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Abstract

Many real-world problems are large scale and hence difficult to address. Due
to the large number of features in microarray datasets, feature selection and
classification are even more challenging. Although there are numerous fea-
tures, not all features contribute to the classification, and some features are
even impeditive. Through feature selection, a feature subset that contains
only a small quantity of essential features is generated, which can increase
the classification accuracy and significantly reduce the time consumption.
In this paper, we construct a multiobjective feature selection model that
simultaneously considers classification error, feature number and feature re-
dundancy. For this model, we propose several distributed parallel algorithms
through different encodings and an adaptive strategy. Additionally, to re-
duce the time consumption, various tactics are employed, including feature
number constraint, distributed parallelism and sample-wise parallelism. For
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a batch of microarray datasets, the proposed algorithms are superior to sev-
eral state-of-the-art multiobjective evolutionary algorithms in terms of both
effectiveness and efficiency.

Keywords: microarray data set, high dimension, multiobjective feature
selection, distributed parallelism, feature redundancy

1. Introduction

An object can be abstracted to a series of features that indicate various
properties. Based on these features, we can classify a number of object
instances, perform analyses, and so forth [1, 2, 3, 4, 5]. With the emergence
of the big data era, many problems are becoming increasingly larger in scale.
For the feature selection problem with respect to microarray data [6, 7], as
the number of genes reaches more than tens of thousands, its complexity
increases even more rapidly. If the feature selection problem is viewed as a
combination problem, assuming that there are n features, then the number
of possible combinations will be 2" due to their exponential relationship.
Thus, for microarray datasets, the exhaustive enumeration will be very time
consuming and intolerable.

Due to the high computational cost, the research on feature selection
of microarray datasets is focused on filter methods [6, 7], and studies on
wrapper and embedded methodologies are relatively few. However, in such
filter methods, the classifier is not considered simultaneously, often leading
to poor classification performance.

For NP-hard problems and the aforementioned time-consuming combina-
tion problems, heuristic algorithms can explore the search space using simple
population-based strategies, finding suboptimal solutions within a tolerable
time without examining every possible solution. In [8], a simple genetic al-
gorithm (GA) [9] was enhanced with a local improvement strategy, resulting
in a powerful evolutionary algorithm (EA) aiming at feature selection. In
each experiment, a desirable feature number was introduced, and a penalty
was applied to the fitness. Gu et al. [10] employed the competitive swarm
optimizer, a variant of particle swarm optimization (PSO) [11], to generate
a feature subset from a large number of features, and a threshold was uti-
lized to select features represented by continuous values. In [12], a feature
selection algorithm was proposed by hybridizing PSO and SVM; specifically,
the feature selection status and the parameters of the RBF kernel function
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in SVM were simultaneously optimized utilizing PSO. Onan et al. [13] uti-
lized a GA to aggregate the feature rankings from filter methods for feature
selection. In [14], the grey wolf optimization was transformed to a binary
form, outperforming PSO and GA.

However, the above research mainly considered one objective, namely, the
classification accuracy, while the feature number was fixed and a threshold
was applied. To simultaneously consider multiple objectives, multiobjective
evolutionary algorithms (MOEASs) are suitable. Thus, many research efforts
have been devoted to the multiobjective feature selection problem [15].

In the studies on MOEAS, the classification accuracy is always the main
concern, such as the overall classification accuracy, the true positive rate
and the true negative rate [16]. The feature number is also an objective
[17]. However, the feature redundancy is rarely considered [18, 19]. In this
paper, we propose a multiobjective feature selection model by simultaneously
considering three objectives: classification error, feature number and feature
redundancy.

Microarray datasets contain an extremely large number of features. Al-
though MOEAs are more efficient than brute force methodologies, the time
consumption may still be intolerable to some extent. Consequently, feature
number constraining and distributed parallel MOEAs [20] will be benefi-
cial. Additionally, for high-dimensional multiobjective problems (MOPs), by
separating variables into several groups, the cooperative coevolutionary (C-
C) framework [21] divides the original problem into several low-dimensional
tasks, yielding better optimization effectiveness and efficiency.

In summary, the contributions of this paper can be highlighted as follows:

1. A multiobjective feature selection model is proposed by simultaneously
considering three objectives: classification error, feature number and
feature redundancy.

2. Several distributed algorithms are presented to address the multiob-
jective feature selection problem. Specifically, different encodings are
considered, resulting in weight-encoded and binary-encoded algorithms
with real and binary-encoded values, respectively. In addition, an adap-
tive improvement is tested, yielding two binary-encoded algorithms.

3. By constraining the feature number, time consumption is greatly re-
duced. Based on variable grouping and individual allocation, a two-
layer distributed parallel structure is constructed. A large number of
CPU cores can perform the individual evaluation in parallel, signifi-
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cantly reducing time consumption. Sample-wise parallelism is quite
beneficial for reducing the time consumption of the recording process.

The remainder of this paper is organized as follows. Section 2 introduces
the multiobjective feature selection model. The proposed algorithms are
detailed in Section 3. The experimental analysis follows in Section 4. Finally,
we conclude this paper in Section 6.

2. Multiobjective Feature Selection Model

For the feature selection problem, we simultaneously consider three ob-
jectives, namely, classification error, feature number, and the redundancy
among features, with respect to the generated feature subset, which will be
detailed in the following subsections.

2.1. Classification Error

The classification error possesses the utmost importance, and it can be
formulated as follows:

Ny

o N Ny W

where fg represents the fitness value of the classification error objective and
Ny and Np denote the numbers of misclassified and correctly classified sam-
ples, respectively.

2.2. Feature Number

This objective describes the feature number of the generated feature sub-
set, illustrated in the following:

Ny
I - 5 @
where fx denotes the fitness value of the feature number objective and Ny
and NI are respectively the feature number in the generated feature subset

and the maximum number of features allowed in a feature subset, thus, Ny <
N,
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2.3. Feature Redundancy
We utilize the Pearson correlation coefficient, as follows, to measure the
correlation among features:

S (Fa (i) = Fa) (F (i) ~ )
VN (Fa (i) = Fa) /S5 (Fs ) - )

where Ng is the number of training samples, o and § denote features, Fy, (i)
(Fj (7)) represents the a () feature value of the i-th sample, F, (Fj) is
the average value of feature o () over all samples, and r (F,, F3) is the
correlation value, which is a positive value in the range of [0.0, 1.0], between
features o and /.

Furthermore, the objective value of the feature redundancy, fg, is formu-
lated as follows:

r (FouFB> =

1
= nE ) @

2
a,BeSr, a#B

where Sr denotes the set of features selected and Ny = |Sp| represents the
cardinality of the set. If the generated feature subset only contains one
feature, fr cannot be calculated as above; therefore, the following formula is
applied:

1
fr= g 2r (Fas ) @

where Np denotes the number of all features, o represents the selected fea-
ture, and [ is another feature among the remaining ones.

2.4. Multiobjective View
For an MOEA, the optimization target can be summarized as follows:

min (fg, f, fr) (6)

From the above specifications of these three objectives, it is easy to com-
prehend that their value ranges all lie in [0.0, 1.0], and our aim is to minimize
them simultaneously to improve the feature selection performance.

5
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3. Proposed Algorithms

In this section, we introduce the proposed algorithms. First, we illustrate
the overall framework of the algorithm. Subsequently, based on this frame-
work, by utilizing different encoding methods and an additional adaption
improvement, we describe the proposed algorithms one by one. Finally, the
feature number constraint and parallelism details are provided.

3.1. Overall Framework

3.1.1. Grouping

In microarray datasets, there are numerous features, and each feature is
encoded by one variable; thus, the dimensionality of the multiobjective fea-
ture selection problem will be quite high. For high-dimensional problems,
simultaneously optimizing all variables will be ineffective, whereas by sepa-
rating variables into several groups and optimizing each variable group under
the CC framework [21], the original problem can be separated into several
low-dimensional ones, which can be addressed more effectively and efficiently.
For this purpose, we randomly separate all variables into N¢g uniform groups.

The proposed algorithms are based on our previous study [22] — dis-
tributed parallel cooperative coevolutionary multiobjective large-scale evolu-
tionary algorithm (DPCCMOLSEA). There are two types of variables, name-
ly, variables in the currently optimized group and remaining variables in the
other groups, for which the evolutionary strategies are different, detailed as
follows.

3.1.2. Evolution of Variables in the Current Group

For each parent individual, to generate the variables in the current group
for an offspring individual, another single individual (for binary-encoded al-
gorithms) or two individuals (for the weight-encoded algorithm) are selected
from the parent population; then, crossover or adaptive differential evolution
(DE) [23, 24] will be applied, which will be detailed in Sections 3.2.1 and
3.3.1.

3.1.3. Evolution of Remaining Variables in the Other Groups
As in DPCCMOLSEA [22], for the remaining variables in an offspring,
they are the crossover result of its parent and another two randomly selected

individuals in the parent population. The crossover rate adopts the adaptive
behavior as in JADE [25], which can be detailed as follows:
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x?’i, if r <COR!

uf ™= ¢ 29" elseif rg < 0.5 (7)
x9"™, otherwise
st. jé& S

where ¢, 7 and j denote the generation number, the individual index and the
variable index, respectively, thus, x§” represents the variable j of individual
17 in the population of generation g, u is the trail vector, r and ry denote
two random numbers uniformly generated in the range of [0.0,1.0), S< is the
variable set in the currently considered group &, and the crossover rate, CR?,
is formulated as follows:

CR' = Gauss (pcr,0.1) (8)

where Gauss (i, o) generates a random value according to the Gaussian dis-
tribution with the location parameter of p and the scale parameter of o,
here, CR" is bounded to the range of [0.0,1.0], thus, it will be truncated to
0.0 or 1.0 if F* < 0.0 or if F* > 1.0, respectively . Initially set as 0.5, pcg is
updated as follows:

ZiESCR CR’L
|Scrl
where ¢ = 0.1 represents the learning factor and Scr and |Scr| denote the

set of indices of the individuals successfully updated in the prior generation
and its cardinality, respectively.

(9)

per = (1.0 —¢) X por + ¢ X

3.1.4. Mutation

After the generation of variables in the current group and remaining vari-
ables in the other groups, an offspring is preliminarily generated. To increase
the probability of jumping over local optima, mutation is then performed.
The details are presented in Sections 3.2.2 and 3.3.2.

3.2. Weight-Encoded Algorithm

By encoding each feature via a weight value, we propose the distribut-
ed parallel cooperative coevolutionary multiobjective large-scale evolutionary

7
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algorithm for feature selection with weight encoding, denoted as DPCCMOLSEA-

FS-w. In this algorithm, the selection priority of one feature is represented
by its weight; in other words, the higher the weight is, the more likely it is
to be selected.

Therefore, each gene (variable) is a weight value of the corresponding
feature. Additionally, another variable is employed to control the feature
number. We can illustrate the encoding of each individual as follows:

Loy -+ s TNp—1, INp (1())
N————— ~—~
Feature weights Feature number

s.t. T S [00,10] ,j = 0,...,NF.

where 2y to xy,_1 encode the selection weights of all Np features and xy,
controls the feature number. Specifically, the selected feature number is
Ny = zn, X N# 4+ 1 (will be truncated to N# if N; > N, which is an
integer from 1 to N

Then, to form the feature subset, the top N features with higher weights
are selected.

3.2.1. Evolution

As mentioned in Section 3.1.2, to evolve the variables in the currently con-
sidered group, we use an adaptive strategy similar to JADE [25], formulated
as follows:

U?H’i = xé” + F' x (ZE?’TS — x?’m) (11)

st. je Sy

where 73 # r4 # i are two randomly selected individuals and F* denotes the
scaling factor of individual 7, which, similar to JADE [25], has the following
form:

F' = Cauchy (ur,0.1) (12)

where Cauchy (u, o) generates a random value according to the Cauchy dis-
tribution with the location parameter of y and the scale parameter of o, here,
F' is restricted in the range of (0.0,1.0], thus, it will be generated again if

8
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F* < 0.0 and will be truncated to 1.0 if F* > 1.0. Initially, ur = 0.5, and it
will be updated as follows:

i\ 2
> iesy (F)
ZiGSF Fl

where ¢ = 0.1 denotes the learning factor and Sg represents the set of indices
of the individuals successfully updated in the prior generation.

pr = (1.0 —¢) X pp +c % (13)

3.2.2. Mutation

Polynomial mutation (PM) [26] is utilized to adjust the variable values
with the probability of p,, = m, here, nDim = Ng+1 is the dimensionality
of the feature selection problem. The formula is as follows:

29 = PM (w9t p,,) (14)

Finally, each offspring individual, 2975 i = 1,..., NP, will be generated.
Here, NP is the population size.

3.8. Binary-Encoded Algorithms

We propose two types of binary-encoded algorithms, namely, distribut-
ed parallel cooperative coevolutionary multiobjective large-scale binary evo-
lutionary algorithm for feature selection and distributed parallel cooper-
ative coevolutionary multiobjective large-scale adaptive binary evolution-
ary algorithm for feature selection, denoted as DPCCMOLSBEA-FS and
DPCCMOLSABEA-FS, respectively. In these two algorithms, each feature
is represented by a binary value, 1 or 0, which indicates whether the cor-
responding feature is selected to form the feature subset, while there is no
extra variable to encode the feature number, and the encoding is as follows:

Loy .- -3 TNp—1 (15)
N————
Binary encoding

s.t. l'j€{0,1}7j:(),...,NF—1
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3.3.1. FEvolution

To evolve the variables in the currently considered group as mentioned
in Section 3.1.2, for both DPCCMOLSBEA-FS and DPCCMOLSABEA-FS,
the process can be described as follows:

Uj 9,0 (16)

70

g,T5 3 3
gtli { 7", ifr < CRjp

T otherwise

where 75 # i denotes a randomly selected individual in the parent population,
r is a random number uniformly generated in the range of [0.0,1.0), and
CRY; represents the crossover rate of individual 7. The difference between
DPCCMOLSBEA-FS and DPCCMOLSABEA-FS depends on the value of
CRY:

1. For DPCCMOLSBEA-FS, CR,; = 1.0 foralli=1,..., NP.

2. For DPCCMOLSABEA-FS, CRj is generated adaptively, similar to

CR!, detailed as follows:

CRj; = Gauss (1gg, 0.1) (17)

where C' R is truncated to [0.0, 1.0], and the initial value of uZ is 0.9,
and it is updated as follows:

ZiGSCRB ORZB

18
|SCRB| ( )

por = (1.0 = ¢) X g + ¢ x

where ¢ = 0.1 denotes the learning factor and Scgr, and |Scr,| repre-
sent the set of indices of individuals successfully updated in the prior
generation and its cardinality, respectively.

3.3.2. Mutation
To mutate a preliminarily generated offspring, we have the following for-
mula:
Li .
xg+l,’i — { 1- U?+ ) if r S Pm (19>

1 .
J uf e otherwise

where r is a random number uniformly generated within the range of [0.0, 1.0),

and as mentioned in Section 3.2.2, p,, = m is the mutation probability,
here, nDim = Np.

10
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3.8.3. Feature Adjustment

In the feature number objective (Eq. 2), there is a constraint that at
most N features can be selected to form a feature subset. In this type of
binary-encoded algorithm, from the generated offspring, the cardinality of
the corresponding feature subset can exceed N or be less than 1; thus, an
adjustment procedure is applied.

The adjustment procedure includes two phases, as follows:

1. Reset the feature number: set the feature number, Ny, to a random
integer in the range of [1, Nj"|.

2. Randomly add or remove features: if the cardinality of the original
feature subset is above N then randomly remove N — N; different
features by setting the corresponding variable values to 0; otherwise,
randomly add Ny different features by setting the corresponding vari-
able values to 1.

3.4. Feature Number Constraint and Parallelism Details

MOEAs are based on population and iteration. During the evolution,
numerous generations of populations will be produced, and a large number
of fitness evaluations (FEs) are performed. To reduce the time consumption,
three strategies are applied:

A) Feature number constraint: From the objective functions (Section 2),
it is clear that the time consumption depends on the cardinality of the
feature subset and that the classification error objective is the most time-
consuming one, compared to which the evolution of the population and
other objectives are very efficient. Thus, the classification error objective
is considered to be the only time-consuming procedure for analysis. In
this study, the nearest neighbor classifier (1-NN) is employed; thus, the
time consumption is proportional to the selected feature number. For
the considered microarray data, the feature number can reach more than
tens of thousands, for which the cardinality of the feature subset can be
quite high and the time consumption will be intolerable. By applying
the constraint, only a small number of features are considered in the
objective evaluation; thus, the time consumption can be greatly reduced.

B) Distributed parallelism: The former strategy reduces the time consump-
tion of each FE; however, the evaluations of all individuals in the offspring
population are conducted in serial. By taking advantage of the variable

11
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groups and the population-based evaluation, we construct the following
distributed parallel structure:

a)

Assume that there are No CPU cores and that the group number is
Ng. For each group, we form a population with N P individuals, and
we divide the CPU cores uniformly to these populations, as follows:

N = ¢
C Ng
s.t. izl,...,Ng.

(20)

where N/ denotes the number of CPU cores allocated to population
0.

Then, the individuals in each population are separated to the CPUs
in the population for FEs, as follows:

(21)
st.i=1,...,Ng,j=1,..., Nk

where Ngj denotes the number of individuals in the charge of CPU j
in population .

In summary, for the evolution of populations, all individuals are in
the charge of one CPU in each population; thus, the evolution is
parallel at the population level; for the time-consuming FE, all CPUs
are utilized — each CPU evaluates the individuals allocated, and all
CPUs operate in parallel. Thus, the evaluation process is parallel at
the individual level.

Sample-wise parallelism: To observe the evolution behavior of MOEAs
during the optimization process, every predefined number of generations,
we record the fitness values of the individuals of the current population.
In addition, we also test the individuals on the test set and record the
results. Although the number of recordings is extremely small compared
to the overall generation number, if the evaluation on the test set is
performed in serial, its time consumption exceeds that of the optimization
process with distributed parallelism.

Therefore, we also parallelize this test procedure. Specifically, when e-
valuating an individual, a root CPU decodes this individual to a feature

12
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subset, which is broadcast to all other No CPUs. Then, the classification
burdens of all test samples are uniformly allocated to all CPUs, and all
the CPUs perform their own tasks in parallel. Finally, the root CPU
gathers the classification results from all CPUs.

After this parallelism, the overall time consumption is significantly re-
duced, and the benefit of the parallelism of the optimization process is
not impeded by the recording process.

4. Experimental Analysis

4.1. Microarray Datasets

Few years ago in the twentieth century, the study of genes was very low
in efficiency with only one or few genes checked at one time. While in the
living things, there are substantial numbers of genes, and for an instance, we
humans own approximately 20,000 genes. Consequently, the investigation
process can take a scientist’s lifetime. Fortunately, by the aid of microarray
technology, the expression situations of numerous genes can be investigated
at once. Compared to healthy cells, there seems to be something wrong with
the gene expression. Via microarray the expression levels of numerous genes
of healthy and cancer cells (or different cancer cells) can be obtained; then
through feature selection and classification, the potential genes causing the
cancer (or the relationship among cancers) can be detected, facilitating the
study of the mechanism. Additionally, by comparing the difference of gene
expression before and after a therapy, the mechanism of treatment and its
effectiveness can be examined.

The microarray datasets! utilized in this paper are listed in Table 1.
There are 24 datasets, each of which is characterized by a very high feature
number and low sample instance number. For each dataset, the data are
normalized with respect to each feature; then, we generate a training set
using the stratified bootstrap. Thus, the class distribution is maintained, and
the samples that are not selected form the test set. Furthermore, the leave-
one-out (LOO) methodology is employed for calculating the classification
error.

!The utilized microarray datasets can be downloaded at http://www.biolab.si/
supp/bi-cancer/projections/info/SRBCT.html.

13
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Table 1: Details of the Datasets

Dataset File name #Gene #Sample #Class
childhood ALL (ALLGSE412_poterapiji) 8280 60 4
childhood ALL (ALLGSE412 pred_poTh) 8280 110 2
AML prognosis (AMLGSE2191) 12625 54 2

breast & colon cancer  (BC_.CCGSE3726_frozen) — 22283 52 2
breast cancer (BCGSE349.350) 12625 24 2
bladder cancer (bladderGSES9) 5724 40 3

brain tumor (braintumor) 7129 40 5
CML treatment (CMLGSE2535) 12625 28 2
DLBCL (DLBCL) 7070 7 2
childhood tumors (EWSGSE967T) 9945 23 2
childhood tumors (EWSGSE967_3class) 9945 23 3
gastric cancer (gastricGSE2685) 4522 30 3
gastric cancer (gastricGSE2685_2razreda) — 4522 30 2
glioblastoma (glioblastoma) 12625 50 4

leukemia (leukemia) 5147 72 2

lymphoma & leukemia (LL_GSE1577) 15434 29 3

lymphoma & leukemia  (LL_GSE1577 2razreda) 15434 19 2

lung (lung) 12600 203 )

lung cancer (lungGSE1987) 10541 34 3
medulloblastoma (meduloblastomiGSE468) 1465 23 2
MLL (MLL) 12533 72 3

prostate (prostate) 12533 102 2
prostate cancer (prostateGSE2443) 12627 20 2

SRBCT (SRBCT) 2308 83 4

4.2. Utilized Algorithms and Parameter Settings

For comparison, four algorithms are utilized, as follows:

330 1. Cooperative coevolutionary generalized differential evolution 3 (CCGDE3)

[27].

14
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2. Cooperative multiobjective differential evolution (CMODE) [28].

3. Multiobjective evolutionary algorithm based on decomposition (MOEA /D)

29].
4. Nondominated sorting genetic algorithm IT (NSGA-II) [30].

For a fair comparison, the population size of all algorithms is fixed to
120. In particular, for CCGDES, there are two swarms, each of which has 60
individuals; for CMODE, there are three swarms for three objectives, with a
size of 20 for each of them, and the size of the archive is 120.

The maximum number of FEs is 6 x 10*. For each dataset, each MOEA
runs 20 times.

In CCGDE3, DE [23, 24] is utilized, in which F' = 0.5 and CR = 1.0, and
the same settings are adopted in DE employed in MOEA/D. For CMODE;,
adaptive DE variants are utilized, and their parameter settings can be found
in [31] and [25].

In NSGA-II, GA [9] is utilized, the distribution indices for crossover and
mutation are both 20, and their probabilities are 1.0 and —~—, respectively.

nDim’
For all the above algorithms, different encodings are tested, denoted as

CCGDE3-FS, CCGDE3-FS-w, CMODE-FS, CMODE-FS-w, MOEA /D-FS,
MOEA /D-FS-w, NSGA-II-FS and NSGA-II-FS-w. For the binary encod-
ing, the feature adjustment in Section 3.3.3 is also added. Note that for
CCGDE3-FS, CMODE-FS, MOEA /D-FS and NSGA-II-FS, each variable is
still encoded as a real value; thus, for the binary representation issue, a
threshold (i.e., the mid-value) is utilized.

For the proposed algorithms, for DE, F' follows the adaptive strategy in
JADE [25], while CR is fixed to 1.0 or adaptive as in JADE. The number of
variable groups is simply set to 5. For PM, its distribution index is 20, and
the probability is nDll.m. Similar to MOEA /D, each individual corresponds
to a weight vector in the objective space, for which they have the same
parameter settings.

4.8. Analysis

In the following images (Fig. 1 to Fig. 24), there are three columns,
corresponding to the training results, the test results and the final results.
Specifically, for an obtained population, a feature subset is decoded from
each individual. The classification error objective is calculated with respect
to the training set, the test set and the weighted sum of the former two, as
follows:

15



FEINAL = 0.368 x fERAN +0.632 x fRE5T (22)

where fEINAL denotes the final classification error value, which depends on
FLRAIN and fLEST — classification errors on the training set and the test

s set, respectively. Nevertheless, the remaining two objectives are only related
to the inherit property of the feature subset.

4.8.1. Hypervolume Indicator
In Figs. 1 to 6, we illustrate the hypervolume (HV) indicator [27] values,
which can simultaneously measure the distribution and convergence of the
w5 obtained nondominated solutions during the evolution. For the reference
point in HV, because all objective values are not above 1, we set it as (1, 1,1).
For the first column, we observe that the HV indicator values are monotonous-
ly increasing, indicating that the qualities of the obtained nondominated so-
lutions are being ameliorated. Specifically, for the first approximately 10%
;0 FEs, the performance of all algorithms is improved rapidly; however, during
the following FEs, the improvement is minimal. For the second column, the
HV indicator curves are not as monotonous because the classification error is
derived based on the test set. At the beginning, the performance is improving
quickly; then, however, for most datasets and algorithms, there are drops in
;s the curves, indicating the occurrence of overfitting. In other words, although
the optimization performance on the training set is still good, the validation
results on the test set deteriorate to some extent, and the situations become
quite worse for some cases. Finally, by simultaneously considering the train-
ing and testing performance, the final optimization results are illustrated in
s0 the third column. Due to the nonmonotonic behavior of the results on the
test set, the final HV indicator values are also not monotonic during the
evolutionary process.
Regarding the optimization performance of different algorithms, we have
the following;:

305 1. For the training results, the differences among various algorithms are
minimal. However, the proposed algorithms can always achieve the
best results. For the two types of encodings, the weight-encoded ones
converge faster than the binary-encoded ones. The ranking of other
algorithms depends on the considered dataset.

16



400 2. For the test results, the performance varies. In most cases, overfitting
occurs. The common trend is that the indicator value increases rapidly
to the maximum value within a very small number of FEs; then, over-
fitting occurs, and the indicator value decreases or fluctuates. The only
exception is the CCGDES algorithm, as its evolutionary curve only has

405 slight fluctuations without a large drop, while the binary-encoded C-
CGDES3 is much better than the weight-encoded one. However, with
the view of the whole process, the peak HV indicator values are always
obtained by the proposed algorithms.

3. For the final results, the proposed algorithms can generally obtain the

410 peak HV indicator values.

4.3.2. Classification Error

To better clarify the optimization results, we illustrate the lowest classi-
fication errors during the evolutionary process of the run with median HV
indicator value in Fig. 7 to Fig. 12. We can summarize the results as follows:

a15 1. For the training data, in most cases, most algorithms can achieve zero
classification error. Especially, for 12 datasets of BC_CCGSE3726 _frozen,
BCGSE349_350, bladderGSES9, CMLGSE2535, EWSGSE967, gastricGSE2685,
gastricGSE2685_2razreda, leukemia, LL_GSE1577, LL_GSE1577_2razreda,
meduloblastomiGSE468 and prostateGSE2443, the classification errors

420 remain at 0 almost during the whole evolutionary process. The dif-
ference among all algorithms is the convergence issue, which is trivial.
For the proposed algorithms, with respect to all datasets, there exists
at least one algorithm that achieves zero classification error, and the
same situation is also true for CMODE.

425 2. For the test data, the minimum classification error fluctuates violently
during evolution, which is more complex with respect to that on the
training data; thus, we focus on the lowest value over the whole evolu-
tion. For 20 out of 24datasets, zero classification error can be obtained;
in particular, for the datasets of braintumor, MLL and prostate, only

430 the proposed algorithms achieve zero classification error. On the con-
trary, the classification errors obtained by CMODE are usually quite
high, indicating the serious overfitting problem.

3. Comprehensively considering the training and test data, zero classi-
fication error indicates that the corresponding feature subset classi-

435 fies all samples correctly in both the training data and the test data,
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440

445

450

455

460

465

which is the expected result. For the following 13datasets of ALL-

GSE412 pred _poTh, BC_.CCGSE3726_frozen, BCGSE349 350, bladder GSES9,

DLBCL, EWSGSE967, EWSGSE967_3class, gastricGSE2685 _2razreda,
LL_GSE1577, LL_GSE1577 2razreda, MLL, prostateGSE2443 and S-
RBCT, zero classification errors are observed. Specifically, for the
datasets of BC_CCGSE3726_frozen and bladderGSES9, only the pro-
posed algorithms can obtain zero classification error, while for all other
datasets, the proposed algorithms are also generally not worse than
their counterparts. And the binary-encoded ones are better than the
weight-encoded one.

Corresponding to the above individuals with minimum classification er-
rors, the feature numbers and feature redundancy are illustrated in the fol-
lowing two subsections from Figs. 13 to 18 and Figs. 19 to 24, respectively.

4.83.3. Feature Number

For 15 datasets of ALLGSE412_pred_poTh, BC_CCGSE3726 _frozen, BCGSE349_350,

CMLGSE2535, DLBCL, EWSGSE967, EWSGSE967 _3class, gastricGSE2685,

gastricGSE2685 2razreda, leukemia, LL_GSE1577, LL_GSE1577 2razreda, lung-

GSE1987, meduloblastomiGSE468 and prostateGSE2443, illustrated in Figs.

13 to 18, all algorithms can generate a subset within 10 features (fy = % =
F

% = 0.2), except some special cases of CCGDE3. For the other datasets,

the feature number fluctuates along the evolution. With respect to the train-

ing data and test data, however, in contrast to the status analyzed in the

previous sections, the evolutionary curves share similar characteristics.

4.83.4. Feature Redundancy

For the feature redundancy objective, the evolutionary curves in Figs.
19 to 24 are characterized by undulations, which is subtle to comprehend.
By formulating the feature redundancy as an objective, during the evolu-
tion, it will lead the algorithm to form good-performing feature subsets with
relatively few features with little redundancy.

4.8.5. Time Consumption

In Table 2, we list the average operating time for each algorithm with
respect to each dataset. Additionally, the sum of time consumption over all
datasets is listed in the second line from the bottom, and the speedup ratios
are the values in parenthesis. With respect to the proposed algorithms, all

18



470

475

other MOEASs are at least one magnitude slower, except for the simple algo-
rithm of CCGDES3-FS. For the proposed distributed algorithms, the number
of utilized CPU cores is 60. Additionally, the speedup ratios with respec-
t to the most time-consuming serial MOEA, CMODE, are 3.77F + 01 and
4.91E+01, respectively, which are quite close to the ideal value of 60. There-
fore, we can conclude that the proposed algorithms are able to obtain better
optimization results with high efficiency.
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Figure 5: Illustration of HV during evolution.
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Figure 6: Illustration of HV during evolution.
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Figure 7: Illustration of classification error during evolution.
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Figure 8: Illustration of classification error during evolution.
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Figure 9: Illustration of classification error during evolution.
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Figure 10: Hlustration of classification error during evolution.
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Figure 11: Hlustration of classification error during evolution.
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Figure 12: Illustration of classification error during evolution.
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Figure 13: Hlustration of feature number during evolution.
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Figure 14: Mlustration of feature number during evolution.
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Figure 15: Hlustration of feature number during evolution.
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Figure 16: Hlustration of feature number during evolution.
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Figure 17: Hlustration of feature number during evolution.
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Figure 18: Hlustration of feature number during evolution.
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Figure 19: Hlustration of feature redundancy during evolution.
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Figure 20: Hlustration of feature redundancy during evolution.
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Figure 21: Ilustration of feature redundancy during evolution.
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Figure 22: Illustration of feature redundancy during evolution.
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Figure 23: Mlustration of feature redundancy during evolution.
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Figure 24: Tlustration of feature redundancy during evolution.
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5. Discussion and Future Work

In the aforementioned experimental study, though the proposed algo-
rithms can outperform the counterparts, for some datasets, serious overfitting
occurs and there are significant performance deterioration in the test sets.
Nevertheless, for the binary-encoded CCGDE3, overfitting merely occurs,
and for quite a lot of datasets, its classification errors are below most of the
other algorithms. Therefore, we can refer to the binary-encoded CCGDE3
to alleviate the occurred overfitting in the proposed algorithms.

In the proposed algorithms, only different encodings and other mech-
anisms with respect to the MOEA aspect are examined. However, for the
feature selection problem, there are many traditional methodologies for anal-
ysis, the output of which can act as prior knowledge to further enhance the
proposed algorithms.

Typically, in analyzing microarray data, traditional techniques are very
time-consuming. Owing to the higher efficiency and better performance,
the proposed algorithms can be applied in examining microarray data and
contribute to the study and treatment of various cancers.

6. Conclusion

To address the feature selection problem, this paper proposes a multi-
objective feature selection model by simultaneously considering classification
error, feature number and feature redundancy. Then, several distributed par-
allel algorithms are proposed. Different feature encodings are tested, and an
adaptive strategy is examined. With respect to the microarray datasets, the
feature number is extremely large; consequently, the time consumption in op-
timization will be intolerable. Thus, a feature number constraint is applied to
reduce the computational complexity. Additionally, by separating variables
into several groups and evolving them under the CC framework, as well as
allocating individuals to numerous CPU cores, a two-layer distributed par-
allel structure is constructed, significantly reducing the time consumption.
Moreover, sample-wise parallelism is devised to considerably increase the ef-
ficiency of processing the test sets during the recording phase. Compared to
several state-of-the-art MOEAs, the proposed algorithms are more effective
in terms of optimization performance and more efficient in terms of time
consumption.
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