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Time dependence is of fundamental importance for the description of quantum systems, but is
particularly difficult for students to master. We describe the development and evaluation of a combined
simulation-tutorial to support the development of visual understanding of time dependence in quantum
mechanics. The associated interactive simulation shows the time dependence of an energy eigenstate
and a superposition state, and how the time dependence of the probability density arises from that of the
wave function. In order to assess transitions in student thinking, we developed a framework to characterize
student responses in terms of real and complex mathematical reasoning and classical and quantum visual
reasoning. The results of pre-, mid-, and post-tests indicate that the simulation-tutorial supports the
development of visual understanding of time dependence, and that visual reasoning is correlated with
improved student performance on a question relating to the time evolution of the wave function and the
probability density. The results also indicate that the analogy of a classical standing wave for the infinite
well energy eigenfunctions may be problematic in cueing incorrect ideas of time dependence.
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I. INTRODUCTION

As the research on student understanding of quantum
mechanics has grown, the time dependence of quantum
systems stands out as one of the most difficult topics
for students [1–7]. The time evolution is determined by
the time-dependent Schrödinger equation and for a one-
dimensional spatial wave function can be written as
Ψðx; tÞ ¼ P

nψnðxÞe−iEnt=ℏ, where ψnðxÞ are the spatial
parts of the energy eigenfunctions. The fact that the time
evolution comes into the wave function as a complex
exponential may be one of the reasons why student
conceptual understanding of time evolution has proven
so difficult.
Although the wave function for a quantum system

evolves in the complex plane, the probability density for
the same system lives entirely in the real space. This can
lead to students ignoring the important role that the
imaginary numbers play in quantum mechanics.
This study extends previous work supporting student

understanding of the time evolution of quantum systems
[8–12]. We developed research-based resources to promote
a visual understanding of the time dependence of the wave
function Ψðx; tÞ and how this leads to the time dependence

of the probability density. By visual understanding and
reasoning, we mean the ability to interpret equations
graphically or pictorially and to use these depictions to
draw conclusions and justify claims. This study consisted of
the development of an interactive simulation and a combined
simulation-tutorial, and their refinement using interviews
and in-class trials at two institutions across two years. This
study addresses the following research questions:
RQ1: To what extent does the simulation-tutorial tran-

sition student reasoning about time dependence?
RQ2: Is there a correlation between student performance

on questions relating to the time evolution of the wave
function or probability density and the type of reasoning
(mathematical or visual) used?
RQ1 was addressed using pre- and midtests carried out

before and a few days after the simulation-tutorial with no
further instruction on the topic. We also discuss interview
data that underpin RQ1 in terms of giving insight into
common incorrect ideas prior to working with the simu-
lation-tutorial and changes in student thinking when going
through the activity.
For RQ2, one could hypothesize that a visual model may

not help due to its inherent complexity and the fact that
translations between representations are difficult and not
automatic. RQ2 was addressed using a post-test carried out
several weeks after the simulation-tutorial, where the
solution could be obtained using mathematical and/or
visual reasoning. In order to answer the RQs, we devised
a new framework to characterize students’ reasoning in
terms of real or complex mathematical and classical or
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quantum visual reasoning that may be useful for other
quantum mechanics contexts.
The key findings of this study are that students who used

visual reasoning after (but not before) completing the
simulation-tutorial were more likely to answer correctly
than students who did not. The simulation-tutorial transi-
tioned students’ responses from classical visual to quantum
visual reasoning about time dependence. The results also
indicate that the analogy of a standing wave on a stretched
string in relation to the infinite square well energy eigen-
functions may generate incorrect ideas about time depend-
ence in quantum mechanics.

A. Literature review

1. Research into student thinking

Student understanding of the time evolution of quantum
systems has been one of the more commonly researched
topics in quantum mechanics physics education research.
This is in part due to the fact that all quantum systems
evolve in time, so that student thinking can be probed at
multiple points throughout instruction. For instance, ques-
tions about the time evolution of a system can be asked in
the context of the infinite square well and in the context of
perturbation theory.
There are several surveys on student conceptual under-

standing of quantum mechanics that include questions on
the time dependence of quantum states, measurements
outcomes, and probability densities [2,5,6]. An analysis
of the Quantum Mechanics Survey (QMS) finds that
many students do not understand the distinction between
solutions of the time-independent and time-dependent
Schrödinger equations [5]. On the Quantum Mechanics
Conceptual Assessment (QMCA) the questions that deal
with the wave function and time evolution have the lowest
averages [6]. Finally, Cataloglu and Robinett developed the
Quantum Mechanics Visualization Instrument (QMVI)
assessment that focused on student conceptual and visual
understanding. There are three questions that focused on
the time-dependent solutions to the Schrödinger equation.
All three of these questions had averages much lower than
the overall average [2].
In a 2001 study of student understanding of quantum

mechanics across six institutions, Singh found that ques-
tions related to the time evolution of expectation values and
probabilities were among the most difficult [1]. Singh also
reported how students are more likely to think that
continuous quantities such as position and momentum
are deterministic while more “quantum” quantities, such
as spin, are probabilistic [3]. In a study surveying incoming
graduate students across several institutions, Singh found
that “the most common difficulties with quantum dynamics
are coupled with an overemphasis on the time-independent
Schrödinger equation.” Several groups have noted that
students often incorrectly write the equation for the time
evolution of a quantum state by ascribing a single phase to

the entire wave function [3,4,7]. There is also a significant
percentage of students who say the wave function has no
time dependence [4,7]. In Ref. [7], Emigh et al. classified
student difficulties with time dependence into four catego-
ries: “tendency to confuse the time dependence of different
quantum mechanical quantities,” “failure to ascribe the
correct time-dependent phases to the wave function,”
“tendency to misinterpret the mathematical formalism
used for time dependence in quantum mechanics,” and
“tendency to apply ideas about time evolution that lie
outside the model for quantum mechanics.”

2. Analysis frameworks

Much of the research literature on student thinking
has been performed using a difficulties framework where
the researchers analyze student responses for difficulties,
which refer to “common incorrect or inappropriate ideas
expressed by students, or flawed patterns of reasoning”
[13]. These difficulties can then be addressed by targeted
curriculum.
Several analysis frameworks have been developed for

use in mathematics-heavy physics courses that focus
specifically on the use of math in physics problem solving
[14–17]. While these frameworks are each unique, they all
assume that mathematical calculations (either trivial or
more complex) play a role in solving physics equations that
can be identified as separate from physics sense making.
Each of these frameworks has their strengths, but a
limitation of all of them is that they are best suited for
more involved, complex problems that generally require
both mathematical and physics reasoning. Additionally,
some of these frameworks work best when there is a record
of how student thinking evolves over time as they work on a
task, such as you would have in an audio or video
recording.
Our research questions prompted us to ask fundamental

physics questions that students can answer using either
mathematical or conceptual physics reasoning, but that do
not require both. Additionally, we are interested in the
responses of a large number of students through written
questionnaires. For these reasons, the current mathemati-
cally oriented frameworks are not well suited for our
purpose. Our analysis framework, which will be outlined
in Sec. II D, was informed by both difficulties and the
mathematical frameworks referenced above.

3. Curriculum development

This study extends previous development of research-
based resources using visualizations of time dependence
[8–10,12,18]. Many of these resources make use of one-
dimensional plots to describe the time evolution, which
either overlay the real and imaginary components on the
same graph or depict the phase as a color on the plot.
Alternatively, other resources only plot the probability
density. Both the University of Washington tutorial [8]
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and work by Schiber et al. [12] use a physical prop
(transparencies and pipe cleaners, respectively) to help
students visualize the wave function. However, even in
these cases it is very difficult to make a dynamic connection
between the evolution of the wave function and the
evolution of the probability density.
The activity we developed draws heavily on a tutorial

written by the Physics Education Group at the University of
Washington (UW) [8]. The UW QM tutorials have been
developed using a model similar to that used to develop the
“Tutorials in Introductory Physics” [19]. They span the
content of a two-semester quantum mechanics course and
are entirely paper based. Each tutorial is approximately five
pages and is designed to take a 45-min class period where
students work in small groups with a high level of instructor
support. The tutorial on “Time Dependence in Quantum
Mechanics” was the inspiration and starting point for our
activity. The UW version of the tutorial uses a visual aid of
transparencies cut out into a three-dimensional axis to help
students visualize the motion of the wave function in the
complex plane. In our activity development, we took the
visual aid to the next level by developing an activity that
builds towards that visual model, affirms it with the use of a
simulation, and extends it to show the evolution of the
probability density. Although the UW tutorial was the
starting point for our activity, the changes required in order
to focus on the development of a visual model resulted in a
final product that is very different from the original.

II. METHODS

A. Research context

This study was performed at two institutions that differ
in terms of educational systems and student populations.
The University of St Andrews (StA) is a selective, research-
intensive institution in the UK, and California State
University Fullerton (CSUF) is a Hispanic-serving, teach-
ing-focused institution in the USA. The authors were the
instructors of the courses where this research was per-
formed. At StA, this study was conducted in a junior-level
core quantummechanics course required of physics majors.
The course covers standard wave mechanics including the
infinite well, the harmonic oscillator, the hydrogen atom,
angular momentum, and ladder operators. At CSUF, this
study was conducted in a third-year introduction to
quantum mechanics course required of physics majors.
The course follows a spins-first approach and begins with
spin-1=2 particles and Stern-Gerlach experiments as the
basis for the postulates of quantum mechanics before
moving on to wave functions in approximately the tenth
week of a fifteen week course.

B. Activity structure and description

The activity was designed to scaffold students’ develop-
ment of a visual model for the time evolution of a wave

function and how that affects the time evolution of the
probability density. In order to achieve this, we combined
some of the best aspects of tutorials and simulations.
The combined simulation-tutorial activity is structured in

such a way that students begin with tutorial-style questions
without simulation support where they construct represen-
tations they will later see in the simulation. Students are
then directed to the simulation and asked to play around
with it for several minutes before attempting the remaining
questions with simulation support. This activity structure
was guided by the literature on encouraging students to
engage actively to construct their own understanding (e.g.,
Ref. [20]), sketching as a learning strategy to promote
visual understanding and reasoning [21–23], and support-
ing students when learning with multiple external repre-
sentations [24,25]. This general structure is the same as for
a combined simulation-tutorial on perturbation theory
developed in an earlier study by the authors [26].
The simulation-tutorial was designed as an hour-long

classroom activity that could be completed as a homework
assignment. The activity and simulation were revised using
a pilot study. We describe the revised version in what
follows.
The first page of the five-page activity has students

consider the ground state of the infinite square well and
focus on the value of the function at the center of the well.
Students are then asked to plot the time evolution of this
value on a two-dimensional complex plane and to connect
this graphical evolution to the mathematical expression.
The final question before students play with the simulation
asks them to consider how they might depict the time
evolution of the entire wave function, not just of a single
point. One possible representation will become apparent
once students engage with the simulation.
Figure 1 shows a screenshot of the “Time-development

of infinite well quantum states” simulation [27]. The
simulation depicts wave functions and probability densities
for a one-dimensional infinite square well. The top graphs
show two- and three-dimensional depictions of the wave
function rotating in the complex plane. The bottom graph
shows the corresponding probability density. The math-
ematical expression for ψðx; tÞ is shown at the top left.
Students can choose the point x0 along the x axis at

which the two-dimensional graph of ψðx0Þ is displayed;
whether to display the ground state, the first excited state,
or a superposition of these two states; and which graphs to
display. The first excited state energy eigenfunction ψ2

rotates with an angular frequency four times greater than
that of ψ1, as the energy E2 ¼ 4E1. For the superposition
state (shown in Fig. 1), the two-dimensional graph of the
complex plane shows how ψ at a given point is determined
as the vector sum of ψ1 and ψ2 at that point.
Given the complicated nature of the graphs, the simu-

lation initially only shows the two-dimensional graph for
the ground state eigenfunction, with the other graphs

ENHANCING STUDENT VISUAL … PHYS. REV. PHYS. EDUC. RES. 15, 010110 (2019)

010110-3



hidden. This is the same graph that students are asked to
generate on page one of the activity. Play and step controls
at the bottom left can be used to stop and step through the
time evolution.
Depicting the time dependence of the wave function as a

rotation in the complex plane can address common student
difficulties (see Sec. I A 1) that may stem from a lack of a
visual model of time evolution: for an energy eigenfunction
ψn, it becomes clear in this depiction that the probability
density jψnj2 remains constant, as the time dependence
only changes the phase angle of the wave function curve,
not its magnitude. The depiction shows that the energy
eigenfunction depends on time, even though jψnj2 does not.
The rotation of the energy eigenfunction ψn with constant
magnitude shows that it does not decay with time. For the
superposition state, the depiction illustrates that the two
eigenfunctions cannot be multiplied by a single complex
exponential, as the rotation frequency depends on energy.
The simulation also shows that the probability density for
the superposition state ψ depends on time, as the different
rotation frequencies imply that the phase angle between ψ1

and ψ2 changes with time and thus jψ j2 changes with time.
In the final four pages of the activity, students are asked

to relate the graphs they see in the simulation to the ones
they sketched on the first page; explain the relation between

different graphs shown in the simulation and link them with
the corresponding mathematical expressions; determine the
period of each energy eigenfunction both graphically and
mathematically; and explore the effect of the relative phase
between the energy eigenfunctions in a superposition on
the probability density. The activity employs an elicit-
confront-resolve strategy [28] using student dialogue
questions at several points to directly address difficulties
identified in the literature, as well as a model-building
approach to help students develop a visual model for the
evolution of the wave function and the probability density.
For a copy of the combined simulation-tutorial, contact the
corresponding author.

C. Study design

The timeline for the study can be seen in Fig. 2. It
consists of a pretest that is administered on paper in class
after lecture instruction but before the combined simula-
tion-tutorial activity, the activity, a midtest administered in

FIG. 1. A screenshot of the “Time-development of infinite well quantum states” simulation showing a superposition of the ground and
first-excited states.

Pre-test Mid-test Post-testActivity
6-8 

weeks

time

FIG. 2. The timeline for the study.
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class after the activity, and a post-test given weeks later on a
class exam. This format was used over the course of two
years; the first year as a pilot study in order to revise the
simulation and the tutorial questions, the second year as the
study that is presented here. The first year pilot study is not
discussed further.
The pre- and midtests were used to address RQ1 to probe

transitions in students’ reasoning. Abbreviated versions of
the pre- and midtest questions and examples of student
responses are given in Fig. 3. The pre- andmidtest questions
were adapted from task 1 of a previous study [7], and aimed
to assess whether or not students have a correct visual model
of the time dependence of the wave function (part a) and the
probability density (part b) for an energy eigenstate (ques-
tion 1) and a superposition state (question 2). Identical
questions were used in the pre- and midtest. Question 1b
(identical in wording to question 2b of Fig. 3) is not
discussed further, as answers were almost always correct
on the pretest, and students often did not explain their
reasoning to this question in the pre- and midtests.
The pretests were completed by students in the class

prior to the simulation-tutorial activity. Students were not
given feedback on the pretest. The simulation-tutorial

activity was started in class and completed by students
as homework. The midtest was run on the day the
simulation-tutorial was handed in. All elements excepting
the post-test were not assessed and did not contribute to
course credit. Students were given approximately 15 min to
complete the pre- and midtests: the time was sufficient for
essentially all students to complete the tests.
For the analysis of transitions from pre- to midtest used

to address RQ1, only students who completed all of the
elements shown in Fig. 2 were included in the study. This
led to 66 students being included in this analysis (53 StA
and 13 CSUF students), which account for 70% of StA
students and 54% of CSUF students enrolled in the courses.
Students completed the post-test question shown in

Fig. 4 as part of their end-of-course exam. In an effort
to answer RQ2, in this paper we analyze student responses
to part b (in Sec. III B). This question requires students to
determine whether the probability density of the given
superposition state ψðx; t ¼ 0Þ ¼ ð1= ffiffiffi

2
p Þ½ψ1ðxÞ þ iψ2ðxÞ�

depends on time and to explain their reasoning. Note that
the quantum system and the wave function are different to
those used in the simulation-tutorial and the pre- and
midtests. It is possible to reason mathematically by writing
down the expression for ψðx; tÞ and using this expression to
determine jψ j2, and/or reason visually by considering the
rotation of the ψ1 and ψ2 curves in the complex plane.
Thus, this question allowed us to address RQ2 by compar-
ing the correctness of students’ answers and reasoning for
visual and mathematical responses.
For the post-test analysis, all students who took part in

the simulation-tutorial activity were included in the analy-
sis, including students who were not present for the pre- or
midtest. This led to 86 students (64 StA and 22 CSUF
students) being included for the post-test analysis.
The study design also included individual student inter-

views to underpin RQ1 that were conducted prior to the in-
class implementation. The aims of the interviews were to

FIG. 3. Abbreviated versions of the three pre- and midtest
questions administered before and after the activity discussed in
Sec. III A. All three questions also included the instruction: “If it
does not depend on time, state so explicitly.” Examples of three
different student responses are also shown. Using the framework
in Sec. II D, these responses were coded as incorrect classical
visual (1a), incorrect complex mathematics (2a), and correct
quantum visual (2b).

The spatially symmetric normalized 
ground state wave function               
and the antisymmetric normalized first 
excited state wave function                  
at time t = 0 for a system are shown at 
right.  Assume that the energy E

2
 of the 

first excited state is four times the 
energy of the ground state E

1
.

The system is initially (at time t = 0) in 
a state given by:

(a) Sketch the probability density for this state at time t = 0.  
Show your reasoning.

(b) Does the probability density for this state depend on time?  
Explain your reasoning.

ψ1(x)

ψ2(x)

ψ1(x, t = 0)

ψ2(x, t = 0)

ψ(x, t = 0) =
1√
2
(ψ1(x) + iψ2(x))

FIG. 4. The post-test question used as part of the end-of-course
exam.
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gain qualitative insight into students’ transitions of visual
reasoning, to identify particular difficulties in achieving
correct visual understanding, and to iteratively revise the
simulation and activity. We carried out 13 interviews in
total. In eight of the 13 interviews, students worked through
the activity using a think-aloud protocol and interacted with
the simulation after answering the initial questions without
simulation support. Five of the interviews were conducted
with students who had completed the simulation-tutorial in
class approximately ten months previously, and had a
different format: students answered the pre- and post-test
questions without simulation support before being asked to
use the simulation and revise their answers where needed.
Thus, these five students did not work on the simulation-
tutorial during the interview.

D. Coding framework

The literature on student difficulties with time depend-
ence (Sec. I A 1) and our experience as instructors sug-
gested that many of these difficulties could be grouped at a
more coarsely grained level as students either disregarding
the imaginary component of the wave function or inap-
propriately applying a classical picture to the evolution of
the wave function. Both of these groupings have a
mathematical and a visual aspect to them. For example,
Crouse [29] found that students believe the wave function
will decay as time progresses. This may be due to treating
the time-dependent complex phase e−iEnt=ℏ as a decaying
exponential, which would be the case if there was no i in
the expression, or it may be a graphical image of a decaying
exponential curve that is most salient for students. It has
also been seen that students will disregard the imaginary
component of the wave function by indicating that as time
evolves, the wave function will act as a standing wave
where a point of maximum amplitude will decrease to zero,
become negative, and then go through zero again as it
returns to its largest value [7]. From conversations with
students, the description of a one-dimensional standing
wave does not necessarily stem from the mathematical
expression, but with classical experiences of, for example, a
standing wave on a fixed string.
We have developed an analysis framework for student

reasoning that makes use of these themes of real versus
complex and classical versus quantum. This framework has
two main dimensions: mathematical and visual. Each
dimension is divided into two bins that can roughly be
categorized as classical and quantum. Along the math-
ematical dimension this takes the form of using real or
complex numbers. Along the visual dimension the
responses are divided into classical or quantum. In addition
to coding for the type of reasoning on each dimension, we
also coded for correctness of reasoning.
This approach allows us to characterize key elements of

student difficulties at a more coarsely grained level than
individual difficulties, and to group previously identified

difficulties based on common underlying themes. The
framework is well suited to answering research questions
RQ1 and RQ2 given its focus on the type of reasoning used
and the correctness of the reasoning. The framework can be
applied to short written responses and does not require
interview or video data for implementation.
Along the mathematics dimension, each student was

coded as either complex mathematics, real mathematics,
or not coded. Complex mathematics was coded if the
students wrote an expression for the time evolution
and used complex numbers. For example, for question
1a in Fig. 3, a complex mathematics answer might be
“ψ2ðx; tÞ ¼ e−iE2t=ℏψ2ðxÞ,” which is a correct expression.
An example of a response coded as incorrect complex
mathematics is shown in Fig. 3 in response to question 2a.
Real mathematics was coded if a student provided a
mathematical expression such as e−t that was entirely real
if there should have been an imaginary component. If a
student provided a written description of an equation, that
was also coded as mathematical. Responses that did not
include an equation or the description of an equation were
“not coded” along this dimension.
The visual dimension is divided into quantum visual,

classical visual, and not coded. If a response involved
graphs or a written visual description of the time evolution
it was coded as visual. In addition to the examples of an
incorrect classical and a correct quantum visual response
given in Fig. 3 to questions 1a and 2b, respectively, Table I
gives further examples of visual responses for question 1a.
Quantum visual descriptions must be close to a correct
description about the wave function rotating in the three-
dimensional complex plane. Describing the real and imagi-
nary parts separately such as “both the real and imaginary
parts of the wave function change as the function oscillates
with time” would also be coded as a quantum visual
response. Examples of classical visual descriptions (see
Table I) include describing the wave function as a classical
traveling or standing wave, a purely real wave (or wave
packet) sloshing back and forth, or an exponential decay
described in words or with a sketch.
It was possible for responses to be coded in both

mathematics and visual dimensions, although this was
not very common. Additionally, responses that did not
provide reasoning (“changes with time but I don’t really
know why”), that stated the wave function does not depend
on time (“As ψ2 is an energy eigenstate it [the wave
function] does not change with time”) or just stated that the
wave function oscillates without further explanation (“over
time the [wave] function will oscillate”) were not coded in
either category, as these responses did not have enough
detail to be considered visual or mathematical in nature.
In addition to being coded along the mathematics and

visual dimensions described above, student responses were
coded for correctness. The answer, visual reasoning and
mathematical reasoning were each individually coded for
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correctness. Classical visual reasoning and real mathemati-
cal reasoning were always incorrect. The large majority of
the quantum visual responses were considered correct;
however for responses that were given the complex
mathematics code, it was possible for that reasoning to
be correct or incorrect.
The pre- and midtest data were coded independently by

two student researchers, one at CSUF and one at StA. The
pilot study data were used for training, with discussion of
disagreements following the initial coding. For the study
presented here, the interrater agreement for math-based
reasoning and correctness of math-based reasoning was
high throughout for the three questions, with agreement
> 90% for reasoning and > 86% for correctness. The
interrater agreement for visual reasoning and correctness
of visual reasoning was somewhat lower, with agreement

> 70% throughout for the three questions for reasoning and
correctness of reasoning. After coding by the student
researchers, all coding disagreements were discussed by
the authors and resolved. This resulted in the final codes
used for the analysis shown in Sec. III A.
The authors coded post-test question b shown in Fig. 4

according to the same coding scheme as the pre- and
midtests. The percent agreement of the two coders ranged
from 88% for correctness of visual reasoning to 99% for the
answer, with an average agreement of 95%. After dis-
cussion, all of the coding discrepancies were resolved.

III. RESULTS

Section III A addresses RQ1: to what extent does the
simulation-tutorial transition student reasoning about time
dependence? This section discusses transitions from the
pretest to the midtest for the time evolution of an energy
eigenstate, a superposition state and the probability density
for a superposition state. Using the post-test results,
Sec. III B addresses RQ2: Is there a correlation between
student performance on questions relating to the time evolu-
tionof thewave function or probability density and the type of
reasoning (mathematical or visual) used? Section III C under-
pins RQ1 by giving insight from the interviews how the
simulation-tutorial changes student thinkingandthepersistent
difficulty of a classical standing wave.

A. Transitions from pre- to midtest

1. Evolution of an energy eigenstate

Question 1a on the pre- and midtest asked students to
describe the time evolution of an energy eigenstate (see
Fig. 3). As described in Sec. II D, student responses were
coded for the type of reasoning used (classical or quantum
visual, and real or imaginary mathematical) and the
correctness of their reasoning.

TABLE I. Examples of student responses coded as either
classical visual or quantum visual. All examples are responses
to pre- and midtest question 1a (Fig. 3).

Classical
visual

“Wave function moves left or right as t increases.”

“Standing wave. Constant amplitude.”

“The wave function ψ2ðx; tÞ oscillates within the
infinite square well potential, distributes itself more
homogeneously, and then undergoes wave function
revival where it reappears as shown above. It does
this over and over in a periodic manner.”

[no text]

Quantum
visual

“The above shape rotates (clockwise) in the complex
plane with constant angular frequency”

“ψ2ðx; tÞ rotates clockwise in the complex plane”

“ψ2ðx; tÞ rotates in the complex plane, so it appears
to oscillate in real plane-maxþmin switch
places”

TABLE II. The percentage of pre- and midtest responses to
question 1a that were coded as visual, and the percentage of
correct reasoning of these responses (e.g., 11.8% of the St
Andrews visual responses to pretest question 1a were correct).
The responses are shown for StA (N ¼ 53) and CSUF (N ¼ 13)
students separately. Also included are the percentage of answers
that were not coded. Responses that included both mathematical
and visual reasoning are included as visual reasoning in the table.
Errors are the standard errors of a proportion.

1a pre 1a mid

StA Visual reasoning 64.2� 6.6 81.1� 5.4
% correct 11.8� 4.4 88.4� 4.4
Not coded 22.6� 5.7 15.1� 4.9

CSUF Visual reasoning 46.2� 13.8 84.6� 10.0
% correct 0 63.6� 13.3
Not coded 46.2� 13.8 15.4� 10.0
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Table II shows the fraction of responses using visual
reasoning and the fraction of these responses that used
correct reasoning (e.g., 11.8% of the St Andrews visual
responses to pretest question 1a were correct). The results
for the two institutions are separated to illustrate that the
increase in percent of students using visual reasoning and
the percentage of those with correct reasoning is present at
both institutions. The small fraction of responses with
mathematical reasoning are not shown in this and the
following tables (Tables II–IV); hence the percentages for
the reasoning types do not add to 100%. Because of the
very different educational environments (including pre-
requisite courses and order of quantum mechanics instruc-
tion) it is not instructive to compare the performance at each
institution.
Table II shows that the percentage of students coded as

using visual reasoning as well as the percentage of those
students using correct reasoning increases at both StA and
CSUF after the activity. The transitions between pre- and
midtest responses are illustrated in more detail in the
consistency plot in Fig. 5. The consistency plots have
the math dimension on the vertical axis and the visual
dimension on the horizontal axis. Arrows show a transition
from pretest coding (circles) to midtest coding (triangles)
and the number indicates how many students made that
particular transition. Arrows and boxes with less than three
students have been colored gray in the figures to allow for
better visualization of overall trends. Squares indicate
students who were coded in the same category for the
pre- and midtest. The top left-hand category is for
responses that were not coded to use either math or visual
reasoning in their answers. These responses were either
blank or did not include enough explanation to code along

either dimension. More information on the coding
scheme can be found in Sec. II D. The consistency plots
in Figs. 5–7 combine the data from both institutions, as
these plots show transitions at the individual student level
and we are interested in global trends (which are similar
across both institutions).
For question 1a we see that on the pretest, most

responses were either not coded (18=66), coded as classical
visual (36=66), or coded as complex mathematical (18=66).
On the midtest after completing the activity, 81% of the
responses are coded in the visual dimension (54=66) with
45 of these (representing 83% of the visual responses) in
the quantum visual category. Only nine students (of the
initial 36) continued to describe the time evolution in a
classical visual way. Remember that it is not necessary for
students to use both mathematical and visual reasoning, as
a complete answer can consist of one or the other.
Using the language of Wittmann and Black [30], we see

that the quantum visual category is an attractor, that is,
many more responses end there rather than start there.
Additionally, we see that there is a void (empty categories)
in the real math row, which tells us that students very rarely
use real math to describe the time evolution. We do not see
any true starbursts where many responses originate but
they all move to different directions. The movement in our
diagrams is very clearly towards the quantum visual region.

2. Evolution of a superposition state

Question 2a on the pre- and midtest asked students to
describe the time evolution of a superposition of energy
eigenstates (see Fig. 3). Table III shows the fraction of
responses using visual reasoning and the correctness of this
reasoning.
The consistency plot for question 2a (see Fig. 6) shows

similar trends to question 1a in that the quantum visual
category is an attractor. On this question we see some
circulation pairs where there are some regions that give and
take in relatively the same amounts (see the pair of three
and two student lines between the not coded and classical
visual as an example). However, we do not see this in large
numbers. Here we find 39=66 responses in the quantum
visual category on the midtest and 16 students describing

FIG. 5. Response transitions from pre- and midtest question 1a.
Circles are pretest codes and triangles are the midtest codes for
mathematical and visual. Note that the data presented are for the
type of reasoning used, not correctness. Response patterns with
less than three students are in gray to help illustrate overall trends.

TABLE III. The percentage of pre- and midtest responses to
question 2a that were coded as visual, and the percentage of
correct reasoning of these responses.

2a pre 2a mid

StA Visual reasoning 45.3� 6.8 86.8� 4.7
% correct 4.2� 2.7 60.9� 6.7
Not coded 43.4� 6.8 13.2� 4.7

CSUF Visual reasoning 15.4� 10.0 69.2� 12.8
% correct 0 44.4� 13.8
Not coded 48.5� 6.2 16.7� 4.6
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the evolution in a classical visual way. There are a small
number of transitions along the mathematical (vertical)
axis, however, the bulk of the transitions occur along the
visual (horizontal) dimension.

3. Probability density for a superposition state

Question 2b asks about the evolution of the probability
density of the superposition state (see Fig. 3). Because the
state is a superposition of two (nondegenerate) energy
eigenstates, each component eigenstate rotates in the
complex plane at a different angular frequency. This results
in a time dependence of the probability density when the
(modulus of the) wave function is squared.
Table IV shows the fraction of responses using visual

reasoning and the correctness of this reasoning. Note that
for this question, approximately three-quarters of the
responses were not able to be coded along either dimension
on the pretest, and this went down to approximately 40%
on the midtest. The consistency plot in Fig. 7 shows the
transitions in more detail. The quantum visual category is
still a large attractor with 32 responses on the midtest, up
from 5 on the pretest.

4. Discussion of all three questions

In response to RQ1, on all three questions both the
fraction of responses using visual reasoning and the
correctness of reasoning increased from the pre- to the
midtest. The low pretest results indicate that very few
students had correct visual understanding prior to the
activity. Of the 396 responses in total across the pre-
and midtests (six questions each with 66 responses), 30
responses were coded as both mathematical and visual (and
these were included in the visual count in Tables II–IV).
On all questions we found that the percentage of

responses that were not coded decreased, indicating that
students were better able to justify their answers after
completing the activity. The percentage of responses using
only mathematical reasoning was low throughout (≤ 12%
for each question), presumably as the wording of the pre-
and midtest questions cued visual reasoning. For all three
questions combined, the percentage of correct reasoning for
responses coded as only mathematical was 73.9% on the
pretest (23 responses) and 71.4% on the midtest (7
responses).
Comparing the results from Secs. III A 1 and III A 2

shows that the time development of the wave function for
the superposition state (question 2a) is more difficult for
students than the energy eigenstate (question 1a). This is
not surprising given that the superposition state is more
complicated in terms of the visual features. About a quarter
of the visual answers coded as incorrect for midtest
question 2a had productive elements in terms of describing
the two eigenfunctions moving in and out of phase or
rotating in the complex plane, but then also included
incorrect ideas such as the wave function sloshing back
and forth in the real plane (which is a correct description of
the probability density jψðxÞj2) or the given function ψðxÞ
rotating in the complex plane. Examples are student
responses “The peaks of the wave function will oscillate

FIG. 6. Response transitions from pre- and midtest question 2a. FIG. 7. Response transitions from pre- and midtest question 2b.

TABLE IV. The percentage of pre- and midtest responses to
question 2b that were coded as visual, and the percentage of
correct reasoning of these responses.

2b pre 2b mid

StA Visual reasoning 17.0� 5.2 54.7� 6.8
% correct 44.4� 6.8 82.8� 5.2
Not coded 73.6� 6.1 39.6� 6.7

CSUF Visual reasoning 7.7� 7.4 46.2� 13.8
% correct 0 83.3� 10.3
Not coded 76.9� 11.7 38.5� 13.5
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from left to right as the individual wave functions rotate in
the Re-Im [real-imaginary] plane” and “max [maximum]
and min [minimum] will rotate around the x-axis.” Some
answers coded as incorrect for question 2a only had an
incomplete description and did not specify the rotation
in the complex plane, such as “it rotates around the
imaginary axis.”

B. Post-test results

This section considers part b of the end-of-course post-
test shown in Fig. 4. In contrast to the pre- and midtests, the
question text did not cue a particular type of reasoning. This
question expects students to explain how the time depend-
ence of the probability density comes about and thus
focuses on student understanding of both the time evolution
of a superposition state and the corresponding probability
density.
As described in Sec. II C, all students who took part in

the simulation-tutorial activity were included in the analy-
sis (N ¼ 86), including students who were not present for
the pre- or midtest. Table V shows the percentage of
students in the post-test with the correct answer and with
the correct answer and reasoning for both institutions,
separated into the type of reasoning used.
Eight responses used both mathematical and visual

reasoning and are included in Table V as visual reasoning.
Six of these eight responses used predominantly visual
reasoning, with the mathematical reasoning only consisting
of the different complex exponentials in the formula for the
wave function ψðx; tÞ. Thirteen students used neither
mathematical nor visual reasoning and are not included
in the table; of these thirteen students, only five (38.5%)
had the correct answer, and none had correct reasoning.
In response to RQ2, Table V indicates that students using

visual reasoning were more correct in their responses than
students using only mathematical reasoning. We carried out
multidimensional chi-square tests to assess differences in the

correctness of the responses depending on the type of
reasoning. Students using neither mathematical nor visual
reasoning were not included in these tests. Given that there
were no significant differences between the two institutions
the data fromboth institutionswere combined for these tests.
Because of cell frequencies having less than five counts, an
exact significance test was selected for Pearson’s chi-square
for the correctness of the answer. There was a significant
relationship between type of reasoning and correctness of
answer: χ2ð2; N ¼ 73Þ ¼ 10.019, exact p ¼ 0.002, two
tailed. The relationship between type of reasoning and
correctness of both answer and reasoning was not signifi-
cant: χ2ð2; N ¼ 73Þ ¼ 2.943, p ¼ 0.086, two tailed.
Students using mathematical reasoning to determine the

probability density jψðx; tÞj2 sometimes applied incorrect
manipulation of formulas, for example, neglecting the cross
terms when squaring the expression for

ψðx; tÞ ¼ 1
ffiffiffi
2

p ½ψ1ðxÞe−iE1t=ℏ þ iψ2ðxÞe−iE2t=ℏ�;

claiming that these cross terms give zero due to orthogon-
ality, or including only one of the two cross terms. Incorrect
visual answers included only describing the motion of the
probability density without explaining how it arises,
assuming wave packet dispersion or assuming that only
the real component of the wave function determines the
probability density. However, the majority of students using
visual reasoning gave detailed and correct answers such as
“Yes, the probability density jψ j2 depends on time because
it is a superposition state of ψ1 and ψ2. These energy
eigenstates rotate [in] the complex plane with different
angular velocities. This means that at different times ψ1

and ψ2 will be added up differently for jψ j2 because they
are at different positions in the complex plane.” It is worth
noting that all of the responses with correct visual reason-
ing gave a detailed account of how the time dependence of
the probability density arises from the time dependence of
the wave function.
The post-test results are encouraging in that a third of the

students used visual reasoning to explain their answer when
they were not cued to do so and under exam conditions.
All of these students arrived at the correct answer, although
some had incorrect reasoning. Of the students with correct
visual reasoning, most made a very clear connection
between the evolution of thewave function and the evolution
of the probability density. This indicates that visual reason-
ing can be advantageous over purely mathematical reason-
ing, that can lead to incorrect algorithmic manipulation
without sense making of the physical situation.

C. Student interviews

As described in Sec. II C, individual student interviews
were conducted to gain qualitative insight into students’
transitions of visual reasoning and to identify particular

TABLE V. The percentage of post-test responses to part b with
the correct answer (“A”, top row) and both correct answer and
reasoning (“Aþ R”, middle row), separated into students who
used mathematical reasoning or visual reasoning. Responses that
included both mathematical and visual reasoning are included as
visual reasoning in the table. The bottom row shows the number
of responses used to determine each of the percentages. The
responses are shown for StA (N ¼ 64) and CSUF (N ¼ 22)
students separately. Errors are the standard errors of a proportion.

Mathematical reasoning Visual reasoning

StA A correct 68.8� 7.8 100
Aþ R correct 57.1� 8.4 70.8� 9.3
Responses N ¼ 35 N ¼ 24

CSUF A correct 87.5� 11.7 100
Aþ R correct 37.5� 17.1 83.3� 15.2
Responses N ¼ 8 N ¼ 6
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difficulties in achieving correct visual understanding in
order to underpin RQ1. The interviews indicated that
developing a correct visual model of time dependence is
challenging and requires careful scaffolding of the simu-
lation-tutorial due to a persistent incorrect model of the
time dependence being a classical standing wave.
In six of the thirteen interviews, students initially stated

that the time dependence of an energy eigenfunction looked
graphically just like a classical standing wave, i.e., a string
clamped at two ends oscillating at the first harmonic,
second harmonic, etc. Five of these students made sketches
depicting the standing wave at different times, including
times where the amplitude of the wave function is zero
everywhere, i.e., the graph is a horizontal line. Thus, these
students did not consider the complex nature of the wave
function or the normalization of the probability density.
In what follows, we illustrate this difficulty with excerpts

from one of these interviews. Question 1 of the activity asks
students to sketch the ground state energy eigenfunction
ψ1ðxÞ. The student sketches the correct shape and states

“…it would be a single bump. And then at L=2 because
that’s one [the amplitude is maximal, here assumed to
be one], that’s the fundamental frequency. I kind of look
at a string that’s clamped at both ends. That’s the first
harmonic.”

The student thus states that the shape of the ground state
eigenfunction consists of a single peak with maximal
amplitude at L=2, and relates this shape to the first
harmonic of a classical standing wave.
Question 4a of the activity asks students to plot the time

evolution of ψ1ðx ¼ L=2; tÞ on a given graph of a complex
plane by plotting the values of e−iE1t=ℏ at special times. The
student is able to determine the time evolution as a circle in
the complex plane.
Question 4b asks for a sketch of the ground state at the

time where E1t=ℏ ¼ 3π=2. The student’s response to this
question is inconsistent with question 4a and reverts back to
a classical standing wave: the student initially makes four
sketches of a standing wave, showing a positive peak, a
horizontal line, a negative peak and a horizontal line again,
and explains their sketches by stating “So there I’m
thinking of a string again.” Asking the student to elaborate
on why they hold this idea, they respond

“…because of the eigenvalues for the energy: they kind
of represent harmonics numbers and as they go up you
get more. You fit more half wavelengths into your wave
function if it’s bound for example in the infinite square
well … because that corresponds so heavily with the
harmonics. … The shape, because it changes as the
energy, as the eigenvalues go up and it seems to change
in basically exactly the same way as the harmonics
change. The only difference is that you get the temporal
solution tied onto the end of it.”

Thus, the fact that the shapes of the infinite square well
energy eigenfunctions are identical to the harmonics of a
classical standing wave seems to indicate to the student that
the time dependence will also be the same as for a classical
standing wave.
Later in the activity, this same student comes to realize

that the time dependence is a rotation rather than a classical
standing wave, and is able to recognize how their original
idea of a classical standing wave would violate the
normalization of the wave function:

“So it is rotating in the complex plane as opposed to
bouncing up and down like a string so it’s going round.
… So it has moved from þ1 [the student assumes the
amplitude is one] to the imaginary plane and it’s going
to move down to -1 and then move up to minus i and then
just keep on rotating. So it doesn’t flatten out at any
point, because if it did flatten out the probability of
finding it anywhere in that place would have been zero
because you would square it, magnitude squared and
that would give you nothing so your particle would have
to disappear and appear like over and over, which
would make absolutely no sense.”

The student recognizes that if the wave function “flat-
tened out” to just a horizontal line, then the corresponding
probability density would be zero everywhere and thus
there would be no quantum particle in the infinite well.
These excerpts are illustrative of the transition from

classical to quantum visual understanding of time evolution
as seen in the consistency plots. They show this transition
over the course of the activity from one of the interviews.
More generally, we found an initial disconnect in the
interviews between the mathematical representation of time
evolution (which none of the students had difficulty with)
and the visual representation. None of the students with an
incorrect classical visual model initially noticed the incon-
sistency between their correct mathematical expression and
their incorrect classical visual representation. We also
found that the classical standing wave model was persistent
(and sometimes coexisted with the quantum visual model)
unless explicitly addressed via an activity question that asks
students to agree or disagree with this model using the
visualizations in the simulation.

IV. DISCUSSION AND IMPLICATIONS FOR
INSTRUCTION

A. Discussion of findings

The results in Sec. III show that the revised simulation-
tutorial helped students develop a correct visual model of
the time dependence of the wave function and the prob-
ability density for energy eigenfunctions and superposition
states. The study found increases in the use and efficacy of
visual reasoning on the test questions at both institutions,
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which differ in terms of educational systems, curriculum,
and student populations.
The consistency plots in Sec. III A show a striking

difference in frequencies of responses coded as real math
(which can be interpreted in our context as “classical”math)
and as classical visual.While classical visual responses such
as describing a classical traveling or standing wave, a real
wave packet sloshing back and forth, or a decaying wave
function are common in the pretest (making up 45.5% of all
responses and 90.9% of visual responses for questions 1a
and 2a combined), only two responses used real math in
these same pretest questions. This may indicate that most
students know the correct mathematical form of the time
dependence, but that this knowledge is only algorithmic
without an underlying conceptual understanding.
Transitions between pre- and midtests were assessed by

developing a framework that characterizes student reason-
ing in terms of real or complex mathematical and classical
or quantum visual responses. This framework captures
student difficulties with time evolution seen in previous
studies. The framework may be useful to characterize
student responses for a range of quantum mechanics
contexts. For example, in the context of Stern-Gerlach
experiments [31], student responses sketching or describ-
ing a continuous sweep of deflections or incorrect zero
deflection on the output screen would be classical visual
responses, and probability calculations using the square of
an inner product rather than the modulus square would be
real mathematical responses. In the context of measurement
[32], responses that the energy distribution remains
unchanged after measurement due to energy conservation
or that diffusion leads to an equally weighted superposition
over all states with time would be classical visual
responses, and responses that indicate only the real part
of the coefficients in an energy superposition state deter-
mine the probability of an energy measurement outcome
would be real mathematical responses. However, the
framework is limited in that it may not be useful for topics
where working with fully real quantities is sufficient (e.g.,
when only the spatial part of the energy eigenfunction is
needed such as finding perturbed eigenfunctions using
time-independent perturbation theory), or for topics focus-
ing on the formalism of quantum mechanics.
While the current simulation-tutorial activity transitions

students towards quantum visual reasoning, this work has a
number of limitations. The simulation-tutorial only has a
limited focus on translating between different representa-
tions and developing representational fluency (the ability to
construct and interpret representations and translate
between them accurately and quickly [33]). In the post-
test only 8 of 86 students (9.3%) used both mathematical
and visual reasoning in their responses. Considering the
midtest, most students used only mathematical or only
visual reasoning to answer all questions on a given test. The
fraction of students using only mathematical or only visual

reasoning to answer all three questions (1a, 2a and 2b) was
84.9% for StA and 76.9% for CSUF, respectively. The
results cited here only pertain to the students included in the
study. Studies with students from further institutions would
be needed to generalize the outcomes.
Therewas a shift in some of the incorrect ideas seen on the

midtest away from the classical visual. Most of the common
incorrect ideas from the pretest showed up in very small
numbers on the midtest. For example, only 3.0% of students
incorrectly stated that the time dependence is the same as a
classical standing wave, 6.1% of students stated the wave
function dies away with time, and 6.1% of students stated
that the wave function has no time dependence (for both
institutions combined). However, there was the appearance
of a new quantum visual incorrect idea in response to
question 2a on the midtest where students stated that the
entire curve of the initial wave function would rotate around
the x axis in the complex plane. This response was only
given by 7.6% of students, but it was not a response we had
seen previously nor that we had found in the literature.
Intriguingly, it is the visual equivalent of the common
mathematical difficulty seen in multiple studies [3,4,7] of
ascribing a single phase to the entire wave function. Future
versions of the activity will take this idea into account.

B. Implications for instruction: Standing wave analogy

This study has implications for quantum mechanics
instruction. The results indicate that using the analogy of
a standing wave on a string in relation to the infinite square
well energy eigenfunctions may promote incorrect classical
ideas about the time dependence of the energy eigenfunc-
tions. This analogy is used in an introductory quantum
phenomena course at the University of St Andrews
(roughly equivalent to an algebra-based introductory phys-
ics course in the USA), that was taken as a first course in
quantum physics by the majority of St Andrews students in
this study. The course uses the analogy of a standing wave
on a stretched string in terms of the relation between the de
Broglie wavelength and the length of the well: L ¼ nλ=2,
as well as ψ being zero outside of the well. This analogy is
not used at CSUF and there were very few cases of students
describing the energy eigenfunction as a standing wave.
The emphasis of the analogy in the StA quantum pheno-

mena course is on the shape of the energy eigenfunctions
being identical to those of a standing wave on a stretched
string. The time evolution of the wave function is not
discussed, as complex numbers are not introduced. How-
ever, our study indicates that students may be extending the
analogy to assume that the time-evolution of the quantum
state and the classical standing wave are identical. In the
structure mapping model of analogy [34,35], analogy is
viewed as a mapping from a base domain to a target domain.
A difficulty in this process for the learner is knowing which
attributes and relations map and which do not. It may be that
salient features of the representation are preferentially
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mapped. In terms of the classical standing wave analogy, it
may be that the time dependence becomes part of the
mapping given the widely used images and animations of
standing wave patterns that are well known to students.
An alternative explanation could be that students rec-

ognize that both the real and imaginary components of the
wave function form standing waves that are out of phase, or
that students recognize that there exists the imaginary
component but then assume that the imaginary part of
the wave function is irrelevant. However, the interviews and
written responses in this study indicate that this explanation
is unlikely, as the majority of responses describing standing
waves did not make any reference to the imaginary part of
the wave function in their visual reasoning.
The standing wave analogy may also promote an

incorrect objectlike or trajectorylike interpretation of the
wave function (termed by Elby as “What-you-see-is-what-
you-get” [36]), given that it describes the physical location
of the stretched string. While not seen in our study, the
standing wave analogy may also promote incorrect ideas of
the amplitude of the wave function being related to the
energy of a quantum particle, as energy is related to
amplitude for a classical standing wave but not for a
quantum-mechanical wave function [37,38].
In summary, the findings of this study indicate that the

analogy of a standing wave on a stretched string is best
avoided or used with care in a way that makes its limitations
clear to promote a correct understanding of quantum-
mechanical time dependence.

C. Conclusions and future work

In summary, the combined simulation-tutorial helped
students develop a correct visual understanding of the time

evolution of the wave function and how this leads to the
time evolution of the probability density. The post-test
results indicate that visual reasoning is correlated with
improved student performance on questions relating to time
development.
Future versions of the activity will take the remaining

incorrect ideas seen with low frequencies in the mid- and
post-tests into account, including quantum visual incorrect
ideas that had not previously been reported in the literature,
such as the superposition state curve rotating in the
complex plane without changing its shape.
In addition, a greater focus on representational fluency in

the simulation-tutorial activity may help to further reduce
incorrect ideas and promote expertlike reasoning and will
be a focus of future development. The coding framework
developed here is useful for such future work, given that it
captures inconsistencies between mathematical and visual
reasoning for responses coded as both.
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