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1 Introduction

In this work we study a generalisation of classical gradient descent that has become
known in the literature as the so-called linearised Bregman iteration [8, 7], and – as the
key novelty of this publication – apply it to minimise smooth but not necessarily convex
objectives E : U → R over a Banach space U . For this generalisation we want to consider
proper, lower semi-continuous (l.s.c.), convex but not necessarily smooth functionals J :
U → R ∪ {∞}, and consider their generalised Bregman distances

Dp
J(u, v) = J(u)− J(v)− 〈p, u− v〉 ,

for u, v ∈ U and p ∈ ∂J(v), where ∂J(v) denotes the subdifferential of J . Note that in case
J is smooth we omit p in the notation of the Bregman distance, as the subdifferential is
single-valued in this case. We further assume that there exists a proper, l.s.c., convex and
not necessary smooth functional F : U → R ∪ {∞} such that the functional G := F − E
is also convex. This will imply D

q−∇E(v)
G (u, v) ≥ 0 for all u, v ∈ dom(G) and q ∈ ∂F (v),

since q −∇E is the gradient of G. Hence, the convexity of G yields the descent estimate

E(u) ≤ E(v) + 〈∇E(v), u− v〉+Dq
F (u, v) , (1)

for all u, v ∈ dom(F ) and q ∈ ∂F (v). We want to emphasise that in case of F (u) =
L
2
‖u‖2

2 (for some constant L > 0) (1) reduces to the classical Lipschitz estimate; this
generalisation has also been discovered in [2] simultaneously to this work (without the
generalisation of Bregman distances to non-smooth functionals, though).
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2 Linearised Bregman iteration applied to non-convex

problems

The linearised Bregman iteration that we are going to study in this work is defined as

uk+1 = arg min
u∈dom(J)

{
τ k〈u− uk,∇E(uk)〉+Dpk

J (u, uk)
}

, (2a)

pk+1 = pk − τ k∇E(uk) , (2b)

for k ∈ N, some u0 ∈ U and p0 ∈ ∂J(u0). Here J : U → R ∪ {∞} is not only proper,
l.s.c. and convex, but also chosen such that the overall functional in (2a) is coercive and
strictly convex and thus, its minimiser well-defined and unique.

We want to highlight that this model has been studied for several scenarios in which E
is the convex functional E(u) = 1

2
‖Ku−f‖2

2, for data f and linear and bounded operators
K (cf. [8, 7]), for more general convex functionals E and smooth J in [6, 3], as well as for
the non-convex functional E(u) = 1

2
‖K(u)− f‖2

2 for data f and a smooth but non-linear
operator K in [1]. However, to our knowledge this is the first work that studies (2) for
general smooth but not necessarily convex functionals E.

3 A sufficient decrease property

We want to show that together with the descent estimate (1) we can guarantee a sufficient
decrease property of the iterates (2) in terms of the symmetric Bregman distance. The
symmetric Bregman distance Dsymm

J (u, v) (cf. [5]) is simply defined as Dsymm
J (u, v) =

Dq
J(u, v) +Dp

J(v, u) = 〈u− v, p− q〉 for all u, v ∈ dom(J), p ∈ ∂J(u) and q ∈ ∂J(v).

Lemma 1 (Sufficient decrease property). Let E : U → R be a l.s.c. and smooth functional
that is bounded from below and for which a proper, l.s.c. and convex functional F : U →
R ∪ {∞} exists such that G := F − E is also convex. Further, let J : U → R ∪ {∞} be
a proper, l.s.c. and convex functional such that (2a) is well defined and unique. Further
we choose τ k such that the estimate

ρDsymm
J (uk+1, uk) ≤ 1

τ k
Dsymm

J (uk+1, uk)−Dqk

F (uk+1, uk) (3)

holds true, for all k ∈ N, qk ∈ ∂F (uk) and a fixed constant 0 < ρ <∞. Then the iterates
of the linearised Bregman iteration (2) satisfy the descent estimate

E(uk+1) + ρDsymm
J (uk+1, uk) ≤ E(uk) . (4)

In addition, we observe

lim
k→∞

Dsymm
J (uk+1, uk) = 0 .

Proof. First of all, we easily see that update (2b), i.e.

τ k∇E(uk) + (pk+1 − pk) = 0 ,

is simply the optimality condition of (2a), for pk+1 ∈ ∂J(uk+1). Taking a dual product of
(2b) with uk+1 − uk yields

〈∇E(uk), uk+1 − uk〉 = − 1

τ k
Dsymm

J (uk+1, uk) . (5)



Due to (1) we can further estimate

E(uk+1) ≤ E(uk) + 〈uk+1 − uk,∇E(uk)〉+Dqk

F (uk+1, uk) ,

for qk ∈ ∂F (uk). Together with (5) we therefore obtain

E(uk+1) +
1

τ k
Dsymm

J (uk+1, uk)−Dqk

F (uk+1, uk) ≤ E(uk) .

Using (3) then allows us to conclude

0 ≤ ρDsymm
J (uk+1, uk) ≤ E(uk)− E(uk+1) ;

hence, summing up over all N iterates and telescoping yields

N∑
k=0

ρDsymm
J (uk+1, uk) ≤

N∑
k=0

E(uk)− E(uk+1) ,

= E(u0)− E(uN+1) ,

≤ E(u0)− E <∞ ,

where E denotes the lower bound of E. Taking the limit N →∞ then implies

∞∑
k=0

ρDsymm
J (uk+1, uk) <∞ ,

and thus, we have limk→∞D
symm
J (uk+1, uk) = 0 due to ρ > 0.

Remark 1. We want to emphasise that Lemma 1 together with the duality Dsymm
J (uk+1, uk) =

Dsymm
J∗ (pk+1, pk), for pk+1 ∈ ∂J(uk+1) and pk ∈ ∂J(uk), further implies

lim
k→∞

Dsymm
J∗ (pk+1, pk) = 0 ,

and hence, a sufficient decrease property holds also for the dual iterates. Here J∗ : U∗ →
R ∪ {∞} denotes the Fenchel conjugate of J , and U∗ is the dual space of U .

4 A global convergence statement

For the following part we assume that both J and J∗ are strongly convex w.r.t. the U -
respectively the U∗-norm, i.e. there exist constants γ > 0 and δ > 0 such that

γ‖u− v‖2
U ≤ Dsymm

J (u, v) and δ‖p− q‖2
U∗ ≤ Dsymm

J∗ (p, q) (6)

hold true for all u, v ∈ U and p, q ∈ U∗. From Lemma 1 and (6) we readily obtain

ρ1‖uk+1 − uk‖2
U ≤ E(uk)− E(uk+1) , (7)

for ρ1 := γ/ρ, which implies limk→∞ ‖uk+1 − uk‖U = 0.
We follow [4] and establish a global convergence result by proving that the dual norm

of the gradient is bounded by the iterates gap in addition to the already proven descent
result (7). Together with a generalised Kurdyka- Lojasiewicz property we will be able to
prove a global convergence statement for (2).

Given (6), we obtain the necessary iterates gap in the corresponding Banach space
norm as an upper bound for the gradient in the dual Banach space norm, as follows.



Lemma 2 (Gradient bound). Let the same assumptions hold true as in Lemma 1, and
let (6) be fulfilled. Then the iterates (2) satisfy

‖∇E(uk)‖U∗ ≤ ρ2‖uk+1 − uk‖U , (8)

for ρ2 := 1/(δτ) and τ := infk τ
k.

Proof. As pointed out in Remark 1, we have the dualityDsymm
J∗ (pk+1, pk) = Dsymm

J (uk+1, uk)
for the symmetric Bregman distances. Together with the duality estimate 〈u, p〉 ≤
‖u‖U‖p‖U∗ we therefore obtain

Dsymm
J∗ (pk+1, pk) = 〈pk+1 − pk, uk+1 − uk〉 ≤ ‖uk+1 − uk‖U‖pk+1 − pk‖U∗ .

Hence, using (2b) yields

Dsymm
J∗ (pk − τ k∇E(uk), pk)

τ k‖∇E(uk)‖U∗
≤ ‖uk+1 − uk‖U .

Together with the δ-strong convexity (6) and ρ2 := 1/(δτ) we get (8).

Remark 2. Note that we have to ensure τ > 0 in order to ensure ρ2 < ∞. Due to (3)

we can ensure this as long as Dqk

F (uk+1, uk) is bounded from above for all k ∈ N.

Before we can establish a global convergence result, we have to restrict the function-
als E to the following class of functionals satisfying a generalised Kurdyka- Lojasiewicz
property.

Definition 1 (Generalised Kurdyka- Lojasiewicz (KL) property). We assume for η > 0
that ϕ : [0, η[→ R>0 is a function that is continuous at zero and satisfies ϕ(0) = 0,
ϕ ∈ C1(]0, η[). Let further E : U → R be a proper, l.s.c. and smooth functional.

1. The functional E fulfils the (generalised) KL property at a point u ∈ U if there exists
η ∈]0,∞], a neighbourhood U of u and a function ϕ satisfying the conditions above,
such that for all

u ∈ U ∩ {u | E(u) < E(u) < E(u) + η}

we observe

ϕ′(E(u)− E(u))‖∇E(u)‖U∗ ≥ 1 . (9)

2. If E satisfies the (generalised) KL property for all arguments in U , E is called a
(generalised) KL functional.

Together with the previous results the generalised KL condition (9) allows to establish
the following global convergence result.

Theorem 1 (Global convergence). Let the Banach space U be the dual of a separable
normed space. Suppose that E is coercive, sequentially weak∗-continuous and a KL func-
tion in the sense of Definition 1. Then the sequences {uk}k∈N and {pk}k∈N generated by
(2) each have a strongly convergent subsequence with limits û and p̂, with ∇E(û) = 0 and
p̂ ∈ ∂J(û). If dim(U) <∞, then the convergence holds true for the entire sequences.

Proof. The proof utilises (4), (8) and (9) to derive the statement. Due to page restrictions,
the full length proof will be published separately in an extended version of this manuscript.



(a) Ground truth (b) Gradient descent (c) R(u) = 1
2‖∇u‖

2
L2 (d) R(u) = ‖Cu‖`1

Figure 1: A phase unwrapping example. Figure 1(a) shows the unknown, noise-free,
ground truth signal. Figure 1(b) shows the result of classical gradient descent computa-
tion. Figure 1(c) visualises the solution of model 2.) with α = 1000. Figure 1(d) shows
the solution of model 3.) with α = 50. All reconstructions have been computed from zero
initialisations and were stopped according to the same discrepancy principle.

5 Phase unwrapping as a toy example

We want to conclude this paper with a numerical toy example for which we consider to
minimise E(u) := 1

2
‖K(u) − f‖2

L2(Ω;R2) for K(u) = (cos(u), sin(u))T , and choose F (u) =
L
2
‖u‖2

L2(Ω) with L = 1. We will minimise E via (2) with J(u) := 1
2
‖u‖2

L2(Ω) + αR(u),

for a positive scalar α > 0 and three different choices of R: 1.) R(u) = 0, 2.) R(u) =
1
2
‖∇u‖2

L2(Ω;R2), and 3.) R(u) = ‖Cu‖`1 , where C denotes the two-dimensional discrete
Cosine transform. The first case simply corresponds to classical gradient descent, case
2.) is gradient descent in a Hilbert space metric and 3.) corresponds to gradient descent
in a non-smooth Bregman distance setting that does not correspond to a metric. Note
that the question, whether E and J satisfy all conditions that are necessary for global
convergence, will be omitted due to the page limit, but addressed in an extended version
of this manuscript in the future. We do want to mention, though, that it is easy to see
that J in 3.) does not meet the requirement (7); this, however, can be corrected via a
smoothing of the `1-norm, for instance via a Huberised `1-norm.

In order to consider numerical examples, we discretise the above scenarios in a straight
forward fashion. Input data f is created by applying the non-linear operator K to a mul-
tiple of the built-in MATLAB c© signal ’peaks’ (see Figure 1(a)) and additive normal
distributed noise with mean zero and standard deviation σ = 0.15. Due to noise in the
data, the iteration (2) is stopped as soon as E(uk) ≤ σ2m/2 is satisfied. Here m denotes
the number of discrete samples. Reconstruction results for zero initialisations and the
choice τ k = 1.5 for all k ∈ N can be found in Figure 1(b), 1(c) and 1(d). We want to
emphasise that this example is just a toy example to demonstrate the impact of different
choices of J ; there are certainly much better unwrapping strategies, particularly for the
unwrapping of smooth signals.

Code statement: The corresponding MATLAB c© code can be downloaded at
https://doi.org/10.17863/CAM.6714.

6 Conclusions & Outlook

We have presented a short convergence analysis of the linearised Bregman iteration for the
minimisation of general smooth but non-convex functionals. We have proven a sufficient
decrease property, and confirmed that the dual norm of the gradient is bounded by the

https://doi.org/10.17863/CAM.6714


primal iterates under additional strong convexity assumptions of the convex functional
that builds the basis for the Bregman iteration. Under a generalised KL condition, we
have stated a global convergence result that we are going to refine in detail in a future
release. We have concluded with a numerical toy example of phase unwrapping for three
different Bregman distances. In a future work we are going to analyse the linearised
Bregman iteration and its convergence behaviour in more detail and in a more generalised
setting, and are going to investigate different Bregman distance choices as well as different
numerical applications.
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