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Abstract —Achieving precise state estimation is needed for the 

unmanned aerial vehicle to perform a successful flight with a high 

degree of stability. Nonetheless, obtaining accurate state 

estimation is considered challenging due to the inaccuracies 

associated with the measurements of the onboard commercial-off-

the-shelf (COTS) Inertial Measurement Unit (IMU). The immense 

vibration of the vehicle’s rotors makes these measurements suffer 

from issues like; large drifts, biases and immense unpredictable 

noise sequences. These issues cannot be significantly tackled using 

classical estimators and an accurate sensor fusion technique needs 

to be developed. In this paper, a deep learning framework is 

developed to enhance the performance of the state estimator. A 

deep neural network (DNN) is trained using a deep-learning-based 

technique to identify the associated measurement noise models and 

filter them out. Dropout technique is adopted for training the DNN 

to avoid overfitting and reduce the complexity of nets 

computations. Compared to the classical estimation results, the 

proposed deep learning technique demonstrates capabilities in 

identifying the measurement’s noise characteristics. As an 

example, an enhancement in estimating the attitude states at near 

hover is proved using this approach. Furthermore, an actual hover 

flight was performed to validate the proposed estimation 

enhancement method.      

Index Terms— Multirotor UAV; Attitude Determniation; 

Deep Learning; Dropout method. 

I. INTRODUCTION 

OTARY UAVs (RUAVs), such as single and multirotor 

vehicles, are yet preferred in missions that require precise 

execution [1, 2, 3]. In addition to their small size and 

lightweight, their remarkable capabilities in performing 

hovering, vertical takeoff and landing make them unique 

candidates in many civil and military applications. RUAVs are  
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recently employed in several sets of applications, such as power 

line inspection [4], trajectory planning [5] and gripping and 

robotics applications [6]. Several problems are associated with 

the attitude determination and control have been extensively 

studied to enhance the robustness of the autonomous 

performance of the vehicle [7, 8].          

Precise attitude estimation is essential for the RUAVs to 

boost their agility and maneuverability [9]. However, 

developing an accurate attitude estimation technique for such 

highly nonlinear dynamic systems is not a straightforward 

problem due to some shortcomings related to the measurements 

of the onboard low cost sensors [10, 11]. These off-the-shelf 

measurements suffer from the large amount of biases, drifts and 

immense noise sequences. These problems have been recently 

tackled by developing sensor fusion techniques, such as the 

Kalman-based state estimation techniques [12, 13]. Integrating 

such techniques with highly nonlinear systems, such as 

RUAVs, to improve their attitude estimation and control has 

gained a great attention in the last few years [12]. For instance, 

the conventional linear Kalman filter is used to resolve the 

problem of the attitude estimation of the Maxi Joker flaybarless 

helicopter [14]. The nonlinear extended Kalman filter (EKF) 

and the Unscented Kalman (UKF) filters have been also utilized 

to deal with nonlinearities of the RUAV’s systems [15, 16, 17].  

Incorporating intelligent algorithms with the sensor fusion 

architectures has been extensively studied in the last few years 

[18]. Several recent published works have proposed intelligent 

sensor fusion approaches using fuzzy logic, neural networks 

and genetic algorithms [19, 20]. A fuzzy logic is integrated with 

the conventional Kalman to reduce the measurement noise and 

enhance the position estimation of capacitive touch panels [21]. 

Similarly, an adaptive multi-sensor fusion technique has been 

implemented to perform a precision landing for the RUAV 

system [22]. The fuzzy rules have been implemented to adapt 

the variances of the measurement covariance matrix R of the 

Kalman filter. Furthermore, the hybrid intelligent systems have 

been used for state estimation approaches. A hybrid Neuro-

Fuzzy system has been used to enhance the Kalman attitude 

estimation [23]. Using neural networks, an intelligent sensor 

fusion technique has been design to enhance attitude estimation 

of the low cost GPS/INS navigation system [24]. The 

aforementioned intelligent sensor fusion approaches prove their 

superiority in rejecting the measurement noise and providing 

more accurate estimates. 

Deep learning (DL) is defined as a machine learning 

technique that employs the multi-layer neural network which 

consists of two or more hidden layers [25]. DL algorithms with 

multi-layer neural networks have exhibited an excellent 
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performance in applications related to, image processing and 

features detection, objects identifications and speech 

transcription [26, 27, 28, 29]. In addition, DL has demonstrated 

its applicability to control dynamic systems. The DL methods 

have been employed to replace the classical PID controller of 

the used control scheme [30]. In UAV’s applications, DL has 

been implemented to perform several missions. Table 1 

presents a list of example application of using DL in UAV 

navigational missions [31].  From table 1, it can be seen that DL 

has been utilized in UAV’s for trajectory planning, motion 

control and for image processing applications.  

The published work in the field of DL in UAVs has focused 

on developing DL framework for certain UAV application 

rather than enhancing the performance of the UAV 

maneuverability itself. However, implementing the DL 

approaches to improve the robustness of the UAV control and 

state estimation techniques has started receiving an attention. 

For instance, DL has been introduced to resolve the problem 

vision-based attitude rate estimation using Convolutional 

Neural Networks (CNN) [32]. The solution is computationally 

heavy and might cause delays as images from 3 cameras have 

to be processed to estimate the UAV’s orientation. Moreover, it 

burdens the UAV by the extra weight of vision sensors. 

Exploring the connections between deep learning 

architectures and recurrent state estimation has been getting an 

attention from researchers in the field. For instance, deep 

Kalman filters have proved its capability in state estimation and 

noise rejection [33]. In this paper, a novel DL technique has 

been developed to identify the associated measurement’s noise 

characteristics which results in state estimation enhancement. A 

DNN has been trained using the recent innovative DL method 

which is called dropout [34]. This learning method has been 

used to resolve the overfitting problem of the back propagation 

while training the network. In addition, dropout learning 

method has demonstrated an ability in providing robust 

representations for the model uncertainty and the abstractions 

in data [35]. Exploiting these advantages to enhance the 

estimator’s capability of rejecting the immense noise is the 

main focus of this research. Dropout learning method has been 

implemented to train the 3-hidden-layers DNN to identify the 

unfiltered Gaussian noise associated with Kalman attitude 

estimates. After identifying the noise models, the DNN has 

 Table 1: Deep learning techniques for UAV applications 

References UAV 

Platform 

DL Approach Purpose Sensing 

Technique 

Method 

[45]  

Generic 

 

DNN 

 

Navigation for 

Power line 

inspection. 

 

Images 

 

- DL for processing images that 

captured by the onboard optical 

sensor. 

[46]  

Generic 

 

RNN 

 

Trajectory planning 

 

UAV’s 

location  

 

- RNN for designing a handover 

algorithm for UAV network. 

[47] Bebop 2 

micro 

RUAV 

 

DNN 

 

Motion control 

 

Images 

 

- DNN for UAV control based on 

human gestures. 

[48] RUAV  

 

 

 

 

 

 

 

 

CNN 

 

 

 

 

 

 

 

 

 

 

Object recognition 

and feature 

extraction. 

 

 

 

 

 

 

 

 

 

UAV 

Imagery 

- Processing optical images of the 

scene. 

[49]  

RUAV 

- Processing Tobacco planting 

images taken by UAV onboard 

camera . 

[50] Generic - Detecting target vehicles and 

monitoring the traffic flow. 

[51] RUAV - Estimating the center of the gates 

during drone racing. 

[52] Generic - Multi-labeling UAV Imagery. 

[53] Generic - Detecting cars for UAV Imagery. 

[54] Generic - Detecting moving targets for 

UAV. 

[55] Generic - Extracting parking lots from the 

images taken by UAV optical. 

sensors. 

[56] 3DR Iris+    - Determining MAV’s orientation 

and lateral offset for trail 

following. 

 



been trained to reject these noise sequences and provides values 

close to the real ones. 

The proposed method is also practical in real applications 

where inexpensive sensors are used for precision missions. To 

the extent of the authors’ knowledge and after surveying the 

literature, incorporating the Dropout techniques to enhance the 

classical estimation technique has not been introduced before.  

The rest of the paper is structured as follows Section II 

describes the multirotor attitude. Section III presents the 

proposed DLNN attitude estimation framework. In Section IV, 

the simulation results of the attitude states are introduced. 

Section V presents the results of the experimental validation of 

the proposed approach. Finally, Section VI concludes the paper. 

II. BACKGROUND 

In this section, we review the formulation of the multirotor 

attitude dynamics and the main structure of the multilayer Feed-

Forward Neural Network (FFNN).  

A. Multirotor Attitude Dynamics 

Multirotor platforms are preferred in several civil and 

military application s. It is sustained in the air by the lift of the 

rotors. The dynamics of the vehicle orientation can be described 

by the Euler angles (𝚯 = [𝜙 𝜃 𝜓]𝑇) which represent the 

orientation of the B-frame with respect to the E-frame.   

 

 
Figure 1: Multirotor system 

The rotation matrix is used to map the orientation of a vector 

from the B-frame to E-frame [36].  

where s𝑥= sin(𝑥) and 𝑐𝑥 = cos(𝑥). 

The below transfer matrix is also used to map the relation 

between the angular velocity (𝝎 = [𝜙̇ 𝜃̇ 𝜓̇]𝑇) in the B-

frame and Euler angles rates (𝚯̇) in the E-frame. 

𝜣̇ = 𝑻𝝎 
(2) 

𝑻 = [ 

1 𝑠𝜙𝑡𝜃    𝑐𝜙𝑡𝜃 

0 𝑐𝜙  −𝑠𝜙

0 𝑠𝜙/𝑐𝜃 𝑐𝜙/𝑐𝜃

 ] (3) 

where 𝑡𝑥= 𝑡𝑎𝑛(𝑥).  

The state space dynamic model of the multirotor system can 

be derived using the Newton’s second law [37]. The 6 DOF 

dynamic model including the attitude dynamics of the used 

multirotor system can be described as follow:  
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where 𝑥̈, 𝑦̈ and 𝑧̈ define the linear acceleration in x, y and z axes 

in E-frame, respectively;  𝑚 denotes the vehicle’s mass, and 𝑔 

is the gravitational acceleration acting along the z-axis with 

respect to E-frame. 𝜙̈, 𝜃̈ and 𝜓̈ define the angular acceleration 

around x, y and z axes, respectively, with respect to E-frame. 𝐽𝑃 

denotes the total rotational moment of inertia around the 

propeller axis. 𝐼𝑥, 𝐼𝑦 and 𝐼𝑧 are the moments of inertia along the 

x, y, and z axes. The inputs of the multirotor system 𝜏𝜙, 𝜏𝜃 and 

𝜏𝜓 represent the input roll torque, pitch torque and yaw torque, 

respectively.  

B. Multilayer Feed-Forward Neural Networks 

A multilayer (FFNN) has been selected in this study to 

enhance the conventional state estimation technique. As shown 

in Fig. 2, a FFNN is comprised of one input layer, one or more 

hidden layers and one output layer.  

 
Figure 2: Structure of Multilayer Neural Network 

 𝑅 = [

𝑐𝜃𝑐𝜓 −𝑐𝜙𝑠𝜓 + 𝑐𝜓𝑠𝜙𝑠𝜃     𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃 

𝑐𝜃𝑠𝜓     𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜃𝑠𝜓 −𝑐𝜓𝑠𝜙 + 𝑐𝜙𝑠𝜃𝑠𝜓

−𝑠𝜃 𝑐𝜙𝑠𝜃 𝑐𝜙𝑐𝜃

] 
(1) 



Each element of the input vector 𝐼 = [𝑖1, 𝑖2, … , 𝑖𝑘  ] is 

weighted by its corresponding weight of the weight matrix W 

and the neuron bias b is summed to produce the net input n.  

𝑛 =  ∑𝑤𝑗𝑖𝑗 + 𝑏

𝑘

𝑗=1

 
(5) 

Then an activation function f is used to generate the neuron 

output o.  

𝑜 =  𝑓(𝑛) 
(6) 

In this study, a hyperbolic tangent activation function is used. 

It can be expressed as follows:  

𝑓(𝑥) =  
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
 

(7) 

 

III. INTEGRATED DEEP LEARNING STATE ESTIMATION 

TECHNIQUE 

The UAV’s dynamic states, namely velocity, position and 

attitude are measured using the onboard low cost IMU unit. Due 

to the immense inherent vibration of the multirotor’s actuators, 

the measured orientation of the vehicle is noisy and inaccurate 

to a few degrees [38]. To better reject such noise sequences and 

enhance the performance of the attitude estimator, a precise 

integrated DL-based attitude estimation technique is developed. 

This section investigates the problem of precision attitude 

estimation using DNNs which are trained via modern 

techniques of deep learning.  

A. Kalman state estimation cycle  

 The Kalman linear estimation technique is recognized as an 

optimal minimum mean square error (MMSE) state estimation 

method [39, 40]. Such method estimates the unknown states 

based on recursive calculations lead to update the state estimate 

and its covariance as follows.  

 

𝑥̂𝑘+1|𝐾+1 = 𝑥̂𝑘+1|𝐾 + 𝑊𝐾+1𝑣𝐾+1 (8) 

𝑃𝐾+1|𝐾+1 = 𝑃𝐾+1|𝑘 − 𝑊𝐾+1𝑆𝐾+1𝑊𝐾+1
𝑇  (9) 

where 𝑥̂𝑘+1|𝐾+1 and 𝑃𝐾+1|𝐾+1 denote the a posteriori state 

estimate and its covariance, respectively; 𝑥̂𝐾+1|𝐾 and 𝑃𝐾+1|𝐾 

represent the a priori state estimate and its covariance, 

respectively; the measurment innovation and the innovation 

covariance are denoted by 𝑣𝐾+1 and 𝑆𝐾+1, respectively; and  

𝑊𝐾+1 denotes the optimal Kalman gain. 

The linearized dynamic model of the quadrotor was used for 

the kalman filter design. The lineraization process was 

performed at hover point where the attitude states are around 

0°. The linearzation of the quadrotor dynamics is thoroughly 

illustrated in [22]. The process and measurement noise 

covarince matrices of the filter are described in equations (10-

11). Selecting proper values for the diagonal variances is linked 

with accuracy of the dynamic model and measurments of the 

onborad sensors. In this study, the variances are tuned to ensure 

the convergence of the filter.  
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B. Deep learning-based training for FFNN 

Despite the effectiveness of the conventional Kalman 

estimation technique, a standalone Kalman state estimation 

does not show a great ability in eliminating the inherent noise 

sequences of the IMU measurements. This results in unstable 

hovering and more power consumed by actuators to 

compensate for these movements. To resolve this problem, DL 

techniques can be developed to identify representative models 

of the measurement noises and hence these noise levels can be 

further filtered out using robust learning method.  

In this section, a Deep Neural Network (DNN) is designed 

and trained using modern DLNN technique to improve the 

quality of the Kalman attitude estimates. A dynamic model of 

the multirotor system is used to obtain the real dynamic 

response of the attitude states 𝑋𝑟𝑒𝑎𝑙  .These values along with 

the Kalman state estimates are considered for the DNN state 

learning scheme. As shown in Fig. 3, the DNN uses the Kalman 

states estimates as inputs and the simulated real values are the 

target outputs while training the neural network. U describes the 

control input vector to the multirotor vehicle.   

  

Controlled 

Multirotor 

Vehicle

 

U

Xmeasured

Deep Neural Network 

Kalman Estimates

IMU 

KF

 

Xreal

 

Inertial Measurement Unit 

Kalman Filter  

Xestimated

 
Figure 3: Simulation scheme of the proposed DNN state 

estimation. 

 

The training process of the DNN is considered sensitive, and 

utilizing the conventional back propagation algorithm may 



yield an inaccurate performance of the neural network [25]. The 

back propagation algorithm experiences some problems 

associated with the training process of the DNN like 

computational load and overfitting, which can be tackled using 

some innovative training techniques of deep learning. For 

instance, the overfitting problem is resolved using Dropout 

learning method, which considers randomly selected nodes for 

training rather than the whole network as shown in Fig. 4 [41, 

34]. 
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Figure 4: Dropout training technique 

 

Dropout technique has proved its applicability for Bayesian 

Gaussian approximation purposes [35]. Considering the fact 

that Kalman filter is a special example of the Gaussian 

Processes (GPs) and deals with the Gaussian measurement’s 

noise [42], the Dropout learning method has been implemented 

to have the 3-hidden-layers NN accurately trained to identify 

the unfiltered Gaussian noise associated with Kalman attitude 

estimates. A 20% of each hidden layer’s nodes were randomly 

dropped out from training. In doing so, the overfitting problem 

is resolved, the computational complexity has been reduced and 

the remaining white noise has been accurately modelled and 

filtered out. In this study, a dropout-based Levenberg-

Marquardt training technique is developed.   

The Levenberg-Marquardt technique is used where FFNN 

weights are tuned based on the minimization of the Mean 

Square Error (MSE) [43]: 

 𝑀𝑆𝐸 =
1

2n
∑(𝑌𝑘 − 𝑌𝑘̂)

2

𝑛

𝑘=1

=
1

2n
∑ 𝑒2

𝑛

𝑘=1

 (12) 

 

where 𝑌𝑘 and 𝑌𝑘̂ are the target and evaluated network outputs; 

respectively, n represents the number of training data points. 

The Hessian matrix is approximated as: 

 𝐻 = J(∇MSE) = 𝐽𝑇𝐽 (13) 

where J is the Jacobian matrix which comprises the error 

derivatives with respect to the tuned weights and biases.  The 

gradient function can be computed as:  

 𝛿 =
𝜕𝑀𝑆𝐸

𝜕𝑤
= 𝐽𝑇𝑒 (14) 

The network weights parameters are optimized via the 

backward path of the network, as:  

 𝑤𝑘+1 = 𝑤𝑘 + ∆𝑤 (15) 

 ∆𝑤 = −(𝐻 + 𝜇𝐼)−1𝛿 (16) 

where 𝜇 defines the adaptive learning rate and I defines the 

identity matrix. 

Fig. 5 illustrates the proposed incorporation of the dropout 

learning technique in the Levenberg-Marquardt training cycle. 

As seen, two sets of network inputs are considered in learning 

process. 𝑆1 represents the noisy Kalman attitude estimates 

while 𝑆2 represents the real attitude states. The training of the 

DNN is performed in two stages; the first one uses the forward 

path to compute the errors and the second stage updates the 

network weights using the gradient function 
𝜕𝑀𝑆𝐸

𝜕𝑤
. The dropout 

technique is implemented to exclude a ratio of the layer nodes 

randomly from the training cycle.  

Fig. 6 illustrates the performance of the validation of the 

obtained DNN model. The model results shows an excellent 

agreement with the training data, validation data, testing data 

and the whole data.     

 

 
Figure 5: Dropout method for attitude state estimation 



 
Figure 6: The Mean Squared Error (MSE) for the DNN model. 

Fig. 7 illustrates the regression performances of the FFNN 

mode. From the regression plots, it can be concluded that the 

FFNN model has exhibited an excellent matching with the 

training data, validation data, testing data and the whole data.     

 
Figure 7: Regression performances for the obtained FFNN 

model. 

IV. SIMULATION 

This section illustrates the simulation environment which 

was used to demonstrate the performance of the proposed 

attitude estimation technique. The IMU attitude measurements 

were modelled by adding white noise sequences to the real 

states acquired from the multirotor model. The proposed DLNN 

sensor fusion technique takes the attitude real states of the 

multirotor and the estimates states as targets and inputs, 

respectively, to train the DNN. The Dropout method was used 

to ensure no overfitting and make the training less 

computational as random nodes are considered for the network 

training. To demonstrate the performance of the DLNN state 

estimation approach, a near hover simulation flight test was 

conducted where the multirotor is commanded to change its 

heading within few degrees and the roll and pitch angles are 

somewhat around zero.  Under Gaussian noise assumptions, it 

is expected that the Kalman filter achieves its optimal state 

estimation. The results of the proposed DLNN state estimation 

have been compared to the conventional Kalman filter to prove 

the attained enhancement in attitude estimation. The presented 

attitude results illustrate the enhancement in attitude estimation 

accomplished by the Deep-Learning-Based Neural Network 

(DLNN). Furthermore, a comparison study of different state 

estimation techniques is addressed to demonstrate the 

performance of the proposed method against other robust 

adaptive state estimation techniques.   

A. Attitude estimation 

 Figures 8–10 present the roll, pitch and yaw angles state 

estimation. The figures exhibit the signals of the noisy IMU 

measurements, Kalman estimate, DLNN state estimates and the 

real states acquired from the simulation model of the multirotor. 

Fig. 8 shows the conventional and the DLNN roll angle 

estimation. It can be noticed that the DLNN has shown a better 

noise rejection compared to the KF. The KF has a Root Mean 

Square Error of Estimation (RMSEE) of 0.2738 while the error 

is 0.0286 for the DLNN approach. The pitch angle state 

estimation is demonstrated in Fig. 9. The DLNN approach has 

predicted the unfiltered white noise and filtered it out through 

the simulation. Moreover, the DLNN learning approach has 

captured the coupling dynamics between the attitude states (see 

the zoomed portion of the figure). The pitch angle is estimated 

with RMSEE values of 0.2711 and 0.0627 for the KF and the 

DLNN, respectively. 

 
Figure 8: Roll angle state estimation 

 
Figure 9: Pitch angle state estimation 

Fig. 10 represents the yaw angle state estimation. The 

multirotor is commanded to change its heading by few degrees. 



It is clear from the Figure that DLNN is performing better in 

terms of coincidence with the real state. The yaw angle is 

estimated with an RMSEE error of 0.3173 for the KF and 

0.2355 for the DL. Fig. 11 illustrates the estimation error of the 

attitude angles. As can be observed, the DLNN smaller amount 

of estimation errors throughout the flight.        

       
Figure 10: Yaw angle state estimation  

 
Figure 11: Attitude states estimation errors 

The attitude rates estimation results are illustrated below in 

Figures 12-14. The DLNN state estimation method results 

demonstrate an accurate state estimation in terms of rejecting 

the added noise and coincidence with the real angular states.  

 
Figure 12: Roll rate state estimation. 

 
Figure 13: Pitch rate state estimation 

 
Figure 14: Yaw rate state estimation. 

B. Comparison study of state estimation techniques 

This section presents a comparison study of different state 

estimation techniques in order to demonstrate the performance 

of the proposed method against other robust conventional and 

adaptive state estimation techniques. An Adaptive Fuzzy 

Kalman Filter (AFKF) has been developed to compare the 

performance of the proposed DLNN method with the adaptive 

state estimation. The AFKF approach adopts the covariance-

matching algorithm to evaluate the degree of matching between 

the actual covariance of the of the innovation sequence of the 

filter with its theoretical value [44]. Based on the degree of 

matching, an adjustment of the measurement noise matrix is 

computed at each state estimation cycle using a Fuzzy Inference 

System (FIS).  

Figure 15 shows the heading state estimation using 

conventional, adaptive and Deep-Learning based estimation 

techniques. From the Figure, it can be concluded that the AFKF 

shows faster convergence to the real value of the state than KF. 

However, in terms of noise reduction both AFKF and KF show 

similar behavior throughout the experiment. On the other side, 

DLNN shows a significant capability of noise reduction and 

better coincidence with the real heading state.      

 
Figure 15: Heading state estimation using different state 

estimation techniques  

V. EXPERIMENTAL VALIDATION 

In real flight scenarios, it is not expected that the 

characteristics of measurement noise are Gaussian distributed. 

This makes the optimal state estimation not guaranteed unless 

accurate tuning of the filter’s parameters and training for the 

DNN is made. A fine training for the proposed DNN has been 

conducted using collected real flight data. A real hover flight 

was carried out to validate the performance of the proposed 

integrated state estimation technique. A multirotor equipped 



with PX4 autopilot and Jetson tx1 onboard computer is used 

with Optitrack indoor tracking system. The exact drone’s 

location in x,y and z is sent by the Optitrack system which has 

position accuracy of 0.76 mm. The Optitrack tracking system 

runs motive software for motion capture and live streaming. 

The tracking system works by tracking the markers that are 

placed on the drone's body using 16 cameras distributed evenly 

in the room as shown in Fig. 16. The mocap ros package which 

is running on the on-board computer takes the data from the 

Optitrack system and passes it to the autopilot to hold the drone 

at specific location. The pose topic that is received from the 

Optitrack system is with a frequency of 120 messages/second 

and the pose topic recorded by the autopilot and sent is with 30 

messages/second.  

 
Figure 16: Multirotor platform and the Optitrack system 

The data received from the Optitrack system is compared to 

the data received from the autopilot to correct the drone's 

position in a closed loop system. Fig. 17 below shows the drone 

flying in position hold mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The advantage of using the PX4 autopilot is that its 

estimation and Control Library (ECL) provides IMU state 

estimates which are based on implementing the Kalman 

estimation techniques. As these estimates were provided in the 

quaternion format, a conversion to the Euler format was done 

to get the Euler angles. In this real hover test, the integrated 

DLNN sensor fusion technique has been applied to estimate the 

attitude states of the multirotor system. The attitude angles are 

expected to have small values around zero degrees. In such real 

flight tests, the exact real states values cannot be directly 

determined. However, to evaluate the performance of the 

proposed sensor fusion method, the estimation results are 

compared to the precise attitude values captured by the 

Optitrack system. 

Figures 18-20 show the attitude estimation results. From the 

figures, it can be discerned that the proposed DLNN estimation 

has displayed better agreement with the Optitrack values. 

Moreover, the integrated DLNN approach has demonstrated its 

capability in reducing the real unpredictable measurements’ 

noise and bias associated with the onboard IMU unit.  

 
Figure 18: Roll angle state estimation 

 
 

Figure 19: Pitch angle state estimation 

 
Figure 20: Yaw angle state estimation 

Table 2 concludes the Root Mean Squared Errors in 

Estimation (RMSEE) of both standalone KF and DLNN in 

attitude estimation. It is discerned that the pitch and roll states 

of the quadrotor are accurately estimated and enhanced. The 

heading state estimation is also significantly improved using the 

DLNN based state estimation approach. 

Figure 17: Multirotor at hover. 



Table 2: RMSEE values for KF and DLNN 

State KF RMSEE DLNN RMSEE 

𝜙 0.0017 0.00016 

𝜃 0.0018 0.00023 

𝜓 0.0130 0.00200 

VI. CONCLUSION     

Deep learning methods are data-driven algorithms use their 

complex nonlinear transformations which generated using the 

nonlinear input-output mappings to identify the most 

representative models for the uncertainty in data. This study has 

employed these algorithms to enhance the accuracy of the state 

estimation. The proposed state estimation technique is based on 

training the DNN using the dropout method to ensure 

identifying representative, fitted and robust models for the 

unfiltered measurement’s noise. This novel technique was 

tested using a simulation environment and an actual 

experimental setup.  The DLNN estimation results 

demonstrates a significant ability in identifying the noise 

models associated with the Kalman estimates.  Moreover, the 

proposed DLNN attitude estimation results exhibit superiority 

over the conventional attitude estimates.   
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