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Predicting protein–ligand binding affinity and
correcting crystal structures with quantum
mechanical calculations: lactate dehydrogenase A†

Iva Lukac, a Hend Abdelhakim, a Richard A. Ward, b Stephen A. St-Gallay, c

Judith C. Madden a and Andrew G. Leach *a

Accurately computing the geometry and energy of host–guest and protein–ligand interactions requires

a physically accurate description of the forces in action. Quantum mechanics can provide this accuracy

but the calculations can require a prohibitive quantity of computational resources. The size of the

calculations can be reduced by including only the atoms of the receptor that are in close proximity to

the ligand. We show that when combined with log P values for the ligand (which can be computed

easily) this approach can significantly improve the agreement between computed and measured binding

energies. When the approach is applied to lactate dehydrogenase A, it can make quantitative predictions

about conformational, tautomeric and protonation state preferences as well as stereoselectivity and even

identifies potential errors in structures deposited in the Protein Data Bank for this enzyme. By

broadening the evidence base for these structures from only the diffraction data, more chemically

realistic structures can be proposed.

1 Background

The interaction of small guest molecules with larger hosts in

aqueous systems is a key component of many applications

including: sensors for in vivo use,1 enzyme catalysis,2 antibody

recognition,3 sequestration,4 purication of waste streams,5

environmental remediation,6 drug design,7 toxicology,8 and

supramolecular chemistry.9 The structures of such complexes

are routinely studied with X-ray diffraction experiments and

those involving proteins are deposited in the Protein Data Bank

(PDB).10 These have been investigated to learn about how

proteins and ligands interact.11 Such studies presume that the

structures are correct and of high quality based on descriptive

statistics describing how well the structure can explain the

observed diffraction data. Ourselves and others have found that

these statistics are not sufficient – chemically infeasible ligand

structures can achieve apparently better statistics.12 Quantum

mechanical (QM) calculations can provide a complementary

guide to the chemical reasonableness of structures. A recent

study illustrates the challenge: Kumar et al. contrasted

quantum mechanical calculations with deposited structures

and found a divergence between complexes of arginine (which

behaved as predicted) and lysine (which did not); the con-

trasting likelihoods of these two residue types being clearly

identiable in the electron density was not considered but

could provide an alternative interpretation of their ndings.13

Routinely allowing quantum calculations to decide when to go

beyond reliance on the diffraction data alone would increase

the likelihood of identifying the correct structure but requires

a method that can predict binding strength to a useful level of

accuracy. Here we propose such a method and show how it has

guided us to improved structural interpretations for an

enzyme of pharmaceutical interest. This has permitted us to

begin the process of deducing when differences in diagnostic

statistics, such as Rwork and Rfree are not signicant. Others

have previously lamented the reliance on these statistics and

particularly when they distract from achieving a sound

chemical interpretation that correctly accounts for the phys-

ical interactions at play.14

Correctly quantifying the interaction strength between a host

and a guest or a protein and a ligand computationally requires

a physically accurate description of the molecules, of the kind

provided by QM calculations. Despite signicant progress, such

calculations remain challenging because of their computational

cost. Including only the portion of the host or protein directly

involved in binding reduces this cost and examples of this

approach are mentioned in recent reviews.15,16 Related calcula-

tions see the protein or ligands split into fragments that can

then be treated with QM.17–22 Geometries generated by

a molecular dynamics simulation can be treated with QM to
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compute affinities.23 Alternatively, much faster QM methods

(which are usually less general or accurate) can be applied to

larger portions of the system, or empirical corrections applied

to improve accuracy with minimal increased computing

cost.24–26

Alternative approaches to understanding the behavior of

proteins and quantifying their interaction strength with ligands

have been pursued vigorously over the past decade. The

majority of this effort has been in the area of simulation and

recent advances in free energy perturbation (FEP) are particu-

larly noteworthy.27,28One signicant issue with these methods is

that (unlike quantum approaches) the parameterization

schemes that underpin the description of the ligands oen

require individual tailoring to the molecules being studied.27

Like quantum calculations, simulations require a signicant

amount of computational time to compute binding energies.

Structural biology studies oen entail generating crystalline

solids containing protein–ligand complexes. These are irradi-

ated to create X-ray diffraction patterns, arising from interac-

tions with electrons in the molecules. Soware is employed to

link from atomic coordinates to electron density and hence X-

ray diffraction patterns; thus a likely set of atomic positions

can be identied. These interpretations can be problematic and

are rarely unambiguous.12 QM calculations can support these

interpretations but it is usual for improved agreement between

predicted and observed diffraction patterns to determine the

structure deemed to be correct.29–34 One way to meld the

chemical insight provided by quantum chemical calculations

with the experimental data available from a diffraction experi-

ment is to iteratively include quantum calculations in the

renement procedure; higher quality structures of proteins and

ligands have been achieved in this way using the quantum

renement approaches pioneered by the Ryde group.30 This has

proved particularly effective for metalloproteins and for

assigning protonation states.15,30,35–37 Indeed, QM-derived ideas

have been inuencing structural renement for nearly

a century. Sometimes, the diffraction data cannot determine the

correct structure and this is particularly the case for novel

ligands whose behavior is much less well understood than that

of proteins.38 One way alternative interpretations of the

diffraction data can be assessed is by examining ligand omit

maps that are created by using the coordinates of the protein to

generate phases and to use these to determine the ligand elec-

tron density that is unaccounted for.39–41

We propose an approach in which a correlation with

computed log P values provides a usefully accurate treatment that

accounts for the differences between binding energies computed

with quantum mechanics and experimentally observed values.

We style the resulting type of calculation as a “theoceptor”

(theoretical receptor) by analogy to the theozymes (theoretical

enzymes) of Houk and co-workers.42,43We show that the approach

can be applied to predicting aqueous host–guest interaction

energies in the realm of biological or supramolecular chemistry.

We also present a theoceptor for the enzyme Lactate Dehydro-

genase A (LDHA) and demonstrate the value that theoceptor

calculations can provide in terms of detailed structural insights

and improved crystallographic structures.

The current study is presented in three parts. In the rst, we

describe our approach. Subsequently, we describe our theo-

ceptor for LDHA. Finally, we show how these calculations can

increase the value of protein–ligand crystal structures and

provide alternative interpretations of the electron density for

several examples taken from LDHA.

2 Results and discussion

Quantum mechanical calculations generally deal with the gas

phase electronic energy of the system whereas experimental

observations in biological systems are related to free energies in

solution (eqn (1)).

DGbind(aq) ¼ DE + DHcorr(gas) � TDS(gas) + DDGsolv (1)

The free energy of binding in solution (DGbind(aq)) is related

to the change in gas phase electronic energy (DE, eqn (2))

computed with QM. Corrections (DHcorr) are added to obtain

gas phase enthalpies and a gas phase entropy change (DS(gas))

is computed. The change in solvation free energies (DDGsolv)

completes the link to the experimental environment.

DE ¼ Ecomplex � Eligand � Ereceptor (2)

The electronic energies in eqn (2) can account for the

energy of the complex but do not indicate the shape of the

potential energy surface (PES), which describes how rigid the

complex is. When two molecular species come into proximity,

the potential energy surface can involve a narrow minimum or

a wide one (Fig. 1A). A narrow minimum corresponds to

a rigid complex and a greater entropy penalty than a wider

minimum. Different interaction types make different contri-

butions to the shape of the PES. Density functional theory

calculations were used to investigate how the energy of the

system changes as several functional groups approach one

another. The full set of calculations is described in the ESI

(section S1†) but the key results can be summarized by

considering water and methane as examples of polar and non-

polar functional groups, respectively (Fig. 1B). Only when two

polar groups (appropriately oriented) or charged groups of

opposite sign approach one another is there a well-dened

energy minimum; only polar–polar interactions tend to

increase complex rigidity. It is of course the case that even

many polar groups will have a repulsive interaction when the

polarities are mismatched and that two non-polar groups that

are aromatic rings can give a shallow energy minimum.44 To

understand the thermodynamics of a gas phase binding event

(DHcorr(gas) � TDS(gas)), it is important to consider the rela-

tive contribution of polar and non-polar groups. Furthermore,

the solvation free energy of the ligand and of the complex in

water will be enhanced by the presence of polar groups on the

ligand and diminished by non-polar regions. The solvation

free energy of the protein is a constant and so accounting for

whether the groups involved in binding are polar or non-polar

offers a simple way to account for the change in solvation free

energy (DDGsolv).

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 2218–2227 | 2219
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Medicinal chemists have been concerned about the inu-

ence of non-polar groups upon binding affinity for some time

and log P has been used to differentiate ligands that rely

primarily upon polar interactions from those that are hydro-

phobic.45–47 The partition coefficient, P, and its logarithm are

convenient parameters because they are easily measured and

can be accurately predicted.45 It is our hypothesis that a ligand's

log P can serve as a surrogate for the three terms on the right of

eqn (1) when computing its binding free energy.48 This leads us

to propose that for a given system, binding affinity can be

described by eqn (3).

Affinity ¼ aDE + b log P + g (3)

where a, b and g are constants for that system. We propose

obtaining values for these empirically and DE is dened by eqn

(2), where E indicates a quantum mechanical energy that is

obtained with no vibrational corrections included. The energy

of the receptor (Ereceptor) in this equation is arbitrary because it

is constant for all ligands but it will inuence the resulting value

of both a and g. A range of affinity assessment types (IC50, Ki, Kd,

etc.) can be used but should all be transformed such that they

will have a linear relationship with energy. We do this by

transformation to pIC50, pKi, pKd such that improved affinity

corresponds to increasing values of each of these properties;

a should therefore be negative and b positive if more negative

values of DE and increased lipophilicity correspond to tighter

binding. In order to obtain values for the three constants, at

least three compounds of known affinity are required and thus,

like the linear interaction energy approach, only relative affinity

can be computed.49 DE would usually be computed using the

lowest energy protein–ligand complex and lowest energy

conformation of the free ligand and therefore, be relevant to

cases where the bound state is dominated by one geometry.16

However, the approach can be simply adapted to include

multiple low energy conformations (of bound or free states)

using a Boltzmann weighting scheme. The exible form of eqn

(3) naturally ameliorates other deciencies of the calculations

including the exclusion of longer range interactions (primarily

electrostatic) with the regions of the protein that are not

included in the theoceptor and deciencies in the continuum

part of any solvation models that are used (such as inappro-

priate values of the dielectric of the medium). It is challenging

to predict the dielectric that the protein environment provides

and so we take advantage of this approach by treating the

protein using gas phase calculations with no continuum

solvation.

The effect of eqn (3) is that for a polar ligand that makes

a full set of polar interactions with the receptor, DE will be large

and negative and this will offset the low log P term. A polar

ligand that does not make a satisfactory set of polar interactions

will have a less benecial DE term that will not be sufficient to

counteract the small log P contribution. A largely hydrophobic

ligand will also have a smaller contribution to binding affinity

from DE but this might be offset by the hydrophobicity term.

There have been a number of reports in which quantum

mechanical calculations have been used to compute binding

energies for protein–ligand and other host–guest interactions.

Energy differences are computed with no vibrational correc-

tions and provide data with which this concept can be tested (in

certain cases, the log P values have been computed by

ourselves). The examples (Table 1) include: (A) Roos et al. who

looked at the relative binding affinities of a matched series of

mineralocorticoid receptor (MR) agonists, using a range of DFT

methods, withM062X performing the best.50 (B) Investigation of

inhibitors of the dimerisation of inducible NO-synthase by

Leach et al.51 This system includes backbone atoms of six resi-

dues forming the binding site, an iron porphyrin and its

attached cysteine thiol. Among the QM methods tried, M06HF

performed the best. (C) Roos et al. who used DFT to explore the

relationship between the measured and predicted affinities for

a set of positively charged amidine and guanidine cores binding

to the b-site of APP cleaving enzyme (BACE-1).52 (D) Hylsová and

co-workers, who have studied a series of pyrazolopyrimidine

inhibitors of the kinase CDK2.53

As shown in Fig. 1C and section S2,† in each of these

examples, incorporating log P improved the description of

measured binding affinity by the QM energies. To make the

Fig. 1 (A) The difference between a rigid and a loose complex illustrated by the change in energy as ligand and receptor approach one another.

(B) Variation in electronic energy (M06/6-31+G**) as non-polar groups and/or polar groups approach one another. (C) Example protein–ligand

and host–guest systems studied with QM calculations. Top: experimental affinity is plotted against computed energies, DE; bottom: log P term is

added.

2220 | Chem. Sci., 2019, 10, 2218–2227 This journal is © The Royal Society of Chemistry 2019
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comparison in the most straightforward way, two-parameter

linear regression has been performed using rstly DE and

calculated log P as independent variables and secondly DE and

a random value that spans the same range as the log P values.

The statistics for the second cannot be worse than those for the

single parameter model using only DE. The resulting R2 and

RMSE values are shown in Table 1. In all cases, the addition of

log P improved the correlation. For system A, Roos et al. also

performed FEP calculations and achieved a correlation with R2

of 0.60 and RMSE of 0.73 (worse correlation is found when

correlating with pKi–log D instead of just pKi).
52

The values obtained for the coefficients in eqn (3) are

shown in Table 1, along with the standard deviation obtained

from systematic leave-one-out analysis. It is likely not a coin-

cidence that the BACE inhibitors (b ¼ 0.24) are binding to

a highly polarized dianionic binding site while the iNOS

inhibitors (b ¼ 1.22) bind to a site dominated by the hydro-

phobic porphyrin of heme and MR agonists (b ¼ 1.58) are

binding to sites which lack substantial polarity (a lone threo-

nine provides a point of polar interaction). The CDK2 binding

site (b¼ 0.88) includes hydrophobic residues and several polar

interactions. The more hydrophobic the binding site, the

higher the value of b.48 The same approach is also applicable

to organic host–guest systems in water. For instance: (E) in

their computational studies of a set of carboxylic acids

binding to an octa-acid cavitand, Mikulskis et al.54 compute

binding energies using several DFT methods and achieve their

best results (before the addition of vibrational corrections)

with BP86/TZVP when Cosmo solvation is included in their

calculations. (F) Kimura, Yukiyama and Fujisawa studied the

complexation of a series of nitriles by an a-cyclodextrin host in

water and performed calculations at the B3LYP/6-31++G**

level to rationalize their observations. In both cases, the

agreement between computation and experiment is enhanced

when eqn (3) is applied. In the case of these two organic hosts,

the values of b are higher than for the protein–ligand systems.

This likely reects the absence of polar groups inside the

cavities (unlike proteins which must contain amide groups).

The sets of compounds studied in host–guest interactions are

smaller than for the protein–ligand binding examples and this

likely explains the larger standard deviations observed for the

values of the coefficients in Table 1. Naturally, the organic

hosts are more challenging to study with force eld-based

approaches because they would require parameters to be

developed for both the host and guest.

To investigate the utility of the theoceptor approach, it has

been applied to a system of therapeutic interest: Lactate Dehy-

drogenase A (LDHA). LDHA catalyses the reversible conversion

of pyruvate to lactate, with the concomitant conversion of

NADH to NAD+. Several classes of cancers are characterised by

elevated levels of lactate, and LDHA is overexpressed in human

tumors.56–61 As such, inhibitors of this enzyme have been sought

as potential therapeutics. Several classes of inhibitors of LDHA

have been described and a wealth of structural information and

binding affinity data are available.62–77 The set of compounds (1–

11) studied include seven from high-throughput screening

(HTS) of the Genentech/Roche corporate compound collec-

tion;66,68,69,71,72,78 two small, negatively charged compounds;73

and three compounds sharing malonate as a common

substructure originating from AstraZeneca's fragment

screening approach (Table 2, Fig. 2).74 The selective and potent

LDHA inhibitors discovered so far exhibit a common structural

feature: a carboxylic acid moiety (or other acidic functional

group) that is ionized at physiological pH. Structural studies

reveal that in the binding site, this is placed in close proximity

to where the acid in the substrates and products binds. All

interact with the basic side-chain of Arg168.

Structures of 1–7 are all available in complex with human

LDHA.66,68–70,72 Crystal structures of 8 and 10 are available in

complex with rat LDHA (PDB codes 4AJE and 4AJI),79 and the

structure of 11 is available in complex with rabbit LDHA (PDB

code 4I8X).80 It should be recalled that these structures are

proposed interpretations of the observed electron density and

alternative interpretations may also be reasonable. While global

metrics such as resolution have their place for assessing the

structures, more localised values prove instructive when

focusing on the ligands. One of the most common metrics for

assessing the t of a proposed structure to the local electron

density is the real space-correlation coefficient (RSCC). It ranges

from 0 (‘bad’, electron density is effectively missing) to 1 (‘good’,

model ts the density perfectly).81–83 RSCC values for the

selected ligands are given in Table 2. Density maps contoured at

1s of the ligands with lower RSCC values (ligands 1, 2, 6 and 7)

are shown in section S5.†

Residues directly involved in ligand binding were selected as

a part of the theoceptor: Arg168, His192, Val234, Asp165,

Table 1 Protein–ligand and host–guest systems (see text) studied by QM and reevaluated by ourselves. Pearson's correlation coefficients (R2)

and root-mean-squared errors (RMSE) describe the link between affinity and DE when combined with log P or a random number. The coef-

ficients for eqn (3) are also provided

System

DE + random DE + log P

a b gR2 RMSE R2 RMSE

A 0.51 0.85 0.83 0.51 �0.35 � 0.01 1.58 � 0.10 4.71 � 0.17

B 0.67 1.00 0.93 0.46 �0.28 � 0.01 1.22 � 0.04 �6.68 � 0.23
C 0.67 0.52 0.71 0.48 �0.32 � 0.01 0.24 � 0.01 �0.13 � 0.01

D 0.61 0.65 0.82 0.45 �0.10 � 0.00 0.88 � 0.04 �9.50 � 0.28

E 0.55 3.11 0.73 2.41 �0.08 � 0.02 5.10 � 0.78 �3.02 � 1.84

F 0.33 2.37 0.75 1.45 �0.50 � 0.16 3.39 � 0.58 10.26 � 1.35

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 2218–2227 | 2221
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Asp194, Tyr238, and Asn137 (Fig. 3). These were extracted

from the structure deposited in the PDB with the code 4QO7

(theoceptors derived from other protein structures performed

equivalently). Protonation states were assigned such that

Arg168 is protonated, Asp165 and Asp194 are both deproto-

nated and His192 is protonated in order to form a stabilizing

interaction with Asp165 and the net charge of the residues was

0. There are two noteworthy changes in the sidechain

conformations amongst the deposited structures but one

arrangement is clearly most relevant to the bound state in

humans: Arg105 protrudes into the binding site in rat and

rabbit structures as well as in the apo form of human LDHA

but in the holo forms of the human protein, it interacts with

Glu191 instead (and so it is excluded from the theoceptor)

while Tyr238 moves out of the binding site only in the apo

form (and hence is included). Asp165 forms a hydrogen bond

with His192 and is stabilised by an additional hydrogen bond

with one water molecule. Preliminary studies showed that the

water molecule maintains the sidechain in an optimal posi-

tion to interact with the His192 sidechain and so is considered

structural and was kept in the theoceptor (Fig. 3, insert). All

interactions with the ligand are through protein sidechains so

backbone, cofactor and the remainder of the protein were

deleted. To account for the scaffolding effect of the rest of the

protein, Ca, Cb and water oxygen atoms were xed in space

using the xed Cartesian redundant coordinate feature in

Gaussian 09,84 as shown in Fig. 3. The geometries were opti-

mized in vacuo at the M06 level of theory with the 6-31+G**

basis set because this level of theory should provide a well-

balanced treatment of different interaction types.85,86 Free

ligand structures were optimized with solvation incorporated,

using the PCM water model, at the same level of theory. DE

values were dened as in eqn (3) with Ereceptor being obtained

from a theoceptor calculation in which the ligand had been

deleted. The values of the coefficients were a ¼ �0.080, b ¼

0.892 and g¼ 0.419 and yield the relationship shown in Fig. 3.

The value of b, when compared to those in Table 1, is

consistent with a binding site that is hydrophobic in parts

with a polar section, as included in the theoceptor. Protein–

ligand crystal structures are interpretations that are several

steps removed from the experimental measurements, and so

include uncertainties, many of which depend on the force

eld used during renement.12 QM calculations can help

discriminate amongst plausible interpretations of the

observed electron density. The chemical rigour demanded by

theoceptor calculations can improve: ligand conformations,

interpretations of the positioning of heteroatoms, stereo-

selectivity, positioning of ligands where electron density is

missing, assignment of tautomeric and ionisation states.87

Further, by studying a set of conformations (and tautomers

when relevant) of the free and bound ligand, differences

between the low energy conformations and the bioactive

conformation are identied and the conformer-focusing

problem can be addressed.88 Compounds where one or other

of these effects were relevant are described.

2.1 Compound 1

The tetrahydropyran ring of ligand 1 is crystallographically

modeled in a boat conformation that yields a predicted affinity

far from experiment. This is corrected when modeled as a chair;

the free conformation is 9 kcal mol�1 lower than the boat and

the theoceptor with 1 in a chair conformation is 10 kcal mol�1

lower in energy than with a boat conformation (Fig. 4). The

RSCC of the ligand was 0.94, which implies that the ligand ts

Table 2 Compounds selected for computational studies with experimental values of pIC50 and pKd, PDB identifier and the chain label used to

compute the RSCC value for each ligand. The clog P was calculated using the ChemAxon55 log P predictor and DE was calculated with the

theoceptor method

Compound pIC50 pKd PDB code (chain) RSCC clog P DE (kcal mol�1)

1 7.22 NC 4R69 (D) 0.943 5.58 �17.7

2 6.44 NC 4RLS (D) 0.883 4.97 �13.8
3 5.76 5.46a 4QO7 (A) 0.958 2.86 �23.2

4 8.22 NC 4R68 (B) 0.979 8.07 �15.0

5 6.06 5.74a 4QO8 (A) 0.921 6.15 13.6

6 5.3 5.3a 4M49 (A) 0.816 3.81 �10.3
7 6.12 5.29a 4JNK (D) 0.911 2.96 �24.9

8 <3.3 3.67a, 3.33b 4AJE (B) 0.988 2.06 �15.6

9 <3.3 2.96a, 3.63b 1.63 �18.9
10 <3.3 3.55a, 3b 4AJI (B) 0.963 1.47 �19.7

11 <2.7 2.63a 4I8X (B) 0.913 2.45 �10.4

a Obtained by SPR. b Obtained by NMR

Fig. 2 Structures described in the text.
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the density well. However, the density contoured at 1s reveals

that both chair and boat would t equally well; the differenti-

ating part of the density is absent.

In order to investigate this further, the deposited structure

was re-rened (using the PHENIX suite of soware)41,88 using

two alternative sets of restraints on the conformation of the

Fig. 3 Theoceptor for the LDHA nicotinamide site taken from the complex with 3 (shown in grey). Ca, Cb (spheres) and water oxygen (red sphere)

were fixed during the QM optimization. The insert shows the hydrogen bonding network involving a water molecule, Asp165 and His192.

Measured affinity is plotted against computed affinity for compounds 1–11, oxamate and malonate. R2
¼ 0.85 and RMSE ¼ 0.76.

Fig. 4 Theoceptor optimized structures described in the text.

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 2218–2227 | 2223
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tetrahydropyran ring: one in which the ring is kept as a chair

and one as a boat. In this structure, the ligand is present in all

four protein molecules in the asymmetric unit. Subsequent to

the single round of renement, omit maps were generated in

which the remainder of the structure is used to compute the

phasing and the density in the omitted region (the ligand).

These maps are shown for the four ligands present in the

asymmetric unit in Fig. 5 and conrm that the available density

cannot provide a denitive conformation for this ring. Better

statistics were obtained for the boat conformation (the all boat

structure achieved Rwork of 0.1553 and Rfree of 0.2568 while the

all chair structure achieved Rwork of 0.1575 and Rfree of 0.2574).

Inappropriate restraints and the statistics used to analyze the

outcome misled the original renement resulting in the wrong

ligand conformation. Occasionally (see below) the correct

conformation of a ring will not be so trivial and in these

circumstances a quantum mechanical binding energy that

accounts for the conformational preference of the ligand in the

eld of the protein can provide a very useful companion to

a structural renement.

2.2 Compound 2

The RSCC for ligand 2 of 0.83 suggests that it does not t the

density map accurately and inspection reveals that the density

around the indane moiety is missing. The rst step to model this

compound was to determine the preferred position of the oxygen

atom in the dihydropyrone ring, because this can easily be mis-

placed when interpreting electron density maps.12 Changing the

position of the oxygen atom inverts the conguration of the ster-

eocentre. This compound was obtained as a single, unknown

enantiomer and its absolute stereochemistry was assigned as R by

Fauber et al. on the basis of the protein–ligand crystal structure.68

The energy difference between the theoceptor optimized with the

oxygen in each of the two possible positions was less than

0.2 kcal mol�1, indicating that the ring oxygen is not interacting

with the theoceptor and the proposed positioning is reasonable.71

The missing electron density around the indane moiety would be

consistent with the phenyl substituent adopting pseudo-axial or

pseudo-equatorial orientations, relative to the dihydropyrone ring.

In the free ligand, the difference between these two conformations

is less than 0.1 kcal mol�1 but in the complex with LDHA, the

conformation with the phenyl in the pseudo-axial conformation is

8 kcal mol�1 lower in energy than in the pseudo-equatorial

conformation (Fig. 4). This energy change originates from addi-

tional edge to face stacking between the ligand in its pseudo-axial

conformation and tyrosine (Fig. 4, with the R stereochemistry

retained for ease of comparison). We therefore propose a bound

structure in which the position of the ring oxygen is maintained

but the phenyl group is in the pseudo-axial position. This provides

a better interpretation of the experimental data and suggests that

the absolute stereochemistry is likely to have been misassigned

based on the deposited crystal structure and is actually S.

To investigate this possibility, the deposited structure was re-

rened. In this case, the ligand is only present in one of the

proteins in the asymmetric unit and geometries of the two

stereoisomers and two conformations were created in GaussView

and were overlaid onto the ligand in the deposited structure

using the pair_t command in pymol.89,90 These initial positions

were used to initiate a rst round of renement in PHENIX. The

resulting ligand geometries were extracted and used to create

a set of restraints in the eLBOW tool.91 These were then used

during a second round of renement in PHENIX that was

analyzed with omit maps. The values of Rwork and Rfree obtained

during this phase are provided in Fig. 5. The renement statistics

for the axial conformations are inferior to those for the equato-

rial. However, the maps in Fig. 5 reveal that the aromatic ring is

not strongly supported in either position by the available exper-

imental evidence. In this case, even though the structure has

a reasonable overall resolution of 1.91 Å, expanding the evidence

base for the structure to include theoceptor energies would

permit a better-informed determination of the conformation and

therefore the identication of the stereochemistry would be

placed on a stronger footing. Ensuring that chemical insight

(using knowledge or quantum mechanically derived energies) is

involved in dening the conformational preferences of ligands

when in protein binding sites should ensure that correct deduc-

tions are more likely to be made from these structures.

2.3 Compound 11

As with the oxygen atom in 2, the pyridine nitrogen in 11 is

impossible to place with certainty at 2.2 Å resolution.12 In this

case, the theoceptor nds an energy difference of 4 kcal mol�1

favouring the ligand with nitrogen oriented as in the deposited

structure. This preference is due to an interaction of the pyri-

dine nitrogen with a positively charged environment formed by

the sidechains of His192 and Asn137. The theoceptor provides

extra support for the deposited structure.

2.4 Compound 3

The phenyl substituent in ligand 3 is in an axial position relative

to the 3-hydroxycyclohexenone ring in the deposited structure.

Somewhat surprisingly, axial and equatorial ligand conforma-

tions were computed to be energetically indistinguishable inFig. 5 Re-refined structures and omit maps (see text).
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the unbound state (energy difference ¼ 0.6 kcal mol�1). In 3

there are no axial hydrogens located on the same face of the ring

as the phenyl group and consequently, no clashes. However,

there is a clear preference in the bound state: the theoceptor

with the ligand in an equatorial conformation is 4 kcal mol�1

higher in energy. This difference originates from protein–ligand

edge to face stacking present when the ligand is in an axial

conformation (Fig. 5). In this case the theoceptor conrms the

surprising conformation that had been proposed for 3.

2.5 Compounds 8–10

Initial positioning of the malonate derivatives was carried out

by superimposing the malonate moiety on the 3-hydroxy

cyclohexenone ring of ligand 3, to place it in close proximity to

the basic side chain of Arg168. The malonate moiety of

compound 9 was rst modeled in its dianionic form; the

resulting complexation energy (DE) of +44 kcal mol�1 is not in

the range found for other ligands described here. This arises

due to the loss of solvation energy that is not compensated by

sufficient interactions in the receptor. These ndings suggest

that the malonate moiety may bind in a mono-deprotonated

form. Three different malonate positions were investigated for

monoanionic 9 in the theoceptor. The lowest energy theoceptor

was the one where the malonate moiety made four hydrogen

bonds with the nearby sidechains (�18.9 kcal mol�1). The

energy difference of 15 kcal mol�1 between the highest and

lowest energy theoceptor emphasizes the effect subtle confor-

mational changes of the interacting groups can have on the

overall binding energy, particularly when strongly interacting

groups such as anions are involved.

2.6 Malonate and oxamate

When considering the binding of malonate itself, a total of 8

different malonate tautomeric monoanions were optimized in

solution and all were found to be energetically indistinguish-

able (within a range spanning 0.5 kcal mol�1). The correct

orientation of malonate in the binding cavity could also not be

condently determined: optimization of 8 different theo-

ceptors, each with a different malonate starting position

resulted in complexes with DE values ranging from �8 to

+16 kcal mol�1. These ndings, in conjunction with experi-

mental ambiguity concerning the state of the protein during the

experimental measurements, suggested that malonate may

bind in the presence of and proximal to cofactor NAD+/NADH.74

Calculations employed the oxidized and reduced form of nico-

tinamide with the ribose present but with the phosphate moiety

truncated to a methyl group.92 The DE with co-factor in its

reduced form was 5.4 kcal mol�1 and in its oxidized form

almost �40 kcal mol�1, which is consistent with the experi-

mental affinities. Finally, the binding of oxamate was investi-

gated. Again, binding is facilitated by the co-factor: the energy

difference between the theoceptor with and without co-factor

bound was more than 50 kcal mol�1 (Fig. 4). These ndings

are very interesting from the drug designer's point of view: small

negatively charged molecules that mimic substrate and bind in

the presence of co-factor (rather than competing with it) have

the tendency to be more efficient binders. As these studies were

underway, a publication disclosed a new inhibitor, 12, in which

a nitrogen has been introduced into the central ring of

compounds like 1, 3, 4 and 5.64 This provided an opportunity to

test the predictive capability of the theoceptor. The calculations

for compound 12 yielded a DE of �19.5 kcal mol�1 and log P of

3.84. These gave a predicted pIC50 of 5.41. The experimental

work had measured the pIC50 to be 5.40, which is in excellent

agreement with the prediction. Furthermore, the calculations

reveal that when the ligand is outside the protein, the pseudo-

axial and pseudo-equatorial conformations are within

0.4 kcal mol�1 but in the binding site, the axial is preferred by

5 kcal mol�1. As with compounds 2 and 3, this is due to edge to

face interactions with tyrosine (Fig. 4). The favored structure

sees the introduced NH group on the opposite side of the ligand

to the NH in the sidechain of Asn137; the alternative position is

computed to be 1 kcal mol�1 higher in energy. The preferred

stereoisomer is therefore S-12 (the original publication does not

explore the stereochemical preference for this molecule).

3 Conclusions

The combination of computed quantum mechanical binding

energies with measured or predicted ligand log P values can

provide usefully accurate predictions of host–guest and protein–

ligand binding energies. By assigning relative energies to protein–

ligand structures in which different conformations, tautomers,

protonation states and stereoisomers are sampled, useful insights

about the interactions between the protein and ligand are gener-

ated. This can include regions that are not observed in the

experimental electronic density. Computed structures reveal the

limitations of the statistics currently used during the renement of

X-ray crystal structures. Our approach is sufficiently accurate to

make useful predictions about the affinity for new compounds.

Chemists must become proactive creators of protein–ligand

crystal structures rather than passive consumers; quantum

mechanics provides a useful tool to do this in an objective fashion.
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