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Phase Amplified Correlation for Improved Sub-pixel
Motion Estimation

Dimitrios Konstantinidis, Tania Stathaki,Member, IEEE,and Vasileios Argyriou,Member, IEEE,

Abstract—Phase correlation (PC) is widely employed by sev-
eral sub-pixel motion estimation techniques in an attempt to
accurately and robustly detect the displacement between two
images. To achieve sub-pixel accuracy, these techniques employ
interpolation methods and function-fitting approaches on the
cross-correlation function derived from the PC core. However,
such motion estimation techniques still present a lower bound
of accuracy that cannot be overcome. To allow room for further
improvements, we propose in this paper the enhancement of the
sub-pixel accuracy of motion estimation techniques by employing
a completely different approach: the concept of motion magni-
fication. To this end, we propose the novel phase amplified cor-
relation (PAC) that integrates motion magnification between two
compared images inside the phase correlation part of frequency-
based motion estimation algorithms and thus directly substitutes
the PC core. The experimentation on magnetic resonance (MR)
images and real video sequences demonstrates the ability ofthe
proposed PAC core to make subtle motions highly distinguishable
and improve the sub-pixel accuracy of frequency-based motion
estimation techniques.

Index Terms—Phase correlation, motion magnification, image
registration, sub-pixel motion estimation

I. I NTRODUCTION

I MAGE registration concerns the task of estimating the
motion between two images that are related by a geomet-

rical transformation and is fundamental for several computer
vision and video processing applications. Motion compensated
prediction is widely employed for noise reduction, video
compression, image super-resolution and medical image reg-
istration. In video processing, especially, motion estimation
is performed on block-based partitions of input frames. One
of the most successful techniques for dealing with motion
estimation is phase correlation that operates in the frequency
domain [1], [2]. Phase correlation is based on the shift
property of the Fourier transform to accurately estimate the
displacement between two compared images. Apart from the
ability to accurately localize peaks that correspond to spatial
displacements, PC enjoys further significant properties, such
as computational speed, robustness to uniform illumination
variations and insensitivity to spectral energy changes.

A significant drawback of the basic PC core, when imple-
mented in the discrete time domain, is the fact that the com-
puted displacements have integer accuracy as the coordinates
of the maximum of the discrete cross-correlation function (i.e.
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inverse Fourier transform of the cross-power spectrum) will be
a rounded version of the components of the true displacement
vector. However, the ability to provide sub-pixel accuracies is
critical for the performance of image registration techniques
that are based on the PC core [3]. Sub-pixel accuracy is mainly
achieved through the use of interpolation techniques that fit an
analytical function (e.g. a polynomial) to the neighborhood of
the maximum of the discrete cross-correlation function [4],
[5].

However, since the smallest unit of counting image di-
mensions is the pixel, achieving the desirable sub-pixel ac-
curacy is sometimes not feasible. To circumvent this problem,
we propose a general mathematical framework to improve
the sub-pixel accuracy of frequency-based motion estimation
algorithms, inspired by the work in [6]. In that work, the
authors proposed the concept of motion magnification, so that
invisible by the human eye motions become visible in videos.
Similarly, we propose in this work the magnification of motion
between two compared images. By magnifying motion, we
expect that subtle information about the displacement between
two images becomes well observed and computed, leading
to highly accurate cross-correlation peak extraction and thus
improved sub-pixel motion estimation. We integrate motion
magnification in the computation of phase correlation, thus
bypassing the need for initially applying motion magnification
between two compared images and then employing phase
correlation for the computation of sub-pixel displacement.
Furthermore, we propose a phase blurring technique so that
the noise present in the phase of the frequency signals is
diminished.

Experiments with MR images and real video sequences
show that our proposed methodology consistently improves
the performance of all tested motion estimation techniques
that are based on the PC core. The main contributions of this
work are listed below:

• We integrate the notion of motion magnification in the
phase correlation procedure so that subtle image displace-
ments become accurately and robustly estimated.

• The proposed PAC core can be integrated in any
frequency-based motion estimation technique, thus taking
advantage of interpolation methods and properties of the
cross-power spectrum.

• We propose an amplitude-weighted blurring of the phase
difference to circumvent problems with noise embedded
in the phase signal.

This paper is organized as follows. In Section 2, we conduct
a review of state-of-the-art sub-pixel motion estimation meth-
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ods that employ phase correlation. In Section 3, we discuss
and analyze the mathematical framework behind motion mag-
nification and introduce our proposed PAC core. In Section
4, we present experimental results to justify the contributions
of our work, while in Section 5 we draw conclusions arising
from this work.

II. RELATED WORK

In this section, a brief review of state-of-the-art frequency-
based sub-pixel image registration algorithms is presented.
Furthermore, motion magnification techniques, along with the
way they can be exploited for accurate sub-pixel image regis-
tration, are described. Girod was the first to theoreticallyand
experimentally analyze the significant performance improve-
ment of sub-pixel motion estimation for image registration[3].
Since then, a lot of studies have been made in the direction
of achieving robust and accurate sub-pixel motion estimation.

Foroosh et al. in [7] came up with the observation that im-
ages with sub-pixel shifts originate from up-sampled replicas
displaced by integer shifts. The authors noticed that the cross-
power spectrum of downsampled images does not contain
only a single peak, but rather several coherent peaks that
are adjacent to each other. These peaks correspond to the
polyphase transform of a filtered unit impulse centered at
the point of registration. The derived filter has a rectangular
frequency response and it is a 2D Dirichlet kernel that can
be closely approximated by a 2D sinc function, leading to the
development of a closed-form solution for the sub-pixel trans-
lation estimation. Zhou and Yu employed the same observation
that the signal power of downsampled images concentrate in a
few coherent peaks to develop a real-time PC method that can
be applied to high-resolution images [8]. Balci and Forooshin
[9] established the exact relationship between the continuous
and the discrete phase difference of two shifted images and
showed that the discrete phase difference is a 2D sawtooth
signal. Sub-pixel motion estimation can then be computed by
counting the number of cycles of the phase difference matrix
along each frequency axis and robustly estimating the non-
integer fraction of the last cycle.

On the other hand, Ren et al. in [10] proposed the de-
composition of the 2D translation to two 1D motions. As a
result, only 1D Fourier transform is required to estimate the
corresponding motion. The first two highest peaks from 1D
correlation are linearly interpolated for sub-pixel accuracy.
Takita et al. in [11] computed an analytical model that de-
scribes the peak of the cross-power spectrum of two slightly
shifted images and how to fit this model to the data. However,
their method is limited to detect only small shifts. In the case
that the shift is large with respect to the image size, the pixel-
level shift should be initially determined before sub-images
are extracted from the original images so that the translation
of these sub-images is small enough for the proposed model
fitting technique.

Stone et al. in [12] was one of the first to investigate
the effect of noise and aliasing in the accuracy of sub-pixel
motion estimation methods. They proposed the detection of
the Fourier components that are unreliable estimators of shift

due to aliasing (i.e. components with small spectral magnitude)
and they removed them from the shift-estimate computation.
The masking out of the contributions from these unreliable
spectral components, regardless of whether they occur at low
or high frequencies, leads to improvements in the accuracy of
sub-pixel motion estimation. The authors in [13] proposed an
extension of the previous method for the estimation of planar
motion. More specifically, they applied low-pass filtering on
images prior to the computation of their Fourier transform.
Then, the rotation was estimated from the correlation of the
amplitudes of the Fourier transform of images, while the shift
was calculated based on the slope of the phase difference of
the images.

Hoge in [14] observed that a “noise-free” cross-power spec-
trum is rank-one. Thus, he proposed recasting the problem of
sub-pixel motion estimation as the problem of finding the rank-
one approximation of the computed cross-power spectrum.
To achieve this, he employed singular value decomposition
and identified the left and right dominant singular vectors
that corresponded to the vertical and horizontal motion shifts
respectively. The authors in [15] proposed an extension to [14]
by introducing a masking operator that projects the cross-
power spectrum into the space of correlation functions that
result from a certain range of translations, thus attenuating
the noise associated with the estimation of the phase-shifts by
linear regression, especially when that noise is additive white
Gaussian noise. Tong et al. in [16] proposed a more robust
extension to the Hoge algorithm by replacing the least-square
line fitting with the Random Sample Consensus (RANSAC)
algorithm that better handles the problem of outliers. Dong
et al. in [17] proposed a method for computing the rank-one
approximation of the cross-power spectrum by assuming its
noise can be represented by a mixture of Gaussian distributions
and achieved accurate image registration results.

The effect of noise on image registration was also in-
vestigated in a series of works dealing with blur-invariant
phase correlation. More specifically, Ojanvisu and Heikkila
in [18] proved that by taking any even power (i.e.,2n) of the
normalized Fourier transform of an image, they can achieve
invariance to centrally symmetric blur, such as motion or out-
of-focus blur, as this type of noise has constant phase. The
even power of the normalized Fourier transform is translated
to the multiplication of the phase shift between the original
and the blurred images by the factor of2n. Later, Pedone et al.
generalized the blur-invariant phase correlation assuming the
blurring function exhibits rotational symmetry [19] and both
rotational and axial symmetries [20]. Interestingly, the work
in [18] is closely related to ours as the authors in that paper
employed phase shift amplification by even powers to improve
robustness to centrally symmetric blur, while we study in
this work a more general phase shift amplification in order
to improve the sub-pixel accuracy of frequency-based motion
estimation algorithms.

Several methodologies that incorporate robust features ex-
tracted from the compared images were also proposed. More
specifically, Zhonke et al. in [21] proposed the computationof
rotation between the compared images by employing Hough
transform in the computed image edges. After the images are
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de-rotated, the translation is identified using phase correlation.
Maik et al. in [22] proposed the detection of Harris corner
features in order to calculate the global motion between
images. After the geometric transformation of images, local
motion is estimated using phase correlation in image blocks.
Cheng and Menq, on the other hand, proposed a real-time
image registration algorithm by employing two continuous
spatial variables to measure the shift of the image and buildthe
continuously shifting image model [23]. As the variables of
the model are continuous in spatial domain, pixel-level image
registration is unnecessary, thus achieving real-time tracking
of the target. Park et al. in [24] proposed the identification
and matching of a number of affine-invariant points in the
spectrum of the source and target images and the computation
of the parameters of affine transform using spectral alignment.

Argyriou and Vlachos in [25] proposed a different solution
to the sub-pixel motion estimation problem by employing
gradient information. The sub-pixel shifts were computed by
maximizing the cross-correlation between the spatial gradient
information derived from the pair of images. The proposed
gradient correlation (GC) algorithm is proved to be very accu-
rate, robust to the effect of noise and outperforms frequency-
domain motion estimation methods. Later, the same authors
extended the GC algorithm by computing scaling and rotation
using log-polar Fourier representations of the complex gray-
level edge maps of images prior to the sub-pixel motion esti-
mation using normalized gradient correlation [26]. Moreover,
the inference of the sub-pixel shifts by employing the left and
right dominant singular vectors of the 2D GC matrix prior
to their modeling using a generic kernel that can adapt its
shape to fit the available correlation samples was proposed
in [27]. A quad-tree GC algorithm that replaces block-based
motion estimation with an iterative decomposition of a block
to four quadrants based on the resulting motion compensated
prediction error was also proposed in [28].

Recently, Argyriou and Tzimiropoulos in [29] proposed
HOG-PC, a frequency-domain image registration technique
based on histograms of oriented gradients (HOG). The pro-
posed HOG representation is very dense since a descriptor
is computed for each pixel and it can thus be considered
as a multi-channel block representation. The authors claim
that HOG-PC retains the orientation information and it is
able to cope with non-overlapping regions, small deformations
and noise, while achieving state-of-the-art sub-pixel motion
estimation results, especially in small-sized blocks. Ye et al.
in [30] took advantage of the properties of the phase of the
Fourier transform and proposed a new descriptor for image
matching and registration, called Histogram of Oriented Phase
Congruency. On the other hand, Li, motivated by the obser-
vation that the classical PC method and the Lucas-Kanade
algorithm exhibit strong complementary property between
convergence range and sub-pixel accuracy, proposed a two-
stage coarse-to-fine sub-pixel image registration framework
that accurately computes rotation, scale and translation [31].

Most of the previously presented sub-pixel motion estima-
tion methods concentrate on either proposing more powerful
interpolation techniques [11], [27], [32] or searching andiden-
tifying interesting properties of the cross-power spectrum that

can assist in the improvement of the image registration results
[7], [9], [14], [33]. Unfortunately, these methods have a lower
bound of sub-pixel accuracy that cannot be overcome [34].
This work is the first that proposes a different approach to the
problem of sub-pixel motion estimation by employing motion
magnification. Motion magnification was initially employed
in [35], when the authors proposed the magnification of a
band-pass filtered video in order to reveal subtle periodical
changes that were not observable by the human eye. The video
magnification approach was later improved by Wadhwa et al.
in [6], when the authors proposed the transformation of video
frames in the Fourier domain, their decomposition into image
sub-bands by employing complex steerable pyramids and the
phase amplification of the image sub-bands in order to magnify
local motions. The authors claimed that their approach is more
robust to noise and can lead to larger amplification factors than
the method of [35].

Inspired by the concept of motion magnification, we propose
a novel approach that improves the accuracy of sub-pixel
motion estimation techniques. Our motivation lies in the belief
that amplifying sub-pixel shifts can lead to a better estimation
of their true values. Since all interpolation techniques are
applied on a specific cross-correlation function, there is a
bound on the accuracy of the detected peak based on how
accurately the actual cross-correlation function can model
the true peak. In other words, the cross-correlation func-
tion dictates the lower bound of accuracy that interpolation
techniques can achieve since if the cross-correlation function
cannot adequately describe the shift, no interpolation technique
can improve the shift estimation. Our approach manages to
overcome this problem by computing a new cross-correlation
function based on magnified motions. We show in this work
that the same interpolation techniques can achieve better
estimations of the true motions on the new cross-correlation
function rather than on the initial one, which is an indication
of the improved shift modeling abilities of the new cross-
correlation function. In this way, we bypass the problem of
defining powerful interpolation techniques or searching for
cross-power spectrum properties that we can take advantage
of and concentrate on how robustly the new cross-correlation
function that models the shift between two compared images
can be computed.

III. M ETHODOLOGY

In this section, we initially present the well-known phase
correlation core for the estimation of displacement between
images and then we discuss and analyze the notion of motion
magnification. Finally, we introduce our proposed methodol-
ogy for merging phase correlation and motion magnification
into a novel framework.

A. Phase correlation

Given an imageIA and its temporally subsequent version
IB, whose relationship withIA is described by a relative
translation or shift (i.e.,IB = IA(x + ∆x, y + ∆y)), the
PC core attempts to accurately estimate the shift between the
two images. To achieve this, the PC core initially computes
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the Fourier transformsFA and FB of images IA and IB
respectively, where it holds thatFB = FAe

i(∆xu+∆yv).
Afterwards, the cross-power spectrum of the compared images
is computed as shown in Eq. (1) and is equal to the element-
wise product of the Fourier transform of the first image and
the complex conjugate of the Fourier transform of the second
imageF ∗

B , normalized element-wise to ensure that all values
are in the range[0, 1].

R =
FA ◦ F ∗

B

|FA ◦ F ∗

B|
= e−i(∆xu+∆yv) (1)

The inverse Fourier transform of the cross-power spectrum
gives the normalized cross-correlationr = F−1{R} = δ(x −
∆x, y − ∆y). Ideally, the normalized cross-correlation is a
Dirac function with the location of its peak defining the shift
between the compared images. As a result, the shift between
the compared images can be estimated by

(∆x,∆y) = argmax
(x,y)

{r} (2)

However, noise and illumination variations can affect both
the magnitude and the location of the peak, thus posing
difficulties in its accurate and robust extraction. Furthermore,
since the normalized cross-correlation is a discrete function,
achieving highly accurate sub-pixel peak measurement can be
very difficult and commonly requires interpolation methods
applied in the neighborhood of the detected maximum peak.

B. Motion magnification

Given an imageIA(x, y), the same image translated spa-
tially by a vector (∆x,∆y) can be described asIB =
IA(x + ∆x, y + ∆y). The goal of motion magnification is
the synthesis of a new image,

I
′

B = IB(x+m∆x, y +m∆y)

= IA(x+ (1 +m)∆x, y + (1 +m)∆y)
(3)

which has its spatial translation magnified by a factor
m. Applying the Fourier transform to the previously de-
fined images leads the initial or reference imageIA to be
equal toFA(u, v) and the imageIB to be equal toFB =
FA(u, v)e

i(∆xu+∆yv). This means that the Fourier transform
of the motion magnified imageI

′

B is equal to

F{I
′

B} = FB(u, v)e
im(∆xu+∆yv)

= FA(u, v)e
i(1+m)(∆xu+∆yv)

(4)

This is in par with the basic Fourier transform property that
states that a shift in the time domain corresponds to a phase
shift in the frequency domain. Thus, motion magnification in
the time domain can be achieved by phase amplification in the
frequency domain. The phase amplification factorm controls
the magnitude of the motion magnification we want to achieve.
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Fig. 1. A diagram of the processing stages of a general frequency-based
motion estimation algorithm. The proposed PAC core directly replaces PC
in such an algorithm by computing a new cross-power spectrumand cross-
correlation function, from which the peak is extracted.

C. Phase amplified correlation

In this paper, we propose the novel phase amplified corre-
lation core that allows the magnification of motion between
two compared images and can substitute the PC core in the
task of sub-pixel image registration. An outline of a general
frequency-based motion estimation algorithm and the process-
ing stage in which, our proposed PAC core is introduced, is
presented in Fig. 1.

From Fig. 1, it can be observed that the PAC core re-
places PC by computing a new cross-power spectrum and
normalized cross-correlation function. The reason why both
spectrum and cross-correlation are computed lies in the fact
that there are motion estimation algorithms that process the
cross-power spectrum directly, such as the Hoge algorithm
[14] and we want to enable such algorithms to take advantage
of the proposed PAC core as well. Furthermore, we influence
interpolation techniques indirectly by feeding them with anew
cross-correlation function that better models the true motion
between the compared images. As a result, our method works
complementary with interpolation techniques, assisting them
towards the extraction of a highly accurate and reliable cross-
correlation peak and therefore the computation of a motion
estimation vector with improved sub-pixel accuracy.

Given the definition of motion magnification and phase
correlation, the proposed PAC core computes a new cross-
power spectrum between the original imageIA and the motion
magnified translated oneI

′

B by introducing Eq. (4) to Eq. (1)
and taking into consideration the complex exponential identity
|eia| = 1. As a result, we obtain a new cross-power spectrum

R
′

=
FA ◦ F ∗

B

′

|FA ◦ F ∗

B

′

|
=

FA ◦ F ∗

Be
−im(∆xu+∆yv)

|FA ◦ F ∗

B||e
−im(∆xu+∆yv)|

= e−i(∆xu+∆yv)e−im(∆xu+∆yv) = e−i(1+m)(∆xu+∆yv)

(5)

The shift between the original and motion magnified trans-
lated images is given by the location of the peak in the new
normalized cross-correlationr

′

, which is the result of the
inverse Fourier transform of the new cross-power spectrum
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(a) (b) (c) (d)

Fig. 2. Effect of the phase amplification factorm on the cross-correlation peak. The mean squared error (MSE)between the ground truth motion vector, which
is equal to [-2.69,-6.04] and the estimated motion vector (MV), along with the magnitude of the peak are presented. (a)m=0, MV=[-2.88,-6.01], MSE=0.036,
peak=0.729, (b)m=1, MV=[-2.86,-6.03], MSE=0.03, peak=0.389, (c)m=2, MV=[-2.77,-6.01], MSE=0.008, peak=0.168 and (d)m=3, MV=[-2.76,4.03],
MSE=101.46, peak=0.102. A red circle is used to denote the location of peak in sub-figure (d).

(∆x
′

,∆y
′

) = argmax
(x,y)

{r
′

} = argmax
(x,y)

{F−1{R
′

}}

= argmax
(x,y)

{δ(x− (1 +m)∆x, y − (1 +m)∆y)}

(6)

However, the computed translation(∆x
′

,∆y
′

) does not
correspond to the true translation between the original and
translated images since motion magnification is applied. The
true translation is computed as follows in order to eliminate
the effect of the phase amplification factorm

(∆x,∆y) =

(

∆x
′

1 +m
,

∆y
′

1 +m

)

(7)

Eq. (7) identifies the cross-correlation peak when sub-pixel
accuracies are considered. In the case that we refer to pixel-
level accuracies, the rounded version of Eq. (7) holds. This
means that in pixel-level accuracies the true translation∆x is
computed as∆x = ‖∆x

′

/(1 + m)‖ and similarly for∆y.
One may notice that whenm is equal to 0, the proposed
PAC core boils down to the classical PC core. As a result,
the PAC core can be considered as a general PC core for
m 6= 0. A significant advantage of the proposed PAC core is
that it can directly substitute the PC core inside any frequency-
based sub-pixel motion estimation technique without the need
of computing the motion magnified image. The one and only
parameter that affects the performance of the PAC core is
the phase amplification factorm. Larger phase amplification
factors lead to larger motion magnifications and thus larger
shifts of the cross-correlation peak, as it is shown in Fig. 2.

The PAC core allows subtle motions to become more easily
recognizable and more accurately extracted when magnified.
This effect can be observed in Fig 2 since for larger phase
amplification factorsm, the peak is slightly more spread to its
neighborhood rather than concentrated on a single pixel anda
drop in the mean squared error (MSE) between the computed
and true motion vectors is observed. The drop in MSE means
that the increased spread of the cross-correlation peak assists
the tested sub-pixel motion estimation algorithms to more
accurately identify the true displacement between the images
and thus the new cross-correlation function, proposed by the
PAC core, can more reliably model the true motion between
the compared images. As a result, we deduce that a motion

vector can be more robustly detected and evaluated on a
discrete cross-correlation function on its magnified rather than
on its original form. Finally, the improved sub-pixel accuracy
means that we manage to indirectly overcome the lower bound
of accuracy that current motion estimation algorithms facenot
by proposing more powerful interpolation techniques but by
introducing a new and more reliable cross-correlation function
to existing interpolation techniques.

D. Analysis of phase amplification factor

Unfortunately, there are limitations on the values the phase
amplification factorm of the proposed PAC core can get.
Firstly, an immoderate shift of the location of the cross-
correlation peak can transpose the peak outside of the borders
of the image or image block that is used for the motion
estimation. This can lead to the peak being circularly wrapped
around the image or image block and thus Eq. (7) can no
longer be employed for the estimation of the true motion
vector as shown in Fig. 2(d), where the motion vector cannot
be reliably computed and the MSE is tremendously increased.
Secondly, by magnifying the motion between two images,
there is the risk of unintentionally magnifying the noise
embedded in the phase of the images and noise magnification
can severely affect the accuracy of sub-pixel motion estima-
tion techniques. Finally, motion magnification increases the
dissimilarity between the two compared images and thus the
uncertainty of phase correlation about the fact that each image
is a shifted version of the other image. This uncertainty is
translated to a drop in the strength of the cross-correlation
peak, which in turn means that the difference in value between
the peak and the other pixels of the discrete cross-correlation
function is getting smaller. A lower cross-correlation peak
faces the risk that it may not be detected and recovered among
the local maxima of the discrete cross-correlation function (see
Fig. 2(d)).

An excessive shift of the cross-correlation peak can be
avoided given an indication of the expected magnitude of
the true motion vector. Given an expected motion vector
(∆x,∆y), the value of the phase amplification factorm is
restricted by the fact that the magnified motion vector cannot
overcome the boundaries of the image block, where the PAC
core is applied. Given an image block of sizeM × N , the
phase amplification factor is bounded by the following set of
inequalities
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(1 +m)∆x ≤
M

2

(1 +m)∆y ≤
N

2

(8)

The inequalities of Eq. 8 can also be written in a more
compact form as shown below, allowing the direct computation
of an upper boundary for the phase amplification factorm.

m ≤ min

(

M

2∆x
− 1,

N

2∆y
− 1

)

(9)

The expected motion vector is of course not known be-
forehand, however employing the proposed PAC core with
m = 0 (i.e., PC core) can give an accurate estimate of the
expected motion vector before applying larger amplification
factors. Another alternative can be a pre-registration of the
two compared images in order to restrict the motion within
sub-pixel accuracies (i.e.,∆x and ∆y smaller than 1). An
additional limitation of the phase amplification factor resides
in the drop in the strength of the cross-correlation peak as the
phase amplification factor increases. This drop is attributed
to the fact that the shifted image resembles less the original
image as their overlap decreases. A large decrease of the
overlap between two compared images makes the PAC core
less confident about the similarity between the images and
therefore their displacement. Given the fact that we want to
maintain a significant overlap between two compared images,
thus enabling a reliable estimation of their displacement,a
new restriction on the value of the phase amplification factor
can be set. For an image block of sizeM ×N and a shift of
(∆x,∆y), the phase amplification factorm is bounded by the
following inequality

Aoverlap ≥ athAB ⇒

(M − (1 +m)|∆x|)(N − (1 +m)|∆y|) ≥ athMN
(10)

whereAoverlap and AB denote the overlapping area be-
tween the original and shifted image blocks and the area of
the image block respectively. The overlap ratioath determines
how large the overlapping area between the shifted image
blocks should be. In order to have a reliable and accurate
estimate of the true displacement, the overlap ratio shouldbe
at least 0.5. Higher values of the overlap ratio allow even more
distinct cross-correlation peaks at the expense of limiting the
value of the phase amplification factor, and therefore the sub-
pixel accuracy of motion estimation techniques. Eqs. (9) and
(10) can be considered as hard and soft constraints respectively
on the value of the phase amplification factor of the proposed
PAC core. Finally, the noise in the phase of the images can
be suppressed by employing phase blurring techniques. In the
following section, we propose such a phase blurring technique
and incorporate it in the proposed PAC core.

E. Noise handling

An aspect that should be taken into account when magni-
fying the motion between images is noise. Noise can signifi-
cantly affect the performance of sub-pixel motion estimation

algorithms if magnified. The advantage of applying phase
amplification in the frequency domain is that the additive
noise present in the images is not magnified, but translated.
More specifically, given an imageI, a Gaussian distributed
additive noiseN(0, σ) and the linear properties of the Fourier
transform, the Fourier transform of the motion magnified
imageI

′

= I +N(0, σ) is given by

F{I
′

} = eim(∆xu+∆yv) (F{I}+ F{N(0, σ)}) (11)

Eq. (11) states that a Gaussian distributed additive noise
is translated when motion magnification is applied. Although
the additive noise embedded in an image is not magnified
when phase amplification is applied, this is not the case for
the noise that is embedded in the phase of an image. During
phase amplification, any noise present in the phase signals
is amplified and it can lead to inaccuracies in the sub-pixel
motion estimation. Additionally, the phase amplification can
cause abrupt changes in the phase difference due to phase
wrapping. To alleviate the effect of noise, we apply low-
pass filtering as a simple and efficient way to increase the
signal-to-noise ratio of a signal. To this end, we propose the
blurring of the phase difference by employing a Gaussian
kernel. The phase blurring is also based on the amplitude of
the cross-power spectrum as the phase signal in regions of
low amplitude is not reliable for shift estimation [12]. More
specifically, given the phase difference between the compared
images∆φ = ∆xu + ∆yv, the blurred phase difference is
given by

∆φG =
(∆φ |R|) ∗KG

|R| ∗KG

(12)

where |R| represents the amplitude of the complex cross-
power spectrum andKG is a Gaussian kernel. The Gaussian
blurred phase difference∆φG replaces the original phase
difference∆φ = ∆xu+∆yv in Eq. (5) before the computation
of the shift between the compared images. As we show in the
experimental section, we consistently get more accurate and
robust to noise results, when the proposed noise handling term
is employed.

IV. EXPERIMENTS

To evaluate and illustrate the efficiency of the proposed
PAC core, a comparative study is performed with state-of-the-
art sub-pixel motion estimation techniques that employ the
PC core. More specifically, the PC core [1] with quadratic
(PC+Quad) and Gaussian (PC+Gaussian) interpolation meth-
ods [36], Foroosh [7], Ren [10], Xiaohua [16] and HOG-PC
[29] motion estimation algorithms are considered. Both images
with ground truth motion vectors and video sequences are used
for the performance evaluation of the tested sub-pixel motion
estimation algorithms.

A. Experimentation with MR images

A set of 5 MR images is available by the authors in [14] for
the evaluation of the sub-pixel motion estimation algorithms
(see Fig. 3). The MR images depict a grapefruit that was
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(a) (b)

(c) (d)

Fig. 3. Two MR images (a),(b) without noise and (c) image (a) with noise
level 0.01 and (d) image (b) with noise level0.05.

acquired using a production quality Fast Spin Echo sequence
on a GE (Faireld, CT, USA) Signa Lx 1.5 Tesla MRI scanner.
The images have size256 × 256 and they cover a 16cm2

Field of View (FOV) corresponding to a 0.0625mm square
per pixel. The 5 images depict the fruit at different positions
in the FOV and they were acquired by manually moving the
scanner table.

Furthermore, we analyze the sub-pixel accuracy of the
motion estimation algorithms under the effect of noise. This
is achieved by embedding the MR images with additive
white Gaussian noise of zero mean and variance in the range
[0.005− 0.05] with a step of0.005. An example of the effect
of noise in the MR images is presented in Fig. 3. The 5 MR
images yield 10 possible pairwise registrations and the ground
truth translations are available.

The evaluation of the motion estimation algorithms is per-
formed using the metric of mean squared error. Since ground
truth is available, Eq. (13) is employed for the computationof
MSE of the motion vectors (MSEMV ). As it is expected, the
most accurate sub-pixel motion estimation algorithm should
produce the lowestMSEMV in the MR images. Other than
the metric of MSE, we also employ the peak signal-to-noise
ratio (PSNR) of the motion compensated prediction error in
order to assess the performance of the motion estimation
algorithms. According to [14], ground truth measurements can
be significantly biased based on the image acquisition meth-
ods and thus PSNR can provide more unbiased performance
evaluation.

MSEMV =
1

B

B
∑

i=1

‖ui − vi‖
2 (13)

In Eq. (13), u and v represent the ground truth and
estimated motion vectors respectively, whileB corresponds
to the number of blocks that an image is divided before the
computation of the local motion vector for each block. For the
MR images, the whole image of size256 × 256 consists of
a single block, but for the video sequences presented in the
next section, the video frames are divided in smaller blocks.
Finally, for an imageI of dimensionsM ×N and its motion
compensated predictionIMC , PSNR is computed as shown in
Eq. (14).

PSNR= 10log(
2552

MSEI

)

,whereMSEI =
1

MN

M
∑

x=1

N
∑

y=1

(I(x, y) − IMC(x, y))
2

(14)

The MSEI evaluates the similarity between the original
and the motion compensated images and it can be considered
as a measure of the visual quality of the motion compensa-
tion. The initial experiments examine the effect of the phase
amplification and the noise handling terms on the 10 pairwise
registrations that the 5 MR images form. The parameter that
affects the noise handling term of our proposed PAC core is
the Gaussian kernel and we fix it to be of size5×5 pixels with
a standard deviation of 0.4. The reason we choose such values
is in order to have a small blurring effect and therefore we do
not allow a pixel to be significantly affected by its neighboring
pixels (i.e. the sum of the kernel weights that correspond tothe
neighboring pixels contributes by only 15% to the final blurred
value). Furthermore, Table I summarizes the performance
of the PAC core with and without the noise handling term
versus the PC core when the quadratic interpolation method
is employed. The reportedMSEMV and PSNR correspond to
the average values over all pairwise image registrations.

To further support the use of the Gaussian noise handling
term, we experiment with alternative low-pass filters, suchas
average and median filters. Fig. 4 presents the average PSNR
performance of the HOG-PC algorithm, which is considered
the optimal motion estimation algorithm out of those testedin
this work on all pairwise registrations of the MR images. The
experiments reveal that the Gaussian filter slightly outperforms
the other tested filters especially for larger values of the
amplification factor, showing its ability to suppress the phase
noise more effectively than the other tested filters as the noise
increases. As far as the sudden changes in the phase spectrum
due to phase wrapping is concerned, we observe that they
do not play a significant role to the performance of the PAC
core, especially for small and mediocre values of the phase
amplification factor since the motion estimation accuracy of
the HOG-PC algorithm improves. Moreover, we observe that
the use of a median filter that is able to remove the “salt-and-
pepper” effect that phase wrapping may cause is not beneficial
to the performance of the PAC core.

It can be observed that the PAC core achieves better
performance than the PC core for all tested values of the
phase amplification factor with respect to the measures of both
MSEMV and PSNR. This verifies our initial statement that
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TABLE I
PERFORMANCE OFPC AND PAC CORES WITH QUADRATIC INTERPOLATION AND WITH(W/ NH) AND WITHOUT (W/O NH) NOISE HANDLING FOR

VARIOUS VALUES OF THE PHASE AMPLIFICATION FACTORm ON A FEW MR IMAGE PAIRS

Method
Image Pairs

[1,2] [1,4] [2,3] [2,5] [3,4] [3,5] [4,5] MSEMV PSNR (dB)

Ground Truth (-2.40,4.00) (-7.20,4.32) (-2.40,4.00) (-4.80,8.00) (-2.40,-3.68) (-2.40,4.00) (0.00,7.68) 0.0000 –
PC (-2.03,4.01) (-6.73,4.25) (-2.13,3.98) (-4.65,8.00) (-2.25,-3.78) (-2.27,4.00) (-0.01,7.78) 0.3935 31.2043
PAC (m=1), w/o NH (-2.04,4.01) (-6.60,4.35) (-2.17,3.98) (-4.55,8.00) (-2.38,-3.63) (-2.38,4.01) (0.00,7.66) 0.3810 31.4250
PAC (m=1), w/ NH (-2.04,4.01) (-6.73,4.35) (-2.18,3.98) (-4.55,8.00) (-2.38,-3.63) (-2.38,4.02) (0.00,7.67) 0.3805 31.4287
PAC (m=2), w/o NH (-2.04,4.02) (-6.63,4.34) (-2.23,3.98) (-4.58,8.00) (-2.34,-3.66) (-2.34,4.01) (0.00,7.69) 0.3606 31.4406
PAC (m=2), w/ NH (-2.04,4.02) (-6.63,4.33) (-2.26,3.99) (-4.58,8.01) (-2.33,-3.66) (-2.35,4.01) (0.00,7.69) 0.3587 31.4354
PAC (m=3), w/o NH (-2.04,4.02) (-6.62,4.34) (-2.21,3.98) (-4.56,8.01) (-2.31,-3.68) (-2.34,4.01) (-0.01,7.71) 0.3795 31.4321
PAC (m=3), w/ NH (-2.05,4.03) (-6.62,4.35) (-2.22,3.98) (-4.56,8.01) (-2.31,-3.67) (-2.33,4.01) (-0.01,7.70) 0.3710 31.4366
PAC (m=4), w/o NH (-2.04,4.02) (-6.62,4.36) (-2.21,3.98) (-4.58,8.00) (-2.37,-3.67) (-2.35,4.03) (-0.01,7.69) 0.3754 31.4313
PAC (m=4), w/ NH (-2.05,4.03) (-6.61,4.34) (-2.20,3.98) (-4.57,8.00) (-2.36,-3.66) (-2.35,4.03) (-0.02,7.69) 0.3779 31.4371
PAC (m=5), w/o NH (-2.04,4.01) (-6.64,4.33) (-2.20,3.99) (-4.56,8.01) (-2.35,-3.70) (-2.34,4.03) (-0.01,7.70) 0.3769 31.4233
PAC (m=5), w/ NH (-2.03,4.02) (-6.61,4.37) (-2.21,3.99) (-4.59,8.03) (-2.34,-3.69) (-2.35,4.02) (-0.01,7.68) 0.3897 31.4395
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Fig. 4. Average performance of the HOG-PC algorithm on all pairwise
registrations of the MR images for various values of the phase amplification
factor and for different low-pass filters. NH: Noise handling.

increasing the displacement between two images enables more
accurate and robust identification of the actual displacement
between the images. However, although the performance of
the proposed PAC core improves as the phase amplification
factor m increases, a point is reached after which further
increase in the value of the phase amplification factor leads
to deterioration of the results. The performance degradation
of the PAC core for large values of the phase amplification
factor m is attributed to not only the magnified phase noise
that corrupts the discrete cross-correlation function butalso
the drop of the magnitude of the cross-correlation peak that
inhibits its detection and accurate estimation.

As far as the noise handling term is concerned, we observe
that the phase difference blurring has a beneficial effect on
the sub-pixel accuracy of the estimated motion vectors. More
specifically, the metric of PSNR increases especially for larger
values of the phase amplification factor, since in these cases
phase noise is present in larger quantities. Furthermore, the
metric of mean squared error (MSEMV ) drops for small
values of the phase amplification factor, although this is not
the case for larger values of the phase amplification factor
m. The PAC core with the noise handling term achieves the
best performance, regarding the metric ofMSEMV , for m=2
with a drop by 0.5% with respect to the same method without

the noise handling term and an even larger drop of 8.8% with
respect to the PC core. As a result, the proposed noise handling
term manages to successfully suppress the noise that corrupts
the phase difference between two compared images.

Fig. 5 presents the average values ofMSEMV and PSNR
that the tested sub-pixel image registration algorithms achieve
over all pairwise registrations among the MR images and for
various values of the phase amplification factorm. It can
be noticed that form = 2 all tested algorithms achieve
the smallest value ofMSEMV and the highest PSNR. An
exception is the algorithm of Foroosh that achieves slightly
worse results than the case ofm = 0. However, the algorithm
of Foroosh achieves the optimal performance form = 3,
showing that the use of the PAC core, instead of the standard
PC core is beneficial for this algorithm too.

Fig 6 presents the average performance of the tested
methodologies for various values of the phase amplification
factor m in the case that the MR images are embedded
with noise. As it is expected, the average performance of the
tested sub-pixel image registration algorithms deteriorates as
the noise embedded on the images increases. This happens
because noise corrupts the images and poses challenges to
their correct matching by the PC or PAC core. However, the
performance degradation is significantly suppressed with the
use of the proposed PAC core with the noise handling term
and large phase amplification factors. More specifically, for
the highest level of noise, the errorMSEMV drops by over
168% (from 10.727 to 4.001) and the PSNR is increased by
14.2% (from 19.525 to 22.299 dB) in the cases that the PC
core (m = 0) and the PAC core withm = 5 are employed
respectively. These results reveal one of the most significant
traits of the PAC core, which is its ability to magnify the
relative motion between two compared images, while it only
translates the additive noise of the images. Therefore, the
motion magnification enables the PAC core to more reliably
and robustly estimate the shift between two images even in
the presence of noise, which leads to improved robustness
of all tested motion estimation algorithms when the proposed
PAC core with increased values of the amplification factor are
employed.

Finally, Table II compares the performance of the three best
frequency-based motion estimation algorithms among those
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TABLE II
PERFORMANCE OF BEST MOTION ESTIMATION ALGORITHMS WITHPCAND PAC CORES FOR ALL PAIRWISE COMBINATIONS OFMR IMAGES

Image Pairs
Method Ground truth Xiaohua [16] Ren [10] HOG-PC [29]

m=0 m=2 m=0 m=2 m=0 m=2
[1,2] (-2.40,4,00) (-2.03,4.00) (-2.06,4.01) (-2.09,4.02) (-2.06,4.03) (-2.04,4.02) (-2.05,4.03)
[1,3] (-4.80,8.00) (-4.25,7.99) (-4.27,8.00) (-4.34,8.01) (-4.26,8.03) (-4.23,8.01) (-4.28,8.01)
[1,4] (-7.20,4.32) (-6.64,4.33) (-6.62,4.32) (-6.58,4.38) (-6.61,4.34) (-6.66,4.30) (-6.62,4.34)
[1,5] (-7.20,12.00) (-6.67,12.02) (-6.64,12.00) (-6.59,12.08) (-6.63,12.03) (-6.68,12.03) (-6.63,12.03)
[2,3] (-2.40,4.00) (-2.20,3.99) (-2.21,3.99) (-2.27,3.96) (-2.17,3.99) (-2.17,3.98) (-2.22,3.98)
[2,4] (-4.80,0.32) (-4.57,0.30) (-4.53,0.28) (-4.54,0.36) (-4.56,0.31) (-4.59,0.27) (-4.56,0.31)
[2,5] (-4.80,8.00) (-4.59,8.00) (-4.55,7.99) (-4.54,8.01) (-4.57,8.01) (-4.60,8.00) (-4.58,8.00)
[3,4] (-2.40,-3.68) (-2.35,-3.69) (-2.35,-3.68) (-2.40,-3.65) (-2.33,-3.66) (-2.29,-3.73) (-2.34,-3.67)
[3,5] (-2.40,4.00) (-2.39,3.99) (-2.34,3.99) (-2.41,4.00) (-2.36,4.01) (-2.31,4.01) (2.35,4.02)
[4,5] (0.00,7.68) (-0.04,7.71) (-0.01,7.70) (-0.02,7.64) (0.00,7.70) (-0.01,7.74) (-0.01,7.69)

MSEMV 0 0.358 0.366 0.389 0.373 0.375 0.364
PSNR (dB) – 31.412 31.422 31.477 31.433 31.363 31.444
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Fig. 5. Average performance of the tested sub-pixel image registration
algorithms on all pairwise registrations of the MR images for various values
of the phase amplification factor.

tested as far as the metrics ofMSEMV and PSNR are
concerned and for all pairwise MR image registrations. It
can be concluded that the proposed PAC core improves either
the metric ofMSEMV or the metric of PSNR for all three
best motion estimation algorithms, thus providing a beneficial
effect on their performance. Moreover, the introduction ofthe
novel PAC core to the HOG-PC algorithm, which is considered
one of the most accurate state-of-the-art motion estimation
techniques according to [29], improves both the metrics of
MSEMV by 2.9% and PSNR by almost 0.26% with respect
to the same algorithm employing the standard PC core.
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Fig. 6. Average performance of the tested sub-pixel image registration
algorithms on all pairwise registrations of the noisy MR images for various
values of the phase amplification factor.

B. Experimentation with video sequences

As far as the video sequences are concerned, the well-
known akiyo, container, flower, mobilecalendar and waterfall
are used [37]. The first frames of the aforementioned video
sequences are depicted in Fig. 7. The tested motion estimation
algorithms are evaluated on these video sequences by applying
block-based motion estimation. This means that each frame is
divided in non-overlapping blocks of sizes 16×16, 32×32 and
64×64 pixels and the local motion compensated estimation
error is evaluated for each block over all sequences.

We tested all motion estimation algorithms for various
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(a) (b) (c) (d) (e)

Fig. 7. The first frames of the video sequences akiyo, container, flower, mobilecalendar and waterfall used in our evaluation process presented from left to
right.
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Fig. 8. Performance of (a) Foroosh, (b) PC+Quad, (c) Xiaohua, (d) Ren, (e) HOG-PC and (f) PC+Gaussian motion estimation algorithms averaged over all
video sequences. The relationship between the phase amplification factorm and the block size is also depicted.

values of the phase amplification factorm over all video
sequences for the first 50 frames and for various block sizes.
The results expressed as PSNR and measured in dB are
presented in Fig. 9. From Fig 9 a few conclusions can be
drawn. Firstly, one may notice a consistent pattern as far as
the effect of the phase amplification factor on the metric of
PSNR is concerned. More specifically, PSNR improves as
the phase amplification factor increases but a drop in PSNR
is noticed when the amplification factor exceeds a certain
threshold. The deterioration of the performance of the motion
estimation algorithms is attributed to both the amplified phase
noise and the drop in the magnitude of the cross-correlation
peak, similarly to the experimentation with the MR images.

However, in the case of block-based motion estimation,
another factor affects the sub-pixel accuracy of the motion
estimation algorithms. As we mentioned in Section III-D, the
cross-correlation peak is shifted because of the employment
of the proposed PAC core. This shift did not play a significant
role during the experimentation with the MR images as the
block had the size of the entire image and the true motion
was too small compared to the size of the block. In the
experimentation with the video sequences, the block size is
quite small and thus comparable to the true motion between

the video frames. As a result, an excessive shift of the
cross-correlation peak may move it outside of the borders
of the block where it should be found. If that happens, the
correct cross-correlation peak is circularly wrapped around
the image block and the estimated motion vector does not
correspond to the true motion between the compared image
blocks. Additionally, the magnified motions cause a greater
reduction of the overlapping area between smaller rather than
larger image blocks. These conclusions are backed up by the
fact that the threshold over which the performance of the
motion estimation algorithms deteriorate is getting larger as
the block size increases. Therefore, given that larger blocks
are considered, there is space for the employment of larger
phase amplification factors.

Furthermore, irrespectively of the video sequence and the
block size, almost all sub-pixel motion estimation algorithms
are improved when the proposed PAC core with small or
mediocre phase amplification factors is employed and this
performance improvement is enhanced when larger block sizes
are considered for local motion estimation. Figure 8 depicts
the relationship between the phase amplification factor and
the image block size for each of the tested motion estimation
algorithms. The performance of the algorithms is averaged
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Fig. 9. The PSNR values, measured in dB, for all tested algorithms, various values of the phase amplification factor and blocks of size 16×16, 32×32 and
64×64 for the video sequences akiyo, container, flower, mobilecalendar and waterfall.

over all video sequences. Moreover, Table III presents the
PSNR values of all tested algorithms averaged over all video
sequences when the PC and the PAC cores are employed. The
value of the phase amplification factorm that is mentioned
next to the corresponding block size corresponds to the value
that achieves the optimal average performance. The results

of Table III verify that the motion estimation algorithms can
achieve optimal performance for larger phase amplification
factors when larger block sizes are considered. More specif-
ically, a comparison between the PC and PAC cores shows
that the novel PAC core provides an average improvement in
the metric of PSNR by 2.48%, 6.04% and 2.98% when blocks
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TABLE III
PSNR,MEASURED IN DB, OF MOTION ESTIMATION ALGORITHMS THAT EMPLOY EITHERPCOR PAC CORE WITH (W/) AND WITHOUT (W/O) THE NOISE

HANDLING TERM (NH) AVERAGED OVER ALL VIDEO SEQUENCES

Block size
Method

Foroosh PC+Quad Xiaohua Ren HOG-PC PC+Gaussian

16×16 (m=0) 32.096 28.882 30.023 28.866 30.078 28.628
16×16 (m=2) w/o NH 31.811(-0.89%) 28.745(-0.47%) 30.390(+1.22%) 28.773(-0.32%) 30.136(+0.19%) 28.745(+0.41%)
16×16 (m=2) w/ NH 32.024(-0.22%) 29.853(+3.36%) 31.263(+4.13%) 29.881(+3.52%) 30.646(+1.89%) 29.789(+4.06%)
32×32 (m=0) 31.667 30.003 30.567 29.909 31.021 29.248
32×32 (m=4) w/o NH 32.281(+1.94%) 29.174(-2.76%) 31.011(+1.45%) 29.207(-2.35%) 31.711(+2.22%) 29.188(-0.21%)
32×32 (m=4) w/ NH 33.196(+4.83%) 31.520(+5.06%) 32.499(+6.32%) 31.571(+5.56%) 33.639(+8.44%) 30.356(+3.79%)
64×64 (m=0) 32.779 31.843 32.440 32.195 32.541 31.262
64×64 (m=5) w/o NH 33.390(+1.86%) 32.709(+2.72%) 32.979(+1.66%) 32.770(+1.79%) 33.114(+1.76%) 32.728(+4.69%)
64×64 (m=5) w/ NH 33.641(+2.63%) 33.143(+4.08%) 33.228(+2.43%) 33.189(+3.09%) 33.416(+2.69%) 33.084(+5.83%)

TABLE IV
COMPUTATIONAL COMPLEXITY IN MSEC OF MOTION ESTIMATION

ALGORITHMS EMPLOYING EITHERPCOR PAC CORE WITH (W/) AND
WITHOUT (W/O) THE NOISE HANDLING TERM (NH) FOR IMAGE BLOCKS

OF SIZE256× 256.

Algorithm
Method

PC PAC w/o NH PAC w/ NH

Foroosh 6.4 7.9(+23.44%) 11.8(+84.38%)
PC+Quad 7.2 8.7(+20.83%) 12.6(+75%)
Xiaohua 74.3 75.8(+2.02%) 79.7(+7.27%)
Ren 6.2 7.7(+24.19%) 11.6(+87.1%)
HOG-PC 8.8 10.3(+17.05%) 14.2(+61.36%)
PC+Gaussian 7.8 9.3(+19.23%) 13.2(+69.23%)

of size 16×16, 32×32 and 64×64 are employed respectively.
Moreover, Table III verifies the consistent improvement in the
values of PSNR when the noise handling term is applied in
the PAC core.

C. Computational complexity

In this section, we examine and analyze the computational
complexity of the proposed PAC core. From the perspective
of computational complexity, the PAC core has to calculate a
new cross-power spectrum, as shown in Eq. 5. This procedure
initially involves the extraction of the phase difference between
the compared images, then the amplification of the phase
difference and finally the computation of the exponential term
of Eq. 5. As the PAC core directly replaces the PC core
employed by any sub-pixel motion estimation algorithm, the
computational complexity of the PAC core is irrespective of
the algorithm used for sub-pixel motion estimation. However,
in order to evaluate the computational burden of the PAC core,
we have to compare it with respect to the computational com-
plexity of the tested sub-pixel motion estimation algorithms.
All methodologies are implemented in Matlab and run on a
quad-core processor (i7-7700HQ @ 2.80 GHz) with 8 GB
of RAM. Table IV summarizes the computational complexity
of the tested sub-pixel motion estimation algorithms with and
without the PAC core for image blocks of size256× 256.

From Table IV, it can be concluded that in absolute num-
bers, the proposed PAC core does not introduce too much
computational complexity (i.e. 1.5 and 5.4 msec without and
with the noise handling term respectively). However, for fast
sub-pixel motion estimation algorithms, such as Foroosh and
Ren, the computational burden that the PAC core introduces

can be significant. Furthermore, the most computationally
expensive operation of the proposed PAC core is the noise
handling term as it includes a convolution with a Gaussian
kernel. Finally, for smaller block sizes, as the ones employed
for the video sequences, the computational complexity of the
proposed PAC core in absolute numbers can be negligible.

V. CONCLUSIONS

This paper presents a novel methodology that relies on
the magnification of motion between two compared images
to improve the accuracy and robustness of frequency-based
sub-pixel motion estimation algorithms. The proposed PAC
core is based on the notion that subtle motions can become
more reliably estimated, once magnified. The advantages of the
PAC core lie in the fact that it can be inserted in the core of
any frequency-based motion estimation algorithm and directly
substitute PC by calculating a new cross-power spectrum
and cross-correlation function, while also taking advantage
of interpolation techniques and properties of the cross-power
spectrum. In this way, the PAC core overcomes the lower
bound of accuracy of current motion estimation algorithms
by computing a new cross-correlation function that better
models the shift between the compared images prior to the
extraction of the cross-correlation peak using well-established
interpolation methods. Moreover, the proposed noise handling
term enables the suppression of the effect of noise and the
improvement of the sub-pixel motion estimation accuracy. An
analysis of the motion amplification factor is also provided,
along with the definition of a set of constraints that if violated,
the PAC core can no longer perform optimally. Experiments
with MR images and real video sequences reveal significant
improvements in the sub-pixel accuracy of the tested motion
estimation algorithms when the proposed PAC core is em-
ployed.
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