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17 

The design of manholes dates back more than 100 years. However, there have been developments 18 

such as the use of new materials for the manufacture of manholes, and advances in inspection and 19 

maintenance technologies, allowing improvements to the shape of manholes.  This paper presents an 20 

innovative design for manholes, created to overcome the challenges associated with the installation of 21 

separate sewer systems in narrow streets, common to both UK and EU cities. The traditional separate 22 

sewer system has two separate manholes. The proposed manhole combines these two manholes into 23 

one structure, with two separate chambers, to allow storm flow and foul flow to pass through the same 24 

manhole without mixing. The structural performance of the new design has been tested using 25 

mathematical modelling validated by experimental tests. The results are compared with the structural 26 

performance of traditional manholes. The new design shows an improved resistance to high live loads. 27 

28 

29 

�������� Innovative design, manhole, mathematical model, separate sewer system, structural 30 

performance.  31 
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�� ������ �����32 

33 

The manhole is one of the main elements of a sewer network, used to gain access to the sewer for 34 

inspection and maintenance. The construction of manholes has improved, over time, with reference to 35 

the materials used. Originally built of brick, significant improvements were made by using concrete 36 

and precast materials. However, corrosion to concrete caused by H2S means that the inner surface of 37 

manholes need to be coated, or newly developed materials such as fiberglass and polyethylene used 38 

instead (Ahn et al. 2009; Hughes 2009; Petroff 1994). A manhole needs to provide sufficient working 39 

space and safe entry and egress for personnel to the sewer system network (BSEN476 2011). Recently, 40 

because of rapid developments in sewer inspection and maintenance equipment technology, many 41 

water authorities have started using inspection manholes, instead of the traditional manhole, which 42 

has the same design of a manhole but with smaller dimensions,  this manhole suitable for equipment 43 

entry rather than personnel access (BSEN752:2008 2013). The maximum space between two 44 

manholes and location of the manhole should be adequate to allow easy use of this equipment. This 45 

means that design criteria require manholes sited at every change of alignment, or gradient, and 46 

wherever there is a change in the size of sewer pipes.  They also need to be spaced at reasonable 47 

intervals for inspection and maintenance, somewhere between 50 and 100 meters (BSEN752:2008 48 

2013). Manholes are either rectangular or circular, but from a review of the literature, it is clear that 49 

there is a paucity of research on manhole shape or structural performance (Bettez et al. (2001); 50 

Saricimen et al. (2003)), specifically regarding combined manholes.  A rectangular combined 51 

manhole, one manhole structure with two chambers, one for wastewater the other for rainwater, was 52 

patented by Würmseher (2014).  Willi (1998) patented a design which was the same size as traditional 53 

manholes but can be either rectangular  or circular with two stage chambers arranged vertically, storm 54 

chamber over sanitary. Work examining the structural performance of traditional manholes was 55 

carried out by Sabouni and El Naggar (2011a).  They used three manholes, two of diameter 1200 mm 56 

(one reinforced, the other not), the third of diameter 1500 mm, both built from precast concrete. They 57 

used a large-scale (4.5 m x 4.5 m x 7.62 m) geotechnical cell for testing and followed the Canadian 58 

Highway Bridge Design Code as a guide for the application of live loads. They found that the range of 59 
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displacement of the manholes ranged between 1.3 mm and 5.6 mm for all loading tests. They 60 

concluded that the frictional resistance along the manhole structure, mitigated the effect of truck 61 

loading.  All their manholes withstood the truck loads, even the non-reinforced one. Sabouni and El 62 

Naggar (2011b) used these results to validate a 3-dimensional Finite Element model (FE) for circular, 63 

precast and concrete manholes. The FE model was used to test a different combination of concrete 64 

manholes in native soil conditions, including soil compaction, groundwater level, trench dimensions 65 

and method of installation. They found that soil water content (groundwater level) creates more stress 66 

effects on manhole bases than any other factor. Al-Saleem and Langdon (2016) presented the results 67 

of structural tests of a manhole under a single live load, this was part of work to develop and upgrade 68 

standardised design guidelines for precast concrete manholes in New Zealand (CPAA 2016). They 69 

concluded that the service life of a manhole is typically 100 years and that the designer needs to be 70 

aware that the standard design is for normal application but that the manhole can be modified to meet 71 

any special site requirements or project applications. IKT (2012)  who estimated the total number of 72 

manholes in Germany at ten million, conducted a full-scale comparison laboratory experiment study, 73 

using cementitious and polymeric coatings to line manholes to improve their structure, and to treat 74 

those which were deteriorating. A substantial study was carried out by Najafi and Sever (2015b), who 75 

estimated the number of manholes in the USA to be approximately 20 million. Their study tested the 76 

structural capabilities of the manhole when lined with specific materials using structure strength tests, 77 

mathematical modelling and evaluated case histories. The procedure involved using a small-scale 78 

model to validate an FE model, the results of which were used to upgrade the FE model to full scale. 79 

The results from both Germany and the USA, revealed that manhole structural performance was not 80 

affected by the type of lining or deterioration of said lining. Bandler (2007) conducted a study to test 81 

two types of manhole materials; unreinforced concrete and masonry. Manholes were exposed to 82 

axisymmetric pressure to simulate horizontal effective loads, the effect of the coating material 83 

assessed in order to improve the structural performance of the manhole. Brown and Brown (2000) 84 

studied the structural performance of manholes and the combination of vicinity asphalt surfacing 85 

under wheel loadings, finding that surface displacement is a result of subgrade deformation rather 86 

than manhole deformation.  87 
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This paper presents a new design for manholes, gathering the two separate sewer manholes (sanitary 88 

manhole and storm manhole) into one manhole structure with two separate chambers, one for sewage 89 

flow the other for stormwater flow.  This new design provides the advantages of decreases in cost and 90 

a reduced footprint compared with traditional separate sewer systems, as it allows two pipes to be 91 

positioned in one trench and the construction of separate sewer systems in narrow streets. The 92 

structural performance (correlation between manhole shape and soil) of the new manhole when buried 93 

in soil, was tested in this research.  Two prototypes were used; the new design and a traditional 94 

manhole. The experimental results were used to validate a numerical model which upgraded the 95 

model to real scale. The integrity of the structural performance of the new design has been tested and 96 

compared with the structural performance of traditional manholes under the same conditions.  97 

98 

!� ���	�
"����99 

100 

The manhole structure can be exposed to two types of loads; permanent dead loads such as the weight 101 

of the manhole structure, road layers, soil backfill and manhole cover, and live loads such as traffic 102 

loads and hydrostatic flow load. The traffic load directly effects the manhole cover as it is normally 103 

on same level as the street surface.   Table 1 shows the different categories of live loads (ASTM-C890 104 

2006; BS 2010). The manhole wall needs to be thick enough  to resist the compressive forces caused 105 

by vertical loads and/or horizontal loads such as lateral earth pressure or hydrostatic pressure (ACPA 106 

2008) . The lateral load pressure can be calculated as: 107 

 p = ws HKs + 62.4H 108 

109 

where p = total earth and hydrostatic pressure (pounds per square foot); ws = effective unit weight of backfill 110 

material (pounds per cubic feet); H = depth of manhole (feet) and Ks = the conjugate ratio for the soil.  111 
112 

ASTM-C890 (2006) uses a pyramid method to calculate the distribution of traffic loading through 113 

specific cover depths (H) such as pavement layers and filling soil above the structure of the manhole, 114 

Equation 1 is used to calculate this load. The tire footprint for dual wheels is simulated by a 115 

rectangular plate (L=50.8 cm x W=25.4cm), the pressure on the manhole structure being the pressure 116 

at the base of the pyramid. Figures 1 and 2 show the distribution of dead loads and live loads on the 117 

manholes. In this research, H is taken as zero to apply the maximum load that the top of the manhole 118 

can be exposed to.  119 
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P=F/(�+1.75�)×(�+1.75�) …… (Eq 1) 120 

121 
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123 

124 

125 

#�	�
��

Pyramid method for the distribution of a live load "Reproduced, with permission from [ASTM 
C890-13] copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428."
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cumulative vertical loads "Reproduced, with permission from [ASTM C890-13] copyright 
ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428." 

$� ������
�����

The conventional, separate sewer system has two manholes; one for sewage, the other for stormwater. 

The geometrical design of these manholes was created more than 100 years ago, Figure 3 illustrating 

this design and its setup within a traditional separate sewer system (DEFRA 2011). Normally the 

dimensions of the conventional manhole are between 1 and 1.8 meters diameter at the intermediate 

network (between the lateral pipes and trunk pipelines), the exact size dependant on the diameter of 

the inlet-outlet pipe servicing that manhole. The depth of the manhole is dependent on the level of the 

outlet pipe and can be 1 meter at the beginning of the network, increasing to a depth of 7 meters 

before using a lift station to raise the hydraulic gradient again to 1 meter. Novel approaches, 

techniques and devices mean that the original design criteria established a century ago, is obsolete. 

The negative impact of the combined sewer system on the environment has necessitated  new 

environmental regulations to encourage the use of separate sewer systems (Bizier 2007). Work is 

required to comply with new regulations for the protection of the environment, even in areas where 

the installation of traditional separate sewer systems is challenging  (EPA 2007). 

#�	�
$� Typical design of a sanitary manhole and storm manhole located in a separate sewer system 

146 
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This research constitutes a new approach to manhole design by combining the two manholes in a 147 

separate system, into a one-manhole structure still keeping both storm flow and sewage flow separate. 148 

The new structure has two chambers; an external chamber for stormwater flow and an inner chamber 149 

for sewage flow. Figure 4 details the design of the new manhole, Figure 5 detailing a cross section of 150 

the new manhole in the street. The first chamber, the outer chamber, has a stormwater inlet and a 151 

separate stormwater outlet. The second chamber comprises a sewage inlet and separate sewage outlet. 152 

The two chambers are arranged coaxially, the storm pipe set above the sanitary pipe in one trench. 153 

The dimensions of the outer chamber are between 2.5 to 3 meters diameter, the depth relative to the 154 

level of the storm pipes (both inlet and outlet). The dimensions of the inner chamber range from 0.8 to 155 

1.2 meters, the depth dependant on the level of the sanitary pipes (inlet and outlet).  156 

The manhole itself can be concrete or plastic e.g. HDPE, PVC or GRP, the same material available for 157 

traditional manhole manufacture.  Because of this, there should be no difference in the lifetime service 158 

of the new manhole in comparison to a traditional manhole. The hydraulic performance of the new 159 

manhole however, has a different impact on the serviceability of the sewer system, this requiring more 160 

research to establish the hydraulic integrity of the new design. A non-reinforced concrete manhole 161 

was used to simulate a real scale model in this research. 162 

163 

164 

#�	�
%� Innovative design of a manhole for separate sewer systems. 

165 

166 

#�	�
&�
Cross section of new manhole located in a separate sewer system. 

167 

168 

169 

170 
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%� ��������	�171 

172 

A two-stage approach was followed in this research.  In the first stage, the finite element model for 173 

the case study was built with all the input criteria determined using lab tests to identify the properties 174 

of the materials. Prototypes and experimental work were used to identify the boundary conditions 175 

necessary to validate the results from the mathematical model (Brinkgreve 2013). The second stage 176 

used the mathematical model to ascertain the real scale dimensions of both manholes; the traditional 177 

manhole and new design manhole. The FEA used ABAQUS to test the manhole-soil correlation and 178 

identify degree of displacement under four loading categories; medium (HS15), heavy (HS20 and 179 

HS25) and   one overload (double heavy traffic load) when two trucks pass over the manhole at the 180 

same time.  181 

182 

4.1� ���������	
������183 

Two prototypes, one of a traditional manhole with a diameter of 10 cm and depth of 30 cm, the other 184 

of the new design with the same dimensions for the inner chamber but with a diameter of 25 cm and 185 

depth of 25 cm for the external chamber, were constructed.   The manholes were buried in soil in a 186 

trench of dimensions 2.5 x 0.5 x1 meters. The trench was located in a hydraulic rig which was used to 187 

apply live loads. The cell load and Linear Variable Differential Transducers (LVDTs), were used to 188 

monitor applied loads and displacement of the manhole structure, the data recorded by an MC3 189 

recorder. The results were used to validate the FE model, this validation allowing an upgrade to a real 190 

scale FE model. Figure 6 illustrates the setup of the trench in the rig, the buried manholes, the location 191 

of the load cell and the three (LVDTs) for the new manhole. Figure 7 shows the same set up for the 192 

traditional manhole. An important input parameter for the FE model concerns the properties of the 193 

materials used.  Because this research focuses on the performance of the geometry of the manhole 194 

buried in soil and not the stress of the manhole structure, the soil properties have been identified 195 

through a series of geotechnical laboratory tests.  These identified the degree of elastoplastic 196 

behaviour of the soil and the contact relationship between the external surface of the manhole and 197 

surrounding soil. A natural top-soil was used, normally available from the first layer of the ground 198 
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surface around the UK, as this is the zone where manholes are buried. As steel was used to build the 199 

prototype manholes, the friction factor between the steel surface and the soil was also determined.200 

201 

202 

203 

204 

205 

a a 

b b 

#�	�
 '� Setup of the trench in the rig and 

location of measurement instruments on the 

new manhole surface at three points on the 

edge. 

#�	�
(� Setup of the trench in the rig and location of 

measurement instruments on the traditional manhole 

surface at three points on the edge. 

206 

207 

4.2��
	���
	��
��������208 

A wide range of tools are available to carry out finite element analyses (FEA), including commercial 209 

packages such as ABAQUS (used in this research), designed for use with complicated geotechnical 210 

issues (Torben Pichler 2012). The development of mathematical tools and improvements to the 211 

library of material applicable for FEA, allows geotechnical engineers to select which tools to use to 212 

successfully solve geotechnical structural problems and simulate structural behaviours when 213 

manholes are embedded in soil. That said, engineers still need to have both a geotechnical background 214 

and a good understanding of the principles of FEA to avoid misjudgements. Soil is a complex media 215 

because the texture of soil includes solid particles and voids, which can be full of air or water, making 216 

predicting and simulating soil behaviour a considerable challenge (Mar 2002). Two FE models have 217 

been created for the prototype simulation in the current research; one to simulate the new manhole, 218 

the other a traditional manhole. The same experimental conditions, dimensions, boundary conditions 219 

and materials were used.  Restrictions at the base prevented movement but allowed displacement in 220 

the y-axis for the external model’s faces and used the symmetry around the x-axis and z-axis for the 221 

internal faces to simulate the full model behaviour. The symmetry of the model around the x-axis and 222 

z-axis allows the use of a quarter model using the specific tools in Abaqus. The creation of a 223 
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symmetrical model and use of only one quarter of the model decreases the run time while giving the 224 

same results as a full 3D model . Surface to surface contact interaction was fixed with a friction factor 225 

0.45 between the soil and steel, this determined from the experimental test. Figure 8 shows the mesh 226 

for the symmetrical quarter of the new manhole model which has 45370 nodes, 35350 elements, 227 

35269 linear hexahedral elements of type C3D8R and 81 linear wedge elements of type C3D6. Figure 228 

9 shows the mesh for the symmetrical quarter of the model of the traditional manhole which has 229 

40532 nodes, 34928 elements, 34856 linear hexahedral elements of type C3D8R and 72 linear wedge 230 

elements of type C3D6.231 

232 

233 

#�	�
)� The symmetrical quarter of the new 

manhole FE mesh model representing the full 

3D manhole. 


#�	�
*� The symmetrical quarter of the traditional 

manhole FE mesh model representing the full 3D 

manhole. 

234 

235 

236 

237 

&� +� ���
���
���� �����238 

239 

5.1� ���	�	�������������	
�������	��240 

241 

Loads have been applied to verify the capacity of the new manhole compared to the traditional 242 

manhole,  and to calculate the manhole shape – soil correlation. Four categories of loads were 243 

simulated; medium traffic HS15, heavy traffic HS20 and HS25 and overload (double heavy traffic). 244 

Figure 10 details the response of the new manhole under static applied loads, HS15, HS20, HS25, a 245 

double HS25 and a dynamic double HS25, applied load at the end of the test, to establish the 246 

maximum resistance. The displacement experienced by the new manhole was within acceptable 247 

limits, the standard requirement being 13 mm (Sabouni and El Naggar 2011a), when under HS15, 248 

HS20 and HS25 loadings. Displacement was 3.3 mm at HS15, 6.2 mm at HS20 and 9.2 mm at HS25. 249 

When the applied load was increased to over load (twice the heavy load HS25), the new manhole 250 

continued to be stable but the displacement was 22 mm, which is above acceptable limits. Soil density 251 

and the degree of compaction of the filling soil, play a significant role in the stability of buried 252 
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manholes under live loads (Abolmaali and Kararam 2010). Therefore, the same set of tests were 253 

applied to the traditional manhole, the results presented in Figure 10.  Displacements were 2.9 mm for 254 

a load of HS15, 7 mm for HS20, 14.3 mm for HS25, the manhole sinking into the soil when HS25 255 

was doubled. Steel was used to build the manhole prototype because of difficulties fabricating small 256 

prototypes of concrete. The friction factor between the steel and soil is less than the friction factor 257 

between concrete and soil meaning that the degree of displacement will be lower when concrete is 258 

used because the friction factor will be higher.259 

260 

The comparisons between the displacement of the new manhole with the traditional manhole in 261 

Figure 10, show that under a medium load (HS15), the traditional manhole has less displacement 262 

compared to the new manhole. This is because the new manhole is heavier than the traditional one, 263 

this adding a significant dead load.  However, the effect of manhole weight is smaller when the traffic 264 

load is increased. Against the application of heavy loads, the geometry of the manhole plays an 265 

important role, improving the resistance of the manhole.   266 

267 

268 

#�	�
�,� Comparison between the new and traditional manholes under the same conditions and 

live loads. 

269 

270 

5.2� ���������	�������	����
	���
	��
���������271 

272 

The same series of loads (HS15, HS20 and HS25) and the exact boundary conditions as for the 273 

physical model, were applied on manholes using a finite element model. Selecting the proper 274 

constitutive model (stress–strain relationship) to simulate soil behaviour is an important aspect to 275 

consider  when using FE for soil models (Lees 2012).  In this research, two constitutive models 276 

(Mohr-Coulomb and Drucker-Prager) have been tested to identify the most appropriate model (Abbas 277 

et al. 2017). The properties of the soil were defined by conducting three conventional triaxial 278 

compression tests and one isotropic consolidation (compression) test, to establish the elastoplastic 279 

behaviour of the soil (Helwany 2007). Table 2 lists the parameters for the materials. A point at the 280 

center of manhole was selected to record displacement results because the maximum displacement 281 
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occurs at the center. Figure 11 shows the results when a double heavy load was applied. The results 282 

for each applied load shows the displacements at the same point, these compared with the results of 283 

the measurements taken at the cover of the manhole for the experimental tests, under the same series 284 

of loads.  285 

286 

287 

#�	�
��� The displacement of the new manhole at a double heavy load shown in a 3D quarter 

symmetric FEA model. 

288 

The FE model output and the experiment model have a very close match regarding the displacement 289 

of the new manhole under live loads, as demonstrated in Figure 12.   290 

291 

292 

#�	�
�!�  Comparison of the displacements from both the experimental work and the FE model for 

the new manhole, in soil, under live loads. 

293 

The same point was selected to show the displacement results for the traditional manhole, a sample of 294 

the results at a double heavy load are presented in Figure 13. 295 

296 

297 

#�	�
�$� The displacement of the traditional manhole at a double heavy load shown in a 3D quarter 

symmetric FEA model. 

298 

299 

300 

The comparison of the results from the FE model and the experiment model reveal a close match 301 

regarding displacement at low loads and between displacements for the traditional manhole under 302 

high live loads. The experimental measurements and FEA results gave a reliable assessment of the 303 

behaviour of the geometry of the manhole and estimations of the margins of error expected from the 304 

FEA. The experimental test and the FE model results for the traditional manhole are presented in 305 

Figure 14. 306 

307 

308 

309 
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#�	�
�%�  Comparison of the displacement results from both experimental works and the FE model for 

the traditional manhole prototype in soil under live loads. 

310 

311 

One of the important validation processes is the comparison of the FE model with lab experimental 312 

results to eliminate uncertainty and manage discrepancies in the model thus increasing confidence in 313 

the real application (Moser and Folkman 2008).  Validation makes the designer more aware of the 314 

inevitable inaccuracies between a real case study and an FE model (Mar 2002). The two stages 315 

explained above, illustrate that all necessary steps to check and validate the accuracy of the FE model 316 

have been taken. All the boundary conditions, contact interactions, material properties and steps were 317 

identified correctly, meaning it was possible to upgrade the FE model to a real-life scale with 318 

confidence.  319 

320 

321 

5.3� ������
����������������	��322 

323 

Normally the dimensions of traditional manholes used in most sewer networks are 1 to 1.8 meters 324 

diameter, the depth ranging from 1 to approximately 7 meters. Real scale dimensions were selected 325 

for intermediate networks in the sewer system where new systems were expected to be located. The 326 

traditional manhole was 1.3 meters in diameter and 3.4 metre deep; the storm chamber of the new 327 

manhole 2.8 meters in diameter and 2.65 meters deep, the sanitary chamber having the same 328 

dimensions as the traditional manhole. The soil was of 8.5 meters radius and 15 meters deep to 329 

identify the maximum area affected by force (Brinkgreve 2013). The same soil properties as for the 330 

prototype model, were used for the real scale module. Non-reinforced concrete (Najafi and Sever 331 

2015b), was used for the manhole material. The new manhole had 143345 nodes and 138100 elements 332 

element types (C3D6 & C3D8R). Figure 15 illustrates the setup of the new manhole in soil. 333 

Regarding the traditional manhole, the mesh used was finer to control for the instability found during 334 

experimental testing and to avoid aborting the test as a result of the substantial displacement that can 335 

occur.  The number of nodes was 377705, 373240 elements, the element types the same as for the new 336 

manhole (C3D6 & C3D8R). Figure 16 illustrates the setup of the traditional manhole model in soil. 337 
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#�	�
�&� Setup of the real scale of new manhole 

– soil model.

#�	�
 �'� Setup of the real scale of traditional 

manhole-soil model. 

338 

339 

340 

 The data regarding the FE model were taken at the center point of the manhole base for both the new 341 

and traditional manhole. The maximum displacement at the base of the both manholes was identified. 342 

The new manhole is stable, even under high loading (loads 360 KN), the displacement of the soil 343 

below the manhole centerline being 8.16 mm, 3.55 mm under loading HS25 (90kN), 3.3 mm when the 344 

load was HS20 (70-80 kN) and approximately 3 mm when the load was HS15 (50-60kN).  These 345 

results reflect high stability against very high loads, more than double the loads that normally occur. 346 

The displacements for the traditional manhole had less stability under high loads (loads 360 KN) 347 

because the area of the base is smaller than that of the new manhole. The displacement of soil below 348 

the manhole centerline was 11.8 mm at 360 kN, 3.4 mm when the load was HS25 (90kN), 3 mm when 349 

the load was HS20 (70-80 kN) and 2.7 mm when the load was HS15 (50-60kN).  The traditional 350 

manhole has less displacement under medium loads and about the same displacement under heavy 351 

loads compared with the displacement of the new manhole under the same loads. It also experiences 352 

higher displacement under over-loads in comparison to the new manhole. The traditional manhole has 353 

less displacement under medium (HS15) loads compared to the new manhole, because of the 354 

increased weight of the new manhole which, this adding an extra load to the live load causing 355 

additional displacement.  Figure 17 shows a comparison of the displacement of the soil below the new 356 

and traditional manholes. 357 

358 

359 

360 

361 

362 

#�	�
�(� A comparison of the displacement for both manholes under different loads (FE model). 

363 

364 
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The results for displacement to both manhole covers and the soil surface for the new manhole, 365 

indicates that the new manhole has more impact on the surrounding soil as it was displaced between 366 

1-2 mm, under medium and heavy loads (50 to 90 kN), affecting a 3-meter circle around the manhole. 367 

This displacement increased to between 2-3.5 mm under a double-heavy load. This displacement 368 

represents a summation of the soil displacement below the manhole and the deformation of the 369 

manhole material. The displacement increases from 8.16 mm to 9.95 mm under extreme loading, from 370 

3.55 mm to 4 mm when the load was HS25 (90kN), from 3.3mm to 3.8 mm when the load was HS20 371 

(70-80 kN) and from 3 mm to 3.48 mm when the load was HS15 (50-60 kN).  These surface 372 

displacements need to be taken into consideration when designing road surfaces as the soil 373 

displacement below the manhole base effects connecting manhole pipes. This is critical in many cases 374 

of sewer collapse, the collapse happens at the connection joint between the pipes and the manhole 375 

because of relative displacement. There was less displacement with the new manhole model, both 376 

total surface and soil below the manhole. This increases the safety of sewer systems subject to very 377 

high loads. The stress results for the new manhole revealed that the maximum stress is on a slab 378 

positioned at the external wall of the storm chamber. The stress is decreased in the direction of the 379 

center of the manhole and increased slightly in the area close to the internal wall. The displacement 380 

occurring in the traditional manhole surface increased from 11.8 mm to 12.3 mm under high loads. 381 

This includes the displacement of the soil underneath manhole and the manhole structure deformation, 382 

from 3.4 mm to 3.6 mm when the load was HS25 (90kN), from 3 mm to 3.2 mm when the load was 383 

HS20 (70-80 kN) and from 2.7 mm to 2.85 mm when the load was HS15 (50-60kN). These results 384 

show that the traditional manhole has less displacement under medium loads and about the same 385 

displacement as the new manhole design under heavy loads.  It has high displacement under over-386 

loads which are close to failure at 13 mm.  A smaller manhole has less impact on the surrounding 387 

surface soil, displacements between 1-2 mm across all loads. The stress in the surrounding soil 388 

generated by the traditional manhole structure was higher than the stress experienced by the new 389 

manhole. It was about three times higher, in comparison to the new manhole which has a larger 390 

surface area working to mitigate load stress effects.    This reduction in stress is promising as it may 391 

allow the use of lightweight materials such as GRP, HDPE or PVC to build the whole, or part of, the 392 
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manhole structure, e.g. the inner chamber, while using concrete for the external chamber (the storm 393 

chamber). There is also the potential to decrease the thickness of the walls, or to minimise the amount 394 

of reinforced steel required. 395 

396 

397 

398 

5.4� �����	��
	��������
������������	���	��� 399 

400 

The change in geometry of the manhole created a change in its structural behaviour. The non-401 

reinforced traditional manhole has been previously tested by Sabouni and El Naggar (2011a) who 402 

used two manholes of 1200 mm and 1500 mm.  They used 52 MPa as the cylinder compressive 403 

strength for the concrete of the base manhole, this a relatively high strength. Their results indicated 404 

that both manholes were able to withstand the applied loads, the maximum overall calculated strain 405 

approximately 75% in the 1200 mm manhole and 83% in 1500 mm manhole less than the base 406 

cracking strain. Sabouni and El Naggar (2011b) also generated a numerical model (FE) for both 407 

manholes. They found that the cracking moment (Mcr) of the manhole bases was 16.3 kN·m/m for the 408 

1200 mm manhole and 62.4 kN·m/m for 1500 mm manhole, the average bending moment calculated 409 

at 4.8 kN·m for the 1200 mm manhole and 10.25 kN·m for the 1500 mm manhole. Further to this, 410 

Najafi and Sever (2015a) carried out testing and an FE study for a manhole of 1200 mm, reporting the 411 

maximum strain as 0.00019 and  the maximum moment as 1 kN·m/m compared with a calculated 412 

cracking moment of 15.43 kN·m/m. They used non-reinforced concrete, which has a 40 MPa cylinder 413 

compressive strength. It should also be noted that they applied a  low load (HS15), approximately 53 414 

kN, to  the manhole. 415 

 The same procedure and materials as used by Najafi and Sever (2015a) were used in this research. 416 

The applied load however was different as we applied conservative traffic loads to the manhole. Table 417 

2 shows the properties of the concrete used for the manhole.  ACI318 limits the strain in the concrete 418 

to 0.003. The cracking moment of the concrete is calculated using an ACI318 equation (3), 22.7 kN-m 419 

for the base of the traditional manhole and 34.1 kN-m for the new manhole.  These limits were used to 420 
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compare the output of both structural manhole models. Table (3) illustrates the maximum strain on the 421 

manhole body and the percentage difference for the bending moment of the base manholes compared 422 

with the cracking moment. 423 

424 

According to ACI318 the cracking moment of the concrete is calculated as follows: 425 

426 

��� =	
	
��

��
 …………(Eq 2) 427 

428 

For circular concrete slabs, it is 429 

430 

��� =	
	
���

�

�
 …………(Eq 3) 431 

432 

433 

 where Ig is the gross moment of inertia (m4); b and h are the width and thickness of manhole base 434 

slab, and fcr is the flexural cracking strength. 435 

436 

Figures 18a and b show the strain and location of the maximum bending moment in the base of the 437 

manhole for both the new manhole body and the traditional manhole body, under a double heavy load 438 

(180kN). The new manhole almost failed under double heavy loads, this the extreme case, while the 439 

traditional manhole was able to withstand this extent of loading. Double heavy loads are used in this 440 

study to test the maximum structural capacity of the manhole. The manhole body structure will be 441 

studied in detail using reinforced concrete and light-weight materials such as GRP or HDPL in a 442 

subsequent study.  We will also investigate if the provision of a flexible joint between the sanitary 443 

wall chamber and the base of storm chamber can improve the structural performance of the manhole. 444 

The structure of the new manhole body can effected by the degree of compaction of the soil 445 

underneath the two chambers of the manhole.  Any difference in soil stiffness below these chambers 446 

can led to differential settlement which generates more stress in the body of the manhole depending 447 

on the location of the applied load.  Therefore, reinforced concrete is required for the new manhole 448 

design when it is not being laid in a narrow street and can be exposed to double heavy loads.   449 

#�	�
�)
�� The strains and location of maximum 

bending moment in the base of the new manhole 

body under a double heavy load (180kN). 

#�	�
�)
�� The strains and location of maximum 

bending moment in the base of the traditional 

manhole body under a double heavy load 

(180kN). 
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451 

The technological development of inspection and maintenance equipment for sewer systems, in 452 

combination with the availability of new materials for pipe and manhole manufacture, has allowed 453 

improvements to be made to traditional manholes.  Environmental regulations in many developed and 454 

developing countries, require separate sewer systems to be built as combined sewer systems are no 455 

longer acceptable. As a response, this research has presented a new design for manholes, siting the 456 

two traditional separate sewer system manholes together in one manhole structure, improving on the 457 

installation method of separate sewer systems in narrow streets.  It has two separate chambers; an 458 

external chamber used to carry storm flow and an inner chamber used for sewage flow. Because of the 459 

design, it is bigger and heavier in comparison to the traditional manhole.  Structural performance 460 

testing was carried out using 3D finite element analysis and compared to the performance of 461 

traditional manholes. The results revealed that: 462 

� The weight of the new manhole added a dead load to the loads applied, this affecting the463 

behaviour of the manhole. The displacement was higher than that for a traditional manhole under464 

a small live load.465 

� Under heavy loads, both the new and traditional manhole exhibit the same behaviour (settlement)466 

and both operate within standard limitations.467 

� The new manhole has very good stability under extremely high loads; the traditional manhole468 

experienced more settlement under the same load.469 

� The new manhole was stable and had less displacement under a double heavy load.   However,470 

the bending moment was close to the cracking moment at the base of the storm chamber under a471 

double heavy load; reinforcement was recommended for the slab (cover) and the base of the472 

manhole. This will be examined in the next stage of the current research.473 

� The levels of soil stress in the new manhole were dramatically reduced, in comparison to soil474 

stress in the traditional manhole structure, under identical loads.475 

The structural improvements generated by the mathematical model (successfully calibrated by the 476 

experimental work), allow the safe use of this new manhole in narrow streets, prevalent in the UK and 477 
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EU, which up to now have constituted a real challenge when constructing traditional separate sewer 478 

systems. The displacement of the new manhole is higher than the displacement of the traditional 479 

manhole, under low loads, because of the weight of the new manhole.  This effect is expected to 480 

disperse through the construction stage under good compaction processes. The new manhole shows 481 

high stability and resistance against high live loads.  The stress created by live loads on the new 482 

manhole was significantly lower than that for traditional manholes. This implies that a review can be 483 

made of the thickness and reinforcement required for the walls of the manhole, including the potential 484 

to use lighter materials such as GRP, HDPE and PVC in the manufacture of new structures.   485 

486 

��.�����	����
487 
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Table 1: Vehicle load designations 

Designation Load, max Uses 

ASTM HS25 (89 200 N) per wheel heavy traffic 

ASTM HS20 (71 200 N) per wheel heavy traffic 

ASTM HS15 (53 400 N) per wheel medium traffic 

ASTM H10 (35 600 N) per wheel light traffic 

Extreme heavy load 

185 kN 

207 kN 

One wheel from 4th axle (heaviest wheel load) 

with load factors 2.1 and 2.4 (Sabouni and El 

Naggar 2011b) 

Loading according to 

BS 540012:1978) citied 

in BS 9295:2010 

2 × 112.5 kN 
Main roads 

112.5 kN wheel loads including an impact factor 

of 1.3 

2 × 105 kN 
Light trafficked roads 

105 kN wheel loads including an impact factor of 

1.5 

2 × 60 kN 
Fields 

60 kN wheel loads, including an impact factor of 

2.0 

�
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Table 3. Percentage�difference for the bending moment of the manhole bases, the cracking moment�
and the maximum strain on the body of the manhole. �

� 0GY�/CPJQNG�FGUKIP� 6TCFKVKQPCN�OCPJQNG�FGUKIP�

/RDG�

FDWHJRULHV���

%HQGLQJ�

PRPHQW�

��'LII�

IURP�WKH�

����

0D[�6WUDLQ� %HQGLQJ�

PRPHQW�

��'LII�

IURP�

WKH�����

0D[�6WUDLQ�

+6��� ����� ���� ����[����� ����� ���� ���[�����

+6��� ������ ���� ����[����� ����� ���� ���[�����

+6��� ������ ���� ���[����� ����� ���� ���[�����

'RXEOH�

KHDY\�ORDG��

��������

������

���������� �[������

���[�����

��������

�������

�����

����

���[������

���[�����

�

�

Page 23 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



�����������	
������������	��������	�����������
�������
� "Reproduced, with permission from [ASTM C890-13] ASTM International"

���������������������� �

Page 24 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



�����������	�
�����������
�
���� "Reproduced, with permission from [ASTM C890-13]  ASTM International"

�������		�����������������

Page 25 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



����������	�
��������������������������������������������������
�����������	�������������������

� � � � � �

������������ ����� ��!"#$�

Page 26 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



����������	
���
�������	��������	���	���������������������

��������������������� !�"�

Page 27 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



����������	

�
���	��	����������	����	����������
�������
�����
�
����

��������������������� !"#�

Page 28 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



�����������	�
�������������������������������	���������������������������������������������������
����������������������������	����

��������������������� !"#�

Page 29 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



�����������	�
�������������������������������	�����������������������������������������	�������
������������������������������������	����

�������������������� !"#�

Page 30 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



����������	�
���	����������	������	��	��������	�����	
�����	���	��	
	������	���������������	�

���� ����!�"�����"���#$%�

Page 31 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



����������	�
���	����������	������	�����������������	�����	
�����	���	��	
	������	���������������	�

���� ����!�"�����"���#$%�

Page 32 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



����������	
����	����������������������������	����
���	���������������
���	�����	�������������	�����

�������

��� ����� ��!"#$�

Page 33 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



�����������	�
�����	�	��������	��	�������	������
���	��	������
��������������������	������	���������
��
	��

� �!""���#�" �!��" ��$%&�

Page 34 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



���������	
����	��	��������������
������	
��	������������
�������	�������������
	�����	���������

���	��������	���������������	�����

���� !

�"�#$����#$�%&'(�

Page 35 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



����������	
�������
�
�������	
����������������	��
�����������
�	
����������	�����������������
��
����
������������
���

� !"�#$���%�#&�"��#&��'()�

Page 36 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



����������	
����	��	��������������
������������	
��	��������
�������	��������������
	�����	�����
������	����
���	����	�	���������	��������������	�����

�� ��!!

�"�#!����#!�$%&'�

Page 37 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



���������	
�����
�	��	�������	����	�������	���������	���

���������������������� !�

Page 38 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



����������	
�����
�	��	�������	���
����
����������	�������	���

�������������������� !"�

Page 39 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



�����������	
�����
��
�����������	�������
���
������
���������������������
��������
������

������ �����! ����! �"#$��

Page 40 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



�����������	
�������������������������������������������������
����������
���������
���������
���������������
���������������� ��

�����������	
�������������������������������������������������
����������
���������������
���������

���������������
���������������� ��

�!"�#$�����#�����#��%&' �

Page 41 of 41

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering


