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Approximate Bayesian Inference for Geostatistical Generalised

Linear Models

Evangelos Evangelou

Department of Mathematical Sciences – University of Bath, BA2 7AY, Bath, UK

ee224@bath.ac.uk

Abstract: The aim of this paper is to bring together recent developments in Bayesian

generalised linear mixed models and geostatistics. We focus on approximate methods

on both areas. A technique known as full-scale approximation, proposed by Sang and

Huang (2012) for improving the computational drawbacks of large geostatistical data,

is incorporated into the INLA methodology, used for approximate Bayesian inference.

We also discuss how INLA can be used for approximating the posterior distribution of

transformations of parameters, useful for practical applications. Issues regarding the

choice of the parameters of the approximation such as the knots and taper range are

also addressed. Emphasis is given in applications in the context of disease mapping

by illustrating the methodology for modelling the loa loa prevalence in Cameroon and

malaria in the Gambia.

Keywords: Disease mapping; Full-scale approximation; Generalised linear spatial

model; Geostatistics; Integrated nested Laplace approximation.

1 Introduction

Since the paper by Diggle et al. (1998), Bayesian methods for fitting spatial geostatistical models

have become the norm. The models are fitted using Markov chain Monte-Carlo methods, or other

simulation-based methods (e.g Zhang, 2004), but with the drawback of being too computationally

intensive in order to obtain good samples. Furthermore, large amounts of geostatistical data are

impossible to handle with the common computer. Recently, a number of papers have appeared in the

literature that aim to overcome these computational disadvantages of Bayesian spatial models. This
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paper aims to illustrate the application of some of these methods to the geostatistical generalised

linear model (GGLM) (the term “geostatistical generalised linear model”, as opposed to the more

general “spatial generalised linear model”, is used here to emphasise the geostatistical feature of

our model); as well as to address issues related to the implementation of these methods.

Rue et al. (2009) introduced the method of integrated, nested, Laplace approximation (INLA)

for fitting Bayesian mixed models. The general setting assumes that one can write down the con-

ditional likelihood of the observations given the value of the random effect. The random effect is

assumed to be Gaussian with variance depending on a small number of parameters. Moreover, the

fixed effects are assumed to have a Gaussian or uniform prior. Inference is performed by approximat-

ing the unconditional distribution of the observations using Laplace’s method (Barndorff-Nielsen

and Cox, 1989) and emphasis is given to the case where the variance-covariance matrix of the

random effects has a Markov random field structure (Rue and Held, 2005). Despite some criticism

(Taylor and Diggle, 2014), the method has been shown to be relatively accurate in several settings

(Eidsvik et al., 2009, Paul et al., 2010, Martino et al., 2011, Schrödle and Held, 2011, Illian et al.,

2012).

One advantage of the Markov random field structure, compared to the geostatistical random

field, is computational. In the former the precision matrix can be written explicitly in terms of

the variance parameters and is sparse. Therefore, calculations involving the Gaussian likelihood

are performed in short computational time using routines for sparse matrices. On the other hand,

spatial data over a continuous area are naturally represented by a geostatistical random field.

Nevertheless, the assumptions made by INLA are satisfied for geostatistical models and, to that

end, Eidsvik et al. (2009) illustrated its application successfully to the GGLM. One point that was

only briefly discussed in their paper is the application of the method when the number of sampling

locations is large. In this case, the inverse of a large dense matrix is required at every iteration

of the Laplace approximation which can have detrimental effects in the speed and accuracy of the

method. In a subsequent paper, Eidsvik et al. (2012) account for this by considering the predictive

process approximation to the covariance (Banerjee et al., 2008) but found that the approximation

is sensitive to the number of knots.

Motivated by the fast calculations for sparse matrices and the success of INLA in the Markov

random field case, Lindgren et al. (2011) developed a theory for approximating spatial random
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fields by Markov random fields and took advantage of the computational benefits of the latter.

This method has been illustrated in subsequent papers by Simpson et al. (2012) and Cameletti

et al. (2013) among others. On the other hand, this method applies only for certain covariance

functions, namely a subset of the Matérn family.

An alternative approach, termed full scale approximation, has been suggested by Sang and

Huang (2012) by building on the idea of the predictive process model, combined with covariance

tapering (Furrer et al., 2006). The idea is to replace the dense covariance matrix of the random

field, Σ say, by a matrix of the form ΣS + ΓΣ−1

L ΓT where ΣS is sparse and ΣL is of low dimension.

The benefit is that the new matrix is easier to handle computationally and is a good approximation

to the original matrix. Sang et al. (2011) and Sang and Huang (2012) apply this approximation to

Gaussian models. An interesting question answered in this paper is how we can incorporate this

approximation into INLA.

There are cases, e.g. in the context of disease mapping, where interest lies in predicting a non-

linear transformation of the spatial random effects. For MCMC this is straightforward by applying

the transformation to the MCMC sample but for INLA, unless the distribution of the transformed

variable is known in closed form, it is not so clear. This question is answered in the present paper by

first approximating the predictive distribution of the spatial random effects by a mixture of normal

distributions, and then use that to approximate the mean of the transformation via a weighted

average.

The remaining of the paper is organised as follows. The GGLM is introduced in Section 2.

Section 3 describes the INLA methodology and discusses its application to GGLM. Three examples

are presented in Section 4 illustrating the techniques proposed. Finally, Section 5 presents the

conclusions of this article. Some technical details are put in the Appendix.

2 Model formulation

We assume a continuous domain of interest S over which a Gaussian random field Z is defined.

That is, for every finite subset S = {s1, . . . , sk} ⊂ S, the value of Z on S follows the k-dimensional

normal distribution with mean 0 and variance-covariance matrix Σ. The (i, j) element of the k× k
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matrix Σ has the form

σij = σ2 r(dij ; ρ),

where σ2 > 0 is the so-called sill parameter, interpreted as the variance of the random field at

each location, r is a known function of the distance dij between locations si and sj called the

correlogram, giving the correlation between the components of the random field having distance dij

apart, and ρ > 0 is parameter of the correlogram called the range. Two forms of the correlogram

that we will use in the examples of Section 4 are

• Exponential : r(d; ρ) = exp(−d/ρ),

• Spherical : r(d; ρ) = 1 − 1.5 (d/ρ) + 0.5 (d/ρ)3, if d < ρ; and 0 otherwise.

We assume that a total of N observations y = {yij, i = 1, . . . , k, j = 1, . . . , ni} are taken within

the spatial domain S with the (i, j)th observation corresponding to location si ∈ S, and ni denotes

the number of observations at location i with
∑

ni = N . The ni’s may, for example denote the

number individuals sampled or the number of observations from a single individual. Finally, each

yij corresponds to the total of mij replications of the (i, j) experiment, e.g. for binary data mij

corresponds to the number of trials of the experiment and for Poisson data to the length of unit

time that the sampling is taking place.

We denote by S the collection of the k sampled locations, and by z the value of Z on S. The

observations are modelled by a GGLM, that is, yij is independent of yi′j′ for i 6= i′ or j 6= j′

conditioned on the linear predictor w, with distribution from the exponential family.

Notable members of the exponential family include the binomial and Poisson distributions. The

binomial model with logit link has distribution

f(y|w) = exp {y w −m log(1 + ew)}

(
m

y

)
,

and the Poisson model with logarithmic link is

f(y|w) = exp {y w −m exp(w)} /y!.
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These distributions have the general form

f(y|w) = exp {y w −mκ(w)} a(y),

where κ(·) is known as the cumulant function (McCullagh and Nelder, 1999).

The (i, j) component of the N -dimensional linear predictor w, wij , is assumed to have the form

wij = xT

ijβ + zi + ǫij, i = 1, . . . , k, j = 1, . . . , ni,

where xij denotes a vector of p explanatory variables corresponding to the jth sample at location

si, β corresponds to a p-dimensional vector of regressor coefficients, zi denotes the value of the

Gaussian random field at location si and ǫij is a zero-mean random component, independent of the

zi’s, corresponding to other imponderable effects associated with the (i, j)th individual.

Let ǫ denote the N dimensional random vector of ǫij’s ordered by location, i.e. ǫ := (ǫ11, ǫ12, . . . , ǫ1n1
, ǫ21, . . .),

with variance-covariance matrix D, parametrised by θǫ. An important condition for the implemen-

tation of the full-scale approximation discussed in section 3.4 is that the precision matrix, D−1, is

sparse. This condition is satisfied, for example, in the i.i.d. case, D = τ2I, where I denotes the

identity matrix of appropriate dimension, and θǫ = τ2 > 0 is called the nugget. Another case, which

won’t be discussed here but is left as future research, is the Autoregressive model, e.g. the AR(1)

model: ǫi1 = δi1 and ǫij = φ ǫi,j−1+δij for j = 2, . . . , ni with δij ∼ N(0, τ2) i.i.d., is another class of

models that falls in the current framework which may be used for incorporating non-spatial corre-

lation within locations (Evangelou and Maroulas, 2017). In this case θǫ = (τ2, φ) ∈ (0,∞)× (−1, 1)

and D−1 is block-diagonal of k blocks with each block being a tridiagonal matrix.

Let X be the N × p matrix with rows the xij’s, and let A be the N × k matrix of 0’s and 1’s,

with the 1 in each row indicating which component of the random field z is present in the (i, j)

element of the linear predictor. In other words we write

w = Xβ + Az + ǫ.

Thus the linear predictor w follows the N -dimensional normal distribution with mean Xβ and
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variance-covariance matrix

T = AΣAT + D,

Let θ = (σ2, ρ, θǫ) denote the parameters in T, which we will refer to as variance parameters.

Our objective is, given the data y, to predict the value of the random field at locations Q =

{q1, . . . , qm} ⊂ S, and estimate the parameters β, θ. We adopt a Bayesian approach where we

assume prior distributions for the parameters, and their posterior distributions conditioned on the

data, as well as the conditional distribution of the random field, are sought.

We use the generic symbol f(·) to denote the probability density/mass function of the expression

in the parentheses. In the absence of any information about the explanatory variables, it is common

to assume flat improper priors for the regressor coefficients β (Christensen et al., 2000, Christensen

and Waagepetersen, 2002)

f(β) ∝ 1.

Another popular prior considered in the literature is the p-dimensional normal prior with mean say

ξ0 and precision Φ0, i.e.

f(β) ∝ exp

{
−

1

2
(β − ξ0)

TΦ0(β − ξ0)

}
.

For the moment we will not specify any priors for the variance parameters θ but note that for the

range parameter, an improper prior leads to an improper posterior (Christensen et al., 2000).

3 Methodology: The INLA approach

3.1 General

Suppose we observe y and we wish to predict the N -dimensional random variable w. The distri-

bution of either y or w may depend on an unknown parameter θ. Furthermore, suppose that the

distribution of w|θ is Gaussian. If θ was known, then prediction is performed by evaluating the

predictive distribution of w|y; θ,

f(w|y; θ) ∝ f(y,w|θ), (1)
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where f(y,w|θ) = f(y|w; θ)f(w|θ). In most applications of generalised linear mixed models the

normalising constant

f(y|θ) =

∫
f(y,w|θ) dw (2)

is not available in closed form and exact evaluation of (1) is impossible. (See for example Breslow

and Clayton (1993) and Rue et al. (2009).) The idea of the Gaussian approximation (Rue et al.,

2009) is to approximate (1) by a Gaussian density centred around

ŵ = ŵ(θ) = argmax
w

f(y,w|θ),

and precision

Ĥ = Ĥ(θ) = −
∂2

∂w∂wT
log f(y,w|θ)

∣∣∣∣
w=ŵ

.

The values of ŵ and Ĥ are implicitly functions of (y, θ). Thus, the approximation to (1), obtained

by second-order Taylor expansion, is

f̂(w|y; θ) = (2π)−
N
2 |Ĥ |

1

2 exp

{
−

1

2
(w − ŵ)TĤ(w − ŵ)

}
. (3)

Since the distribution of w|θ is Gaussian, the Gaussian approximation to the predictive distribution

is not unreasonable. Alternatively Hosseini et al. (2011) proposed the use of the skew normal

as a better approximation when skewness is more apparent and the Gaussian approximation is

inaccurate, however this approach will not be pursued in this paper.

The normalising constant (2) is approximated using Laplace approximation (Barndorff-Nielsen

and Cox, 1989) by

f̂(y|θ) = (2π)
N
2 |Ĥ|−

1

2 f(y, ŵ|θ) =
f(y,w|θ)

f̂(w|y; θ)

∣∣∣∣∣
w=ŵ

. (4)

Now suppose θ is unknown and assign a prior θ ∼ f(θ). Then, the posterior density for θ is

f(θ|y) =
f(y|θ)f(θ)

f(y)
∝ f(y|θ)f(θ).
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From (4) we can approximate

f̂(θ|y) ∝
f(y,w|θ)f(θ)

f̂(w|y; θ)

∣∣∣∣∣
w=ŵ

. (5)

Similarly, for prediction, (1) needs to be integrated with respect to f(θ|y) dθ, i.e. we need to

evaluate

f(w|y) =

∫
f(w|y; θ)f(θ|y) dθ. (6)

Using (3) and (5) in (6) we arrive at the following approximation

f(w|y) ≈

∫
f̂(w|y; θ)f̂(θ|y) dθ. (7)

On the other hand, as the distribution f(θ) is in general non-Gaussian, application of Laplace

approximation to the integral in (7) would be inefficient. Instead, we can view (7) as a “contin-

uous mixture” of multivariate normal densities, f̂(w|y; θ), indexed by θ, with weights given by

f̂(θ|y). As such it can be approximated by a finite mixture of size a at selected points {θ1, . . . , θa}

(see Appendix A on how to obtain such values), giving rise to the multivariate normal mixture

approximation,

f̂(w|y) =
a∑

j=1

Wj f̂(w|y; θj), where Wj =
f̂(θj |y)

∑
k f̂(θk|y)

, (8)

are the mixture weights.

Using properties of mixture distributions, the mean of (8) is

Ê(w|y) =

∫
wf̂(w|y) dw =

a∑

j=1

Wj

∫
wf̂(w|y; θj) dw =

a∑

j=1

Wjŵj, (9)

and is the approximate best predictor for w, with variance, obtained similarly,

V̂ar(w|y) =

a∑

j=1

WjĤ
−1

j +

a∑

j=1

Wj{ŵj − Ê(w|y)}{ŵj − Ê(w|y)}T.

In the above, we denote by ŵj and Ĥj the mean and precision respectively of the Gaussian ap-

proximation (3) at θ = θj , j = 1, . . . , a.

Let u be another random quantity of dimension n, for example u may represent components
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of the random field or the fixed effects, whose distribution is assumed to be independent of y

conditioned on w, with conditional distribution

f(u|w; θ) = (2π)−
n
2 |Ω|

1

2 exp

{
−

1

2
(u− Λw − λ)TΩ(u− Λw − λ)

}
,

for conformable matrices Λ and Ω and vector λ, dependent on θ, i.e. normal with mean and

variance

E(u|w; θ) = Λw + λ,

Var(u|w; θ) = Ω−1,

(10)

respectively. Then, from (3) the approximation to the conditional density of u|y; θ, f̂(u|y; θ), is

normal with mean and variance respectively

Ê(u|y; θ) = Λŵ + λ

V̂ar(u|y; θ) = Ω−1 + ΛĤ−1ΛT.

(11)

The predictive density, f(u|y) =
∫
f(u|y; θ)f(θ|y) dθ, is then approximated by a multivariate

normal mixture by

f̂(u|y) =
a∑

j=1

Wj f̂(u|y; θj). (12)

similarly to (8). Prediction intervals for the components of u are then computed using the appro-

priate quantiles of the predictive distribution (12).

Suppose further that we are interested in a function g(u) where u is a single element of u.

For example, in the context of disease mapping, when u is the linear predictor at some location,

g(u) = eu/(1+eu) denotes the prevalence of the disease at that location, and interest lies in creating

a prediction map for g(u). For given data y the prediction is

E(g(u)|y) =

∫
g(u)f(u|y) du. (13)

If g(·) is a non-linear function of u, simply replacing u by its expectation leads to biased predictions.

Of course, if g(·) is monotone, a prediction interval can be obtained by transforming the prediction

interval from (12), but for the purpose of creating a prediction map, a point prediction is needed.
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The solution we propose is to evaluate (13) numerically using the ideas of Langrock (2011). To that

end, let u0, . . . , ub be an ordered grid of values of u. These values are chosen in order to contain

most of the mass of the marginal of u from approximation (12). Then

E(g(u)|y) =

∫
g(u)f(u|y) du

≈

∫
g(u)f̂(u|y) du

≈

b∑

i=1

g

(
ui−1 + ui

2

)∫ ui

ui−1

f̂(u|y) du

=

b∑

i=1

g

(
ui−1 + ui

2

) a∑

j=1

Wj

∫ ui

ui−1

f̂(u|y; θj) du, (14)

where the last integral is over a univariate normal density and is straightforward to compute. An

approximation to the prediction variance is obtained similarly.

3.2 Application to GGLM

The distribution of the linear predictor is

f(w|β, θ) = (2π)−
N
2 |T|−

1

2 exp

{
−

1

2
(w −Xβ)TT−1(w −Xβ)

}
, (15)

i.e. normal with mean Xβ and variance-covariance matrix T = AΣAT + D.

We will distinguish two cases for the prior distribution for β, which are the most common found

in the literature, the normal and flat improper priors. These are denoted respectively by

β ∼ Np(ξ0,Φ
−1

0
),

for given values ξ0 and Φ0, and

β ∼ Up(−∞,∞).

In each of these two cases we can in fact integrate out β from (15), and obtain the distribution of the

linear predictor without conditioning on the regressor coefficients. In both cases this distribution

will be the normal distribution but with different mean and variance each time. We will denote by

λN and λU the means, and by ΥN and ΥU the precision matrices when the prior for β is respectively
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normal or uniform. Then

λN = Xξ0, ΥN = T
−1 − T

−1X(XT
T
−1X + Φ0)

−1XT
T
−1,

λU = 0, ΥU = T
−1 − T

−1X(XT
T
−1X)−1XT

T
−1.

(16)

The distribution of β|w; θ is also normal. Writing ξN , ξU for the means and ΦN , ΦU for the

precision matrices in the case of the normal and uniform priors, we have

ξN = Φ−1

N (XT
T
−1w + Φ0ξ0), ΦN = XT

T
−1X + Φ0,

ξU = Φ−1

U XT
T
−1w, ΦU = XT

T
−1X.

(17)

For prediction we compute the conditional mean and precision of the spatial random field given

(w; θ). Let µ, P denote this mean and precision matrix. Then

µ = ΣATΥ(w − λ), P = {Σ− ΣATΥAΣ}−1 (18)

with λ and Υ chosen accordingly from (16). Moreover, let z0 be the value of the random field at

locations Q, having mean 0 and variance-covariance matrix Σ0, and let C denote the covariance

between z and z0. Then its conditional mean and precision given (w; θ) are µ0 and P0 where

µ0 = CTATΥ(w − λ), P0 = {Σ0 − CTATΥAC}−1. (19)

Equations (17), (18) and (19) are of the form (10) so, given the posterior distribution for θ,

their predictive distribution is obtained from (11) and (12). To that end, write

f(w|θ) ∝ |T|−
1

2 |Φ|−
1

2 exp

{
−

1

2
(w − λ)TΥ(w − λ)

}

for the general form of the distribution of w|θ, with Φ chosen from (17), and define

ŵ = argmax
w

f(y|w)f(w; θ).

Also let

Ĥ = Υ + diag{κ′′(ŵij)}.
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Then, by Laplace approximation, the conditional distribution of w|y; θ is approximately

w|y; θ
approx
∼ NN (ŵ, Ĥ−1),

and the posterior for θ becomes

f̂(θ|y) ∝ f(θ) · |Ĥ |−
1

2 |T|−
1

2 |Φ|−
1

2 exp {yTŵ −
∑

κ(ŵi)} exp

{
−

1

2
(ŵ − λ)TΥ(ŵ − λ)

}
. (20)

3.3 A note on the asymptotics

Central to the INLA methodology is the application of Taylor expansion on (1) which results to

approximations (3) and (4). A regulatory condition for the Taylor approximation, and hence the

Laplace approximation, to be valid is that the dimension of the domain of the function that is

being approximated is constant. Unfortunately, this is not the case for the GGLM, where the two

common asymptotic regimes increasing-domain and infill asymptotics assume that the number of

sampling locations, k, increases to infinity (Stein, 1999, Section 3.3).

Shun and McCullagh (1995) studied the performance of the Laplace approximation under non-

standard asymptotic settings. The case for GGLM was discussed further by Evangelou et al. (2011).

In short, the validity of Laplace approximation for GGLM requires increasing domain asymptotics

and the assumption that (mijni)/k → ∞. Binary data, for example, where there is one observation

per location, do not satisfy these requirements and application of the methodology in this case may

lead to inconsistent results. Further research in this area is necessary for a methodology that will

include these cases as well.

3.4 Full-scale approximation to the covariance

Application of the INLA methodology described in the earlier sections requires the inversion and

determinant of k × k matrices. For example, for computing the inverse of the N × N matrix

T = D + AΣAT, we may use the formula

T
−1 = D−1 −D−1A

(
Σ
−1 + ATD−1A

)
−1

ATD−1.
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The computations become intractable if the dimension k is large and Σ is dense, and a big part of

the literature in spatial statistics is concerned with tackling this issue.

Recently, Sang and Huang (2012) have proposed the idea of full-scale approximation to the

covariance matrix. The approximation starts by specifying a set of kL knot locations SL, where

kL is much smaller than k, which cover the region of interest sufficiently. The predictive process

approximation to Σ is then (Banerjee et al., 2008)

ΓΣ−1

L ΓT,

where ΣL is the covariance matrix at locations SL and Γ denotes the covariance of the random

field between S and SL. The predictive process approximation is efficient in capturing the large-

scale dependence structure of the random field but may not perform well for short distances. The

approximation can be improved by adding to it the sparse matrix

ΣS := (Σ− ΓΣ−1

L ΓT) ⊙ Eγ ,

a technique known as tapering (Furrer et al., 2006), where ⊙ denotes the elementwise product be-

tween two matrices, and Eγ is a sparse correlation matrix on S, arising from a compactly supported

correlation function (Gneiting, 2002) e.g. the spherical correlation, with range γ. Then, the full

scale approximation to the matrix Σ becomes

Σ̃ := ΣS + ΓΣ−1

L ΓT.

Once the full-scale approximation is available, it can be incorporated into the INLA methodology

as outlined in Appendix B.

Working with Σ̃ is much easier computationally than Σ, as discussed by Sang and Huang (2012).

In particular, the computational cost of using the original k × k covariance matrix Σ is typically

to the order of O(k3) while the computational cost of using the approximation Σ̃ is to the order of

O(k(k2L + k2T )) where kL is the number of knots and kT is the average number of non-zero elements

in the rows of Σ̃ which are both much smaller than k.

A number of important questions arise at this point. (a) What is the optimal choice for knot
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locations? and (b) What is the optimal choice for the taper range γ? Finley et al. (2009) discuss

the first question in the context of Gaussian data by putting it in the framework of spatial design

(Müller, 2007). To that end, Finley et al. (2009) concluded that a sequential design, i.e. selecting

the knot locations one at a time, gives better results than a space-filling design. As a design criterion

they used the average prediction variance. However, it is not straightforward how to compute the

prediction variance for non-Gaussian responses. On the other hand, Evangelou and Zhu (2012)

showed that, if the sample size at each location is large, the optimal design for GGLM comes close

to the optimal design for the Gaussian geostatistical model. With this in mind, the sequential

updating scheme proposed in Finley et al. (2009), remains a good choice in GGLM as well.

In terms of choosing the taper range γ, Kaufman et al. (2008) suggest to begin with a low

value and then increase it sequentially. As γ increases, the approximation error becomes smaller

but the computational time increases and a choice that balances accuracy against computational

speed should be made. In fact for very large values of γ there is very little improvement in terms of

accuracy and speed, if at all. In this paper we measure accuracy in terms of the Frobenius distance,

defined as

d(Σ, Σ̃) := tr{(Σ − Σ̃)T(Σ− Σ̃)}
1

2 ,

where Σ denotes the exact covariance matrix for the spatial random field z, and Σ̃ its approximation.

The advantage of using the Frobenius norm, as opposed to the Kullback-Leibler divergence, is that

it is faster to compute when the matrices are of large dimension. In terms of computational time,

we suggest using as a proxy the execution time for the Cholesky decomposition of Σ̃. The Frobenius

norm and the computational time are measured for different values of the taper range and then

scaled from 0 to 1. These values are then plotted together against the taper range to produce a

plot similar to the one shown in Figure 2. Examination of the figure allows us to assess the tradeoff

between computing time and accuracy.

4 Examples

4.1 A simulated example

In this example the performance of INLA with and without the approximation to the covariance

function is compared to MCMC.
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Figure 1: Locations for the simulated example, indicated by ·, and grid for the full scale approxi-
mation, indicated by ×. Prediction is considered at a central site (◦) and a far site (�).

A total of k = 200 locations were chosen within the region (0, 1) × (0, 1) as shown in Figure 1,

from where a Gaussian random field was sampled. The observations consist of a binomial GGLM

with logit link and exponential covariance function, and m = 100 observations were drawn at each

location. The linear predictor at location x = (x1, x2), wx, was set to

wx = β0 + β1x1 + β2x2 + zx + ǫx,

with β0 = −1, β1 = β2 = 1, and covariance parameters σ2 = 0.5, ρ = 0.4, and ǫx ∼ N(0, τ2) i.i.d.

with τ2 = 0.1σ2.

The regressor coefficients were assigned flat improper priors, σ2 an inverse gamma prior with

parameters a = b = 0.1, and ρ a uniform prior in (0, 1). The ratio τ2/σ2, called relative nugget by

Christensen (2004) was assumed known.

The INLA method was used to estimate the parameters of the model and the random field at

the observed locations. We ran the INLA method with three different covariance functions, the

exact exponential covariance, its full-scale approximation with knots corresponding to a triangular

grid, shown by a × in Figure 1 and using the spherical correlation for tapering, and the predictive

process approximation using the same knots.
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Figure 2: Scaled Frobenius norm (◦) and computational time (+) against taper range γ.

In order to choose an appropriate value for the taper range, the approximation is computed for

ρ = 0.1, 0.2, . . . , 1.5 and for γ = 0.100, 0.145, . . . , 1.000 (the maximum distance between locations

is 1.078). The Frobenius norm between the exact and approximate covariance matrices, Σ and Σ̃

respectively, was computed as well as the computational time for performing Cholesky decomposi-

tion on Σ̃. The norm and computational time are scaled linearly in order to range from 0 to 1 and

are plotted against the different values of the taper range. Figure 2 shows such plot for the case

ρ = 0.5 (other values of ρ produce a similar plot). Based on this plot, we choose the taper range

to be γ = 0.2 as this allows an approximation errror of about 40% with increase of about 40% in

computing time.

The R package geoRglm (R Core Team, 2018, Christensen and Ribeiro Jr, 2002) was used for the

MCMC. The length of the sample was 1,000,100, with the first 10,000 being discarded as burn-in

and the remaining samples were thinned by 100, thus retaining 9901 random samples from the

posterior distribution of the parameters and the random field.

The posterior densities for the two covariance parameters and the intercept using the different

methods are shown in Figure 3 (the plots for the other two regressor coefficients are similar and are
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Figure 3: Posterior densities for (a) logarithm of sill, (b) range, and (c) intercept. The histogram
shows the MCMC sample. The approximation using INLA and exact covariance matrix is shown
by a solid line, the INLA with the full scale approximation is shown by a dashed line, and the INLA
with the predictive process approximation is shown by a dotted line. The true parameter value is
indicated by a triangle on the horizontal axis.
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Figure 4: Predictive distribution of the random field at a central site (left) and a far site (right).
The histogram shows the MCMC sample. The approximation using INLA and exact covariance
matrix is shown by a solid line, the INLA with the full scale approximation is shown by a dashed
line, and the INLA with the predictive process approximation is shown by a dotted line.

not shown). We observe that the INLA with the exact covariance agrees with the MCMC sample

and the method using the full-scale approximation matches closely with the exact. The predictive

process approximation may have a small bias when used to estimate the covariance parameters but

it still works well for the estimation of the regressor coefficients.

We also considered prediction at two sites, a central site, indicated by a circle in Figure 1,

and a far site, indicated by a square. The predictive distributions using each method are shown
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in Figure 4. The plots show that the exact and full-scale approximations agree with the MCMC

sample but the predictive process approximation exhibits small bias.

In summary, the example shows that INLA provides a good approximation to the predictive

distributions of the parameters and the random field and the full-scale approximation can be used

as a computationally milder alternative.

4.2 Loa loa prevalence in Cameroon

The loa loa is a worm-like parasite infecting human by travelling through their tissue. The young

larvae develop in flies, commonly found in Africa and India, which infect human by biting them.

The main methods of diagnosis include the presence of the parasite in the blood or in the eye, and

the presence of skin swellings. When found, the worm is removed by a surgery. Diggle et al. (2007)

discuss about the importance of estimating the prevalence of loa loa for precautionary reasons.

The data consist of samples from k = 197 villages in Cameroon and its neighbouring country

Nigeria, as shown in Figure 7. For the ith village the number of infected subjects yi and the number

of tested subjects mi were recorded. We also have information about the altitude and a measure

of vegetation, the normalised-difference vegetation index (NDVI) for each month for the year 1996.

Note that the individuals in this example are the villages.

The p = 6 explanatory variables are as in Diggle et al. (2007), although our values are slightly

different from theirs. They consist of an intercept (β0), a piecewise linear effect of the altitude with

the regression coefficient changing at .65Km and 1Km (β1, β2, β3), a linear effect of the maximum

NDVI when it is below the 0.8 level β4, and a linear effect of the standard deviation of NDVI β5.

We assign flat improper priors for all regressor coefficients.

Based on the above information, an appropriate model for the linear predictor is

w = Xβ + z + ǫ.

The number of infected individuals in the ith village conditioned on the linear predictor is modelled

as binomial GGLM with logit link, i.e.

yi|wi ∼ Bin

(
mi,

ewi

1 + ewi

)
.
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Figure 5: Posterior plots for the variance parameters. (a) Joint posterior of log(σ2) and ρ using
exact INLA, (b) Marginal posterior of log(σ2), (c) Marginal posterior of ρ. The histogram is for
the MCMC sample, the exact INLA is shown by a solid line and the full-scale INLA by a dadhed
line.

Exact INLA Full-scale INLA MCMC
Parameter Estimate 95% interval Estimate 95% interval Estimate 95% interval

Intercept (β0) −14.17 −18.58 −9.76 −15.03 −19.28 −10.77 −14.67 −19.16 −9.90
Elevation 0 − .65Km (β1) 2.28 1.07 3.49 2.19 1.02 3.36 2.35 1.15 3.60
Elevation .65 − 1Km (β2) 1.62 0.90 2.34 1.60 0.91 2.29 1.68 1.00 2.39
Elevation 1 − 1.3Km (β3) 0.81 0.17 1.45 0.68 0.05 1.30 0.83 0.18 1.46
Max(NDVI) (β4) 14.09 8.00 20.17 15.11 9.16 21.06 14.66 8.19 20.82
Sd(NDVI) (β5) 0.71 −9.68 11.10 1.27 −8.87 11.42 0.68 −9.04 11.22
Sill (σ2) 0.72 0.50 1.02 0.66 0.45 0.94 0.70 0.51 0.99
Range (ρ) 0.55 0.25 1.08 0.64 0.36 1.08 0.48 0.28 0.92

Table 1: Parameter estimates for the loa loa prevalence in Cameroon using exact and approximate
INLA.

Each of the regressor coefficients is assumed to have an independent improper flat prior.

The random field z is assumed to have an exponential covariance structure. In addition, the

relative nugget parameter is fixed to τ2/σ2 = 0.4 as in Diggle et al. (2007), and we assume a uniform

improper prior for σ2, i.e. σ2 ∼ U(0,∞), while for the range parameter we assign ρ ∼ U(0.1, 1.4).

We consider model fitting using INLA with exact and approximate covariance matrix at 36

knots forming a square grid. Figure 5 shows the posterior density of (log σ2, ρ)|y, evaluated at

21 × 21 equidistant points for each parameter using the two methods. The two methods agree in

terms of log σ2 but some discrepancies exist when estimating ρ. There are also small discrepancies

for some of the regressor coefficients as can be seen in Figure 6 which suggests that a larger number

of knots is required.
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Figure 6: Posterior for the regressor coefficients. The histogram is for the MCMC sample, the exact
INLA is shown by a solid line and the full-scale INLA by a dashed line.

A 95% confidence interval for the variance parameters is obtained by spline approximation to

the marginal posterior for each parameter. For the regressor coefficients the confidence interval is

obtained assuming normality of the estimator. These results are summarised in Table 1. Besides the

standard deviation of NDVI, all other coefficients are found to be significant using both methods.

A probability map of the prevalence of loa loa is of interest. Let w = xTβ + z + ǫ denote the

linear predictor at any given location. The prevalence is then given by

prevalence =
ew

1 + ew
,

and is estimated using (14). Figure 7 shows the predicted prevalence and prediction standard

deviation for the region of interest. The map closely resembles the one reported by Diggle et al.

(2007). We also note that the uncertainty of the prediction is higher where there are no sampled
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Figure 7: Predicted prevalence of the loa loa parasite (top), and prediction standard deviation
(bottom).

villages close by.

4.3 Childhood malaria in the Gambia

In this study, presented by Diggle et al. (2002), the data are obtained by sampling children in

k = 65 villages in the Gambia as shown in Figure 8. These villages are classified into 5 areas

(respectively, south-west, north-west, centre, north-east, and south-east), and 42 of them belong to

the primary health care structure (PHC) of the Ministry of Health, while the remaining 23 do not.

For the jth child in the ith village an indicator yij of the presence of malaria in a blood sample

was recorded, along with the child’s age, whether or not it regularly slept under a bed net, and if
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Figure 8: Sampled locations for the Gambia data from Ribeiro Jr and Diggle (2001).

so whether the net was treated with insecticide.

The p = 10 explanatory variables for each individual consist of the intercept, age (in years),

a three-level effect for bed net (no net, untreated, treated), the amount of greenness at the corre-

sponding village, an indicator of whether the village belongs to the PHC, and a five-level effect for

the area. Note that some of these variables correspond to the individual within the village so the

response variable is the indicator yij of whether the jth child in the ith village is infected or not.

Let xij denote the set of explanatory variables for the (i, j) observation. The linear predictor is

then given by

wij = xT

ijβ + zi + ǫij.

We adopt the binomial GGLM with logit link, i.e.

yij|wij ∼ Bin

(
1,

ewij

1 + ewij

)
.
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Figure 9: Posterior densities for the parameters (a) τ2, (b) σ2, and (c) ρ of the Gambia malaria
data.

Parameter Estimate 95% interval

Intercept (β0) −0.07309 −2.95100 2.80483
Age (β1) 0.00066 0.00042 0.00090
Untreated bed net (β2) −0.36216 −0.67639 −0.04793
Treated bed net (β3) −0.68297 −1.07497 −0.29097
Greenness (β4) −0.01334 −0.07507 0.04839
PHC (β5) −0.32790 −0.77921 0.12340
Area 2 (β6) −0.69385 −2.26728 0.87958
Area 3 (β7) −0.78240 −2.44258 0.87778
Area 4 (β8) 0.65537 −1.12152 2.43226
Area 5 (β9) 0.97627 −0.80963 2.76217
Nugget (τ2) 0.13209 0.00310 0.26136
Sill (σ2) 0.98459 0.34501 1.82461
Range (ρ) 9.82025 0.54713 18.63800

Table 2: Parameter estimates of the Gambia malaria data.

For covariance, we use the exponential model. The prior distributions for the covariance parameters

are chosen to be

τ2 ∼ IG(0.01, 0.01), σ2 ∼ IG(0.01, 0.01), ρ ∼ U(1.5, 21.5),

i.e. inverse gamma, inverse gamma, and uniform.

The posterior densities for these parameters are shown in Figure 9. Table 2 displays a summary

of the parameter estimates and a 95% confidence interval for each parameter.

We consider prediction of the spatial random field in the region which is useful in identifying

high-risk areas. The prediction, and its standard deviation are shown in Figure 10. The sampled
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Figure 10: Prediction of spatial random field for the Gambia malaria data (top) and prediction
standard deviation (bottom).

locations are also indicated. Prediction far from the sampled sites is associated with high degree

of uncertainty so it is not attempted. The pattern is similar to the one reported by Diggle et al.

(2002).

5 Conclusion

In this paper a methodology for approximate inference in Bayesian geostatistical models is pre-

sented. The application of full scale approximation to the spatial covariance matrix is discussed

and its implementation within INLA is demonstrated. Issues regarding the choice of parameters

for the full-scale approximation are addressed. In terms of choosing the knots for the predictive

process approximation we use spatial design for GGLM while for choosing the taper range, a graph-

ical method is presented. Furthermore, we discuss prediction of transformed parameters using the
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INLA method.

The proposed method is compared against MCMC in a simulated example and found to have

good performance. The only caveat is that INLA with the full scale approximation may exhibit

bias when estimating the posterior distribution for the range parameter, therefore more research

to this direction is needed. Despite this, it is evident from the two examples that our method can

be a useful tool for geostatistical inference in GGLM.

The proposed model is especially useful for disease mapping as demonstrated by the examples.

Its potential for extending it to allow for autoregressive errors, in order to account for temporal

effects, is left for future research.

A Selecting grid values for the variance parameters

In this section we explain how we obtain a grid of values {θ1, . . . , θa} for the discrete approximation

to the posterior f(θ|y) when the number a is pre-specified. Since the elements of θ are positive, in

practice we work with the logarithmic transformation of its elements, however in the following we

don’t make a distinction on the scale used.

The suggestion of Rue et al. (2009) is to create a grid within a confidence interval (of some

high level, say 99%) obtained by maximising (20). In our case, the objective function for the

maximisation is the logarithm of (20), i.e.

h(θ|y) = log f(θ) −
1

2
log |Ĥ| −

1

2
log |T| −

1

2
log |Φ| + yTŵ −

∑
κ(ŵi) −

1

2
(ŵ − λ)TΥ(ŵ − λ),

with ŵ chosen to satisfy

y − κ̂′ − Υ(ŵ − λ) = 0, (21)

and κ̂′ denotes the vector with ith element κ′(ŵi), i = 1, . . . , N . Differentiating (21) with respect

to θj we obtain

∂jŵ = −Ĥ−1 (∂jΥ) (ŵ − λ),

where ∂j = ∂
∂θj

.

25



The first order derivative of the objective function is

∂jh(θ|y) =
∂jf(θ)

f(θ)
−

1

2
tr(Ĥ−1∂jĤ) −

1

2
tr(T−1∂jT) −

1

2
tr(Φ−1∂jΦ)

+ yT∂jŵ − κ̂′T∂jŵ −
1

2
(ŵ − λ)T (∂jΥ) (ŵ − λ) − (ŵ − λ)TΥ∂jŵ

=
∂jf(θ)

f(θ)
−

1

2
tr(Ĥ−1∂jĤ) −

1

2
tr(T−1∂jT) −

1

2
tr(Φ−1∂jΦ) −

1

2
(ŵ − λ)T (∂jΥ) (ŵ − λ),

simplified using (21), which can be used in a quasi-Newton iteration scheme for maximising the

posterior for θ. The negative inverse Hessian at the maximum is used in the place of the variance

and the desired confidence interval is obtained assuming normality.

B Matrix computations

Key formulae in the derivations that follow for the inversion and determinant of matrices of the

form

∆ + ATSA

are

(∆ + ATSA)−1 = ∆−1 − ∆−1AT(S−1 + A∆−1AT)−1A∆−1,

|∆ + ATSA| = |∆||S||S−1 −A∆−1AT|.

(22)

Below we show how these results can be used to approximate the inverse of the approximate

covariance matrix. Similar techniques are used for computing its determinant.

Given the approximation to the variance-covariance matrix Σ

Σ̃ = ΣS + ΓΣ−1

L ΓT,

the variance covariance matrix of the linear predictor w is

T = D + AΣAT = D + AΣSA
T + AΓΣ−1

L ΓTAT

with inverse

T
−1 = (D+AΣSA

T)−1−(D+AΣSA
T)−1AΓ

{
ΣL + ΓTAT(D + AΣSA

T)−1AΓ
}
−1

ΓTAT(D+AΣSA
T)−1.
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The matrix inside the curly brackets is of low dimension, and its inverse is available. The matrix

D + AΣSA
T is N -dimensional, and, even though it may be sparse, computing its inverse directly

may not be the best approach due to its high dimension. Using the key formula (22) for the matrix

inverse,

(D + AΣSA
T)−1 = D−1 −D−1A(Σ−1

S + ATD−1A)−1ATD−1, (23)

and noting that the matrix in parentheses is now k-dimensional and sparse, since it consists of a

sum of two sparse matrices, can significantly ease computations.

In a similar manner we compute

Ĥ−1 = (K ′′ + Υ)−1

= (K ′′ + T
−1)−1 + (K ′′ + T

−1)−1
T
−1X

{
Φ0 + XT(K ′′−1 + T)−1X

}
−1

XT
T
−1(K ′′ + T

−1)−1

with

(K ′′−1 + T)−1 = (K ′′−1 + D + AΣSA
T)−1 − (K ′′−1 + D + AΣSA

T)−1AΓ

·
{
ΣL + ΓTAT(K ′′−1 + D + AΣSA

T)−1AΓ
}
−1

ΓTAT(K ′′−1 + D + AΣSA
T)−1

(K ′′ + T
−1)−1 = T− T(K ′′−1 + T)−1

T

and (K ′′−1 + D + AΣSA
T)−1 is computed as in (23) with D replaced by K ′′−1 + D.
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