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Learning introductory quantum physics is
challenging,[1] in part due to the different paradigms in
classical mechanics and quantum physics.[2] Classical
mechanics is deterministic in that the equations of mo-
tion and the initial conditions fully determine a particle’s
trajectory. Quantum physics is an inherently probabilis-
tic theory in that only probabilities for measurement
outcomes can be determined. Prior to studying quantum
physics, students will typically have little experience
with probabilistic analyses of physical systems, and thus
probability may be a conceptual hurdle for introductory
quantum physics students.[3, 4] This article describes
two interactive simulations developed as part of the
QuVis Quantum Mechanics Visualization Project[5–7]
that aim to bridge the gap between classical mechanics
and quantum physics using probabilistic analyses of
classical systems. The simulations illustrate how a
probability density can be obtained for two classical
systems well known to students. The key learning
goals of the simulations are to introduce students to
probability densities and to help students distinguish
between a probability and a probability density. The
simulations build on previous work by Bao and Redish[3]
who developed an activity that used pseudo-random
video frames of a glider in harmonic motion to derive
a classical probability density for this system, and a
University of Washington quantum mechanics tutorial
focusing on probability and probability density for a
classical system.[8] Interactive simulations allow students
to easily carry out experiments and change variables that
would be difficult to do with real equipment, and help
students connect multiple representations by showing
explicitly how they are linked.[9] The simulations de-
scribed here only require basic knowledge of algebra and
classical mechanics. They run on touchscreen devices as
well as desktop computers, and can be run in a standard
web browser from the QuVis website or downloaded for
offline use.

Probability densities of continuous variables like posi-
tion are of fundamental importance in quantum physics.
For a particle confined to one dimension, the position
probability density gives the probability per unit length
of finding the particle as a function of position. The prob-
ability of finding the particle over an interval is the area
under the probability density curve for the given interval.
As the total probability of finding the particle anywhere
must equal one, the probability density is normalized.
Probabilities have no unit, must be numbers between zero
and one, and the total probability must equal one. The
position probability density in one dimension has unit
m−1 (“probability per unit length”) and can in general

have a numerical value that is greater than one. While
the probability of finding the particle at a single point
is zero, the probability density at a point will in general
have a non-zero value. The two simulations described
aim to help students distinguish between a probability
and a position probability density using familiar classical
systems.

I. OVERVIEW OF THE SIMULATIONS

Fig. 1 shows a screenshot of the Probabilistic analysis
of a mass-spring system simulation.[10] The simulation
shows a mass on a spring in harmonic motion and a pho-
tographer who takes snapshots of the block’s position at
random times. Once a photo is taken, the position of
the block is determined. This increments the histogram
below the mass-spring system, which shows the number
of snapshots binned into position intervals (see Fig. 1).
If a large number of snapshots are taken, one finds more
snapshots close to the turning points where the block
is moving more slowly, and fewer snapshots around the
equilibrium position x = 0 where the block is moving
most quickly. The buttons in the lower right panel allow
students to turn the snapshot number histogram into a
probability density histogram. The observed probability
density P for each bin in this histogram is determined as
the number of snapshots NBin in that bin divided by the
total number of snapshots NTot and the length ∆x of the
bin. Thus, the observed probability density

P =
NBin

NTot∆x
. (1)

The number of snapshots in each bin and thus the ob-
served probability density histogram is subject to sta-
tistical fluctuations which on average decrease with an
increasing number of snapshots. Students can also dis-
play the theoretical probability density histogram in the
limit that the number of snapshots tends to infinity, de-
crease the bin width, and display the theoretical proba-
bility density curve in the limit that the bin size tends
to zero. The simulation includes short texts in the top
right panel explaining the displayed quantities which can
be shown by pressing the “?” buttons (see Fig. 1).

The “Challenges” tab in the simulation allows stu-
dents to solve multiple challenges aligned with the learn-
ing goals. For example, students need to determine the
probability of finding the block in a certain interval from
a given snapshot number histogram or a given probabil-
ity density histogram. Students thus need to determine
the area under the probability density histogram over the
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FIG. 1. A screenshot of the Probabilistic analysis of a mass-spring system simulation showing a snapshot number histogram
obtained from taking photos of the block’s position at random times.

given interval. Challenges can be solved in any order, in-
clude a score counter, and give feedback on submitted
answers.

Fig. 2 shows part of the Probabilistic analysis of a block
on a track simulation.[11] In this simulation, students can
adjust the widths and heights of two horizontal regions of
a frictionless track while a block with 30J of mechanical
energy moves back and forth along the track. A pho-
tographer takes photos of the block’s position at random
times. The resulting snapshot number histogram can be
converted into a probability density histogram. Students
can also overlay the theoretical probability density curve,
shown in Fig. 2 as the green and purple lines in the mid-
dle panel. As the block’s speed is constant in each of the
two regions, the theoretical probability density has the
same value at all points in a given region.

Since the mechanical energy is constant, the higher the
track in a given region, the slower the speed of the block
and thus the greater the probability density in this re-
gion. The theoretical probability density for each region
can be calculated as the probability of finding the block
in this region divided by the length of the region. The
theoretical probability Prob1 of finding the block in the
left region of the track is given by

Prob1 =
t1
T/2

, (2)

where t1 = L1/v1 is the time needed for the block to

traverse the left region, L1 is the length of this region,
v1 is the speed of the block in this region and T/2 =
L1/v1 + L2/v2 is the time needed for a full traversal of
the track, which equals half the period T . Thus, the
theoretical probability density in the left region is given
by

P1 =
Prob1
L1

=
2t1
TL1

=
2

Tv1
, (3)

and is inversely proportional to the block’s speed in this
region. The speeds of the block in the different regions
are given in the simulation.

The top panel in Fig. 2 shows the theoretical proba-
bility density for each of the two regions as well as the
probability of the block being found in each of the two
regions. The probability of finding the block in each re-
gion is given by the product of the probability density
value and the length of the region. As shown in Fig. 2,
it is thus possible that even though the probability den-
sity value is smaller in the left region, the probability of
finding the block is greater in the left region due to its
greater length.

The “Challenges” tab in the simulation allows students
to solve multiple challenges, e.g. to set up a track for
which the probability of finding the block is as small as
possible in the left region, or for a given track to deter-
mine the theoretical probability density in a region from
the block’s speeds in the two regions and the heights of
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FIG. 2. Part of a screenshot of the Probabilistic analysis of a
block on a track simulation, showing the track (bottom), the
experimentally determined and theoretical probability density
histogram (middle), as well as the theoretical probability and
probability density values for both sides of the track (top).

the regions.

II. IMPLEMENTATION

We have used the simulations shown in Figs. 1 and
2 since 2014 and 2016 respectively in introductory and
intermediate-level quantum courses at the University
of St Andrews, with several hundred students in total
(N=350). The simulations are embedded into activities
(see Appendix for download instructions) which cover a
variety of tasks ranging from qualitative descriptions to
collecting data and simple calculations.[12]

The activity for the Probabilistic analysis of a mass-
spring system simulation includes the following tasks:

• Determine how the speed of the oscillator is qual-
itatively related to the number of snapshots in a
bin.

• Show how the snapshot number histogram is trans-
lated into a probability density histogram using an
example from your collected data.

• Explain the difference between the observed and
the theoretical probability density histogram.

• Describe the limiting procedure to find the theoret-
ical probability density curve.

Preliminary evidence supporting the usefulness of
these simulations for learning has also been obtained.
The fraction of students correctly answering each of
the Probabilistic analysis of a mass-spring system activ-
ity questions for 2014 (N=67), 2015 (N=60) and 2016
(N=70) was determined. The majority of responses
(70%-90% depending on question) were fully correct.
Course assessment in 2016 following the Probabilistic
analysis of a block on a track simulation included a ques-
tion with a similar setup to the simulation and the follow-
ing statements: “If the probability in one region is larger
than in another region then the probability density in the
first region must also be larger.”, and “The probability
densities for the two regions have to add up to one, just
like the probabilities, because the block has to be some-
where.”. More than 85% of students (N=88) disagreed
with these statements and were able to explain why each
of the statements is incorrect (the size of the region re-
lates the probability density and the probability, and it is
the area under the probability density curve which must
be one respectively).

We also use these simulations to compare and contrast
them with the case of a one-dimensional quantum parti-
cle in a box, a system commonly discussed in introduc-
tory quantum physics courses. The classical probability
densities in these simulations arise due to a lack of knowl-
edge of the initial conditions. We assume that we do not
know the position of the block, but can make probabilis-
tic statements about the block’s position based on its
speed in different regions. This is a case of classical ig-
norance: while the block has a definite position at each
point in time, we do not know this position. In contrast,
in the standard Copenhagen interpretation of quantum
physics, the quantum particle in a box is not moving back
and forth in the box; it does not have a definite position
at each point in time. Thus, the probability density of
the quantum particle describes the quantum uncertainty
of the particle’s position, which does not have a definite
value prior to measurement.

In conclusion, the two interactive simulations shown in
Figs. 1 and 2 with accompanying activities are useful in
bridging classical and quantum physics through a proba-
bilistic analysis of classical systems familiar to students.
The simulations introduce students to probability densi-
ties and help students distinguish between probabilities
and probability densities. The QuVis website[7] includes
interactive simulations on further topics suitable for in-
troductory quantum physics, e.g. on the infinite square
well, multiple particles in an infinite square well, and in-
terferometer experiments with single photons.

III. APPENDIX

Simulations, activities, and solutions can be down-
loaded from the QuVis website.[7] Simulations can be
run from the website or downloaded using the download
symbol appearing below the simulation thumbnail. The
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pdf icons below the simulation thumbnails link to the
activities, while editable solutions (password protected)
are accessed via the lock symbols. Instructors interested
in obtaining the password for the activity solutions or
helping with evaluation studies are requested to email
quvismail@st-andrews.ac.uk.
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