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Phase Amplified Correlation for Improved Sub-pixel
Motion Estimation

Dimitrios Konstantinidis, Tania Stathakilember, IEEEand Vasileios ArgyriouMember, IEEE,

Abstract—Phase correlation (PC) is widely employed by sev-
eral sub-pixel motion estimation techniques in an attempt @
accurately and robustly detect the displacement between twv
images. To achieve sub-pixel accuracy, these techniques oy
interpolation methods and function-fitting approaches on he
cross-correlation function derived from the PC core. Howeer,
such motion estimation techniques still present a lower baud
of accuracy that cannot be overcome. To allow room for furthe
improvements, we propose in this paper the enhancement of ¢h
sub-pixel accuracy of motion estimation techniques by empling
a completely different approach: the concept of motion magi
fication. To this end, we propose the novel phase amplified cor
relation (PAC) that integrates motion magnification betwea two
compared images inside the phase correlation part of frequecy-
based motion estimation algorithms and thus directly substutes
the PC core. The experimentation on magnetic resonance (MR)
images and real video sequences demonstrates the ability tife
proposed PAC core to make subtle motions highly distinguisable
and improve the sub-pixel accuracy of frequency-based matin
estimation techniques.

Index Terms—Phase correlation, motion magnification, image
registration, sub-pixel motion estimation

. INTRODUCTION
I MAGE registration concerns the task of estimating t

motion between two images that are related by a geom
rical transformation and is fundamental for several coreputb
vision and video processing applications. Motion comptsa

prediction is widely employed for noise reduction,

istration. In video processing, especially, motion estiora

is performed on block-based partitions of input frames. O
of the most successful techniques for dealing with motion
estimation is phase correlation that operates in the fregyue
domain [1], [2]. Phase correlation is based on the sh
property of the Fourier transform to accurately estimag t
t

displacement between two compared images. Apart from

ability to accurately localize peaks that correspond tdiapa

displacements, PC enjoys further significant propertiashs

as computational speed, robustness to uniform illuminatio

variations and insensitivity to spectral energy changes.

he

inverse Fourier transform of the cross-power spectrum)beil

a rounded version of the components of the true displacement
vector. However, the ability to provide sub-pixel accueacis
critical for the performance of image registration teclugs

that are based on the PC core [3]. Sub-pixel accuracy is gnainl
achieved through the use of interpolation techniques thatfi
analytical function (e.g. a polynomial) to the neighbortiad

the maximum of the discrete cross-correlation function [4]
[5].

However, since the smallest unit of counting image di-
mensions is the pixel, achieving the desirable sub-pixel ac
curacy is sometimes not feasible. To circumvent this proble
we propose a general mathematical framework to improve
the sub-pixel accuracy of frequency-based motion estonati
algorithms, inspired by the work in [6]. In that work, the
authors proposed the concept of motion magnification, so tha
invisible by the human eye motions become visible in videos.
Similarly, we propose in this work the magnification of matio
between two compared images. By magnifying motion, we
expect that subtle information about the displacement &etw
two images becomes well observed and computed, leading
to highly accurate cross-correlation peak extraction dn t
improved sub-pixel motion estimation. We integrate motion
agnification in the computation of phase correlation, thus
ypassing the need for initially applying motion magnifioat
between two compared images and then employing phase

. . : S Qorrelation for the computation of sub-pixel displacement
compression, image super-resolution and medical image r

rthermore, we propose a phase blurring technique so that
the noise present in the phase of the frequency signals is

Wminished.

Experiments with MR images and real video sequences

e performance of all tested motion estimation techniques
Wé’:\t are based on the PC core. The main contributions of this

ﬁ?ow that our proposed methodology consistently improves
f

work are listed below:

« We integrate the notion of motion magnification in the
phase correlation procedure so that subtle image displace-
ments become accurately and robustly estimated.

A significant drawback of the basic PC core, when imple- « The proposed PAC core can be integrated in any

mented in the discrete time domain, is the fact that the com-
puted displacements have integer accuracy as the coazdinat

frequency-based motion estimation technique, thus taking
advantage of interpolation methods and properties of the

of the maximum of the discrete cross-correlation functios (
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Cross-power spectrum.

« We propose an amplitude-weighted blurring of the phase
difference to circumvent problems with noise embedded
in the phase signal.

This paper is organized as follows. In Section 2, we conduct
a review of state-of-the-art sub-pixel motion estimatioatim



ods that employ phase correlation. In Section 3, we discudse to aliasing (i.e. components with small spectral maiglei
and analyze the mathematical framework behind motion maand they removed them from the shift-estimate computation.
nification and introduce our proposed PAC core. In Sectiofhe masking out of the contributions from these unreliable
4, we present experimental results to justify the contiimg spectral components, regardless of whether they occumat lo
of our work, while in Section 5 we draw conclusions arisingr high frequencies, leads to improvements in the accurfcy o
from this work. sub-pixel motion estimation. The authors in [13] proposed a
extension of the previous method for the estimation of plana
motion. More specifically, they applied low-pass filtering o
images prior to the computation of their Fourier transform.
In this section, a brief review of state-of-the-art freqen Then, the rotation was estimated from the correlation of the
based sub-pixel image registration algorithms is presentamplitudes of the Fourier transform of images, while thédtshi
Furthermore, motion magnification techniques, along with t was calculated based on the slope of the phase difference of
way they can be exploited for accurate sub-pixel image fegife images.
tration, are described. Girod was the first to theoreticaiig Hoge in [14] observed that a “noise-free” cross-power spec-
experimentally analyze the significant performance improvtrum is rank-one. Thus, he proposed recasting the problem of
ment of sub-pixel motion estimation for image registrafi8h  sub-pixel motion estimation as the problem of finding thekran
Since then, a lot of studies have been made in the directione approximation of the computed cross-power spectrum.
of achieving robust and accurate sub-pixel motion estwnati To achieve this, he employed singular value decomposition
Foroosh et al. in [7] came up with the observation that imand identified the left and right dominant singular vectors
ages with sub-pixel shifts originate from up-sampled gdi that corresponded to the vertical and horizontal motioftshi
displaced by integer shifts. The authors noticed that tbeser respectively. The authors in [15] proposed an extensiofh4d [
power spectrum of downsampled images does not conta introducing a masking operator that projects the cross-
only a single peak, but rather several coherent peaks thalver spectrum into the space of correlation functions that
are adjacent to each other. These peaks correspond to rémult from a certain range of translations, thus attengati
polyphase transform of a filtered unit impulse centered #ie noise associated with the estimation of the phasesdhyft
the point of registration. The derived filter has a rectaagullinear regression, especially when that noise is additiliéev
frequency response and it is a 2D Dirichlet kernel that cabaussian noise. Tong et al. in [16] proposed a more robust
be closely approximated by a 2D sinc function, leading to thextension to the Hoge algorithm by replacing the least4sgjua
development of a closed-form solution for the sub-pixeh$ra line fitting with the Random Sample Consensus (RANSAC)
lation estimation. Zhou and Yu employed the same observatiaigorithm that better handles the problem of outliers. Dong
that the signal power of downsampled images concentrate ieteal. in [17] proposed a method for computing the rank-one
few coherent peaks to develop a real-time PC method that egproximation of the cross-power spectrum by assuming its
be applied to high-resolution images [8]. Balci and Foroimsh noise can be represented by a mixture of Gaussian distigiti
[9] established the exact relationship between the coatiau and achieved accurate image registration results.
and the discrete phase difference of two shifted images andrhe effect of noise on image registration was also in-
showed that the discrete phase difference is a 2D sawtoe#stigated in a series of works dealing with blur-invariant
signal. Sub-pixel motion estimation can then be computed pyiase correlation. More specifically, Ojanvisu and Heikkil
counting the number of cycles of the phase difference matiix [18] proved that by taking any even power (i.2n) of the
along each frequency axis and robustly estimating the nafermalized Fourier transform of an image, they can achieve
integer fraction of the last cycle. invariance to centrally symmetric blur, such as motion dr ou
On the other hand, Ren et al. in [10] proposed the def-focus blur, as this type of noise has constant phase. The
composition of the 2D translation to two 1D motions. As aven power of the normalized Fourier transform is trandlate
result, only 1D Fourier transform is required to estimate thto the multiplication of the phase shift between the origina
corresponding motion. The first two highest peaks from 18nd the blurred images by the factor2f. Later, Pedone et al.
correlation are linearly interpolated for sub-pixel a@my. generalized the blur-invariant phase correlation assgrttie
Takita et al. in [11] computed an analytical model that déslurring function exhibits rotational symmetry [19] andtbo
scribes the peak of the cross-power spectrum of two slightlgtational and axial symmetries [20]. Interestingly, therkv
shifted images and how to fit this model to the data. Howevém, [18] is closely related to ours as the authors in that paper
their method is limited to detect only small shifts. In thesea employed phase shift amplification by even powers to improve
that the shift is large with respect to the image size, thelpix robustness to centrally symmetric blur, while we study in
level shift should be initially determined before sub-iraag this work a more general phase shift amplification in order
are extracted from the original images so that the tramsiatito improve the sub-pixel accuracy of frequency-based motio
of these sub-images is small enough for the proposed modstimation algorithms.
fitting technique. Several methodologies that incorporate robust features ex
Stone et al. in [12] was one of the first to investigatgacted from the compared images were also proposed. More
the effect of noise and aliasing in the accuracy of sub-pixepecifically, Zhonke et al. in [21] proposed the computatdn
motion estimation methods. They proposed the detection rotation between the compared images by employing Hough
the Fourier components that are unreliable estimatorsiétf shransform in the computed image edges. After the images are
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de-rotated, the translation is identified using phase taifom. can assist in the improvement of the image registrationltesu
Maik et al. in [22] proposed the detection of Harris corndi], [9], [14], [33]. Unfortunately, these methods have wéw
features in order to calculate the global motion betwedround of sub-pixel accuracy that cannot be overcome [34].
images. After the geometric transformation of images, lloc&his work is the first that proposes a different approach o th
motion is estimated using phase correlation in image bloclgoblem of sub-pixel motion estimation by employing motion
Cheng and Menq, on the other hand, proposed a real-timagnification. Motion magnification was initially employed
image registration algorithm by employing two continuoum [35], when the authors proposed the magnification of a
spatial variables to measure the shift of the image and bhéld band-pass filtered video in order to reveal subtle periddica
continuously shifting image model [23]. As the variables athanges that were not observable by the human eye. The video
the model are continuous in spatial domain, pixel-levelgma magnification approach was later improved by Wadhwa et al.
registration is unnecessary, thus achieving real-timeking in [6], when the authors proposed the transformation of wide
of the target. Park et al. in [24] proposed the identificatioinames in the Fourier domain, their decomposition into imag
and matching of a number of affine-invariant points in thsub-bands by employing complex steerable pyramids and the
spectrum of the source and target images and the computafimase amplification of the image sub-bands in order to magnif
of the parameters of affine transform using spectral alignitmelocal motions. The authors claimed that their approach ieemo
Argyriou and Vlachos in [25] proposed a different solutiomobust to noise and can lead to larger amplification factoas t
to the sub-pixel motion estimation problem by employinthe method of [35].
gradient information. The sub-pixel shifts were computgd b Inspired by the concept of motion magnification, we propose
maximizing the cross-correlation between the spatial igrdd a novel approach that improves the accuracy of sub-pixel
information derived from the pair of images. The proposedotion estimation techniques. Our motivation lies in thidfe
gradient correlation (GC) algorithm is proved to be veryuaccthat amplifying sub-pixel shifts can lead to a better estiom
rate, robust to the effect of noise and outperforms frequen®f their true values. Since all interpolation techniques ar
domain motion estimation methods. Later, the same authagplied on a specific cross-correlation function, there is a
extended the GC algorithm by computing scaling and rotatitound on the accuracy of the detected peak based on how
using log-polar Fourier representations of the compley-graaccurately the actual cross-correlation function can rhode
level edge maps of images prior to the sub-pixel motion esthe true peak. In other words, the cross-correlation func-
mation using normalized gradient correlation [26]. Moregv tion dictates the lower bound of accuracy that interpotatio
the inference of the sub-pixel shifts by employing the leftia techniques can achieve since if the cross-correlationtiumc
right dominant singular vectors of the 2D GC matrix priocannot adequately describe the shift, no interpolatiomrtiegie
to their modeling using a generic kernel that can adapt itsn improve the shift estimation. Our approach manages to
shape to fit the available correlation samples was proposmdrcome this problem by computing a new cross-correlation
in [27]. A quad-tree GC algorithm that replaces block-baséddnction based on magnified motions. We show in this work
motion estimation with an iterative decomposition of a lBlocthat the same interpolation techniques can achieve better
to four quadrants based on the resulting motion compensagstimations of the true motions on the new cross-correlatio
prediction error was also proposed in [28]. function rather than on the initial one, which is an indioati
Recently, Argyriou and Tzimiropoulos in [29] proposedf the improved shift modeling abilities of the new cross-
HOG-PC, a frequency-domain image registration technigeerrelation function. In this way, we bypass the problem of
based on histograms of oriented gradients (HOG). The pmbefining powerful interpolation techniques or searching fo
posed HOG representation is very dense since a descrifgtarss-power spectrum properties that we can take advantage
is computed for each pixel and it can thus be considerefland concentrate on how robustly the new cross-correlatio
as a multi-channel block representation. The authors clafomction that models the shift between two compared images
that HOG-PC retains the orientation information and it isan be computed.
able to cope with non-overlapping regions, small defororeti
and noise, while achieving state-of-the-art sub-pixel ioTot I1l. METHODOLOGY
estimation results, especially in small-sized blocks. Yale

magnification. Finally, we introduce our proposed methedol

Copgruency. On the pther hand, Li, motivated by the obsea’- for merging phase correlation and motion magnification
vation that the classical PC method and the Lucas—Kanqﬂ%g a novel framework

algorithm exhibit strong complementary property between

convergence range and sub-pixel accuracy, proposed a two- )

stage coarse-to-fine sub-pixel image registration framewd: Phase correlation

that accurately computes rotation, scale and transla8ah [ Given an imagel4 and its temporally subsequent version
Most of the previously presented sub-pixel motion estimdg, whose relationship withl4 is described by a relative

tion methods concentrate on either proposing more powerftanslation or shift (i.e../p = Ia(z + Az,y + Ay)), the

interpolation techniques [11], [27], [32] or searching atheh- PC core attempts to accurately estimate the shift between th

tifying interesting properties of the cross-power spautthat two images. To achieve this, the PC core initially computes



the Fourier transformg’y and Fp of imagesis and Ip Phase correlation (PC)

respectively, where it holds thaFp = Fyel(Azutavw), mage 1 D> | Moo 1 [Normained Esimac
_ i Fourier power Cross- . c:z '0°r"
Afterwards, the cross power spectrum _of the compared isiag. R spoctrum ] correlation Interpolation | 5
is computed as shown in Eg. (1) and is equal to the elemel image2 — > R r
wise product of the Fourier transform of the first image anu 1
the complex conjugate of the Fourier transform of the second
image F};, normalized element-wise to ensure that all values Cross- | [ Normalized
H power Cross-
are in the rang@’ 1] spectrum = correlation
R’ r
R— Fyo FE _ e—i(Amu+Ayv) (1) Phase amplified correlation (PAC)
[Fa o Fgl

Fig. 1. A diagram of the processing stages of a general freayubased
. . motion estimation algorithm. The proposed PAC core diyeotiplaces PC
The inverse Fourier transform of the cross-power spectryfisych an algorithm by computing a new cross-power specanth cross-

gives the normalized cross-correlation= F~'{R} = §(x — correlation function, from which the peak is extracted.
Az,y — Ay). Ideally, the normalized cross-correlation is a

Dirac function with the location of its peak defining the shif

between the compared images. As a result, the shift betwgenpnase amplified correlation

the compared images can be estimated by

In this paper, we propose the novel phase amplified corre-
(Az, Ay) = arg max{r} (2) lation core that allows the magnification of motion between
(z,y) two compared images and can substitute the PC core in the
task of sub-pixel image registration. An outline of a gehera
However, noise and illumination variations can affect bOtﬁequency-based motion estimation algorithm and the m®ce
the magnitude and the location of the peak, thus posifigy stage in which, our proposed PAC core is introduced, is
difficulties in its accurate and robust extraction. Furthere, presented in Fig. 1.

since the normalized cross-correlation is a discrete fanct From Fig. 1, it can be observed that the PAC core re-

achieving highly accurate sub-pixel peak measurement eanpﬁaces PC by computing a new cross-power spectrum and

very difficult and commonly requires interpolation methods,malized cross-correlation function. The reason whyhbot
applied in the neighborhood of the detected maximum pea|§pectrum and cross-correlation are computed lies in the fac

that there are motion estimation algorithms that process th

) o cross-power spectrum directly, such as the Hoge algorithm
B. Motion magpnification [14] and we want to enable such algorithms to take advantage
z0f the proposed PAC core as well. Furthermore, we influence
interpolation techniques indirectly by feeding them witheaw
cross-correlation function that better models the trueiomot
between the compared images. As a result, our method works
complementary with interpolation techniques, assistimgnt
towards the extraction of a highly accurate and reliablssro
(3) correlation peak and therefore the computation of a motion
=Is(x+ (1 +m)Az,y+ (1 +m)Ay) estimation vector with improved sub-pixel accuracy.

. . . . . Given the definition of motion magnification and phase
which has its spatial translation magnified by a factqty e|ation, the proposed PAC core computes a new cross-
m. Applying the Fourier transform to the previously deyqer spectrum between the original imageand the motion
fined images leads the |n!t|al or reference imafe to be magnified translated onég by introducing Eq. (4) to Eq. (1)
equal t0 F4(u, v) and the imagels to be equal toFs = gng taking into consideration the complex exponentialtitien

Fa(u,v)el(AoutAyw) This means that the Fourier transforrrTem| — 1. As a result, we obtain a new cross-power spectrum
of the motion magnified imagé; is equal to

Given an imagel4(z,y), the same image translated sp
tially by a vector (Az, Ay) can be described a$p
Is(x + Az,y + Ay). The goal of motion magnification is
the synthesis of a new image,

I;B = Ig(x + mAzx,y + mAy)

F{lp} = Fp(u,v)em@eutiv)

5 * ,—im(Azu+Ayv)
=Fy (u U)ei(l+m)(Awu+Ayv) (4) ! _ Fyo FB, _ Fyo FBe ‘ Y
3 |FA ° FE | |FA o F§||e—zm(Amu+Ayv)|
This is in par with the basic Fourier transform property that = e~ "(Azutavw)gmim(Azutayy) _ o=illtm)(AzutAyv)
states that a shift in the time domain corresponds to a phase (5)

shift in the frequency domain. Thus, motion magnification in The shift between the original and motion magnified trans-
the time domain can be achieved by phase amplification in tla¢ed images is given by the location of the peak in the new
frequency domain. The phase amplification factorcontrols normalized cross-correlation’, which is the result of the
the magnitude of the motion magnification we want to achievieverse Fourier transform of the new cross-power spectrum



(b)

Fig. 2. Effect of the phase amplification facter on the cross-correlation peak. The mean squared error (M&##)een the ground truth motion vector, which
is equal to [-2.69,-6.04] and the estimated motion vectov\Milong with the magnitude of the peak are presentedu(@), MV=[-2.88,-6.01], MSE=0.036,
peak=0.729, (byn=1, MV=[-2.86,-6.03], MSE=0.03, peak=0.389, (p)=2, MV=[-2.77,-6.01], MSE=0.008, peak=0.168 and (a)=3, MV=[-2.76,4.03],
MSE=101.46, peak=0.102. A red circle is used to denote tbatiin of peak in sub-figure (d).

vector can be more robustly detected and evaluated on a
( Az Ay/) — arg max {T'} — argmax{F~{ R/}} diS(_:rete _cr_oss—correla_tion functiqn on its magnifi_ed rathan
’ (z,y) (z,y) on its original form. Finally, the improved sub-pixel acaay
= argmax{d(z — (1 + m)Az,y — (1 + m)Ay)} means that we manage to |n_d|rectly overcome the lower bound
(z,y) of accuracy that current motion estimation algorithms face
(6) by proposing more powerful interpolation techniques but by

) , , introducing a new and more reliable cross-correlation fionc
However, the computed translatiqidz , Ay ) does not existing interpolation techniques.

correspond to the true translation between the original and
translated images since motion magmﬂc_atlon is appll_ed_a TB_ Analysis of phase amplification factor
true translation is computed as follows in order to eliménat

the effect of the phase amplification facter Unfortunately, there are limitations on the values the phas
amplification factorm of the proposed PAC core can get.

Az Ay Firstly, an immoderate shift of the location of the cross-

(Az, Ay) = Trm' itm (7)  correlation peak can transpose the peak outside of the tsorde

of the image or image block that is used for the motion
Eq. (7) identifies the cross-correlation peak when sublpixestimation. This can lead to the peak being circularly weapp
accuracies are considered. In the case that we refer to- palound the image or image block and thus Eg. (7) can no
level accuracies, the rounded version of Eq. (7) holds. THenger be employed for the estimation of the true motion
means that in pixel-level accuracies the true translafianis vector as shown in Fig. 2(d), where the motion vector cannot
computed asAz = ||Az /(1 + m)| and similarly for Ay. be reliably computed and the MSE is tremendously increased.
One may notice that whem is equal to 0, the proposedSecondly, by magnifying the motion between two images,
PAC core boils down to the classical PC core. As a resuthere is the risk of unintentionally magnifying the noise
the PAC core can be considered as a general PC core darbedded in the phase of the images and noise magnification
m # 0. A significant advantage of the proposed PAC core san severely affect the accuracy of sub-pixel motion estima
that it can directly substitute the PC core inside any fregye tion techniques. Finally, motion magnification increases t
based sub-pixel motion estimation technique without thednedissimilarity between the two compared images and thus the
of computing the motion magnified image. The one and onlbncertainty of phase correlation about the fact that eacyen
parameter that affects the performance of the PAC coreissa shifted version of the other image. This uncertainty is
the phase amplification facton. Larger phase amplification translated to a drop in the strength of the cross-corralatio
factors lead to larger motion magnifications and thus largpeak, which in turn means that the difference in value betwee
shifts of the cross-correlation peak, as it is shown in Fig. 2the peak and the other pixels of the discrete cross-coioalat
The PAC core allows subtle motions to become more easflynction is getting smaller. A lower cross-correlation kea
recognizable and more accurately extracted when magnifiéates the risk that it may not be detected and recovered among
This effect can be observed in Fig 2 since for larger phatiee local maxima of the discrete cross-correlation fumc{aee
amplification factorsn, the peak is slightly more spread to itg-ig. 2(d)).
neighborhood rather than concentrated on a single pixehand An excessive shift of the cross-correlation peak can be
drop in the mean squared error (MSE) between the computadided given an indication of the expected magnitude of
and true motion vectors is observed. The drop in MSE meatfie true motion vector. Given an expected motion vector
that the increased spread of the cross-correlation pedtasgAx, Ay), the value of the phase amplification facter is
the tested sub-pixel motion estimation algorithms to morestricted by the fact that the magnified motion vector canno
accurately identify the true displacement between the @sagvercome the boundaries of the image block, where the PAC
and thus the new cross-correlation function, proposed by tbore is applied. Given an image block of sizé x N, the
PAC core, can more reliably model the true motion betwegihase amplification factor is bounded by the following set of
the compared images. As a result, we deduce that a motinaqualities



algorithms if magnified. The advantage of applying phase

(14+m)Az < M amplification in the frequency domain is that the additive
]%7 (8) noise present in the images is not magnified, but translated.
(1+m)Ay < > More specifically, given an imagé, a Gaussian distributed

additive noiseN (0, o) and the linear properties of the Fourier
The inequalities of Eq. 8 can also be written in a morgansform, the Fourier transform of the motion magnified

compact form as shown below, allowing the direct computetiomagel’ = I + N (0, o) is given by

of an upper boundary for the phase amplification factor

'\ _ im(Azu+Ayv) o
e mm( M N 1) o F{I'} = emBautdm) (F(1y 4 FIN(0,0)})  (11)

— 1, —
20z 28y Eq. (11) states that a Gaussian distributed additive noise
The expected motion vector is of course not known bés translated when motion magpnification is applied. Althoug
forehand, however employing the proposed PAC core withe additive noise embedded in an image is not magnified
m = 0 (i.e., PC core) can give an accurate estimate of théen phase amplification is applied, this is not the case for
expected motion vector before applying larger amplificatidhe noise that is embedded in the phase of an image. During
factors. Another alternative can be a pre-registrationhef tphase amplification, any noise present in the phase signals
two compared images in order to restrict the motion withity amplified and it can lead to inaccuracies in the sub-pixel
sub-pixel accuracies (i.eAz and Ay smaller than 1). An motion estimation. Additionally, the phase amplificaticanc
additional limitation of the phase amplification factorides cause abrupt changes in the phase difference due to phase
in the drop in the strength of the cross-correlation pealhas tvrapping. To alleviate the effect of noise, we apply low-
phase amplification factor increases. This drop is atteithutpass filtering as a simple and efficient way to increase the
to the fact that the shifted image resembles less the otigiségnal-to-noise ratio of a signal. To this end, we propose th
image as their overlap decreases. A large decrease of Bigring of the phase difference by employing a Gaussian
overlap between two compared images makes the PAC cégsnel. The phase blurring is also based on the amplitude of
less confident about the similarity between the images aHte cross-power spectrum as the phase signal in regions of
therefore their displacement. Given the fact that we want l@w amplitude is not reliable for shift estimation [12]. Meor
maintain a significant overlap between two compared imagégecifically, given the phase difference between the coetpar
thus enabling a reliable estimation of their displacement,imagesA¢ = Azu + Ayv, the blurred phase difference is
new restriction on the value of the phase amplification factgiven by
can be set. For an image block of si&& x N and a shift of (AR + K.
(Az, Ay), the phase amplification facter is bounded by the A¢g = Rl P (12)
following inequality |R| + Ke
where |R| represents the amplitude of the complex cross-
Agveriap > ainAp = power spectrum an& . is a Gaussian kernel. The Gaussian
(10) blurred phase differencé\¢s replaces the original phase
(M = (1 +m)|Az)(N — (1 +m)|Ay]) = anMN differenceA¢ = Azu+Ayv in Eq. (5) before the computation
where Ayueriap @nd Ap denote the overlapping area beof the shift between the compared images. As we show in the
tween the original and shifted image blocks and the area @fperimental section, we consistently get more accuratie an
the image block respectively. The overlap ratjp determines robust to noise results, when the proposed noise handling te
how large the overlapping area between the shifted imaigeemployed.
blocks should be. In order to have a reliable and accurate
estimate of the true displacement, the overlap ratio shbald IV. EXPERIMENTS

at least 0.5. Higher values of the overlap ratio allow evememo 1o evaluate and illustrate the efficiency of the proposed
distinct cross-correlation peaks at the expense of ligite  paAC core, a comparative study is performed with state-e#-th
value of the phase amplification factor, and therefore the stprt sub-pixel motion estimation techniques that employ the
pixel accuracy of motion estimation techniques. Eqs. (3 amc core. More specifically, the PC core [1] with quadratic
(10) can be considered as hard and soft constraints resgigcti (pc+Quad) and Gaussian (PC+Gaussian) interpolation meth-
on the value of the phase amplification factor of the proposggs [36], Foroosh [7], Ren [10], Xiaohua [16] and HOG-PC
PAC core. Finally, the noise in the phase of the images cgiy] motion estimation algorithms are considered. Bothgesa

be suppressed by employing phase blurring techniqueseln {ith ground truth motion vectors and video sequences ar use

following section, we propose such a phase blurring teaf@idfor the performance evaluation of the tested sub-pixel amoti
and incorporate it in the proposed PAC core. estimation algorithms.

E. Noise handling A. Experimentation with MR images

An aspect that should be taken into account when magni-A set of 5 MR images is available by the authors in [14] for
fying the motion between images is noise. Noise can signithe evaluation of the sub-pixel motion estimation algorih
cantly affect the performance of sub-pixel motion estioati (see Fig. 3). The MR images depict a grapefruit that was



In Eq. (13), u and v represent the ground truth and
estimated motion vectors respectively, while corresponds
to the number of blocks that an image is divided before the
computation of the local motion vector for each block. Far th
MR images, the whole image of sizZ56 x 256 consists of
a single block, but for the video sequences presented in the
next section, the video frames are divided in smaller blocks
Finally, for an imagel of dimensionsM x N and its motion
compensated predictioh,c, PSNR is computed as shown in

Eq. (14).
@ = g. (14)
PSNR= 10/0g(~222_)
IS E,
) M N (14)
Where M SE; = ST ZZ(I(:c,y) — Inc(z,y))?
rx=1y=1

The M SE; evaluates the similarity between the original
and the motion compensated images and it can be considered
as a measure of the visual quality of the motion compensa-
tion. The initial experiments examine the effect of the ghas

(d) amplification and the noise handling terms on the 10 pairwise
Fig. 3. Two MR images (a),(b) without noise and (c) image (&hwoise '€gistrations that the 5_MR images form. The parameter thgt
level 0.01 and (d) image (b) with noise levél.05. affects the noise handling term of our proposed PAC core is

the Gaussian kernel and we fix it to be of sfize5 pixels with
a standard deviation of 0.4. The reason we choose such values

acquired using a production quality Fast Spin Echo sequensén order to have a small blurring effect and therefore we do
on a GE (Faireld, CT, USA) Signa Lx 1.5 Tesla MRI scannenot allow a pixel to be significantly affected by its neighingr
The images have siz®56 x 256 and they cover a 1@m? pixels (i.e. the sum of the kernel weights that corresporttéo
Field of View (FOV) corresponding to a 0.062bm square neighboring pixels contributes by only %o the final blurred
per pixel. The 5 images depict the fruit at different positio value). Furthermore, Table | summarizes the performance
in the FOV and they were acquired by manually moving thef the PAC core with and without the noise handling term
scanner table. versus the PC core when the quadratic interpolation method

Furthermore, we analyze the sub-pixel accuracy of th@employed. The reportet SEy and PSNR correspond to
motion estimation algorithms under the effect of noise.sThihe average values over all pairwise image registrations.
is achieved by embedding the MR images with additive To further support the use of the Gaussian noise handling
white Gaussian noise of zero mean and variance in the rarigem, we experiment with alternative low-pass filters, sash
[0.005 — 0.05] with a step 0f0.005. An example of the effect average and median filters. Fig. 4 presents the average PSNR
of noise in the MR images is presented in Fig. 3. The 5 Mperformance of the HOG-PC algorithm, which is considered
images yield 10 possible pairwise registrations and thempto the optimal motion estimation algorithm out of those tested
truth translations are available. this work on all pairwise registrations of the MR images. The

The evaluation of the motion estimation algorithms is pefXPeriments reveal that the Gaussian filter slightly odgers
formed using the metric of mean squared error. Since grouti¢ other tested filters especially for larger values of the
truth is available, Eq. (13) is employed for the computatbn @mplification factor, showing its ability to suppress theagé
MSE of the motion vectors\( SExv). As it is expected, the N0ise more effectively than the other testgd filters as theeno
most accurate sub-pixel motion estimation algorithm stiouincreases. As far as the sudden changes in the phase spectrum
produce the lowesb SEy in the MR images. Other thandue to phase wrapping is concerned, we observe that they
the metric of MSE, we also employ the peak signal-to-noié® not play a significant role to the performance of the PAC
ratio (PSNR) of the motion compensated prediction error fPre, especially for small and mediocre values of the phase
order to assess the performance of the motion estimatidfplification factor since the motion estimation accuraty o
algorithms. According to [14], ground truth measuremeats cthe HOG-PC algorithm improves. Moreover, we observe that
be significantly biased based on the image acquisition metR€ use of a median filter that is able to remove the “salt-and-

ods and thus PSNR can provide more unbiased performaR&@per” effect that phase wrapping may cause is not berleficia
evaluation. to the performance of the PAC core.

It can be observed that the PAC core achieves better
performance than the PC core for all tested values of the
1 & 2 phase amplification factor with respect to the measures thf bo
MSEyy = = i — Vi 13 : o -
MV =g ; i =il (13) MSFEyv and PSNR. This verifies our initial statement that



TABLE |
PERFORMANCE OFPCAND PAC CORES WITH QUADRATIC INTERPOLATION AND WITH(W/ NH) AND WITHOUT (W/O NH) NOISE HANDLING FOR
VARIOUS VALUES OF THE PHASE AMPLIFICATION FACTOR™T ON A FEW MR IMAGE PAIRS

Image Pairs

Method [1,2] [1,4] [2,3] [2,5] [3.,4] [3,5] [4,5] MSEyy  PSNR (dB)
Ground Truth (-2.40,4.00) (-7.20,4.32) (-2.40,4.00) (-4.80,8.00) 467-3.68) (2.40,4.00) (0.00,7.68)  0.0000 =
PC (-2.03,4.01) (-6.73,4.25) (-2.13,3.98) (-4.65,8.00) .18-3.78) (-2.27,4.00) (-0.01,7.78)  0.3935 31.2043

PAC (m=1), w/o NH | (-2.04,4.01) (-6.60,4.35) (-2.17,3.98) (-4.558.00) .3®-3.63) (-2.38,4.01) (0.00,7.66)  0.3810 31.4250
PAC (m=1), w/ NH | (-2.04,4.01) (-6.73,4.35) (-2.18,3.98) (-4.55,8.00) .3®-3.63) (-2.38,4.02) (0.00,7.67)  0.3805 31.4287
PAC (m=2), wlo NH | (-2.04,4.02) (-6.63,4.34) (-2.23,3.98) (-4.58,8.00) .34-3.66) (-2.34,4.01) (0.00,7.69)  0.3606 31.4406
PAC (m=2), w/ NH | (-2.04,4.02) (-6.63,4.33) (-2.26,3.99) (-4.58,8.01) .3®2-3.66) (-2.35,4.01) (0.00,7.69)  0.3587 31.4354
PAC (m=3), w/o NH | (-2.04,4.02) (-6.62,4.34) (-2.21,3.98) (-4.56,8.01) .312-3.68) (-2.34,4.01) (-0.01,7.71)  0.3795 31.4321
PAC (m=3), w/ NH | (-2.05,4.03) (-6.62,4.35) (-2.22,3.98) (-4.56,8.01) .312-3.67) (-2.33,4.01) (-0.01,7.70)  0.3710 31.4366
PAC (m=4), w/o NH | (-2.04,4.02) (-6.62,4.36) (-2.21,3.98) (-4.58,8.00) .372-3.67) (-2.35,4.03) (-0.01,7.69)  0.3754 31.4313
PAC (m=4), w/ NH | (-2.05,4.03) (-6.61,4.34) (-2.20,3.98) (-4.57,8.00) .3&-3.66) (-2.35,4.03) (-0.02,7.69)  0.3779 31.4371
PAC (m=5), w/o NH | (-2.04,4.01) (-6.64,4.33) (-2.20,3.99) (-4.56,8.01) .3®-3.70) (-2.34,4.03) (-0.01,7.70)  0.3769 31.4233
PAC (m=5), w/ NH | (-2.03,4.02) (-6.61,4.37) (-2.21,3.99) (-4.59,8.03) .34-3.69) (-2.35,4.02) (-0.01,7.68)  0.3897 31.4395

315 the noise handling term and an even larger drop ofBuéth
respect to the PC core. As a result, the proposed noise hgndli
term manages to successfully suppress the noise that t®rrup
the phase difference between two compared images.

Fig. 5 presents the average valueshid E,ry and PSNR
that the tested sub-pixel image registration algorithnisexe
over all pairwise registrations among the MR images and for
various values of the phase amplification factar It can
be noticed that form = 2 all tested algorithms achieve
the smallest value of\/ SFE);y and the highest PSNR. An
exception is the algorithm of Foroosh that achieves shghtl
worse results than the casesaf= 0. However, the algorithm
of Foroosh achieves the optimal performance for= 3,

Fig. 4. Average performance of the HOG-PC algorithm on alrvae showmg Fhat the _u_se of the. PAC cpre, instead of the standard
registrations of the MR images for various values of the pramplification P C core is beneficial for this algorithm too.
factor and for different low-pass filters. NH: Noise handlin F|g 6 presents the average performance of the tested
methodologies for various values of the phase amplification
factor m in the case that the MR images are embedded
increasing the displacement between two images enables meith noise. As it is expected, the average performance of the
accurate and robust identification of the actual displacemeested sub-pixel image registration algorithms detetéwas
between the images. However, although the performancetioé noise embedded on the images increases. This happens
the proposed PAC core improves as the phase amplificatisecause noise corrupts the images and poses challenges to
factor m increases, a point is reached after which furtheéheir correct matching by the PC or PAC core. However, the
increase in the value of the phase amplification factor leapgerformance degradation is significantly suppressed hi¢h t
to deterioration of the results. The performance degradatiuse of the proposed PAC core with the noise handling term
of the PAC core for large values of the phase amplificaticand large phase amplification factors. More specifically, fo
factor m is attributed to not only the magnified phase noistne highest level of noise, the errdd SE,;y drops by over
that corrupts the discrete cross-correlation function &lgb 168% (from 10.727 to 4.001) and the PSNR is increased by
the drop of the magnitude of the cross-correlation peak thbt.2% (from 19.525 to 22.299 dB) in the cases that the PC
inhibits its detection and accurate estimation. core (n = 0) and the PAC core withn = 5 are employed

As far as the noise handling term is concerned, we obsef@spectively. These results reveal one of the most significa
that the phase difference blurring has a beneficial effect §iits of the PAC core, which is its ability to magnify the
the sub-pixel accuracy of the estimated motion vectors.eMof€lative motion between two compared images, while it only
Speciﬁca”y, the metric of PSNR increases especia”y f[g'da translates the additive noise of the images. Therefore, the
values of the phase amplification factor, since in thesescagBotion magnification enables the PAC core to more reliably
phase noise is present in larger quantities. Furthermbee, find robustly estimate the shift between two images even in
metric of mean squared erroM4(SE,;y) drops for small the presence of noise, which leads to improved robustness
values of the phase amplification factor, although this is ngf all tested motion estimation algorithms when the propose
the case for |arger values of the phase amp“fication facTBAC core with increased values of the amplification facter ar
m. The PAC core with the noise handling term achieves tinployed.
best performance, regarding the metric\dfS £y, for m=2 Finally, Table 1l compares the performance of the three best
with a drop by 0.5 with respect to the same method withoufrequency-based motion estimation algorithms among those

31.1 +
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TABLE Il

PERFORMANCE OF BEST MOTION ESTIMATION ALGORITHMS WITH?CAND PAC CORES FOR ALL PAIRWISE COMBINATIONS OFMMR IMAGES

Method | Ground truth Xiaohua [16] Ren [10] HOG-PC [29]
Image Pairs m=0 m=2 m=0 m=2 m=0 m=2
[1,2] (-2.40,4,00) | (-2.03,4.00) | (-2.06,4.01) | (-2.09,4.02) | (-2.06,4.03) | (-2.04,4.02) | (-2.05,4.03)
[1,3] (-4.80,8.00) | (-4.25,7.99) | (-4.27,8.00) | (-4.34,8.01) | (-4.26,8.03) | (-4.23,8.01) | (-4.28,8.01)
[1.4] (-7.20,4.32) | (-6.64,4.33) | (-6.62,4.32) | (-6.58,4.38) | (-6.61,4.34) | (-6.66,4.30) | (-6.62,4.34)
[1,5] (-7.20,12.00) | (-6.67,12.02)| (-6.64,12.00)| (-6.59,12.08)| (-6.63,12.03)| (-6.68,12.03)| (-6.63,12.03)
[2,3] (-2.40,4.00) | (-2.20,3.99) | (-2.21,3.99) | (-2.27,3.96) | (-2.17,3.99) | (-2.17,3.98) | (-2.22,3.98)
[2.4] (-4.80,0.32) | (-4.57,0.30) | (-4.53,0.28) | (-4.54,0.36) | (-4.56,0.31) | (-4.59,0.27) | (-4.56,0.31)
[2,5] (-4.80,8.00) | (-4.59,8.00) | (-4.55,7.99) | (-4.54,8.01) | (-4.57,8.01) | (-4.60,8.00) | (-4.58,8.00)
[3.4] (-2.40,-3.68) | (-2.35,-3.69) | (-2.35,-3.68) | (-2.40,-3.65) | (-2.33,-3.66) | (-2.29,-3.73) | (-2.34,-3.67)
[3,5] (-2.40,4.00) | (-2.39,3.99) | (-2.34,3.99) | (-2.41,4.00) | (-2.36,4.01) | (-2.31,4.01) | (2.35,4.02)
[4,5] (0.00,7.68) | (-0.04,7.71) | (-0.01,7.70) | (-0.02,7.64) | (0.00,7.70) | (-0.01,7.74) | (-0.01,7.69)
MSENy 0 0.358 0.366 0.389 0.373 0.375 0.364
PSNR (dB) - 31.412 31.422 31.477 31.433 31.363 31.444
0.52 12
0.5 \ /\ —m=0
0.48 \ / \ Foroosh 10 Tr=—m=1
. Oroos!
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Fig. 5. Average performance of the tested sub-pixel imaggstration (b)
algorithms on all pairwise registrations of the MR imagesvarious values
of the phase amplification factor. Fig. 6. Average performance of the tested sub-pixel imaggstration

algorithms on all pairwise registrations of the noisy MR gea for various
values of the phase amplification factor.

tested as far as the metrics @/ SE,;y and PSNR are B. Experimentation with video sequences

concerned and for all pairwise MR image registrations. It As far as the video sequences are concerned, the well-
can be concluded that the proposed PAC core improves eitkepwn akiyo, container, flower, mobilealendar and waterfall
the metric of M SE;; or the metric of PSNR for all three are used [37]. The first frames of the aforementioned video
best motion estimation algorithms, thus providing a beradfic sequences are depicted in Fig. 7. The tested motion estimati
effect on their performance. Moreover, the introductiontef algorithms are evaluated on these video sequences by agplyi
novel PAC core to the HOG-PC algorithm, which is considerdalock-based motion estimation. This means that each frame i
one of the most accurate state-of-the-art motion estimatidivided in non-overlapping blocks of sizes:66, 32<32 and
techniques according to [29], improves both the metrics 68x64 pixels and the local motion compensated estimation
MSEyy by 2.9% and PSNR by almost 0.26 with respect error is evaluated for each block over all sequences.

to the same algorithm employing the standard PC core. We tested all motion estimation algorithms for various
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A\

AVt
Fig. 7. The first frames of the video sequences akiyo, coatafiower, mobilecalendar and waterfall used in our evaluation process pregdrom left to
right.
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Fig. 8. Performance of (a) Foroosh, (b) PC+Quad, (c) XiaplidaRen, () HOG-PC and (f) PC+Gaussian motion estimatigarithms averaged over all
video sequences. The relationship between the phase aaipdifi factorm and the block size is also depicted.

values of the phase amplification facter over all video the video frames. As a result, an excessive shift of the
sequences for the first 50 frames and for various block sizesoss-correlation peak may move it outside of the borders
The results expressed as PSNR and measured in dB aefré¢he block where it should be found. If that happens, the
presented in Fig. 9. From Fig 9 a few conclusions can lerrect cross-correlation peak is circularly wrapped atbu
drawn. Firstly, one may notice a consistent pattern as far th® image block and the estimated motion vector does not
the effect of the phase amplification factor on the metric abrrespond to the true motion between the compared image
PSNR is concerned. More specifically, PSNR improves a#ocks. Additionally, the magnified motions cause a greater
the phase amplification factor increases but a drop in PSN&uction of the overlapping area between smaller ratrear th

is noticed when the amplification factor exceeds a certdimrger image blocks. These conclusions are backed up by the
threshold. The deterioration of the performance of the omoti fact that the threshold over which the performance of the
estimation algorithms is attributed to both the amplifiecdigh  motion estimation algorithms deteriorate is getting large
noise and the drop in the magnitude of the cross-correlatithhe block size increases. Therefore, given that largerkisloc
peak, similarly to the experimentation with the MR images.are considered, there is space for the employment of larger

. . .. phase amplification factors.
However, in the case of block-based motion estimation,

another factor affects the sub-pixel accuracy of the motionFurthermore, irrespectively of the video sequence and the
estimation algorithms. As we mentioned in Section Ill-De thblock size, almost all sub-pixel motion estimation aldarits
cross-correlation peak is shifted because of the employmane improved when the proposed PAC core with small or
of the proposed PAC core. This shift did not play a significamediocre phase amplification factors is employed and this
role during the experimentation with the MR images as theerformance improvementis enhanced when larger block size
block had the size of the entire image and the true moti@ame considered for local motion estimation. Figure 8 depict
was too small compared to the size of the block. In thée relationship between the phase amplification factor and
experimentation with the video sequences, the block sizetle image block size for each of the tested motion estimation
quite small and thus comparable to the true motion betweelgorithms. The performance of the algorithms is averaged
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Fig. 9. The PSNR values, measured in dB, for all tested dlgus, various values of the phase amplification factor andksl of size 1& 16, 32<32 and
64x64 for the video sequences akiyo, container, flower, mobékendar and waterfall.

over all video sequences. Moreover, Table Ill presents tbé Table Il verify that the motion estimation algorithmsnca
PSNR values of all tested algorithms averaged over all vidachieve optimal performance for larger phase amplification
sequences when the PC and the PAC cores are employed. fHetors when larger block sizes are considered. More specif
value of the phase amplification factor that is mentioned ically, a comparison between the PC and PAC cores shows
next to the corresponding block size corresponds to theevalnat the novel PAC core provides an average improvement in
that achieves the optimal average performance. The restiits metric of PSNR by 2.48, 6.04% and 2.98% when blocks
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TABLE Il

PSNR,MEASURED IN DB, OF MOTION ESTIMATION ALGORITHMS THAT EMPLOY EITHERPCOR PAC CORE WITH (W/) AND WITHOUT (W/O) THE NOISE
HANDLING TERM (NH) AVERAGED OVER ALL VIDEO SEQUENCES

Block size Method Foroosh PC+Quad Xiaohua Ren HOG-PC PC+Gaussian
16x16 (m=0) 32.096 28.882 30.023 28.866 30.078 28.628
16x16 (m=2) w/o NH | 31.811-0.89%)  28.74%-0.47%)  30.390+1.22%) 28.773-0.32%)  30.136+0.19%) 28.745+0.41%)
16x16 (m=2) w/ NH | 32.024-0.22%) 29.853+3.36%) 31.263+4.13%) 29.881+3.52%) 30.64G+1.89%) 29.789+4.06%)
32x32 (m=0) 31.667 30.003 30.567 29.909 31.021 29.248

32x 32 (m=4) w/o NH
32x32 (m=4) w/ NH

32.281+1.94%)
33.196+4.83%)

29.174-2.76%)
31.520+5.06%)

31.011+1.45%)
32.499+6.32%)

29.207-2.35%)
31.571+5.56%)

31.711+2.22%)
33.639+8.44%)

29.18§-0.21%)
30.356+3.79%)

64x64 (m=0)
64x 64 (m=5) w/o NH
64x64 (m=5) w/ NH

32.779
33.390+1.86%)
33.641+2.63%)

31.843
32.709+2.72%)
33.143+4.09%)

32.440
32.979+1.66%)
33.228+2.43%)

32.195
32.77Q+1.79%)
33.189+3.09%)

32.541
33.114+1.76%)
33.416+2.69%)

31.262
32.728+4.69%)
33.084+5.83%)

COMPUTATIONAL COMPLEXITY IN MSEC OF MOTION ESTIMATION
ALGORITHMS EMPLOYING EITHERPCOR PAC CORE WITH (W/) AND
WITHOUT (W/O) THE NOISE HANDLING TERM (NH) FOR IMAGE BLOCKS

Method

TABLE IV

OF SIZE256 X 256.

can be significant. Furthermore, the most computationally
expensive operation of the proposed PAC core is the noise
handling term as it includes a convolution with a Gaussian
kernel. Finally, for smaller block sizes, as the ones emgdoy
for the video sequences, the computational complexity ef th

Algorithm PC  PACw/oNH  PACw/NH proposed PAC core in absolute numbers can be negligible.
Foroosh 6.4 7.9(+23.4%) 11.8(+84.3%0)

PC+Quad 7.2 8.7(+20.8%)  12.6(+7%%)

Xiaohua 743  75.8(+2.0%)  79.7(+7.2%%) V. CONCLUSIONS

Ren 6.2  7.7(+24.1%)  11.6(+87.%) . .
HOG-PC 88  10.3(+17.0%) 14.2(+61.360) This paper presents a novel methodology that relies on
PC+Gaussian 7.8 9.3(+19.2%)  13.2(+69.2%) the magnification of motion between two compared images

to improve the accuracy and robustness of frequency-based
sub-pixel motion estimation algorithms. The proposed PAC
of size 16<16, 3232 and 6464 are employed respectively.core is based on the notion that subtle motions can become
Moreover, Table Il verifies the consistent improvementtia t more reliably estimated, once magnified. The advantagé®eof t
values of PSNR when the noise handling term is applied BnC core lie in the fact that it can be inserted in the core of
the PAC core. any frequency-based motion estimation algorithm and tyrec
substitute PC by calculating a new cross-power spectrum
and cross-correlation function, while also taking advgeta
of interpolation techniques and properties of the crossguo
In this section, we examine and analyze the computationglectrum. In this way, the PAC core overcomes the lower
complexity of the proposed PAC core. From the perspectigund of accuracy of current motion estimation algorithms
of computational complexity, the PAC core has to calculately computing a new cross-correlation function that better
new cross-power spectrum, as shown in Eq. 5. This procedgigdels the shift between the compared images prior to the
initially involves the extraction of the phase differen@@ween axtraction of the cross-correlation peak using well-dighbd
the compared images, then the amplification of the phaggerpolation methods. Moreover, the proposed noise firagd|
difference and finally the computation of the exponentiette term enables the suppression of the effect of noise and the
of Eq. 5. As the PAC core directly replaces the PC coligprovement of the sub-pixel motion estimation accuraay. A
employed by any sub-pixel motion estimation algorithm, thgnalysis of the motion amplification factor is also provided
computational complexity of the PAC core is irrespective Qfjong with the definition of a set of constraints that if viel,
the algorithm used for sub-pixel motion estimation. Howevehe PAC core can no longer perform optimally. Experiments
in order to evaluate the computational burden of the PAC,coigith MR images and real video sequences reveal significant
we have to compare it with respect to the computational coffnprovements in the sub-pixel accuracy of the tested motion

plexity of the tested sub-pixel motion estimation algam#) estimation algorithms when the proposed PAC core is em-
All' methodologies are implemented in Matlab and run on goyed.

guad-core processor (i7-7700HQ @ 2.80 GHz) with 8 GB
of RAM. Table IV summarizes the computational complexity
of the tested sub-pixel motion estimation algorithms witidl a
without the PAC core for image blocks of si266 x 256.

From Table 1V, it can be concluded that in absolute num-

) 1975.
bers, the proposed PAC core does not introduce too muq,ﬂ J. Pearson, D. Hines, S. Golosman, and C. Kuglin, “Viekede Image
computational complexity (i.e. 1.5 and 5.4 msec without and ~ Correlation Processor,” iProc. SPIE, Applications of Digital Image
with the noise handling term respectively). However, fastfa _ Processingvol. 119, 1977, pp. 197-205. _
. . . . . 3] B. Girod, “Motion-compensating prediction with fragtial-pel accu-

sub-pixel motion estimation algorithms, such as Foroosh arF

> : racy,” IEEE Transactions on Communicatigngl. 41, no. 4, pp. 604—
Ren, the computational burden that the PAC core introduces 612, Apr 1993.

C. Computational complexity
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