
Chapter 10
Historical Convolutional Codes as Tail-Biting
Block Codes

10.1 Introduction

In the late 1950s, a branch of error-correcting codes known as convolutional codes
[1, 6, 11, 14] was explored almost independently of block codes and each discipline
had their champions. For convolutional codes, sequential decoding was the norm and
most of the literature on the subject was concerned with the performance of practical
decoders and different decoding algorithms [2]. There were few publications on the
theoretical analysis of convolutional codes. In contrast, there was a great deal of
theory about linear, binary block codes and not a great deal about decoders, except
for hard decision decoding of block codes. Soft decision decoding of block codes
was considered to be quite impractical, except for trivial, very short codes.

WithAndrewViterbi’s invention [13] of themaximum likelihood decoder in 1967,
featuring a trellis based decoder, an enormous impetus was given to convolutional
codes and soft decision decoding. Interestingly, the algorithm itself, for solving the
travelling saleman’s problem [12], had been known since 1960. Consequently, inter-
est in hard decision decoding of convolutional codes waned in favour of soft decision
decoding. Correspondingly, block codes were suddenly out of fashion except for the
ubiquitous Reed–Solomon codes.

For sequential decoder applications, the convolutional codes usedwere systematic
codes with one or more feedforward polynomials, whereas for applications using a
Viterbi decoder, the convolutional codes were optimised for largest, minimum Ham-
ming distance between codewords, d f ree, for a given memory (the highest degree of
the generator polynomials defining the code). The result is always a non-systematic
code. It should be noted that in the context of convolutional codes, the minimum
Hamming distance between codewords is understood to be evaluated over the con-
straint length, the memory of the code. This is traditionally called dmin . This is
rather confusing when comparing the minimum Hamming distance of block codes
with that of convolutional codes. A true comparison should compare the d f ree of a
convolutional code to the dmin of a block code, for a given code rate.

© The Author(s) 2017
M. Tomlinson et al., Error-Correction Coding and Decoding,
Signals and Communication Technology,
DOI 10.1007/978-3-319-51103-0_10

289
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Table 10.1 Best rate 1
2 convolutional codes designed for Viterbi decoding

Memory Generator Polynomial r1(x) Generator Polynomial r2(x) d f ree

2 1 + x + x2 1 + x2 5

3 1 + x + x2 + x3 1 + x + x3 6

4 1 + x + x2 + x4 1 + x3 + x4 7

5 1 + x + x2 + x3 + x5 1 + x2 + x4 + x5 8

6 1 + x + x2 + x3 + x6 1 + x2 + x3 + x5 + x6 10

7 1 + x + x2 + x3 + x4 + x7 1 + x2 + x5 + x6 + x7 10

8 1 + x + x2 + x3 + x5 + x7 + x8 1 + x2 + x3 + x4 + x8 12

Since the early 1960s, a lot of work has been carried out on block codes and con-
volutional codes for applications in deep space communications, primarily because
providing a high signal-to-noise ratio is so expensive. Error-correcting codes allowed
the signal to noise ratio to be reduced.

The first coding arrangement implemented for space [6, 9] was part of the pay-
load of Pioneer 9 which was launched into space in 1968. The payload featured a
systematic, convolutional code designed by Lin and Lyne [7] with a d f ree of 12 and
memory of 20. The generator polynomial is

r(x) = 1 + x + x2 + x5 + x6 + x8 + x9 + x12 + x13 + x14 + x16 + x17 + x18 + x19 + x20.

This convolutional code was used with soft decision, sequential decoding featuring
the Fano algorithm [2] to realise a coding gain of 3 dB. Interestingly, it was initially
planned as a communications experiment and not envisaged to be used operationally
to send telemetry data to Earth. However, its superior performance over the standard
operational communications systemwhich featured uncoded transmissionmeant that
it was always used instead of the standard system.

In 1969, the Mariner’69 spacecraft was launched with a first order Reed–Muller
(32, 6, 16) code [8] equivalent to the extended (32, 6, 16) cyclic code. A maximum
likelihood correlation decoder was used. The coding gain was 2.2 dB [9].

By the mid 1970s, the standard for soft decision decoding on the AWGN channel
notably applications for satellite communications and space communications was to
use convolutional codes with Viterbi decoding, featuring the memory 7 code listed
in Table10.1. The generator polynomials are r1(x) = 1 + x + x2 + x3 + x6 and
r2(x) = 1+x2+x3+x5+x6 convolutional code, best known, in octal representation,
as the (171, 133) code. The best half rate convolutional codes designed to be used
with Viterbi decoding [1, 6] are tabulated in Table10.1.

The (171, 133) code with Viterbi soft decision decoding featured a coding gain
of 5.1 dB at 10−5 bit error rate which was around 2 dB better than its nearest rival
featuring a high memory convolutional code and hard decision, sequential decoding.
The (171, 133) convolutional code is one of the recommended NASA Planetary
Standard Codes [3].
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However, more coding gain was achieved by concatenating the (171, 133) con-
volutional code with a (255, 233) Reed–Solomon (RS) code which is able to correct
16 symbol errors, each symbol being 8 bits. Quite a long interleaver needs to be
used between the Viterbi decoder output and the RS decoder in order to break up the
occasional error bursts which are output from the Viterbi decoder. Interleaver lengths
vary from 4080 bits to 16320 bits and with the longest interleaver the coding gain of
the concatenated arrangement is 7.25 dB, ( Eb

N0
= 2.35 dB at 10−5 bit error rate), and

it is a CCSDS [3] standard for space communications.

10.2 Convolutional Codes and Circulant Block Codes

It is straightforward to show that a double-circulant code is a half rate, tail-biting,
feedforward convolutional code. Consider the Pioneer 9, half rate, convolutional
code invented by Lin and Lyne [7] with generator polynomial

r(x) = 1+x+x2+x5+x6+x8+x9+x12+x13+x14+x16+x17+x18+x19+x20

For a semi-infinite data sequence defined by d(x), the corresponding codeword, c(x),
of the convolutional code consists of

c(x) = d(x)‖d(x)r(x) (10.1)

where ‖ represents interlacing of the data polynomial representing the data sequence
and the parity polynomial representing the sequence of parity bits.

The same generator polynomial can be used to define a block code of length 2n,
a (2n, n) double-circulant code with a codeword consisting of

c(x) = d(x)‖d(x)r(x) modulo (1 + xn) (10.2)

(Double-circulant codewords usually consist of one circulant followed by the second
but it is clear that an equivalent code is obtained by interlacing the two circulants
instead.)

While comparing Eq. (10.1) with (10.2) as n → ∞, it can be seen that the
same codewords will be obtained. For finite n, it is apparent that the tail of the
convolution of d(x) and r(x) will wrap around adding to the beginning as in a
tail-biting convolutional code. It is also clear that if n is sufficiently long, only the
Hamming weight of long convolutions, will be affected by the wrap around and
these long convolution results will be of high Hamming weight anyway leading to
the conclusion that if n is sufficiently long the dmin of the circulant code will be the
same as the d f ree of the convolutional code. Indeed, the low weight spectral terms
of the two codes will be identical, as is borne out by codeword enumeration using
the methods described in Chap.5.

http://dx.doi.org/10.1007/978-3-319-51103-0_5
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For the Pioneer 9 code, having a d f ree of 12, a double-circulant code with dmin

also equal to 12 can be obtained with n as low as 34, producing a (68, 34, 12) code.
It is noteworthy that this is not a very long code, particularly by modern standards.

Codewords of the double-circulant code are given by

c(x) = d(x)|d(x)(1 + x + x2 + x5 + x6 + x8 + x9 + x12 + x13 + x14

+ x16 + x17 + x18 + x19 + x20) modulo (1 + x34) (10.3)

As a double-circulant block code, this code can be soft decision decoded, with
near maximum likelihood decoding using an extended Dorsch decoder, described
in Chap.15. The results for the AWGN channel are shown plotted in Fig. 10.1. Also
plotted in Fig. 10.1 are the results obtained with the same convolutional code realised
as a (120, 60, 12) double-circulant code which features less wrap around effects com-
pared to the (68, 34, 12) code.

Using the original sequential decoding with 8 level quantisation of the soft deci-
sions realised a coding gain of 3 dB at a BER of 5×10−4. Using the modified Dorsch
decoder with this code can realise a coding gain of over 5 dB at a BER of 5 × 10−4

and over 6 dB at a BER of 10−6 as is evident from Fig. 10.1. Moreover, there is
no need for termination bits with the tail-biting arrangement. However, it should be
noted that the state of the art, modified Dorsch decoder with soft decision decoding
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Fig. 10.1 BER performance of the Pioneer 9 convolutional code encoded as a (68, 34, 12) or
(120, 60, 12) double-circulant code with soft and hard decision, extended Dorsch decoding in
comparison to uncoded QPSK

http://dx.doi.org/10.1007/978-3-319-51103-0_15
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needs to evaluate up to 500,000 codewords per received vector for the (68, 34, 12)
double-circulant code realisation and up to 1,000,000 codewords per received vector
for the (120, 60, 12) double-circulant code version in order to achieve nearmaximum
likelihood decoding. Figure10.1 also shows the hard decision decoding performance
realised with the modified, hard decision Dorsch decoder, also described in Chap. 15.
The (120, 60, 12) double-circulant code version, has a degradation of 2.3 dB at 10−4

BER compared to soft decision decoding, but still achieves a coding gain of 3.3 dB
at 10−4 BER. Similarly, the (68, 34, 12) double-circulant code version, has a degra-
dation of 2.2 dB at 10−4 BER compared to soft decision decoding, but still achieves
a coding gain of 2.3 dB at 10−4 BER.

The conclusion to be drawn from Fig. 10.1 is that the Pioneer 9 coding system
was limited not by the design of the code but by the design of the decoder. However
to be fair, the cost of a Dorsch decoder would have been considered beyond reach
back in 1967.

It is interesting to discuss the differences in performance between the (68, 34, 12)
and (120, 60, 12) double-circulant code versions of the Pioneer 9 convolutional code.
Both have a dmin of 12. However the number of weight 12 codewords, the multi-
plicities of weight 12 codewords of the codes’ weight distributions, is higher for the
(68, 34, 12) double-circulant code version due to the wrap around of the second cir-
culant which is only of length 34. The tails of the circulants of codewords of higher
weight than 12 do suffer some cancellation with the beginning of the circulants. In
fact, exhaustive weight spectrum analysis, (see Chaps. 5 and 13 for description of
the different methods that can be used), shows that the multiplicity of weight 12
codewords is 714 for the (68, 34, 12) code and only 183 for the (120, 60, 12) code.

Moreover, the covering radius of the (68, 34, 12) code has been evaluated and
found to be 10 indicating that this code is well packed, whereas the covering radius
of the (120, 60, 12) code is much higher at 16 indicating that the code is not so
well packed. Indeed the code rate of the (120, 60, 12) code can be increased without
degrading the minimum Hamming distance because with a covering radius of 16 at
least one more information bit may be added to the code.

With maximum likelihood, hard decision decoding, which the modified Dorsch
decoder is able to achieve, up to 10 hard decision errors can be corrected with the
(68, 34, 12) code in comparison with up to 16 hard decision errors correctable by the
(120, 60, 12) code. Note that these are considerably higher numbers of correctable
errors in both cases than suggested by the d f ree of the code (only five hard decision
errors are guaranteed to be correctable). This is a recurrent theme for maximum
likelihood, hard decision decoding of codes, as discussed in Chap.3, compared to
bounded distance decoding.

It is also interesting to compare the performance of other convolutional codes that
have been designed for space applications and were originally intended to be used
with sequential decoding. Of course now we have available the far more powerful
(and more signal processing intensive) modified Dorsch decoder, which can be used
with any linear code.

Massey and Costello [6, 10] constructed a rate 1
2 , memory 31 non-systematic

code which was more powerful than any systematic code with the same memory

http://dx.doi.org/10.1007/978-3-319-51103-0_15
http://dx.doi.org/10.1007/978-3-319-51103-0_5
http://dx.doi.org/10.1007/978-3-319-51103-0_13
http://dx.doi.org/10.1007/978-3-319-51103-0_3
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and had the useful property that the information bits could be obtained from the two
convolutionally encoded parity streams just by adding them together, modulo 2. The
necessary condition for this property is that the two generator polynomials differ
only in a single coefficient. The two generator polynomials, r0(x) and r1(x) may be
described by the exponents of the non-zero coefficients:

r0(x) ← {0, 1, 2, 4, 5, 7, 8, 9, 11, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31}
r1(x) ← {0, 2, 4, 5, 7, 8, 9, 11, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31}

As can be seen the two generator polynomials differ only in the coefficient of x .
This code has a d f ree of 23 and can be realised as a double-circulant (180, 90, 23)
code from the tail-biting version of the same convolutional code. This convolutional
code has exceptional performance and in double-circulant form it, of course, may
be decoded using the extended Dorsch decoder. The performance of the code in
(180, 90, 23) form, for the soft decision and hard decision AWGN channel, is shown
in Fig. 10.2. For comparison purposes, the performances of the Pioneer 9 codes are
also shown in Fig. 10.2. Shorter double-circulant code constructions are possible
from this convolutional code in tail-biting form, without compromising the dmin of
the double-circulant code. The shortest version is the (166, 83, 23) double-circulant
code.
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decoding
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By truncating the generator polynomials, r0(x) and r1(x) above, a reduced mem-
ory convolutional code with memory 23 and d f ree of 17 can be obtained as dis-
cussed byMassey and Lin [6, 10] which still has the non-systematic, quick decoding
property. The generator polynomials are given by the exponents of the non-zero
coefficients:

r̂0(x) ← {0, 1, 2, 4, 5, 7, 8, 9, 11, 13, 14, 16, 17, 18, 19, 21, 22, 23}
r̂1(x) ← {0, 2, 4, 5, 7, 8, 9, 11, 13, 14, 16, 17, 18, 19, 21, 22, 23}

A (160, 80, 17) double-circulant code can be obtained from the tail-biting version
of this convolutional code. In fact, many double-circulant codes with high dmin can
be obtained from tail-biting versions of convolutional codes.

It is straightforward to write a program in C++ which searches for the generator
polynomials that produce the convolutional codes with the highest values of d f ree.
The only other constraint is that the the generator polynomials need to be relatively
prime to each other, that is, the GCD of the generator polynomials needs to be 1
in order to avoid a catastrophic code [6]. However, it is also necessary in selecting
the generator polynomials that the wrap around effects of the circulants are taken
into account otherwise the dmin of the double-circulant code is not as high as the
d f ree of the convolutional code from which it is derived. Indeed to construct a good
code in this way with high d f ree and high dmin , it has to be constructed as a tail-
biting convolutional code right from the start. One example of a good tail-biting
convolutional code that has been found in this way has generator polynomials, r0(x)
and r1(x) given by the exponents of the non-zero coefficients:

r0(x) ← {0, 2, 5, 8, 9, 10, 12, 13, 14, 15, 27}
r1(x) ← {0, 1, 2, 3, 4, 5, 7, 8, 11, 12, 16, 18, 20, 23, 27}

This code has amemory of 27 and a d f ree of 26. It may be realised in double-circulant
form as a (180, 90, 26) double-circulant code and weight spectrum analysis shows
that this code has the same dmin of 26 as the best-known code with the same code
parameters [4]. The two polynomials r0(x) and r1(x) factorise into polynomials with
the following exponents of the non-zero coefficients:

r0(x) ← {0, 3, 5}{0, 2, 3, 5, 6, 7, 8, 10, 13, 14, 16, 17, 18, 20, 22}
r1(x) ← {0, 3, 5, 6, 8}{0, 1, 3, 4, 5, 6, 8}{0, 2, 4, 7, 11}

It can be seen that neither polynomial has a common factor and so the GCD is 1.
Correspondingly, the convolutional code is not a catastrophic code.

As well as constructing double-circulant codes from convolutional codes, double-
circulant codes may be used to construct good convolutional codes. The idea of
generating convolutional codes from good block codes is not that new. Massey et al.
in 1973 generated a convolutional code for space communications froma (89, 44, 18)
quadratic residue cyclic code [5, 6]. As described in Chap.9, prime numbers which

http://dx.doi.org/10.1007/978-3-319-51103-0_9
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are congruent to ±3 modulo 8 may be used to generate double-circulant codes using
the quadratic residues to construct one circulant, the other circulant being the identity
circulant; the length of the circulants are equal to the prime number.

Particularly, good double-circulant codes are obtained in this way as discussed in
Chap.9. For example, the prime number 67 can be used to generate a (134, 67, 23)
double-circulant code with the circulants defined by the two polynomials with the
following exponents of the non-zero coefficients:

r0(x) ← {0}
r1(x) ← {0, 1, 4, 6, 9, 10, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 29, 33, 35, 36,

37, 39, 40, 47, 49, 54, 55, 56, 59, 60, 62, 64, 65}

Using these two polynomials as the generator polynomials for a 1
2 rate convolutional

code, a systematic convolutional code having a d f ree of 30 is obtained. Interestingly,
deriving another double-circulant code from the tail-biting version of this convolu-
tional code only produces good results when the circulants are exactly equal to 67,
thereby reproducing the original code. For longer circulants, the dmin is degraded
unless the circulants are much longer. It is found that the circulants have to be as
long as 110 to produce a (220, 110, 30) double-circulant code having a dmin equal
to that of the original convolutional code. Moreover, this is a good code because the
code has the same parameters as the corresponding best-known code [4].

Adouble-circulant codemay also be used to derive a non-systematic convolutional
code with much smaller memory and a d f ree equal to the dmin of the double-circulant
code by selecting a codeword of the double-circulant codewhich features low-degree
polynomials in each circulant. It is necessary to check that these polynomials are
relatively prime otherwise a catastrophic convolutional code is produced. In this event
a new codeword is selected. The code produced is a non-systematic convolutional
code with memory equal to the highest degree of the two circulant polynomials.
For example, a memory 41 non-systematic convolutional code can be derived from
a memory 65, systematic convolutional code based on the (134, 67, 23) double-
circulant code with the following exponents of the non-zero coefficients:

r0(x) ← {0}
r1(x) ← {0, 1, 4, 6, 9, 10, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 29, 33, 35

36, 37, 39, 40, 47, 49, 54, 55, 56, 59, 60, 62, 64, 65}

Codeword analysis of the double-circulant code is carried out to find the low
memory generator polynomials. The following two generator polynomials were
obtained from the two circulant polynomials making up a weight 23 codeword of
the (134, 67, 23) code:

r0(x) ← {0, 1, 2, 4, 5, 10, 12, 32, 34, 36, 39, 41}
r1(x) ← {0, 2, 4, 13, 19, 24, 25, 26, 33, 35, 37}

http://dx.doi.org/10.1007/978-3-319-51103-0_9
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In another example, the outstanding (200, 100, 32) extended cyclic quadratic
residue code may be put in double-circulant form using the following exponents
of the non-zero coefficients:

r0(x) ← {0}
r1(x) ← {0, 1, 2, 5, 6, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 26, 27, 28, 31, 34, 35, 37,

38, 39, 42, 44, 45, 50, 51, 52, 53, 57, 58, 59, 64, 66, 67, 70, 73, 75, 76,

77, 80, 82, 85, 86, 89, 92, 93, 97, 98}

Enumeration of the codewords shows that there is a weight 32 codeword that
defines the generator polynomials of a memory 78, non-systematic convolutional
code. The codeword consists of two circulant polynomials, the highest degree of
which is 78. The generator polynomials have the following exponents of the non-
zero coefficients:

r0(x) ← {0, 2, 3, 8, 25, 27, 37, 44, 50, 52, 55, 57, 65, 66, 67, 69, 74, 75, 78}
r1(x) ← {0, 8, 14, 38, 49, 51, 52, 53, 62, 69, 71, 72, 73}

The non-systematic convolutional code that is produced has a d f ree of 32 equal
to the dmin of the double-circulant code. Usually, it is hard to verify high values
of d f ree for convolutional codes, but in this particular case, as the convolutional
code has been derived from the (200, 100, 32) extended quadratic residue, double-
circulant code which is self-dual and also fixed by the large projective special linear
group PSL2(199) the dmin of this code has been proven to be 32 as described in
Chap.9. Thus, the non-systematic convolutional code that is produced has to have a
d f ree of 32.

10.3 Summary

Convolutional codes have been explored from a historical and modern perspective.
Their performance, as traditionally used, has been compared to the performance
realised using maximum likelihood decoding featuring an extended Dorsch decoder
with the convolutional codes implemented as tail-biting block codes. It has been
shown that the convolutional codes designed for space applications and sequential
decoding over 40 years ago were very good codes, comparable to the best codes
known today. The performance realised back then was limited by the sequential
decoder as shown by the presented results. An additional 2 dB of coding gain could
have been realised using themodern, extendedDorsch decoder instead of the sequen-
tial decoder. However back then, this decoder had yet to be discovered and was
probably too expensive for the technology available at the time.

It has also been shown that convolutional codes may be used as the basis for
designing double-circulant block codes and vice versa. In particular, high, guaranteed
values ofd f reemaybeobtainedbybasing convolutional codes onoutstandingdouble-
circulant codes. A memory 78, non-systematic, half rate convolutional code with a
d f ree of 32 was presented based on the (200, 100, 32) extended quadratic residue,
double-circulant code.

http://dx.doi.org/10.1007/978-3-319-51103-0_9
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