling approach to test whether the realized host specificity of multi-host 96 

parasites varies across biogeographical regions. Focusing on a cosmopolitan group of avian 97 

blood parasites, we partition variation in realized host specificity into regional and parasite-level 98 

effects.  99 

 Avian haemosporidians (including the genera Plasmodium and Haemoproteus, termed 100 

hereafter as avian malaria parasites) are protozoan parasites that infect bird blood cells and are 101 

transmitted by hematophagous dipteran vectors (Valkiūnas 2005; Santiago-Alarcon et al. 2012a). 102 

These parasites are globally distributed, abundant and diverse in most bird clades, and their 103 

estimated host specificities are highly variable, ranging from infecting a single host species to 104 

many unrelated species (Valkiūnas 2005; Clark et al. 2014; Moens & Pérez‐Tris 2016). Previous 105 

studies have revealed that the distributions and community compositions of avian malaria 106 

parasites are the outcome of host switching events over macroevolutionary timescales (Ricklefs 107 

et al. 2014; Fecchio et al. 2018b) and recent ecological forces such as variation in host dispersion 108 

capability (Pérez‐Tris & Bensch 2005; Ellis et al. 2015; Clark et al. 2017; Fecchio et al. 2018b). 109 

Yet mechanisms that contribute to the large observed variation in host specificity are largely 110 

unknown, although environmental forces may play substantial roles (Clark et al. 2017). For 111 

example, risk of Plasmodium infection in birds is expected to increase with increasing 112 

temperatures on a global scale (Garamszegi 2011). Despite not being able to directly link 113 

climatic conditions to parasite specialization, Garamszegi (2011) demonstrated that the impact of 114 

climate change on avian Plasmodium prevalence varies on a continental scale, with the strongest 115 

effects found for Europe and Africa. Climate variation also influences rates of parasite 116 

reproduction and development within vector hosts, which could in turn affect parasite 117 

transmission and the exposure of parasites to novel host species (LaPointe et al. 2010; Santiago-118 

Alarcon et al. 2012a). 119 

The search for general processes governing host specificity should assess both ecological 120 

and phylogenetic relationships of potential host species in efforts to identify barriers to host 121 

range expansions (Poulin & Mouillot 2005; Hoberg & Brooks 2008; Clark et al. 2017). We 122 

present our framework using a database comprising infection data for 154 multi-host avian 123 

malaria parasites sampled from 15,541 individual birds in South America and the Australia-124 
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Pacific. Samples cover 109 sites, which we group into 10 biogeographical regions to delineate 125 

communities with similar environmental conditions and avian compositions (Fig. 1 and Table 1). 126 

We consider variation in pairwise distances between infected (i.e. observed to carry a parasite) 127 

and potential (i.e. hosts occurring in the same region but not found to be infected) host species to 128 

represent a signal of realized host specificity. We test whether magnitudes of realized 129 

phylogenetic and ecological host specificity vary across regions using a multilevel model that 130 

includes parameters reflecting region-level and parasite-level contributions. We then test whether 131 

environmental (rainfall and temperature) and biotic (host and parasite species diversity) factors 132 

explain regional differences in host specificity.  133 

 134 

MATERIAL AND METHODS 135 

Parasite database 136 

All parasite lineages in our dataset were identified using PCR-based detection methods targeting 137 

a 477 cytochrome-b (cyt-b) barcoding fragment of the haemosporidian mitochondrial genome. 138 

The majority of observations came from field studies led by the authors from the period of 2005 139 

- 2016, with remaining observations extracted from published studies that took place in the study 140 

region (see Clark et al. 2017 for details). Protocols detailing reactions, reagents, primer names, 141 

cycling conditions, and how lineages were determined can be found in (Hellgren et al. 2004; 142 

Bensch et al. 2009; Bell et al. 2015). As evidence indicates that avian malaria lineages differing 143 

by one cyt-b nucleotide may be reproductively isolated entities (Bensch et al. 2004), we use the 144 

standard practice of referring to each unique cyt-b lineage as a unique parasite.  145 

 146 

Climate variable extraction and biogeographic region delineation 147 

Our study region was delineated to represent a diversity of habitats, avian compositions, and 148 

climate envelopes so that we had robust statistical power to estimate associations between 149 

regional conditions and host ranges of parasites. We extracted 19 climate variables (based on 150 

average values from the years 1970 - 2000) for each site (n = 109) from www.worldclim.org 151 

(accessed March 2018; see Appendix S1 in Supporting Information). We chose WorldClim 152 

records as such lower resolution climate data are more appropriate for predicting species’ 153 

distributions across large bioregions (i.e. the distributions of potential and realized hosts), which 154 

higher resolution climate data may fail to detect due to localized weather events or stochastic 155 
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variation. Records of avian occurrences for sites were extracted from species distribution maps 156 

acquired from www.datazone.birdlife.org (BirdLife International and NatureServe, 2017). We 157 

grouped sites into 10 biogeographical regions using hierarchical clustering of a Gower’s matrix 158 

(Gower 1971) capturing dissimilarity in avian community composition and climate variables 159 

(Table 1, Fig. 1, Appendix S1). We chose this method for grouping sites into regions based on 160 

mounting evidence that variation in avian composition and long-term climate variables both have 161 

major influences on the assembly, prevalence, and host specificity of avian malaria parasites 162 

(e.g., Sehgal 2010; Clark et al. 2017; Clark 2018; Fecchio et al. 2018a). Our clustering method 163 

therefore presents a data-driven approach designed to delineate regions that are biologically 164 

meaningful at the parasite level. 165 

 166 

Avian host phylogenetic and ecological relationships 167 

Distributions for a total of 5,450 avian species overlapped our sample area according to BirdLife 168 

species range maps. We extracted phylogenetic and ecological data for these species to generate 169 

estimates of historical and functional relationships of potential host species. Note that only 170 

species sampled for avian malaria parasites were considered as potential hosts (957 species). 171 

Phylogenetic distances were calculated as mean pairwise distance across 100 phylogenetic trees 172 

sampled from a global avian supertree distribution (Jetz et al. 2012; accessed at 173 

http://birdtree.org/subsets/). We extracted species’ proportional use of ten diet categories and 174 

seven foraging habitats (traits likely to impact parasite exposure) from EltonTraits v1.0 (Wilman 175 

et al. 2014). We quantified pairwise ecological distances using a Gower’s distance matrix 176 

(Gower 1971) following methods in Pavoine et al. (2009). Host phylogenetic and ecological 177 

distance matrices were scaled (dividing by the maximum for each matrix; see Appendix S2). 178 

 179 

Statistical analysis 180 

Parasite- and region-specific host specificity 181 

Lists of potential avian host species (i.e. species sampled for avian malaria parasites) were 182 

generated for parasites in each region where the parasite was recorded. This resulted in parasite- 183 

and region-specific potential host pools for which associations were recorded as binary variables 184 

(i.e. ‘1’ if the potential host was infected, ‘0’ if uninfected). Vectors of potential host pairwise 185 

distances were response variables in hierarchical linear regressions of the form 186 
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distance ~ Ɲ(µregion + βregion*parasite host.pair, σ2) 187 

µregion ~ Ɲ(Hµ, σµ
2); βregion * parasite ~ Ɲ(µβ + βparasite+ βregion, σβ

2) 188 

Ɲ(µ, σ2) denotes normal distributions with mean µ and variance σ2. µregion denotes regional 189 

averages (corresponding to the intercept of linear models) of either ecological or phylogenetic 190 

pairwise distances (distance) for potential host pools, drawn from a hyperprior Hµ with Gaussian 191 

error σµ
2 representing ‘global’ averages. Coefficients β region*parasite represent parasite- and region-192 

specific estimates of differences between observed and potential host distances (i.e. the binary 193 

indicator variable host.pair where ‘1’ indicates the pair of potential host species that is infected; 194 

‘0’ indicates that they are uninfected). This was modelled with intercept µβ and coefficients 195 

βparasite and βregion to capture expectations that host specificity is a function of both parasite 196 

identity and environmental conditions.  197 

 We used Gibbs Variable Selection (GVS) to pull βparasite and βregion estimates towards zero 198 

when support was limited (O'Hara & Sillanpää 2009). We sampled Bernoulli indicator variables, 199 

in this case I, to control whether the effect β was included in the model. By specifying a low 200 

prior probability of drawing 1 for indicator variable I, we only estimated β if sufficient data 201 

existed to warrant its inclusion. If I = 0, indicating little support for sampling β according to 202 

likelihood estimates, we sampled instead from a ‘pseudo-prior’ that resulted in zero-effects. This 203 

ensured avoidance of over-parameterization (Wells et al. 2016). βparasite estimates were sampled 204 

from normal hyperpriors (Hgenus), which were based on the average specificity for the parasite’s 205 

respective genus (Plasmodium or Haemoproteus), using parasite-specific variance components 206 

(σparasite
2). Estimates for βregion were drawn from a ‘global’ normal distribution. Parameters were 207 

estimated independently for phylogenetic and ecological specificity (Appendix S3). 208 

We estimated β coefficients for each parasite and each region using Markov Chain Monte 209 

Carlo (MCMC) sampling based on the Gibbs sampler in the open-source software JAGS 210 

(Plummer 2003). Priors for coefficients were specified with H ~ Ɲ(0, 10) and σ ~ dexp(0.5). We 211 

ran two MCMC chains for 50,000 iterations for parameter adaptation and sampled 1,000 212 

posterior estimates. Mixing of chains was inspected visually and with the Gelman-Rubin 213 

diagnostic (all values < 1.2). We compared magnitudes of βregion and βparasite coefficients to gather 214 

evidence that particular parasites and/or regions showed different host specificities in 215 

comparison to other parasites/regions. Distances between infected host species that differ from 216 

draws from potential host pools indicate specificity; lower values (i.e. 95% credible intervals < 217 
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0) indicate higher similarity between observed hosts than expected; values > 0 suggest that 218 

parasites infect more distantly related hosts than expected (Clark & Clegg 2017).  219 

Many parasites were only recorded infecting a single host species (n = 468 single-host 220 

parasites) and for some hosts we sampled only a few individuals (289 host species). Because our 221 

estimate of host specificity is based on pairwise distances from potential and realized host pools, 222 

detecting significant effects is only possible with reasonable sample sizes. We filtered the dataset 223 

by keeping (1) host species with at least eight samples in each region and (2) parasites that 224 

infected at least one of the included host species and were recorded at least three times overall. 225 

This allowed us to assess host species that have been sufficiently sampled to detect relatively 226 

rare parasites (i.e. a sample size of eight translates to an ~80% probability of detecting a parasite 227 

with a true prevalence of 20%) and to assess parasites for which we have adequate information 228 

on observed host ranges. This dataset included 154 parasite lineages (71 Plasmodium, 83 229 

Haemoproteus; Appendix S3 and S4), which were recorded in 2 – 24 different avian host species 230 

and across 1 – 4 different biogeographical regions (Fig. 2). A total of 289 avian species were 231 

included as potential host species across the final dataset. We did not record whether avian 232 

species were native or introduced, as their occurrence within a region (regardless of how they 233 

came to be there) should still make them suitable as potential host species. 234 

 235 

Predictors of regional variation in host specificity 236 

We explored potential predictors of regional variation in host specificity using posterior modes 237 

of βregion coefficients as response variables in a multiple linear regression with assumed Gaussian 238 

error distribution. We tested six climate variables (all related to temperature and precipitation) as 239 

continuous covariates. Indices of region-specific host phylogenetic and ecological diversity were 240 

calculated using a metric that captured host species richness and average pairwise distances 241 

within each region (µregion estimates). These were also included as covariates to assess whether 242 

increased host diversity (in terms of either phylogenetic or functional diversity) leads to 243 

increased parasite specialization. To account for sampling bias, we included parasite richness, 244 

the number of birds screened (sample size), and the GVS support for βregion estimates as 245 

covariates. Collinearity was accounted for by removing the more highly correlated variable (i.e. 246 

the variable that showed a higher number of strong pairwise correlations) from those pairs with 247 

Pearson correlations > 0.7. Remaining covariates were: minimum rainfall of the driest quarter, 248 
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maximum rainfall of the wettest quarter, rainfall seasonality, minimum temperature of the 249 

coldest quarter, temperature seasonality, parasite species richness, sample size, and host 250 

diversity. We used LASSO variable selection (where the important predictors are retained by 251 

iteratively regularizing coefficients for less important predictors toward zero) and leave-one-out 252 

cross-validation to test within-sample model fit (Friedman et al. 2010). This was repeated 1,000 253 

times to minimize cross-validated error and identify important predictors (i.e. those retained in at 254 

least 90% of cross-validation runs). We calculated proportions of explained variance for retained 255 

predictors following Nakagawa and Schielzeth (2013; see Appendix S3).  256 

Analyses were conducted in R version 3.3.3 (R Core Team, 2017) and primarily used 257 

functions in packages ade4 (Dray & Dufour 2007), dplyr (Wickham et al. 2017), glmnet 258 

(Friedman et al. 2010), readxl (Wickham & Bryan 2017), and rjags (Plummer 2016). Tutorials 259 

to replicate analyses are included in the Appendices. GenBank accession numbers for the 154 260 

modelled parasites are presented in Appendix S4. 261 

  262 

RESULTS 263 

Our hierarchical regression is formulated to test the extent to which parasite identity (βparasite) and 264 

regional environmental conditions (βregion) contribute to a parasite’s realized host specificity. 265 

Applying this framework to observed host association data for 154 multi-host avian malaria 266 

parasites, we find that realized host specificity varies across biogeographical regions (Fig. 1). 267 

Patterns are similar regardless of whether we assess ecological or phylogenetic βregion specificity, 268 

suggesting the presence of general biogeographical forces influencing the host ranges of avian 269 

malaria parasites (Fig. 1). Cross-validated linear regressions to explore environmental predictors 270 

of host specificity variation show a strong influence of precipitation heterogeneity: regions with 271 

more pronounced rainfall seasonality harbor more specialized parasites (smaller βregion 272 

estimates), with the coefficient of rainfall variation accounting for 53% of explained variance in 273 

βregion estimates (t = -0.56; Appendix S3). Although seasonality is important, rainfall in the dry 274 

season also correlates with variation in host specificity: minimum rainfall of the driest quarter 275 

accounted for a further 35% of explained variance, with parasites becoming more specialized in 276 

regions with wetter dry seasons (t = -0.45; Fig. 3, Appendix S3).  277 

Inferences on climate-driven effects were robust to potential sampling bias, which we 278 

accounted for by focusing on adequately sampled hosts and parasites to minimize underestimates 279 
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of host ranges (see ‘Parasite- and region-specific host specificity’ in Material and Methods and 280 

Appendix 3 for details). Moreover, parameters capturing variation in sample sizes, the diversity 281 

of sampled avian hosts and numbers of recovered parasites in a region all had little influence on 282 

realized host specificity. This identification of important climate predictors allows delineation of 283 

biogeographical areas with greater potential for ongoing host range expansions by generalist 284 

parasites. For instance, sites in Brazilian Amazonia, Peruvian Andes, and tropical / sub-tropical 285 

islands in Malaysia and Melanesia contain very distinct avian communities (Holt et al. 2013) and 286 

exhibit considerable variation in sampling effort and diversity of recovered parasites (Table 1). 287 

Yet these regions contained some of the least specialized parasite communities in our dataset, in 288 

correspondence with relatively low levels of average rainfall in the dry season (Fig. 3). In 289 

contrast, parasite communities in New Zealand, The Philippines, and southeastern Australia were 290 

more specialized than expected according to potential host species pools (Table 1, Fig. 1 and 3). 291 

Assessing host specialization components at the parasite level (βparasite) indicates whether 292 

parasites are infecting clustered subsets of available hosts. If host range expansions are 293 

predominately driven by vector feeding patterns, parasites should infect hosts that are more 294 

ecologically similar (i.e. occupying more similar habitats). However, we would also expect 295 

parasites to show some level of host phylogenetic specialization, as different physiological 296 

characteristics among unrelated hosts can impose barriers to parasite transmission or within-host 297 

development. These mechanisms are not mutually exclusive. By estimating parasite-level 298 

specificity components, we find that parasite specialization was generally driven by host 299 

phylogeny, not by host ecological similarity. Phylogenetic βparasite estimates were consistently 300 

negative for both parasite genera, indicating that most parasites infected hosts that were 301 

phylogenetically clustered within the community (Fig. 4). Ecological βparasite estimates generally 302 

centered around zero. 303 

To account for possible influences of biogeographical region delineation on our 304 

inferences, we tested the robustness of our results by repeating the analysis using a second 305 

grouping scheme (grouping into nine regions rather than 10 and giving more weight to avian 306 

composition and climate variables; see Appendix S6 for details). Results were broadly equivalent 307 

(strong influences of minimum rainfall in the driest quarter and rainfall seasonality on βregion 308 

estimates), with the exception that ecological βparasite estimates were also generally negative. 309 

 310 
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DISCUSSION 311 

Niche specialization for a multitude of organisms is not fixed but is predicted to vary in response 312 

to environmental heterogeneity (Dobzhansky 1950; Janz &Nylin 2008; Schemske et al. 2009). A 313 

growing body of anecdotal and theoretical evidence suggests parasites are no exception (Agosta 314 

et al. 2010; Araujo et al. 2015; Hoberg & Brooks 2015; Nylin et al. 2018). Using a hierarchical 315 

model, we provide empirical evidence that the magnitude of realized host specificity for multi-316 

host parasites varies in response to environmental conditions. While most avian malaria parasites 317 

generally infect phylogenetically clustered subsets of available hosts, realized host specificity 318 

increases in regions with higher rainfall during the dry season and more pronounced rainfall 319 

seasonality. This may reflect pulses in vector feeding activities or local host contact rates acting 320 

as selective barriers to host range expansions. These findings underscore the importance of 321 

treating host specificity as a geographically labile trait, contingent on both historical host-322 

parasite interactions and environmental conditions (Hoberg & Brooks 2015). Climate change 323 

may have unforeseen consequences on the emergence potential of multi-host pathogens. 324 

 325 

Influences of precipitation heterogeneity on realized host specificity 326 

Climate change and biotic homogenization are major forces acting on the distributions of species 327 

(Wilson et al. 2016; Poisot et al. 2017). Efforts to determine how such forces influence 328 

distributions of parasites, and the ranges of host species they infect, are needed to understand and 329 

predict disease emergence (Poulin et al. 2011; Altizer et al. 2013; Brooks et al. 2014; Wells et 330 

al. 2015; Dallas et al. 2017; Wells et al. 2018a). We show that pronounced seasonality in rainfall 331 

and higher rainfall during the dry season correlate with increased host specificity for multi-host 332 

avian malaria parasites. This link with seasonality goes against expectations of increased 333 

specialization under stable conditions (Futuyma & Moreno 1988). An understanding of vector-334 

vertebrate host interactions is necessary to explain this discrepancy. Successful host range 335 

expansions by parasites will predominately be driven by variation in opportunity (exposure to 336 

novel host species) and host-parasite compatibility (driven by ecological fitting; Janzen 1968; 337 

Araujo et al. 2015). For the incredible diversity of vector-transmitted parasites, including avian 338 

malaria, opportunistic contact with novel host species depends on vector feeding patterns. Birds 339 

in seasonal areas typically breed near the start of the wet season, relying on energy reserves 340 

accrued during the dry season (Sinclair 1978; Rubenstein & Lovette 2007). Vector reproduction 341 



 13 

and larval development, both of which affect parasite transmission, are positively correlated with 342 

rainfall and synchronized with vertebrate reproduction (LaPointe et al. 2010; Santiago-Alarcon 343 

et al. 2012a). Seasonality drives pulses in food, water, and habitat availability, which increases 344 

breeding densities and perhaps concentrates organisms near available water bodies (Chesson et 345 

al. 2004; Tonkin et al. 2017). This is especially true for birds, which often concentrate in high 346 

densities at the start of the breeding season (Karr 1976; Levey 1988). These water bodies could 347 

therefore serve as source locations for parasite transmission, as has been shown for West Nile 348 

virus transmission to greater sage-grouse (Centrocercus urophasianus) (Zou et al. 2006; Walker 349 

et al. 2007). Concordance between avian breeding behavior and peak vector activity in 350 

concentrated areas could also direct parasites to concentrated sets of ecologically similar avian 351 

species. This may impose selective pressure toward vertebrate specialization. In such an 352 

environment, where vectors are concentrated and host-vector encounter rates and resource 353 

competition are high, one would expect parasites that are more specialized to be more successful. 354 

In contrast, if vertebrate hosts are scattered throughout the environment (which may occur in less 355 

seasonal environments) indiscriminant vector feeding could increase opportunities for novel 356 

host-parasite interactions and perhaps lead to less specialized parasites. 357 

Variation in transmission rates may also occur under seasonal conditions. The 358 

supposition that disease outbreaks are more prominent in seasonal environments than in constant 359 

ones has received strong theoretical and empirical support (Altizer et al. 2006; Lisovski et al. 360 

2017; Huber et al. 2018). A number of explanatory mechanisms have been proposed, including 361 

seasonal variation in host sociality, breeding behavior or immune investment (Altizer et al. 362 

2006). Regardless of underlying processes, higher frequencies of disease outbreaks suggest 363 

parasites in seasonal areas may benefit from increased infection prevalence. This could also 364 

select against range expansions to phylogenetically or functionally distant potential host species, 365 

which require costly adaptation to new defences but may be necessary when overall transmission 366 

rates are low (Poulin 1998).  367 

Importantly, we did not test for associations between specialization and prevalence or 368 

infection intensity here, and the idea that vectors are the limiting step in avian malaria 369 

distributions or specialization has received mixed support. For example, some work 370 

demonstrates preferential feeding of vectors on certain avian species (Apperson et al. 2004) and 371 

tight evolutionary links between Haemoproteus lineages and vector species (Martínez de la 372 
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Puente et al. 2011), both of which support our idea that exposure of parasites to new hosts could 373 

be limited in seasonal environments. Other studies provide conflicting evidence by suggesting 374 

that vector feeding specificity is not important in structuring haemosporidian communities, 375 

particularly for Plasmodium parasites (Njabo et al. 2010; Medeiros et al. 2013). Furthermore, a 376 

recent work suggests that although a parasite lineage may be found infecting a wide diversity of 377 

hosts, they are actually better adapted to key host species as indicated by their infection 378 

intensities (Huang et al. 2018). Collectively, this evidence could indicate that other forces 379 

besides vector feeding may limit rates of novel host encounters for parasites. Assessing whether 380 

vector feeding specificity or activity rates change across regions with differing seasonality 381 

patterns would help interpret our findings and generate future research directions. 382 

 383 

Phylogenetic barriers to host range expansions 384 

Many parasites and pathogens can disperse widely across geographical realms and infect 385 

distantly related host species, and avian malaria parasites are no exception (Pérez‐Tris & Bensch 386 

2005; Hellgren et al. 2007; Ellis et al. 2015; Ricklefs et al. 2017; Fecchio et al. 2018a, b). Global 387 

distributions of several common and potentially invasive Plasmodium lineages (Bensch et al. 388 

2009; Marzal et al. 2014; Clark et al. 2015; Ellis et al. 2018) could be interpreted as evidence 389 

that these parasites are indiscriminant host-generalists capable of infecting an enormous diversity 390 

of host species in any given environment. We challenge this assertion by showing that multi-host 391 

avian malaria parasites, even those that infect a high number of avian host species, generally 392 

infect phylogenetically clustered subsets of available hosts. This has important ramifications for 393 

our understanding of how host range expansions occur. Local co-occurrence of primary host 394 

species is sometimes necessary to facilitate survival of parasites that have encountered novel host 395 

species but have not yet locally co-adapted to the new host’s immune defenses (Fox et al. 1997, 396 

Best et al. 2010). For avian malaria parasites, phylogenetic relationships between primary and 397 

potential avian host species clearly play a central role in determining host associations and 398 

community assembly (Ellis et al. 2015; Clark et al. 2017; Fecchio et al. 2018a), despite their 399 

reliance on arthropod vectors that may feed on a diversity of avian species (Santiago-Alarcon et 400 

al. 2012b). However, although our study agrees with suggestions that breaking phylogenetic host 401 

barriers is an evolutionarily rare event (Hellgren et al. 2007; Agosta et al. 2010), this must 402 

nevertheless be a key process for generating parasite biodiversity. Host switching is a major 403 
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macroevolutionary event shaping avian malaria evolution and community turnover (Ricklefs et 404 

al. 2014; Alcala et al. 2017; Fecchio et al. 2018b). Importantly, we here only study 405 

contemporary host ranges of parasites, rather than inferring patterns of historical host switching. 406 

However, our findings could indicate that rainfall seasonality plays a role in the likelihood of 407 

host switching over evolutionary timescales. Climate variation should be jointly considered with 408 

historical factors in understanding the ecology and evolution of vector-borne pathogens.  409 

 410 

Study limitations 411 

Some limitations of our modelling approach should be recognized. First, we concentrate only on 412 

multi-host avian malaria parasites. This ignores the many parasite lineages that only infect a 413 

single host species, which may limit our ability to draw conclusions on the biogeography of 414 

realized host specificity. Our estimates of realized host specificity rely on adequate support from 415 

the data, meaning that precisely estimating coefficients for parasites occurring in a small number 416 

of hosts will, in many cases, be limited. Delineating larger biogeographical regions can improve 417 

sample sizes, albeit at the cost of resolution. For example, our sensitivity analysis, which used 418 

only nine rather than 10 regions, identified a greater tendency for ecological specialization 419 

among parasites. This suggests that the added sample sizes within groups may have provided the 420 

extra data necessary to tease apart ecological specialists. Finally, because we constrain estimates 421 

with insufficient support to the overall average (through hyperprior specifications and Bayesian 422 

variable selection), effects can be considered conservative and should be revisited following 423 

acquisition of additional data.  424 

 425 

Extending our models to other host-parasite systems under the emerging Stockholm 426 

Paradigm 427 

Our findings can broadly be interpreted under principles of The Stockholm Paradigm, which 428 

postulates that host range expansions by parasites are the product of an interplay between (a) 429 

novel host-parasite opportunities occurring across dynamic host landscapes and (b) phylogenetic 430 

and/or ecological barriers that limit adaptation by parasites to these opportunistic hosts (Araujo 431 

et al. 2015; Hoberg & Brooks 2015). Multi-host parasites exhibit a Sloppy Fitness Space 432 

whereby realized host ranges are a subset of larger potential host ranges, including the full 433 

diversity of host species that a parasite is capable of infecting (Hoberg & Klassen 2002; Agosta 434 
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& Klemens 2008). Our findings suggest that variation in the realized host specificity of avian 435 

malaria parasites follows a hierarchical process consisting first of heterogeneity in potential host 436 

pools (occurring most notably across regions characterized by different precipitation patterns) 437 

and evolutionarily conserved host traits or behaviours that limit successful infection (Wells et al. 438 

2018b). Biogeographical structure in host specificity likely reflects prominent roles of vector 439 

feeding patterns or shifts in host compositions in response to regional climatic conditions. 440 

Recognizing that host specificity is not fixed, as we have shown here, provides new 441 

leverage for outlining region-specific predictions of infectious disease risk by emerging 442 

parasites, particularly in areas undergoing rapid climate change. Given that an enormous 443 

diversity of macro- and micro-parasites depend on external climate conditions during at least part 444 

of the life cycles (Patz et al. 2000; Brooks & Hoberg, 2007), our approach can provide new 445 

insights into host association patterns for many host-parasite systems. Related models have 446 

already been successfully used to uncover global variation in realized host specificity for 447 

important zoonotic helminth parasites (Wells et al. 2018b). We have extended the flexibility of 448 

these models by incorporating group-level hyperpriors to capitalize on the added power that 449 

partial pooling can provide in mixed effects regressions (Gelman & Hill 2007). Used in 450 

combination with the increasing availability of remote-sensed environmental variables and host-451 

parasite association datasets (Wardeh et al. 2015; Stephens et al. 2017), our approach can play a 452 

key role in determining whether the magnitude of parasite specialization varies in response to 453 

climate patterns. For example, incorporating data on host migration patterns (to provide finer 454 

estimates of local host composition) or landscape features (to more adequately describe regional 455 

ecological variation) could be a valuable next step to ground-truthing our models for other 456 

systems. Improving surveillance regimes and the spatial resolutions of open-source host-parasite 457 

databases will enhance our ability to disentangle biological signals of host specificity from 458 

inherent noise associated with low resolution data. This is imperative to identify which biotic and 459 

abiotic conditions increase risks for parasitic disease emergence and pathogen spillover events.  460 
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Table 1. Sample sizes (sites, individual birds, host species, and parasite lineages sampled/modelled), bird species richness and host 753 

specificity coefficients (Phylo βregion and Eco βregion) for biogeographical regions. Regions were delineated based on dissimilarities in 754 

avian community composition and climate variables. Diversity metrics (phylo diversity, eco diversity) were calculated by 755 

multiplying host species richness by posterior modes of regression intercepts (µregion), which represent the average pairwise distance 756 

between potential host species in a region. PNG: Papua New Guinea 757 

Bioregion Latitude 

(mean) 

Longitude 

(mean) 

Phylo 

Beta 

(mean) 

Host 

phylo 

diversity 

Eco 

Beta 

(mean) 

Host 

eco 

diversity 

# 

sample 

sites 

# 

samples 

#  

host 

species 

# 

parasites 

#  

parasites 

(modelled) 

Australia 

N / PNG 

-15 145.97 -0.02 62.48 -0.02 70.38 6 1336 115 117 23 

Australia 

SE 

-31.19 148.1 0.01 40.61 -0.05 46.74 10 3926 73 43 24 

Australia 

W 

-28.02 117.65 -0.06 5.18 -0.03 6.34 2 191 10 11 2 

Brazil 

Amazonia 

-2.75 -56.28 0.04 188.73 0.1 172.68 14 2251 308 206 35 

Brazil 

Central / E 

-13.71 -48.15 -0.03 102.75 -0.06 128.93 12 1757 210 99 23 

Malaysia -2.85 103.45 0.01 19.17 0.08 20.59 2 143 36 19 3 

Melanesia -17.36 167.63 0.1 20.42 0.1 22.19 28 1947 44 54 18 

New 

Zealand 

-40.2 174.25 -0.03 15.43 -0.02 16.7 23 2544 29 12 4 
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Peru -5.87 -77.27 0.03 154.22 0.03 170.78 4 1174 270 72 15 

Philippines 12.57 121.79 -0.06 17.31 -0.12 21.4 7 245 37 59 7 

 758 

 759 
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 760 

 761 

 762 

Figure 1. (A) Sample coordinates for study sites, colors depict their classification into ten 763 

biogeographical regions. Regions were delineated based on dissimilarities in avian community 764 

composition and climate variables. (B) Posterior distributions of host specificity βregion 765 

coefficients for phylogenetic host specificity and ecological host specificity. Lower βregion values 766 

indicate higher similarity between infected host species than expected by chance, indicating 767 

higher parasite host specificity in a region (relative to remaining regions). Higher βregion values 768 

suggest parasites infect more distantly related host species, indicating a greater tendency towards 769 

host generalism. Boxplots show median (lines), interquartile range (hinges) and 90% quantiles of 770 

posterior βregion estimates. Point and boxplot colors correspond to regional names in Table 1. 771 
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 773 

Figure 2. Distribution of the observed numbers of infected host species (A) and numbers of 774 

biogeographical regions (B) for the 154 avian malaria parasites (71 Plasmodium, 83 775 

Haemoproteus) included in the host specificity analyses. 776 
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 780 

 781 

Figure 3. Density distributions of regional host specificity (βregion) coefficients, arranged by 782 

decreasing minimum rainfall of the driest quarter. Lower βregion values indicate higher similarity 783 

between infected host species than expected by chance, suggesting higher host specificity in a 784 

region (relative to remaining regions). Higher βregion values suggest parasites infect more 785 

distantly related host species than expected, indicating a greater tendency towards host 786 

generalism. Minimum rainfall variation accounted for 44% of explained variance in βregion 787 

values, with more specialized parasites in regions with wetter dry seasons. Polygon colors 788 

correspond to region names in Table 1. 789 
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 800 

 801 

Figure 4. Parasite host specificity regression coefficients (βparasite) presented as 95% highest 802 

posterior density credibility intervals. Each vertical bar indicates a parasite species’ ecological 803 

(upper panel) and phylogenetic (lower panel) specificity, respectively. Negative (i.e. not 804 

overlapping with zero) βparasite values indicate that pairs of host species tend to be more similar 805 

than by chance according to regional host species pools. 806 
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