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Abstract 

Explosions in homogeneous reactive mixtures have been widely studied both experimentally and 

numerically. However, in accident scenarios, mixtures are usually inhomogeneous due to the 

localized nature of most fuel releases, buoyancy effects and the finite time between release and 

ignition. It is imperative to determine whether mixture inhomogeneity can increase the explosion 

hazard beyond what is known for homogeneous mixtures. The present numerical investigation aims 

to study flame acceleration and transition to detonation in homogeneous and inhomogeneous 

hydrogen-air mixtures with two different average hydrogen concentrations in a horizontal 

rectangular channel. A density-based solver was implemented within the OpenFOAM CFD 

toolbox. The Harten–Lax–van Leer–Contact (HLLC) scheme was used for accurate shock 

capturing. A high-resolution grid is provided by using adaptive mesh refinement, which leads to 

30 grid points per half reaction length (HRL). In agreement with previous experimental results, it 

is found that transverse concentration gradients can either strengthen or weaken flame acceleration, 

depending on average hydrogen concentration and channel obstruction. Comparing experiments 

and simulations, the paper analyses flame speed and pressure histories, identifies locations of 

detonation onset, and interprets the effects of concentration gradients. 

Keywords: DDT, Detonation, Explosions, Hydrogen, Inhomogeneous mixture 
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1. Introduction 

While the vast majority of explosions in industry are deflagrations, a worst-case scenario can 

emerge if transition from deflagration to detonation occurs during an explosion. Deflagrations 

require congestion and confinement to generate significant overpressures; by contrast, detonations 

inherently produce high overpressure and have the potential to propagate across large unobstructed 

and unconfined distances without substantial weakening. 

Thomas [3] gave a comprehensive discussion on various mechanisms of deflagration-to-detonation 

transition (DDT) and differentiated the terminology between global DDT and local DDT. Global 

DDT includes both flame acceleration (FA) and the onset of detonation. Local DDT refers to the 

actual onset of detonation at the location where the combustion mechanism changes from diffusion-

controlled to auto-ignition controlled. In this work, the term DDT is used in the global sense and 

includes both FA and the onset of detonation. 

While DDT in homogeneous mixtures has been widely investigated [4], fewer studies have 

addressed the effect of spatial gradients in mixture composition. Kuznetsov et al. [5] conducted 

large-scale experiments of FA and DDT in an obstructed semi-confined flat layer of hydrogen-air 

mixture with transverse (vertical) concentration gradients. The authors found that DDT propensity 

is increased by mixture inhomogeneity for globally lean mixtures, and may be correlated with the 

maximum local hydrogen concentration within the layer. Vollmer et al. [6] and Boeck et al. [7-9] 

reported a strong effect of concentration gradients on FA and DDT in an entirely closed channel at 

laboratory-scale. Boeck et al. observed that in a channel with obstructions, concentration gradients 

promoted FA and DDT only in globally lean mixtures with an average hydrogen concentration 
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below about 24%; for richer mixtures, the presence of gradients lead to weaker FA and delayed 

DDT. The authors proposed that a mixture-averaged flame speed parameter (SL) may predict this 

effect, taking into account the integral rate of combustion and expansion which drives flame 

acceleration in a closed channel. By contrast, for unobstructed channels, gradients always led to 

stronger FA and earlier DDT, independent of the average hydrogen concentration; this was 

attributed to flame surface area enlargement driven by concentration gradients. 

The present work aims at extending the existing physical understanding of deflagration-to-

detonation transition in hydrogen-air mixtures with transverse concentration gradients in closed 

channels. Since extensive knowledge on these processes has been built up over decades for 

homogeneous mixtures, the approach is to identify similarities and differences caused by 

concentration gradients compared to homogenous mixtures with equal average hydrogen 

concentration. This work numerically investigates four cases that were studied experimentally by 

Boeck et al. [2]. Experimental data is used for model validation, and novel insight is gained from 

the simulations that could not be obtained from the experiments: continuous histories of pressure 

and flame location and speed are produced, as well as fields of density and pressure which reveal 

the mechanisms of flame acceleration and onset of detonation.  

2. The experiments considered 

DDT experiments of Boeck et al. [2] are considered which compare homogeneous and 

inhomogeneous hydrogen-air mixtures in terms of flame speed and overpressure. The experiments 

were conducted in a horizontal channel with and without internal obstructions. As shown in Fig. 1, 

the channel measured 5.4 m (L) × 0.3 m (W) × 0.06 m (H).  One obstructed configuration is 
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considered: seven flat-plate obstacles with a blockage ratio of 60% (BR60) were placed in a region 

0.25 m < x < 2.05 m from the ignition location at the left end of the channel with an obstacle spacing 

of 0.3 m while the remaining channel length was unobstructed. In addition, an unobstructed 

configuration (BR00) is considered where all obstacles were removed. Concentration gradients as 

shown in Figure 2 were generated by gas injection through the channel top plate, formation of a 

hydrogen layer near the channel ceiling, and subsequent diffusion. The gradients were oriented 

vertically, thus perpendicular to the main direction of flame propagation. The mixture was ignited 

by a weak electric spark centered at x = 0 m. Measurements were conducted for flame-tip velocity 

using photodiodes, obtaining local flame speed by linear interpolation between arrival times, and 

overpressure using piezo-electric pressure transduces at the channel ceiling. See [2] for further 

details on the experiment and diagnostics. 

 

 
Fig. 1. Geometry of the explosion channel, obstructed configuration 

(BR60). Dimensions in (mm). 
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Fig. 2. Hydrogen concentration profiles across the channel height for different average hydrogen 

concentrations [2]. 

As summarized in Table 1, a total of eight conditions were simulated for different hydrogen 

concentrations with both homogeneous and inhomogeneous mixtures with and without 

obstructions. 

Table 1 

Test conditions numerically simulated 

Hydrogen concentration 

(%) 

Homogeneous Inhomogeneous 

Unobstructed Obstructed Unobstructed Obstructed 

20  ✓  ✓ 

25 ✓  ✓  

30  ✓  ✓ 

35 ✓  ✓  
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3. Numerical methodology 

 A density-based solver, VCEFoam, which has been assembled by the authors [10-12] within 

the framework of the open source CFD code OpenFOAM [13], is used with the Monotone 

Integrated Large Eddy Simulation (MILES) approach. Within VCEFoam, compressible Navier–

Stokes equations with a hydrogen-air reaction mechanism which contains 9 species and 21 detailed 

reactions [14] are solved. The HLLC (Harten-Lax-van Leer-Contact) [15] for shock capturing and 

the Runge-Kutta scheme [16] for the time discrete schemes, which includes the dual time scheme 

and the physical time step. The solver and numerical schemes have been previously tested by 

solving the Sod’s shock tube problem [1, 10]. 

4. Numerical setup 

 The two-dimensional computational domain was constructed identical to the experiment 

geometry. Initial pressure and temperature were 101.33 kPa and 293 K, respectively. Weak ignition 

was modeled by imposing a temperature of 2300 K at initial pressure in a patch of cells with a 

radius of 10 mm around the ignition point (x = 0 m, y = 0.03 m).  

In the present simulations, the half-reaction length (HRL) varies across the domain due to 

inhomogeneous mixture composition, between 30 and 50 grid points per HRL (1/HRL). This 

resolution exceeds the resolution of previous 2-D DDT simulations in the literature [17-20]. Sharpe 

[18] observed that the results for grid resolutions above 20 1/HRL are sufficient. The present 

geometry is significantly larger than widely simulated mm-scale channels and a resolution higher 

than what was used here would exceed presently available computational resources. Mesh 

sensitivity and validation can be found in previous publications [10-11]. In this study, adaptive 
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mesh refinement was used to provide a minimum cell size of 10 µm, equivalent to a minimum of 

30 grid points per half-reaction length. 

5. Results  

This section presents results from simulations of cases defined in Table 1. Simulated flame speed 

and pressure data are compared against experiments available online [2], and OH-PLIF images [2] 

are used to substantiate numerical results in terms of flame topology. Additional flow field 

parameters from the numerical simulations are analysed to extend the interpretation of 

concentration gradient effects on FA and DDT. 

5.1 Obstructed channel 

The following sections present results in the obstructed channel for mixtures with average 

hydrogen concentrations of 30% and 20%. 

5.1.1 30% hydrogen concentration (near-stoichiometric mixture) 

 Figure 3 shows flame speed data from experiments and simulations with 30% hydrogen-air 

mixtures in the obstructed channel (BR60). In addition to photodiodes, pressure transducers were 

used for experimental velocity measurements in the detonation regime. For both homogeneous and 

inhomogeneous mixtures, the flame tip velocity initially rises monotonically in the obstructed part 

of the channel (0 m < x < 2.05 m) and reaches values around 2000 m/s, indicating transition to 

detonation within the obstructed channel section. It is difficult to determine the precise location of 

the onset of detonation solely from flame speed measurements due to insufficient resolution. Initial 

FA is slightly stronger in the homogeneous mixture compared to the inhomogeneous mixture. The 

simulated flame tip velocities are in reasonably good agreement with the measurements.  
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Pressure histories from experiments and simulations at are compared in Fig. 4 at a transducer 

location of x = 1.4 m. The pressure history for the homogeneous mixture shows a sharp increase in 

pressure at t = 12.4 ms to its peak value; by contrast, the inhomogeneous mixture shows an initial 

pressure increase at t = 11.4 ms to about 14 bar, a subsequent short decrease, and a secondary sharp 

increase to its peak value of about 30 bar at t = 11.5 ms. The step-wise increase in pressure and 

high secondary peak pressure observed for the inhomogeneous mixture suggests that the onset of 

detonation occurred in the immediate vicinity of the pressure transducer, at x = 1.4 m. By contrast, 

the single pressure increase observed for the homogeneous mixture suggests that the onset of 

detonation has occurred earlier, upstream of the transducer, and a detonation wave passes the 

transducer. These initial observations are supported in the following by analysis of numerical 

schlieren sequences. 

Figure 5 shows numerical schlieren sequences for both homogeneous (left) and inhomogeneous 

mixture (right). It can be seen, that the concentration gradients affect the flame shape and also the 

formation of leading shock waves and vortices downstream of the obstacles. In both cases, local 

DDT is initiated by precursor-shock reflection at the upstream faces of an obstacle, leading to local 

explosions behind the reflected shock wave and an over-driven detonation wave which eventually 

decays toward the Chapman-Jouguet state. For the homogeneous mixture, secondary hot-spots are 

generated downstream of the obstacle which accomplishes the onset near the centre axis of the 

channel. At 12.39 ms, precursor shock waves are seen in front of the flame. The following frames 

show strong acceleration of the flame towards the precursor shocks and, eventually, the formation 

of a detonation wave. For the inhomogeneous mixture, local explosions at the upstream obstacle 

face directly cause the onset of detonation at 11.485 ms. In the homogeneous mixture onset occurs 
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between obstacles, at x = 1.3 m, whereas in the inhomogeneous mixture, the onset takes place 

slightly later, at the obstacle at x = 1.45 m, which is consistent with initial observations from 

experimental and simulated flame speed and pressure histories.  

 

Fig. 3. Comparison of the flame tip velocities between homogeneous and inhomogeneous 

mixtures with 30% hydrogen concentration (BR60). Experimental data (markers) and numerical 

predictions (lines). 
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Fig. 4. Comparison of overpressure at x = 1.4 m between the homogeneous and inhomogeneous 

mixtures at 30% hydrogen concentration (BR60). 

 

 

Fig. 5. Numerical schlieren fields for 30% hydrogen concentration (BR60). (Left: homogeneous 

mixture; right: inhomogeneous mixture). 

 

Figure 5 demonstrates that, even for symmetric initial conditions in the case of a homogeneous 

mixture, an asymmetric flow field and flame shape can develop. Such asymmetry is commonly 

observed in simulations of flame propagation in tubes with hydrogen-air mixtures due to (1) high 

sensitivity of flame instabilities to perturbations at the level of numerical accuracy; and (2) the 

effect of gravity which is included in the present simulations. 
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In reacting flows with strong density and pressure gradients, including deflagrations, detonation 

waves, and DDT processes, hydrodynamic instabilities are one of the key factors in enhancing 

turbulence through shock-flame interaction [12]. The main hydrodynamic instabilities in these 

phenomena are; Kelvin Helmholtz (KH) instability, which manifests itself as small-scale vortices 

on the flame shear layer, and Richmeyer Meshkov (RM) instability appear as mushroom-shaped 

forward/backward jets with steep gradients in pressure and density [12]. These hydrodynamic 

instabilities are identified in Fig. 6. 

 

 

Fig. 6. Small-scale features: temperature (top) and pressure (bottom) fields for the 

inhomogeneous mixture with 30% average hydrogen concentration. The obstacle in the field of 

view (FOV) is located at x = 1.45 m; time = 11.53 ms. 
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5.1.2 20% hydrogen concentration (lean mixture) 

 Figure 7 shows flame speed data from experiments and simulations with 20% hydrogen-air 

mixtures in the obstructed channel. In contrast to the 30% case, FA is stronger in the obstructed 

channel section for the inhomogeneous mixture compared to a homogeneous mixture. The 

difference is small but discernible in the obstructed channel section both in experiments and 

simulations. In the unobstructed section, the flame speed plateaus in the homogeneous mixture 

whereas it keeps increasing in the inhomogeneous case. This steady acceleration in the 

unobstructed channel section in the inhomogeneous mixture was attributed to continuous 

enlargement of the flame surface area due to the concentration gradient [7,8] and is captured in the 

numerical simulation. This effect will be revisited in more detail later for the entirely unobstructed 

channel. A sudden increase in flame tip velocity at x ≈ 4 m indicates transition to detonation in the 

simulation. This was not visible as clearly in the measurements, where a more gradual increase in 

flame speed to 1700 m/s was measured towards the channel end. The large spacing of photodiodes 

used for velocity measurements in this region could not resolve sharp changes in the flame speed 

so that it is not entirely clear whether DDT occurred in the experiment. 

Figure 8 presents pressure histories from experiments and simulations taken at x = 4.1 m. Pressure 

traces show the substantial difference in explosion violence between the homogeneous and 

inhomogeneous mixture, with peak pressure for the inhomogeneous mixture more than twice as 

high as for the homogeneous mixture. It can be seen, that the overpressure in the inhomogeneous 

case exceeds Chapman-Jouguet (CJ) pressure, which is around 14 bar, which suggests that 

transition to detonation has occurred upstream of the pressure measurement location. The second 

pressure increase at t = 21 ms represents the reflected wave from the channel end plate. By contrast, 



14 

 

comparably low overpressure in case of the homogeneous mixture with a sharp initial pressure 

increase suggests that a fast deflagration passes the pressure transducer in this case. 

Figure 9 presents numerical pressure and schlieren fields of detonation onset in the inhomogeneous 

mixture. The leading flame tip is initially located near the channel top wall, and the flame is 

elongated due to the concentration gradient providing highest local mixture reactivity near the 

channel ceiling. A local explosion is observed near the leading flame tip, initiating the onset of 

detonation and driving a shock wave diagonally forward toward the channel bottom. This process 

is in qualitative agreement with the experimental observations in unobstructed channels and 

mixtures with concentration gradients [2,7]. 

 
Fig. 7.  Comparison of the flame tip velocities between homogeneous and inhomogeneous 

mixtures with 20% hydrogen concentration (BR60). Experimental data (markers) and numerical 

predictions (lines). 
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Fig. 8. Comparison of overpressure at x = 4.1 m between the homogeneous (top) and 

inhomogeneous (bottom) mixtures at 20% hydrogen concentration (BR60). 
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Fig. 9. Pressure (left) and numerical schlieren (right) fields of detonation onset in the 

inhomogeneous 20% hydrogen-air mixture. The field-of-view extends from x = 3.75 m to x = 

4.16 m. 

 

5.2 Unobstructed channel 

The following sections present results on FA and DDT in the unobstructed channel for mixtures 

with average hydrogen concentrations of 25% and 35%. 

5.2.1 Mixture of 25% hydrogen concentration (lean mixture) 

Figure 10 shows flame speed data from experiments and simulations with 25% hydrogen-air 

mixtures in the unobstructed channel. FA in the inhomogeneous mixture is significantly stronger 

than FA in the homogeneous mixture and allows for DDT near the end of the channel. By contrast, 

FA is weak in the homogeneous mixture, resulting in a slow deflagration throughout the entire 

channel. Both cases are well reproduced by the numerical simulations. 
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Fig. 10. Comparison of the flame tip velocities between homogeneous and inhomogeneous 

mixtures with 25% hydrogen concentration (BR00). Experimental data (markers) and numerical 

predictions (lines). 

 

Figure 11 presents pressure histories from experiments and simulations taken at x = 5 m. These 

pressure histories illustrate the substantial difference in explosion violence between the 

homogeneous and inhomogeneous mixture: pressure remains low for the homogeneous mixture, 

and there are no signatures of strong shock waves, indicative of a slow deflagration; the 

inhomogeneous mixture shows detonation at the pressure transducer location. 
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Fig. 11. Comparison of overpressure at x = 5 m between the homogeneous (top) and 

inhomogeneous (bottom) mixtures at 25% hydrogen concentration (BR00). 
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Fig. 12.  Sequence of flame propagation, inhomogeneous 25% hydrogen-air (BR00) (Left: OH-

PLIF measurements; Right: the predicted temperature fields). 

 

Figure 12 shows a qualitative comparison between experimental OH-PLIF images of the 

leading flame edge [2] and numerical temperature fields at x = 2.05 m. The leading edge of the 

flame propagates along the channel top wall, in the region of maximum mixture reactivity, and the 

overall surface area of the flame is significantly enlarged compared to a symmetric convex flame 

which occurs in homogeneous mixtures, leading to increased global heat release rate and faster 

flame acceleration. This geometric effect supports strong FA in mixtures with concentration 
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gradients in the unobstructed channel. Wrinkling of the flame front facing the channel floor is 

observed; it is unclear whether this is due to intrinsic flame instabilities or flow instability related 

to the gradients in the horizontal flow velocity ahead of the flame. 

 

5.2.2 Mixture of 35 % hydrogen concentration (rich mixture) 

Figure 13 shows flame speed data from experiments and simulations with 35% hydrogen-air 

mixtures in the unobstructed channel. FA is slightly stronger in the inhomogeneous mixture than 

in the homogeneous mixture; DDT occurs in both mixtures near the end of the channel. Overall, 

the difference in explosion violence between homogeneous and inhomogeneous mixture is less 

significant than previously observed for the 25% hydrogen-air mixture, where the concentration 

gradient caused a difference in combustion regime. 

Figure 14 presents pressure histories from experiments and simulations taken at x = 5 m. The high 

peak pressure for the homogeneous mixture, on the order of 100 bar, indicates that onset of 

detonation occurred near the transducer location. Such high peak pressures are related to the over-

driven detonation state immediately after detonation onset, and to multi-dimensional reflections at 

the transducer location. Onset occurred earlier (x < 5 m) in the inhomogeneous mixture, resulting 

in a detonation propagating past the transducer with a peak pressure closer to CJ pressure. 
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Fig. 13. Comparison of the flame tip velocities between homogeneous and inhomogeneous 

mixtures with 35% hydrogen concentration (BR00). Experimental data (markers) and numerical 

predictions (lines). 
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Fig. 14. Comparison of overpressure at x = 5 m between the homogeneous (top) and 

inhomogeneous (bottom) mixtures at 35% hydrogen concentration (BR00). 

 

6. Discussion 

Results from numerical simulations presented in Sec. 5 demonstrate that transverse 

gradients in hydrogen concentration can either promote or weaken FA and lead to earlier or delayed 

transition to detonation. Previous experiments have revealed this effect of gradients on FA clearly; 

however, the effect on run-up distances to DDT was captured less accurately: for precise 

experimental measurements of DDT location, optical high-speed video is needed, but optical access 

to the channel was limited to an optical segment providing access to one location at a time. Onset 

of detonation can be identified in the numerical simulations based on a sudden rise in peak pressure 

within the domain. 

Table 2 summarizes DDT locations for the simulated obstructed channel configurations. For a 

hydrogen concentration of 20%, DDT occurred only for the inhomogeneous mixture. Flame speeds 

were similar for homogeneous and inhomogeneous mixtures at the end of the obstructed section, x 
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= 2.05 m, and a strong effect of mixture inhomogeneity occurred after flame transition into the 

unobstructed channel section. The obstacles effectively reduced flame elongation within the 

obstructed channel region, and elongation took place subsequently in the unobstructed region. For 

a hydrogen concentration of 30%, mixture inhomogeneity led to weaker FA and slightly delayed 

DDT within the obstructed channel section. 

Table 2  

Summary of transition to detonation in the obstructed channel 

Hydrogen 

concentration 

Homogeneous Inhomogeneous 

20 %  No DDT 
(maximum flame speed = 950 m/s) 

DDT at x = 3.9 m  

30 %  DDT at x = 1.3 m  DDT at x = 1.45 m 

Table 3 provides a summary of phenomena observed in the numerical simulations and experiments 

in the unobstructed channel configuration. It can be seen that, in the unobstructed channel with the 

homogeneous mixtures, DDT only occurs in highly reactive mixtures with high burning velocity 

such as 35% hydrogen. However, for inhomogeneous mixtures, the transition to detonation occurs 

even in a globally lean mixture such as 25%.  

FA becomes stronger with increasing hydrogen concentration, both for homogeneous and 

inhomogeneous mixtures; however, the distance to DDT in inhomogeneous mixtures increases 

with increasing average hydrogen concentration. Figure 12 reveals that transition to detonation 

occurs at a higher flame speed in the inhomogeneous mixture compared to the homogeneous 

mixture. 
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Table 3  

Summary of transition to detonation in the unobstructed channel 

Hydrogen 

concentration 

Homogeneous Inhomogeneous 

20 %  No DDT 
(maximum flame speed = 45 m/s) 

No DDT  
(maximum flame speed = 200 m/s) 

25 %  No DDT  
(maximum flame speed = 150 m/s) 

DDT at x = 4.55 m 

30 %  No DDT 
(maximum flame speed = 1000 m/s) 

DDT at x = 4.6 m 

35 %  DDT at x = 4.9 m DDT at x = 4.78 m 

 

Boeck et al. [7,8] proposed an integral reactivity parameter (𝑆𝐿𝜎)𝑒𝑓𝑓 for non-uniform mixtures 

which captures the effect of concentration gradient of FA: 

(𝑆𝐿𝜎)𝑒𝑓𝑓 = ∫ [𝑆𝐿(𝑦)𝜎(𝑦)]𝑑𝑦
𝐻

0
. (1) 

For average hydrogen concentrations below about 24%, mixtures with concentration gradients 

exhibit larger (𝑆𝐿𝜎)𝑒𝑓𝑓 than homogeneous mixtures with equal average hydrogen concentration. 

For average hydrogen concentrations greater than 24%, homogeneous mixtures yield higher 

(𝑆𝐿𝜎)𝑒𝑓𝑓, independent of the shape of the concentration gradient profile, as long as the profile is 

symmetric to the centre axis of the channel. Since flame elongation effects are largely suppressed 

in the obstructed channel, s. Fig. 5, the effect of effective flame speed (𝑆𝐿𝜎)𝑒𝑓𝑓 dominates the 

overall effect of concentration gradients on FA. By contrast, for the unobstructed channel, gradients 

cause stronger FA for all average hydrogen concentrations investigated, due to strong flame 

elongation and increase in flame surface area, s. Fig. 8. For further details on the concept of integral 

reactivity of inhomogeneous mixtures see [7,8].  
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7. Conclusions 

 Numerical studies were conducted to investigate flame acceleration and transition to detonation 

in both homogeneous and inhomogeneous hydrogen-air mixtures in obstructed and unobstructed 

channel configurations. A density-based solver within the OpenFOAM toolbox was used. The 

numerical predictions were compared against previous experiments and numerically predicted 

flame tip velocities, pressure histories and locations of detonation onset were in reasonably good 

agreement with the measurements. 

This study substantiates previous experimental observations that transverse concentration gradients 

in channels can lead to either stronger or weaker FA and higher or lower propensity for DDT, 

depending on the geometrical channel configuration and mixture composition, in comparison with 

homogeneous mixtures with the same average hydrogen concentration. For the obstructed channel, 

gradients promoted FA only in mixtures with average hydrogen concentrations below about 24% 

for the conditions studied in this work, whereas gradients in richer mixtures weakened FA. By 

contrast, gradients promoted FA irrespective of average hydrogen concentration in the unobstructed 

channel. Flames in mixtures with concentration gradients are observed to elongate while 

propagating through the unobstructed channel, which enlarges the flame surface area, increases the 

integral rate of combustion, and promotes FA. 

It is critical to realize that unobstructed geometries, which are typically associated with a low 

potential for strong FA and long run-up distances to DDT due to the lack of congestion, can indeed 

exhibit strong FA and early DDT when concentration gradients are present. Further work is needed 

to establish quantitative guidance for explosion protection in the presence of concentration 

gradients, and to integrate the integral reactivity approach into predictive models for FA and DDT 



26 

 

for closed channels and pipes. Numerical simulations can substantially support the interpretation 

of experiments and provide detailed insight into local phenomena. 

Acknowledgement 

 

Reza Khodadadi Azadboni is funded by through the Innovative Doctoral Programme (IDP) 

“Numerical characterization and simulation of the complex physics underpinning the Safe 

Handling of Liquefied Natural Gas (SafeLNG)” (2014-2017) funded by the Marie Curie Action of 

the 7th Framework Programme of the European Union. 

References 

[1] Sod GA. A survey of several finite difference methods for systems of nonlinear hyperbolic 

conservation laws. J Comput Phys 1978; 27:1–31. 

 

[2] Boeck LR, Katzy P, Hasslberger J, Kink A, Sattelmayer T. The "GraVent DDT Database". 

Shock Waves 2016; 26:683–685. 

 

[3] Thomas GO. Some observations on the initiation and onset of detonation. Philos Trans A 

Math Phys Eng Sci 2012; 370:715–39.  

 

[4] Ciccarelli G, Dorofeev SB. Flame acceleration and transition to detonation in ducts. Prog 

Energy Combust Sci 2008; 34:499-550. 

 

[5] Kuznetsov MS, Grune J, Friedrich A, Sempert K, Breitung W, Jordan T. Hydrogen-air 

deflagrations and detonations in a semi-confined flat layer. In Sixth International Seminar on Fire 

and Explosion Hazards 2011; p. 978–981. 

 

[6] Vollmer KG, Ettner F, Sattelmayer T. Deflagration-to-detonation transition in hydrogen-air 

mixtures with a concentration gradient. Combust Sci Technol 2012; 184:1903–1915. 

 

[7] Boeck LR. Deflagration-to-detonation transition and detonation propagation in H2-air 

mixtures with transverse concentration gradients. Ph.D. Thesis, Technical University of Munich, 

2015. 

 

[8] Boeck LR, Hasslberger J, Sattelmayer T. Flame acceleration in hydrogen/air mixtures with 

concentration gradients. Combust Sci Technol 2014; 186:1650–1661. 

 



27 

 

[9] Boeck LR, Berger FM, Hasslberger J, Sattelmayer T. Detonation propagation in hydrogen–air 

mixtures with transverse concentration gradients. Shock Waves 2015; 26:181–192. 

 

[10] Khodadadi Azadboni R, Wen JX, Heidari A, Muppala SPR, Wang CJ. Numerical modeling 

of deflagration to detonation transition in inhomogeneous hydrogen/air mixtures. J Loss Prev 

Process Ind 2017; 49:722-730. 

 

[11] Khodadadi Azadboni R, Wen JX, Heidari A. In: Nóbrega JM, Jasak H, editors. 

OpenFOAM®: Selected papers of the 11th Workshop, Springer, 2017. ISBN: 9783319608457. 

 

[12] Khodadadi Azadboni R, Heidari A, Wen JX.  A computational fluid dynamic investigation 

of inhomogeneous hydrogen flame acceleration and transition to detonation. Flow Turbul 

Combust 2018; 1–13. 

 

[13] OpenFOAM Ltd., OpenFOAM, Available from: http://www.openfoam.com/ 

 

[14] O'Conaire M, Curran H, Simmie J, Pitz W, Westbrook C. A comprehensive modeling study 

of hydrogen oxidation. Int J Chem Kinet 2004; 36:603-622. 

 

[15] Batten P, Leschziner MA, Goldberg UC. Average-state Jacobians and implicit methods for 

compressible viscous and turbulent flows. J Comput Phys 1997; 137:38–78. 

 

[16] Borm O, Jemcov A, Kau HP. Density based Navier Stokes solver for transonic flows. In: 

Proceedings of 6th OpenFOAM workshop, Penn State University, USA, 2011. 

 

[17] Gamezo VN, Ogawa T., Oran ES.  Numerical simulations of flame propagation and DDT in 

obstructed channels filled with hydrogen-air mixture. Proc Combust Inst 2007;31: 2463-2471. 

 

[18] Ogawa T, Oran ES, Gamezo VN. Numerical study on flame acceleration and DDT in an 

inclined array of cylinders using an AMR technique. Computers Fluids 2013; 85:63-70. 

 

[19] G. J. Sharpe. Transverse waves in numerical simulations of cellular detonations. J Fluid 

Mech 2001;447: 31–51. 

 

[20] Emami S, Mazaheri K, Shamooni A, Mahmoudi Y. LES of flame acceleration and DDT in 

hydrogen-air mixture using artificially thickened flame approach and detailed chemical kinetics. J 

Hydrogen Energy 2015; 40:7395-7408. 

 

http://www.openfoam.com/

