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Abstract Context: In the context of exploring the art, science and engineering of programming, the ques-
tion of which programming languages should be taught first has been fiercely debated since computer sci-
ence teaching started in universities. Failure to grasp programming readily almost certainly implies failure to
progress in computer science.
Inquiry:What first programming languages are being taught? There have been regular national-scale surveys
in Australia and New Zealand, with the only US survey reporting on a small subset of universities. This the
first such national survey of universities in the UK.
Approach: We report the results of the first survey of introductory programming courses (N = 80) taught at
UK universities as part of their first year computer science (or related) degree programmes, conducted in
the first half of 2016. We report on student numbers, programming paradigm, programming languages and
environment/tools used, as well as the underpinning rationale for these choices.
Knowledge: The results in this first UK survey indicate a dominance of Java at a time when universities are
still generally teaching students who are new to programming (and computer science), despite the fact that
Python is perceived, by the same respondents, to be both easier to teach as well as to learn.
Grounding: We compare the results of this survey with a related survey conducted since 2010 (as well as ear-
lier surveys from 2001 and 2003) in Australia and New Zealand.
Importance: This survey provides a starting point for valuable pedagogic baseline data for the analysis of the
art, science and engineering of programming, in the context of substantial computer science curriculum re-
form in UK schools, as well as increasing scrutiny of teaching excellence and graduate employability for UK
universities.
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An Analysis of Introductory Programming Courses at UK Universities

1 Introduction

For many years – and increasingly at all levels of compulsory and post-compulsory
education – the choice of programming language to introduce the “art” [22], “sci-
ence” [17] and “discipline” [13] of computer programming via key programming
principles, constructs, syntax and semantics has been regularly revisited. Even in
the context of what are perceived to be the most challenging introductory topics
in computer science degrees, numerous key themes across programming frequently
appear [10].
So what makes a good first programming language? Perhaps more importantly,

how are we defining “good”? The issues surrounding choosing a first language [19, 21]
– and a search of the ACM Digital Library identified a number of papers of the form “X
as a first programming language”, going as far back as the 1970s [16] – appear to be
legion, especially with wider discussions of precisely what we aim to achieve from
teaching programming [15, 35, 41, 1, 4]; from the potential impact on students’ grades
and attainment [37, 3, 31, 25, 20], addressing gender and diversity issues [2, 38], to a
renewed focus on developing transferable computational thinking and problem solving
skills [29, 42, 39]. There is a belief that programming – as opposed to, say analysis
of algorithms, a closely related theoretical skill – is fundamentally a craft that needs
immersion and practice [15, 28]. It appears that decades of research on the teaching of
introductory programming has had limited effect on classroom practice [30]; although
relevant research exists across several disciplines including education and cognitive
science, disciplinary differences have often made this material inaccessible to many
computing educators. Furthermore, computer science instructors have not had access
to comprehensive surveys of research in this area [26, 30].
However, in Australia and New Zealand there have been longitudinal data collec-

tions [33, 24, 23] surveying the teaching of introductory programming courses in
universities. Surprisingly, such surveys have not been conducted elsewhere on this
scale (in the USA, [18] only covers the “top 39” universities), and this paper reports
the findings from running the first such similar survey in the UK.
We remind the reader that the UK consists of four nations with an overall population

of 64.5 million: England (54.3 million), Scotland (5.3 million), Wales (3.1 million)
and Northern Ireland (1.8 million). In 1997, Scotland and Wales held referendums
which determined in both cases the desire for increased self-government (along with
Northern Ireland and the 1998 Good Friday Agreement), creating national assemblies
to which a variety of powers – in particular, education – were devolved from the UK
Parliament. Thus, we now have an educational policy ecosystem in the UK that was
historically ruled by one parliament but now comprising three devolved assemblies
responsible for four separate education systems.
In the context of increasing international focus on curriculum and qualification

reform to support computer science education and digital skills in schools, the four
education systems of the UK have proposed and implemented a variety of changes [9,
34, 5, 8], particular in England [6], with a new compulsory computing curriculum for
ages 5-16 from September 2014 [12]. For universities across the UK offering computer
science degrees [32], this school curriculum reform has had uncertain (and emerging)
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impact on the delivery of their undergraduate programmes, with the diversity of
the educational background of applicants likely to increase before it narrows: it is
certainly possible now for prospective students to have anywhere from zero to four or
more years experience (and potentially two school qualifications) in computer science
with some knowledge of programming.
Since 2012, there has been increasing scrutiny of the quality of teaching in UK

universities, partly linked to the current levels – and potential future increases – of
tuition fees (generally paid by the student through government-supported loans), as
well as relative levels of graduate employability and the perceived value of profes-
sional body accreditation by industry. In February 2015, the UK (but in this respect
only responsible for England) Department of Business, Innovation & Skills initiated
independent reviews of science, technology, engineering and mathematics (STEM)
degree accreditation and graduate employability,¹ with a specific focus – the Shadbolt
review [36] – on computer science degree accreditation and graduate employability,
reporting back in May 2016. Alongside a number of recommendations to address
the apparently relatively high unemployment rates of computer sciences graduates,
particular on the quality of data, course types, gender and demographics, the Shadbolt
review split generalist universities in England into three bands (“low”, “medium”,
“high”), based on the average (across all subjects) entrance tariff of incoming un-
dergraduates (as defined by the national UCAS Tariff²); we have followed the same
tariff banding during our analysis of the English results, so our data should allow
comparisons.
Thus, in this evolving environment of new policies and curricula, as well as the

emerging demands of innovative pedagogies and high-quality learning and teaching
for computer science degree programmes, we present the findings from the first
national scale survey of introductory programming languages at UK universities,
providing a baseline for deeper analysis of the art, science and engineering of pro-
gramming. Through this first UK-wide survey of universities, we identify and analyse
trends in student numbers, programming paradigm, programming languages and
environment/tools used, as well as the underpinning rationale for their selection.

2 Methodology

2.1 Recruitment of Participants

To recruit for the survey, a general call for participants was sent out to the Council of
Professors and Heads of Computing (CPHC) membership; CPHC³ is the representative
body for university computer science departments in the UK, with nearly 800 members
at over 100 institutions. The survey was hosted online from mid-May until the end of

1 https://www.gov.uk/government/collections/graduate-employment-and-accreditation-in-
stem-independent-reviews

2 https://www.ucas.com/advisers/guides-and-resources/tari�-2017
3 https://cphc.ac.uk
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Figure 1 The number of responding universities per Nation/Tariff Group

June 2016, with the invitation asking for the survey to be passed on to and completed
by the most appropriate person in that institution. Due to the recruitment method,
there were a number of duplicate responses from certain departments, and these were
reconciled by direct enquiry.
The questions used in the survey were generously provided by the authors of the

2013 Australia and New Zealand survey [23], so as to allow direct comparison with
the results of this survey. Where possible, questions were left unchanged, although a
small minority were edited to reflect the UK target audience. As defined in the 2013
Aus/NZ survey, the terminology “course” was used for “the basic unit of study that is
completed by students towards a degree, usually studied over a period of a semester or
session, in conjunction with other units of study”.
The first section of the survey asked about the programming language(s) in use,

the reasons for their choice, and their perceived difficulty and usefulness. Then,
questions regarding the use of environments or development tools; which ones were
used, the reasons for their choice and the perceived difficulty. General questions
about paradigm, instructor experience and external delivery were asked, along with
questions regarding students receiving unauthorised assistance, and the resources
provided to students. Finally, participants were asked to identify their top three aims
when teaching introductory programming, and were also allowed to provide further
comments.
In the 2013 Aus/NZ survey, participants were asked to rank the importance of the

reasons for choosing a programming language, environment or tool. Due to technical
limitations in the online survey tool used, it was not possible to do so in this survey, so
Figure 3 only reports counts. Most questions were not mandatory; the exceptions were
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“what programming language(s) are in use?” and a small number of feeder questions
to allow the survey to function correctly.

3 Results

3.1 Universities and Courses

Upon completion of the survey, 155 instructors had, at least, started the survey; 61
of these dropped out before answering the mandatory questions, and a further 14
were duplicates. Therefore, the results presented here are drawn from the responses
of 80 instructors from at least 70 institutions. Some participants did not answer all
questions and thus the response rate varies by question.
Excluding the Open University’s 3200 students, the participants in the survey

represented 13462 students, with a mean of 173 (but a standard deviation of 88).
Looking at Figure 1 we see good response rates, apart from the specialist higher
education institutions (most of whom do not teach computing) and the “low tariff”
English ones. Fewer of these teach computing; this factor alone explains the response
rate. In Northern Ireland, we had responses from the two universities, but not the
university colleges, which are historically initial teacher education colleges.
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Figure 3 Reasons given for choosing a programming language by percentage for: all
languages; Java; and Python

3.2 Languages

A primary focus of this survey was to identify the programming languages in use
in introductory programming courses. Participants were asked to select languages
from a list of 22 programming languages and also had the option to choose “Other”
and specify a language not included in the list. The majority of courses surveyed (59
out of 80, 73.8%) use only one programming language, with 17 using two (and only
three and one institutions using three and four languages respectively). From the 80
courses, the total number of language instances is 106, as some courses use more than
one language to teach introductory programming.
Of the 22 languages provided, 13 were selected at least once. The relative popularity

of languages is shown in Figure 2, where the prevalence is given by the percentage of
a language over all language instances (106 total), and weighted by student numbers
(16662 total) per language instance. The programming languages that were not
selected at all were: Actionscript, Ada, Delphi, Eiffel, Fortran, jBase, Lisp, Ruby and
Visual Basic.
The relative popularity of languages is the immediate major difference with the

2013 Aus/NZ survey; their survey showed a dead heat (27.3% of language instances)
between Java and Python, with Python winning (33.7% to 26.9%) when weighted by
the number of students enrolled on the course. Our findings in Figure 2 show that
Java is a clear winner by any metric, being used in over half the courses (61.3%) and
just under half of all language instances (46.2%), while the runner-up, Python, is in
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use in 17.5% of courses and makes up 13.2% of language instances. The C family (C,
C++ and C#)⁴ together is in use in 31.3% of introductory programming courses, and
scores 23.6% of language instances and 19.5% by students. Figure 2 also shows the
effect of student-number weighting but we have excluded the Open University from
this weighting, as its 3200 students learning Python (and Sense, a variant of Scratch)
would have distorted the comparison.

For each language selected, participants were asked to give the reasons for choosing
that language for the introductory programming course. Figure 3 shows the frequency
of these reasons for all languages grouped together and for Java and Python individu-
ally. When the reasons given are combined for all languages, three reasons tie for first
place: “relevance to industry”; “object-oriented language”; and “availability and cost to
students”, all chosen by 54.5% of participants who answered this question.
Looked at individually, the most popular reason given for choosing Java is “object-

oriented language” at 87.2%, while Python scores highest on “pedagogical benefits”,
at 72.7%. This may explain the popularity of Java: Java scores higher on “relevance
to industry” and, perhaps somewhat surprisingly, much higher on “object-oriented
language” than Python, which only scores 18.2%.
Figure 4 breaks down the choice of language by nation and tariff group. It is notice-

able that the three English tariff groups differ significantly, with Python outnumbering
Java in the low tariff universities, and C being almost exclusively in the high tariff
universities. Figure 5 gives the instructors’ views on languages. It is noteworthy that
Java is among the most difficult, and not among the pedagogically most useful.
For each language chosen, instructors were asked whether the language was used:

for the whole of the first programming course; for the first part of the first programming
course, followed by another; after another language in the first programming course.
Of 93 language instances, themajority (65%) are used for the whole of the introductory
programming course, 14.0% of language instances are used in the first part of a course
and 21.5% of language instances are used after another programming language;
results are displayed in Figure 6.

3.3 Paradigm Taught

Instructors were asked which paradigm was being taught in their introductory pro-
gramming course, regardless of what is traditionally thought to apply to the lan-
guage(s) in use. This question, understandably, caused some dissatisfaction in the
comments section, with many participants noting that more than one paradigm is
taught in their course. Although this was to be expected, we wanted to be able to
directly compare our results to the 2013 Aus/NZ survey, and so did not alter the
question. The most popular paradigm is object-oriented with 50% (N = 40, 50%)

4One referee queried whether C# counts as “C family”, describing it as “much closer to
Java”. One can find apparently authoritative statements in both camps from the language
designers of Java and C#. Further analysis of the four C# instances shows four different
patterns: C# only; a wide range of languages; C++ followed by C# and Java followed by
C#.
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Figure 9 Tool or environment popularity by percentage of courses and students

followed by procedural (N = 27, 33.8%) and functional (N = 7, 8.75%); logical was
also offered as a choice but was not selected.
The results of the previous question were used to analyse – see Figure 7 – the preva-

lence of paradigms across nations and tariff score groups. Caution must be applied
when interpreting these results, as participants could only choose one paradigm, even
though more may be in use.
In the same way as above, the languages chosen were analysed – see Figure 8 –

with regard to the main paradigm in use. Again, caution must be applied, as for a
given course, only one paradigm is chosen, even though more than one language
and/or paradigm may be in use. This explains the respondents who used C, but stated
that object-oriented was the main paradigm, for example. More surprising is the fact
that Python was almost exclusively viewed as procedural.

3.4 Instructor Experience

Participants were asked: “How many years have you been involved in teaching of in-
troductory programming?”. The results, shown in Table 1, indicate that of the survey
participants, the average was between 10-20 years.

Table 1 The number of years the instructor has been teaching introductory programming.

Years <2 2 - 5 5 - 10 10 - 20 20 - 30 >30
Instructors 3 9 9 27 19 7
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3.5 IDEs and Tools

Participants in the survey were asked if they encouraged students in the first pro-
gramming course to use environments and/or tools beyond simple text editors and
command line compilers. The majority of participants of this question (74.4% of 78
instructors) responded that they did encourage tools. Of the 58 instructors that did
select a tool/IDE, the majority (58.6%) use only one, with 25.8% and 10.3% using
two and three respectively; very few (5.2%) used four or more, with one respondent
using eight.
The survey asked participants to select the tools and IDEs in use in their introductory

programming course out of a list of 24, with the option to specify “Other”. Of the 24
provided, 12 were chosen at least once. The relative popularity of IDEs and tools is
shown in Figure 9. The most popular tool/IDE in the survey was Eclipse, reported in
37.5% of courses and scoring 25.0% of tool/IDE instances, and 26.8% when weighted
by students. Following this is “No Tool/IDE”, which accounts for 27.5% of courses. The
second most popular tool/IDE is BlueJ, which was reported in 22.5% of courses and
scored 15.0% of tool/IDE instances, and 15.5%when weighted by students. Participants
were also asked why each tool/IDE was chosen for their course, and asked to select
from a list of reasons. The results of this are give in Figure 10, for all tools and IDEs
grouped together, and for the two most popular choices, Eclipse and BlueJ. The tools
and IDEs not selected at all were: AdaCore, Alice, App, Browser, Greenfoot, Jeroo,
Jython, KTechLab, MySQL, Pelles, Quincy, Wing101 and Xcode.
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Figure 11 For each tool or environment, whether it is used: for an initial part of the first
programming course; throughout the whole of the first programming course; in
any other course in the degree

3.5.1 Reuse of Tool/IDE
Instructors were also asked whether the tool/IDE was used for an initial part of the
first programming course or throughout the whole of the course; and whether it was
used in any other course in the degree (Figure 11).

3.5.2 Di�culty of Tool/IDE
In addition to this, instructors were asked to rate how difficult they found the tool/IDE
on a Likert scale from “Extremely Easy” (1) to “Extremely Difficult” (7), and also how
difficult they believed the students found the tool/IDE, shown in Figure 12.
We note that, while Eclipse is the most popular tool by some way, it is also deemed

to be most difficult. This, apparently perverse, practice might be explained by the
extent of re-use of Eclipse in other courses.

3.6 Other Aspects of the Course

3.6.1 External Delivery
Participants were asked “Do you offer external delivery of your course? (i.e. do you
have options for your course where students are not required to attend regular lectures,
workshops, labs or tutorials?)”. The responses to this question were overwhelmingly
in the negative; 70/74 (94.6%) answered “No”.
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Figure 12 The median difficulty rating of tool for the instructor and students to use, where
1 is ‘extremely easy’ and 7 is ‘extremely difficult’

Cheat-sheets in exams

Lecture slides/notes
– publisher

Mailing list

Topic summaries

Open book examinations

Online examinations

Online tutorials

Recorded lectures

Self-assessment questions

Assignment hints

Discussion boards/forums

Textbook is specified

Worked examples of programming
problem solutions

Lecture slides/notes
– lecturer

0 20 40 60

Number of Instructors

Figure 13 Resources provided to students

18-15



An Analysis of Introductory Programming Courses at UK Universities

Interview some students/groups
selected at random

Interview all students/groups

Use a software-similarity
detection system

Interview some students/groups
when suspicious

Notice unexpected elements
in the code

Notice unlikely similarities
between programs

0 10 20 30 40

Number of Instructors

Figure 14 Steps taken to determine whether students have received unauthorised assis-
tance on assignments

3.6.2 Resources Provided to Students
The questionnaire asked about the resources in terms of examples, books etc. provided
to students. The results are rather similar to the 2013 Aus/NZ survey [23, Figure 14]
and are displayed in Figure 13. The most popular resources selected were: “lecture
slides or notes provided by the lecturer” in first place, “worked examples of programming
problems/solutions” in second, and third place was shared by “textbook is specified”
and “discussion boards/forums”.

3.6.3 Unauthorised Assistance
The vast majority of instructors surveyed (89.3%) do consider the possibility that
students or groups of students may be receiving unauthorised assistance (e.g. from
other students in the class, from people outside the class, or via the internet) when
doing assignments. When asked how concerned they were about this possibility, 9
answered “not concerned”, 39 answered “somewhat concerned” and 17 reported “very
concerned”.
We also asked participants: “What steps do you take to try to determine whether

students have received unauthorised assistance on assignments?”. The details are dis-
played in Figure 14 and range from “notice unlikely similarities” (59.1% of the 66
instructors who responded to this question) to “interview some students/groups at
random”, selected by only five instructors.
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3.7 Aims of an Introductory Programming Course

The 2013 Aus/NZ survey asked their respondents for the aims of their introductory
programming course. They, and we, asked for (up to) three aims. The authors then
attempted to classify the free-text answers into the same categorisation as [23] used.
While it is trivial to map the written aim “Thinking algorithmically” to “Algorithmic
thinking” [23] and so on, many were not so clear: for example, we mapped “To learn
a specific language” to “Syntax/writing basic code”. There were also a class of aims,
such as “Establish professional software development practices”, that seemed coherent,
but did not map clearly to the [23] aims; these we have categorised as “Software
Engineering”. Results of this question are shown in Figure 15.

4 Discussion

4.1 Comparison with Australasian Survey

Here we compare with the latest Australasian survey [23]; we have already com-
mented on the major difference in language choice, which colours many of the other
comparisons. In fact, the UK’s language choices seem more similar to Australasia’s
2010 choices [24] and [23, Table 4] than even Australasia’s 2013 choices. It is hard to
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know which comes first, but we also notice that our difficulty/utility data (Figure 5)
is somewhat different from [23, Figures 7/8].
Another difference in the tools/environments used is demonstrated by Figure 9

versus [23]’s Figure 11. There, “None” and “Other” were the top two categories, with
IDLE, at 15%, the most popular named product. In the UK, “None” is second, “Other”
is sixth and IDLE eighth. Eclipse, the UK favourite, was an “also ran” in [23].

4.2 The UK Context

As presented in Section 3.2, our findings show that Java is the most popular intro-
ductory programming language in UK universities, more than twice as popular as
Python in second place; the C family of languages (C, C++ and C#) together is in
use in nearly a third of introductory programming courses. We were surprised by
the viewpoint expressed of Python, as a multi-paradigm language, as being largely
procedural⁵; from the authors’ experiences, the dominance of Java has been a trend
for the past ten years, but we would expect to see a steady increase in Python due to
influences from the changes to school curricula in the UK [6].
We note that from a smaller survey conducted in July 2014, Python is the most

popular language for teaching introductory computer science courses at top-ranked
US university departments; specifically, eight of the top 10 CS departments (80%),
and 27 of the top 39 (69%), teach Python in introductory CS0 or CS1 courses [18].
This together with [23] and Figure 5 might make one question the UK’s domination by
Java, although longstanding industry popularity as measured by community indices
may still be a significant determining factor [40, 38].
From a UK education policy perspective, a new national Teaching Excellence Frame-

work has been proposed, with a core ambition to “to raise the quality and status
of teaching in higher education institutions”; excellence is to be measured through
a series of proxy metrics that include student satisfaction, retention and graduate
employability.⁶ There have been significant sector concerns about the aims of the
framework – as well as the statistical rigour of the metrics – more so in the context of
it being used for benchmarking⁷ “teaching excellence” (particularly as the TEF will
not yet be conducted at the individual subject level, but at the institutional level), as
well as deciding whether institutions are allowed to raise tuition fees in the future.
It remains to be seen how this will affect undergraduate computer science degree
curricula in UK institutions going forward, especially if there is renewed demand for

5We can only speculate why this is; one reason could be the nature of many of the texts
available: see [27], and for example a popular freely-available Python text [14] which the
third author has used while teaching teachers introduces classes only in chapters 15-17 (of
19 in total).

6 http://www.hefce.ac.uk/lt/tef/
7Many UK newspapers produce “University League Tables”, all based on much the same pub-
lished data. The new Teaching Excellence Framework will grade universities as bronze/sil-
ver/gold, and it seems inevitable that the newspaper league tables will use these in their
league tables.
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meeting the immediate (but potentially transient) demands of the IT industry with
specific tools, languages and environments, as well as reformed professional body
accreditation as per the 2016 Shadbolt review [36].
The UK’s Higher Education Academy – the national body which champions teaching

quality – has previously supported initiatives for improving learning and teaching
in computer science, including innovative pedagogies for programming [7, 11], but
we have not yet seen the necessary development of sustainable discipline-specific
communities of practice, both at the local and national level, to capture and share
best practice.⁸

5 Future Work

This national survey provides valuable context for better understanding of the role
and effectiveness of programming education in UK universities. Furthermore, how this
impacts more broadly across the education pipeline: through significant curriculum
reform, as well as scrutiny of the effectiveness of pedagogies for teaching principles of
programming and software engineering (in essence: software carpentry, providing
the knowledge, skills and understanding to create useful and usable software for
a variety of domains). Moving forward will require an mixed economy of rigorous
pedagogical research, as well as the application of personal experiences of languages,
tools, environments, models and styles. Only through this blend of the art, science
and engineering of programming will we see significant steps towards improving
programming (and thus computer science) education in the UK.
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