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MicroRNA-378a (miR-378a, previously known as miR-378) is one of the small noncoding RNA molecules able to regulate gene
expression at posttranscriptional level. Its two mature strands, miR-378a-3p and miR-378a-5p, originate from the first intron of
the peroxisome proliferator-activated receptor gamma, coactivator 1 beta (ppargcIb) gene encoding PGC-1p3. Embedding in the
sequence of this transcriptional regulator of oxidative energy metabolism implies involvement of miR-378a in metabolic pathways,
mitochondrial energy homeostasis, and related biological processes such as muscle development, differentiation, and regeneration.
On the other hand, modulating the expression of proangiogenic factors such as vascular endothelial growth factor, angiopoietin-
1, or interleukin-8, influencing inflammatory reaction, and affecting tumor suppressors, such as SuFu and Fus-1, miR-378a is
considered as a part of an angiogenic network in tumors. In the latter, miR-378a can evoke broader actions by enhancing cell
survival, reducing apoptosis, and promoting cell migration and invasion. This review describes the current knowledge on miR-

378a linking oxidative/lipid metabolism, muscle biology, and blood vessel formation.

1. Introduction

Cell metabolism governing the growth and functioning of
each cell and a whole organism refers to chemical transfor-
mations and enzyme-catalyzed energy producing and energy
utilizing reactions of carbohydrates, proteins, and lipids.
Amongst the most metabolically active organs are liver, brain,
gut, kidneys, and heart [1-3]. Although the rate of metabolic
reactions is lower in skeletal muscles, they account for around
20% of the total energy expenditure due to a 50-60% con-
tribution to a total body mass [3]. Several microRNAs were
reported to control processes related to metabolism such as
insulin secretion (miR-9, miR-375), adipocyte differentiation
(miR-143), fatty acid metabolism (miR-122), and myogenesis
(miR-1, miR-133a, miR-133b, and miR-206) (reviewed in
[4]). Of potential meaning is also miR-378a, located in
the gene encoding master metabolic regulator, peroxisome
proliferator-activated receptor gamma, coactivator 1 beta
(PGC-1p3) [5]. miR-378a was found to affect lipid and xenobi-
otic metabolism, lipid storage, mitochondrial function, and
shift towards a glycolytic pathway (Warburg effect) [5, 6].

Moreover, it affects muscle differentiation via regulation of
myogenic repressor, MyoR [7]. Because nutrients supply for
metabolic processes is a matter of circulation, metabolically
active tissues require high vascular density. Recently, miR-
378a was reported to regulate tumor angiogenesis mainly
via inhibition of tumor suppressors SuFu and Fus-1 [8, 9].
Thus, a growing body of evidence suggests a role of miR-378a
as a mediator controlling reciprocally dependent processes
such as metabolism, muscle differentiation/regeneration, and
angiogenesis.

2. MicroRNAs

MicroRNAs (miRNAs; miRs) are small noncoding RNA
molecules with an average length of 21-22 nucleotides which
can regulate gene expression posttranscriptionally by target-
ing mostly the 3'untranslated region (3'UTR) of mRNAs.
However, miRNA target sites were also found on the 5'UTR
regions of human mRNA [10]. Since their discovery in C.
elegans in 1993 [11], miRNAs currently can be recognized as
potent players in wide spectrum of biological processes like
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TaBLE L: Classification of miR-378 variants. Source: miRBase, version 21, September 2015 [28]. The seed sequence (defined as nucleotides 2-8
from the miRNA 5'-end of the mature miRNA) is in bold font.

Name Mature strand Previous ID Sequence Location Host gene
Human

hsa-miR-378a-5p miR-378" 5'-cuccugacuccagguccugugu-3’ chr5: 149732825-149732890  PPARGCIB

hsa-miR-378a
. miR-422b ' '
hsa-miR-378a-3p R.378 5'-acuggacuuggagucagaaggc-3 chr5: 149732825-149732890  PPARGCIB
miR-
hsa-miR-378b hsa-miR-378b 5'-acuggacuuggaggcagaa-3' chr3:10330229-10330285 ATP2B2
hsa-miR-378¢c hsa-miR-378¢ 5'-acuggacuuggagucagaagagugg-3'  chrl0: 130962588-130962668 —
hsa-miR-378d-1 hsa-miR-378d 5'-acuggacuuggagucagaaa-3' chr4: 5923275-5923328 —
hsa-miR-378d-2  hsa-miR-378d 5'-acuggacuuggagucagaaa-3' chr8: 93916022-93916119 PDPI1
hsa-miR-378e hsa-miR-378e 5'-acuggacuuggagucagga-3' chr5: 170028488-170028566 DOCK?2
hsa-miR-378f hsa-miR-378f 5'-acuggacuuggagccagaag -3' chrl: 23929070-23929147 —
hsa-miR-378g hsa-miR-378g 5'-acugggcuuggagucagaag-3' chrl: 94745860-94745900 LINC01057
hsa-miR-378h hsa-miR-378h 5'-acuggacuuggugucagaugg-3' chr5: 154829458-154829540 FAXDC2
hsa-miR-378i hsa-miR-378i 5'-acuggacuaggagucagaagg-3’ chr22: 41923222-41923297  TNFRSFI3C
hsa-miR-378j hsa-miR-378j 5'-acuggauuuggagccagaa-3' chrl7: 37614931-37615039 DDX52
Murine
mmu-miR-378a mmu-miR-378a-5p  miR-378" 5'-cuccugacuccagguccugugu-3’ chrl8: 61397835-61397900 PPARGCIB
mmu-miR-378a-3p miR-378 5'-acuggacuuggagucagaagg-3’ chrl8: 61397835-61397900 PPARGCIB

mmu-miR-378b  mmu-miR-378b 5'-cuggacuuggagucagaaga-3' chrll: 88352773-88352864 MSI2
mmu-miR-378c  mmu-miR-378¢c 5'-acuggacuuggagucagaagc-3' chrl4: 46954830-46954928 SAMD4

mmu-miR-378d  mmu-miR-378d

5I !
-acuggccuuggagucagaaggu-3

chrl0: 126710282-126710391

The “#” sign refers to a nucleotide position not present in the murine and rat miR-378a-3p mature sequence, which is present in the mature human sequence.

development, differentiation, cellular defense mechanisms,
and others. Conservative estimates state that over 30% of
mRNA expression is regulated by miRNAs [12, 13]. However,
others suggest that even up to 60% of the mRNA expression
is targeted by miRNAs [14]. miRNAs are often located in
the introns of coding genes or noncoding sequences but can
also be located in exons. Intronic miRNAs can be expressed
together with their host gene mRNA being derived from
a common RNA transcript [15, 16]. Other miRNAs can
also have their own promoters, which enable independent
expression, or can be organized in clusters sharing a common
transcriptional regulation [17, 18].

miRNAs transcription is RNA polymerase II-dependent
[17]. In the case of miRNAs that are encoded in their own
genes, the primary miRNA transcript (pri-miRNA) is several
kilobases long, while miRNAs encoded in intronic regions of
other genes (miRtrons) have shorter transcripts. The miRNA
stem loop is excised from pri-miRNA by endoribonuclease
drosha/DGCRS8 (microprocessor complex) and a hairpin
called pre-miRNA is exported from the nucleus by exportin-5
in a Ran-GTP dependent manner [19]. An endoribonuclease
dicer removes the hairpin loop sequence from pre-miRNA,
creating a double stranded miRNA duplex. Depending on the
relative stability of the miRNA duplex, one or, more rarely,
both strands can be incorporated in a multiprotein RNA-
induced silencing complex (RISC). When there is perfect
pairing between the miRNA sequence and its target site,
mRNA is cleaved by a protein part of the RISC called
argonaute (AGO). If the pairing is partial, deadenylation of
the mRNA via recruitment of the CCR4-NOT complex by

the GW182 proteins inside the RISC takes place and the
poly-A tail is lost, leaving the mRNA vulnerable to RNase
activity, ubiquitination, and mRNA degradation. Alterna-
tively, miRNA-induced RISC can also cause repression of
translation by mechanisms such as, for example, the pro-
motion of ribosome drop-offt from the mRNA transcript or
destabilization of the mRNA binding cap protein (Figure 1)
(reviewed in [20, 21]).

3. miR-378a: Basics

miR-378a is embedded in the first intron of the ppargclb gene
encoding PGC-1f [5]. The pre-miR gives rise to a leading
strand (miR-378a-3p, previous IDs for murine sequence:
mmu-miR-422b, mmu-miR-378, and mmu-miR-378-3p; for
human: hsa-miR-422b and hsa-miR-378) and a passenger
strand (miR-378a-5p, previous IDs for murine sequence:
mmu-miR-378, mmu-miR-378", and mmu-miR-378-5p; for
human: hsa-miR-378 and hsa-miR-378"). miRNA-378a-3p
mature strand was first identified in 2004 in humans (origi-
nally named miR-422b) [22]. Recently, other miRs with simi-
lar sequences but other localizations in the genome have been
discovered and named: mmu-miR-378b,c,d in mouse and
hsa-miR-378-b,c,d1,d2,e,f,g,h,i,j in human [23-27] (Table 1).
In humans, miR-378a is by far the most expressed of the
miR-378 sequences, with 7030 reads per million, in 78
experiments during deep sequencing, compared with 101-
3220 reads per million, in 42-72 experiments for the other
forms, respectively. In mice, miR-378a and miR-378b have
similar expression levels, at 11700 and 11000 reads per million
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FIGURE 1: miRNA biogenesis. miRNAs are transcribed as mRNA transcripts from the genome by polymerase II as pre-miRs. Endoribonuclease
drosha and DGCR8 excise pre-miRs from the primary transcripts. Pri-miRs are exported from the nucleus by exportin-5. An
endoribonuclease dicer processes the pre-miRNA and removes the hair loop sequence, creating a double stranded miRNA duplex. One
or both strands can be incorporated in RNA-induced silencing complex RISC, which allows the miRNA to suppress translation of their target
mRNA or cleave the mRNA and lead to the degradation of it. miRNA-induced RISC can act on their targets by three ways. When there
is perfect pairing between the miRNA sequence and its target site, the mRNA is cleaved (A). If the pairing is partial, deadenylation of the
mRNA via recruitment of the CCR4-NOT complex takes place and the poly-A tail is lost, leaving the mRNA vulnerable to RNAse activity
and mRNA degradation (B). As a second manner of action when pairing is not perfect, the miRNA-induced RISC can also induce repression
of translation by blocking initiation or further steps of translation, by mechanisms such as, for example, the promotion of ribosome drop-off
from the mRNA transcript or destabilization of the mRNA cap binding protein (C).

(miRBase, version 21, September 2015) [28]. The sequence
of miR-378a mature strands is highly conserved between
species, with the miR-378a-5p strand being identical in both
human and mice and the miR-378a-3p strand only differing
in one nucleotide (Table 2) [6, 27].

PGC-1$ may regulate several facets of energy metabolism
such as mitochondrial biogenesis, thermogenesis, and glu-
cose and fatty acid metabolism [6]. Both strands of miR-
378a are coexpressed with PGC-18 as shown, for exam-
ple, in the liver and during adipocyte differentiation [6,
29]. The coexpression of miR-378a with its host gene
implies they may share the same transcriptional activators,
and miR-378a might be involved in similar processes as
PGC-1p. Accordingly, high levels of (porcine) miR-378-1
(Table 2) expression are found in developing muscle, post-
natal muscle, and myocardium and in brown adipose tissue
(29, 30].

To date, only a limited number of miR-378a targets,
which can be predicted based on in silico analysis, have been
experimentally validated. The latter, however, imply a role of
miR-378a in mitochondrial energy homeostasis, glycolysis,

TABLE 2: miR-378a is highly conserved between species. Source:
miRBase, version 21, September 2015 [28]. The seed sequence
(defined as nucleotides 2-8 from the miRNA 5'-end of the mature
miRNA) is in bold font.

Species Name Sequence
H hsa-miR-378a-5p 5'-cuccugacuccagguccugugu-3'
uman
hsa-miR-378a-3p 5'-acuggacuuggagucagaaggc-3’
M mmu-miR-378a-5p 5'-cuccugacuccagguccugugu-3’
ouse
mmu-miR-378a-3p 5'-acuggacuuggagucagaagge-3
Rat rno-miR-378a-5p 5'-cuccugacuccagguccugugu-3'
a

rno-miR-378a-3p 5'-acuggacuuggagucagaaggs-3

Pig ssc-miR-378-1

5/ !
-acuggacuuggagucagaaggc-3

Cow bta-miR-378-1  5'-acuggacuuggagucagaaggc-3'
Thirteen-

lined ground  itr-miR-378a 5'-acuggacuuggagucagaaggc-3'
squirrel

and skeletal muscle development and in tumor angiogenesis
and other processes (Table 3).



4. miR-378a in Metabolism

A major source of energy production comprises oxidation
of glucose in glycolysis followed by oxidation of pyruvate in
well-oxygenated cells (or followed by lactic acid fermentation
in cancer, the Warburg effect) and from p-oxidation of
lipids, which yields even more ATP per gram then carbohy-
drates metabolism. A complicated net of metabolic pathways
requires advanced regulation by signaling molecules and
hormones.

A location of miR-378a in the gene encoding PGC-1p [5]
implies an involvement of miR-378a in metabolic pathways.
Unlike its homologue, PGC-1a, the expression of PGC-1
is not elevated in response to cold exposure [31] but occurs
in response to hypoxia, exercise, caloric restriction, or aging
(reviewed in [32]). PGC-1§ is preferentially expressed in
tissues with relatively high mitochondrial content, such as
heart, skeletal muscle, and brown adipose tissue [6]. In 2002,
PGC-1p was first cloned and shown to be upregulated in the
liver during fasting [31]. PGC-1p strongly activates hepatic
nuclear factor 4 (HNF4) and PPAR«, both of these nuclear
receptors being important for the adaptation of hepatocytes
to the effects of fasting. These findings could hint to a
possible role of PGC-1f in the regulation of gluconeogenesis
and fatty acid oxidation in the liver [31]. PGC-18 is also
involved in the regulation of energy expenditure or in the
pathway of estrogen receptor-related receptors (ERRs) [33-
37]. Since miRNAs originating in the introns of host genes
may modulate the protein encoded by their parental genes
and may be involved in the same mechanisms [38-40], miR-
378a is proposed to be involved in the metabolic pathways
affected by PGC-1p3 [6].

It was reported that mice lacking the first intron of
the ppargclb gene (and thus miR-378a) have a significantly
higher oxygen capacity and mitochondrial function [6]. Such
mice also exhibit a resistance to high fat induced obesity.
They identified a mediator complex subunit 13 (MEDI3),
involved in nuclear receptor signaling, and carnitine acetyl-
transferase (CRAT), a mitochondrial enzyme involved in
fatty acid metabolism, as targets of miR-378a-5p and miR-
378a-3p, respectively [6]. It implies that miR-378a plays a
regulatory role in lipid metabolism. miR-378a-5p regulated
also cytochrome P450 2E1 (CYP2EL) being involved in the
metabolism of, for example, drugs and toxins [41].

In addition, it has been discovered that transcription
factor nuclear respiratory factor-1 (NRF-1), a critical regulator
of the expression of some important metabolic genes in
mitochondria regulating cellular growth, is inhibited by miR-
378a-3p [42]. Thus, miR-378a can be considered as a regulator
of mitochondrial function in cells overexpressing miR-378a.

Moreover, miR-378a-5p inhibits the mRNAs of ERRy and
GA-binding protein-« in breast cancer, which both interact
with PGC-1f3 and together control oxidative metabolism [5].
This leads to a reduction of tricarboxylic acid gene expression
and oxygen consumption and an increase in lactate produc-
tion, which shifts cells from an oxidative towards a glycolytic
pathway. In this way, miR-378a-5p is believed to be a switch
regulating the Warburg effect in breast cancer [5]. Moreover,
in situ hybridization experiments in this study showed that
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miR-378a-5p expression correlates with progression of breast
cancer [5]. The proposed regulating role of miR-378a-5p on
the Warburg effect is in parallel with the effects of PGC-18,
which mediates gluconeogenesis and fatty acid metabolism
after periods of fasting or intense exercise [31]. Coactivation
by PGC-1f of ERRax and PPAR«a makes muscle fibers in PGC-
1p3 transgenic mice more rich in mitochondria and highly
oxidative [43]. Accordingly, such animals were able to run for
longer times and at higher workloads [43].

Increased glycolytic rates and increased cell proliferation
can be related to lactate production by lactate dehydrogenase
(LDH). LDHA was found to be a direct target of miR-378a
in the study of Mallat et al. [44]. In this way, hsa-miR-378a-
3p represses cell growth and increases cell death by targeting
LDHA. Of note, hsa-miR-378a-3p and hsa-miR-378a-5p had
opposite effects on LDHA expression. LDHA was signifi-
cantly downregulated by miR-378a-3p overexpression and
upregulated by miR-378a-5p overexpression [44].

In addition, miR-378a is also considered as an important
factor in adipogenesis and lipid storage. There is a com-
plex family of factors regulating those processes such as
insulin [45], insulin-like growth factors (IGFs), glucagon,
and thyroid hormones T3 and T4 (reviewed in [46-49]).
As mentioned before, it was demonstrated that miR-378a-
knockout mice do not get fat after 8 weeks of high fat diet
[6]. Such animals show an enhanced mitochondrial fatty
acid metabolism and have elevated oxidative capacity of
tissues targeted by insulin (e.g., liver, muscles, and adipose
tissues) [6]. In accordance with that, it was shown that mature
strands of bta-miR-378-1 (Table 1) are expressed at higher
level in cows with high (versus low) amount of back fat
[50]. Similarly, an inhibition of both mmu-miR-378a-3p and
its host gene, PGC-1p, by the flavonoid fisetin lowered the
accumulation of fat in the liver [42]. Interestingly, mmu-
miR-378a-5p was downregulated in mice that were fed a
high fat diet for five months [51]. In addition, miR-378a
is highly induced during adipogenesis [29]. Overexpression
of miR-378a-3p/-5p during adipogenesis increased the tran-
scriptional activity of CCAAT/enhancer-binding proteins
(cEBP) alpha and beta, which can stimulate the expression
of leptin, a hormone produced mainly by adipocytes which
controls the homeostasis of body weight [29] (reviewed in
[52, 53]). On the other hand, TNF-«, IL-6, and leptin are
reported to increase the expression of miR-378a-3p in mature
human adipocytes in vitro [54]. These cytokines are mainly
secreted in the adipose tissue and are suggested to be involved
in development of insulin resistance [55, 56]. In addition,
miR-378a-3p was shown to target insulin growth factor 1
receptor (IGFIR) and reduce the Akt signaling cascade in
cardiomyocytes during cardiac development [57]. Moreover,
in tissues where IGF1 levels were high (e.g., fibroblasts and
fetal hearts), miR-378-3p levels were very low, showing an
inverse relation and suggesting a negative feedback loop
between miR-378a-3p, IGFIR, and IGF1 [57].

As already mentioned, PGC-1f3 is a coactivator of PPARy
[5]. The latter functions as a master regulator of adipogenesis
and is involved in the formation of peroxisomes and the
catabolism of very long chain fatty acids [58, 59]. PPARy
facilitates also the storage of fat in part by inhibiting leptin
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[60]. Accordingly, the amount of adipose tissue does not
increase in mice lacking PPARy when they are fed a high
fat diet [61]. It was also reported that in cultured adipocytes
mmu-miR-378a and PGC-1p3 expression is PPARy, or rosigli-
tazone (a PPARy ligand), dependent, finding two peroxisome
proliferator response elements in the miR-378a loci [62].
On the other hand, overexpression of miR-378a elevated
the expression of PPARy isoform 2 [29], suggesting positive
feedback loop and confirming the involvement of miR-378a
in the storage of fat.

There are several activators known to induce expression
of PPARYy such as the members of the E2F transcription factor
family and prostaglandin J-2 (PGJ-2) [63-65]. The latter may
act through RAR-related orphan receptor alpha (RORA),
which is frequently found in myocardium [66]. In addition
to PPARy, RORA regulates also MyoD, a major transcription
factor involved in skeletal muscle differentiation [67, 68].
Interestingly, RORA is a possible (but not yet validated) target
for miR-378a-3p [69].

A proteomics-based study revealed several other proteins
that are potentially targeted by rat miR-378a-3p or miR-
378a-5p. miR-378a-3p was shown to regulate mannose-
I-phosphate guanylyltransferase (GDP), dimethylarginine
dimethylaminohydrolase 1 (DDAHI), and lactate dehydro-
genase A (LDHA); all those proteins are participating in
metabolic processes [44]. On the other hand, tropomyosin
beta chain, which is involved in the regulation of ATPase
activity, was found to be a target of miR-378a-5p [44].

5. miR-378a in Muscle Development,
Differentiation, and Regeneration

High levels of murine and rat miR-378a-3p, miR-378a-5p, and
porcine miR-378-1 are reported in both developing and adult
skeletal muscles [7, 30, 44]. miR-378a expression is enhanced
during skeletal muscle differentiation [30].

MyoD and MyoG play a role in the processes of myogen-
esis and muscle regeneration, in which dormant satellite cells
are activated upon muscle damage and start proliferating and
differentiating into muscle fibers (reviewed in [70, 71]). It has
been shown that miR-378a-3p targets the myogenic repres-
sor MyoR during myoblast differentiation, which directly
inhibits MyoD [7]. On the other hand, MyoD is upregulated
in response to miR-378a-3p overexpression and, conversely,
the level of miR-378a-3p may be enhanced by MyoD [7].
Thus, there is evidence for a feedback loop in which miR-
378a-3p regulates muscle differentiation via inhibiting MyoR,
leading to an increase of MyoD, which in turn enhances miR-
378a-3p [7].

It has been suggested by Davidsen et al. that miR-
378a may also control the development of skeletal muscle
mass after training [72]. In this study, miR-378a (strand
not specified) was significantly downregulated in men who
obtained low training-induced muscle mass gain compared to
men who obtained high training-induced muscle mass gain
[72].

A growing body of data shows a role of miR-378a-3p
in the myocardium. miR-378a-3p is expressed mostly by
cardiomyocytes, but not by nonmuscle cells, whereas the
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level of miR-378a-5p was reported to be very low in the
heart [57]. Fang et al. showed that miR-378-3p is significantly
downregulated both in vitro in cardiomyocytes cell cultures
exposed to hypoxia and in vivo during myocardial injury
in rats [73]. Overexpression of miR-378a-3p enhanced cell
viability and inhibited apoptosis via caspase-3 inhibition [73].
In contrast to this finding, another study found that miR-
378a-3p downregulation enhanced the survival of cardiac
stem cells via focal adhesion kinase activation and releasing
connective tissue growth factor (CTGF), the latter being a
target of miR-378a-3p [74]. miR-378a inhibition enhanced
cardiomyocytes survival after H,O, treatment [57]. Over-
expression of miR-378a-3p in the study of Knezevic et al.
increased apoptosis of cardiomyocytes via the direct targeting
of IGFIR leading to a decrease of Akt signaling [57]. This
is in opposition to the previously mentioned study of Fang
et al. which showed apoptosis was decreased during miR-
378a-3p overexpression due to targeting of caspase-3 [73].
The converse findings of the studies could be explained
by different models used by Knezevic et al. and Fang et
al. Because of those discrepancies, the role of miR-378a in
apoptosis of cardiomyocytes requires further investigation.
The finding that miR-378a-3p affects both IGFIR and the
Akt pathway was confirmed [75] in a study which found
that overexpression of miR-378a-3p in rhabdomyosarcoma
suppressed IGFIR expression and affected phosphorylation of
the Akt protein [75]. miR-378a-5p was shown to target heat
shock protein 70.3 (Hsp70.3) in mouse hearts in normoxic
conditions, but in hypoxic conditions a transcript variant of
Hsp70.3 without miR-378a-5p target site in its 3'-UTR is not
repressed and can exert its cytoprotective properties [76].

Potential involvement of miR-378a in cardiac remodeling
was also proposed. miR-378a-3p prevented cardiac hypertro-
phy by targeting either Ras signaling or the mitogen-activated
protein kinase (MAPK) pathway [77, 78].

More studies on the effect of miR-378a expression in
muscle disorders would also be desirable. In both Golden
Retriever muscular dystrophy dogs and Duchenne muscular
dystrophy patients, miR-378a expression was dysregulated,
suggesting some relation between miR-378a expression and
muscle dystrophy [79].

All in all, these findings suggest miR-378a-3p can be
considered as an important player in cardiac development,
remodeling, and hypertrophy.

6. miR-378a in Angiogenesis

Angiogenesis comprises development of new blood vessels
from existing ones, regulated by cytokines and growth
factors such as, for example, vascular endothelial growth
factor (VEGEF), platelet-derived growth factor (PDGF), and
angiopoietin-1 (Ang-1). Their expression can be posttran-
scriptionally controlled by microRNAs such as miR-126,
miR-296, miR-210, miR-21, and the miR-17~92 cluster [80]
(reviewed in [81]).

Skeletal muscles and heart muscle are tissues which,
due to their oxygen and energy consumption, need to be
sufficiently vascularized. One of the major regulators of
angiogenesis is the hypoxia-inducible factor-1 (HIF-1), which
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controls over 100 genes [82] involved mainly in the glycolytic
pathway and blood vessel formation, including VEGF-A or
interleukin-8 [83-85]. VEGF is generally induced by hypoxia,
while IL-8 in at least some cancers and endothelial cells can
be diminished by HIF-1 via inhibition of ¢-Myc and Sp-1
transcription factors [86, 87]. c-Myc, known as a regulator of
cell cycle progression, apoptosis, and cellular transformation,
is also a potent activator of PGC-1f3 and, in turn, miR-378a-
3p, upregulating their expression [88].

In addition, miR-378a has been shown to affect VEGF-
A in two ways. Human hsa-miR-378a-5p (by the study of
Hua et al. named as miR-378) can directly affect VEGF-A
by competing with hsa-miR-125a for the same seed-region in
the VEGF-A 3'UTR causing upregulation of VEGF-A [89].
miR-378a-5p can also indirectly regulate VEGF-A affecting
sonic hedgehog (SHH) signaling via Sufu inhibition, which
is an inhibitory component of this signaling pathway [8].
The SHH pathway in turn can upregulate VEGF-A and also
other regulators of blood vessels formation, Ang-1 and Ang-2
expression [90-92]. Increased expression of VEGF-A, as well
as PDGF 8 and TGFpI, was also seen in mesenchymal stromal
cells (MSCs) transfected with rno-miR-378a-5p [93].

In skeletal muscles, VEGF-induced angiogenesis appears
not to be regulated by the well-known HIF pathway but by
PGC-1«, which coactivates estrogen-related receptor alpha
(ERR-«) on binding sites in the promoter and the first
intron of the VEGF gene, inducing its expression [94]. This
angiogenic pathway shows new roles for PGC-lat and ERR-
«, which are important regulators of mitochondrial activity
in response to stimuli like exercise. If there might be a role
for PGC-1p in this pathway, it is yet to be examined. It is
noteworthy, however, that miR-378a-5p is known to affect
the estrogen receptors by inhibiting ERRy, another estrogen-
related receptor [5].

A role for miR-378a in cell cycle regulation and stimu-
lation of cell growth is also proposed. In human mammary
epithelial and breast cancer cell lines, miR-378a-3p can target
the antiproliferative protein TOB2, which is a suppressor
of cyclin D1, which in turn is required for cell cycle GI-
phase to S-phase progression [88]. Enhancing endothelial
cell proliferation via cell cycle regulation contributes to the
angiogenic process. Whether miR-378 affects endothelial
cell proliferation by regulation of cell cycle remains to be
established.

The role of miR-378a in the formation of blood vessels
nourishing tumor and enabling tumor growth was revealed.
miR-378a was found to be differentially regulated in different
types of cancers [95] being downregulated in gastric cancer
[96, 97], oral [98], and colon carcinoma [99], while being
upregulated in renal [100] and lung cancer [9, 101]. Since it
is also changed in serum or plasma of patients with prostate
cancer [102], renal cancer [100, 103], and gastric cancer
[104] and frequently found to be overexpressed in cryopre-
served bone marrow mononuclear cells from acute myeloid
leukemia patients [105], miR-378a might be considered as a
biomarker.

The role of miR-378a in tumorigenesis, tumor growth,
and tumor vascularization was revealed for the first time
by Lee and coworkers in glioblastoma [8]. They showed

that miR-378a-5p enhances cell survival, reduces caspase-
3 activity, and promotes tumor growth and angiogenesis,
through repression of two tumor suppressors, Sufu and
Fus-1 [8]. Strikingly, nude mice injected with miR-378a-5p
transfected cancer cells formed tumors of bigger volume
and with larger blood vessels compared to GFP-transfected
cells. On the other hand, high expression of miR-378a-5p in
NSCLC correlated with brain metastases due to higher cell
migration, invasion, and tumor angiogenesis [9]. Another
study confirmed the downregulation of Fus-1by miR-378a-5p
and showed that in the HepG2 liver cancer cells miR-378a-5p
overexpression enhanced proliferation, migration, and, when
injected in mice, invasion [106]. Also in rhabdomyosarcoma,
enhanced expression of miR-378a, VEGE, and MMP9 cor-
related with increased vascularization and metastasis [107].
Taken together, these studies suggest that miR-378a may
serve as a prognostic marker in cancer due to its effects on
angiogenesis.

Our recent data confirmed the proangiogenic effect of
miR-378a (both strands) in non-small cell lung carcinoma
(NSCLC) and pointed at its correlation with heme-degrading
enzyme, heme oxygenase-1 (HO-1). An involvement of HO-
1 in angiogenesis and VEGF-A as well as IL-8 signaling
was shown by us previously [108]; however, its action
in tumors seems to be complex [109]. In NCI-H292 cell
line overexpressing HO-1, miR-378a (both strands) levels
decreased [101]. Conversely, when HO-1 was silenced using
siRNA, miR-378a expression was enhanced. Also overex-
pression of the miR-378a precursor sequence diminished
HO-1 expression. Conditioned medium from NCI-H292
cells overexpressing miR-378a enhanced angiogenic potential
of HMEC-1 endothelial cell line. Tumors formed by such
cells in subcutaneous xenografts showed enhanced growth,
vascularization, oxygenation, and distal metastasis in vivo
[101]. These interactions between miR-378a and HO-1 were
confirmed in our studies on the role of the Nrf-2 transcription
factor/HO-1 axis in NSCLC cell lines [110, 111].

On the other hand, enhanced expression of mmu-miR-
378a-5p in 4T1 murine breast cancer cells decreased the
proliferation, migration, and invasiveness of these cancer
cells in vitro and in vivo by targeting fibronectin, resulting in
inhibition of tumor growth [112].

Recent study showed that miR-378a may act as a
biomarker for response to antiangiogenic treatment in ovar-
ian cancer [113]. Low expression of miR-378a was associ-
ated with longer progressive-free survival in patients with
recurrent ovarian cancer treated with the antiangiogenic
drug bevacizumab [113]. Overexpression of the miR-378a
precursor in ovarian cancer cells altered expression of genes
associated with angiogenesis (ALCAM, EHD], ELK3, and
TLN1), apoptosis (RPN2, HIPK3), and cell cycle regulation
(SWAP-70, LSM14A, and RDX) [113]. High miR-378a (strand
not specified) expression in renal carcinoma correlated with
higher levels of endothelial surface marker CD34 in these
tumors [114].

Notably, a recent study suggested clinical relevance for
miR-378a in metastatic colorectal cancer, in which enhanced
miR-378a expression significantly improved the sensitivity to
cetuximab treatment in these patients [115].



Interestingly, recent data indicate a role of miR-378a
in stem cells. miR-378a-5p transfection of MSCs has been
shown to enhance their survival and angiogenic potential
under hypoxic conditions in vitro [93]. In coculture with
human umbilical vein endothelial cells (HUVECs), miR-
378a-5p-transfected MSCs formed a larger number of vascu-
lar branches on Matrigel. In the MSCs transfected with miR-
378a-5p, the expression of Bcl-2-associated X protein (BAX),
which is an important proapoptotic regulator, was decreased,
leading to a better survival [93].

It still has to be determined if the proangiogenic effect
of miR-378a in vivo is confined to tumor angiogenesis, or if
this effect is also present in physiological angiogenesis and
regenerative neovascularization. Interestingly, new findings
in wound healing studies found a rather opposite conclusion.
Recently, it was reported that anti-miR-378a-5p enhances
wound healing process by upregulating integrin beta-3 and
vimentin [116].

The role of the host gene of miR-378a on angiogenesis
has also been studied. PGC-1 was reported to have opposite
effects in ischemia-induced angiogenesis. It was reported that
PGC-1p induces angiogenesis in skeletal muscle, enhancing
the expression of VEGF both in vitro and in vivo after
(transgenic) overexpression [117]. Accordingly, it was also
found that VEGFA is upregulated in C2CI12 myoblast cell
line with PGC-1p overexpression. However, after a PCR-
based gene array of 84 known angiogenic factors and further
RT-PCR of individual genes, they concluded that PGC-13
triggered an antiangiogenic program [118]. After inducing
hind limb ischemia in PGC-1§3 overexpressing mice, an
impaired reperfusion was noticed when compared to wild
type littermates [118].

7. miR-378a in Inflammation

The role of inflammation in angiogenesis is studied the
most in the context of cancer (e.g., reviewed in [119, 120])
but is certainly not limited to this pathology. Both lym-
phoid (reviewed in [121, 122]) and myeloid (reviewed in
[123]) derived inflammatory cells affect angiogenesis in a
stimulating or inhibitory manner. The role of miR-378a in
inflammatory cells was reported and its anti-inflammatory
effect could be suggested.

NK cells exert potent cytotoxic effects when activated
by type I IEN from the host once infected [124]. miR-378a
was found to be downregulated in activated NK cells and
further proved to target granzyme B. Thus, IFN-« activation
decreases miR-378a expression and in turn augments NK
cell cytotoxicity [124]. Accordingly, suppression of miR-378
targeting granzyme B in NK cells resulted in inhibition of
Dengue virus replication in vivo [125].

Macrophages are known to play either inhibitory or stim-
ulatory roles in angiogenesis (reviewed by [126]). miRNAs
have been proposed to regulate activation and polarization of
macrophages (reviewed by [127, 128]). In a study of Riickerl
et al. miR-378a-3p was identified as a part of the IL-4-driven
activation program of anti-inflammatory macrophages (M2)
[129]. miR-378a-3p was highly upregulated after stimulation
with IL-4 of peritoneal exudate cells of mice injected with
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the parasite Brugia malayi compared to controls and infected
IL-4-knockout mice. The study identified several targets
for miR-378a-3p within the PI3K/Akt signaling pathway,
which are important for proliferation but only partially
responsible for M2 phenotype [129]. Another study found
miR-378a (strand not specified) expression upregulated after
stimulation with cytokines like, for example, TNF-a and IL-6
[130].

In line with its potential role in macrophages, miR-378a
has been suggested as being of importance in the osteoclas-
togenesis [131]. Mmu-miR-378a (strand not specified) has
been found to be upregulated during osteoclastogenesis in
vitro [131]. Furthermore, serum levels of miR-378a-3p have
been shown to correlate with bone metastasis burden in mice
injected with mouse mammary tumor cell lines 4T1and 4T1.2
[132].

8. Conclusions

A growing body of evidence suggests a role for miR-378a as
a mediator controlling reciprocally dependent processes in
metabolism, muscle differentiation/regeneration, and angio-
genesis.

As miR-378a was found to be differentially regulated in
different types of cancers and its level is changed in serum
of prostate, renal, and gastric cancer patients, it can be
considered as a biomarker for those diseases. The correlation
between miR-378a expression and disease progression in
lung cancer, liver cancer, and rhabdomyosarcoma suggests a
further role of this microRNA as a prognostic marker.

Currently, miR-378a is not utilized as a therapeutic
molecule. However, if more research will be done to the
mechanisms of action, possibilities for therapeutic use of
miR-378a could be sought in the field of metabolic disorders,
obesity, or tumors. More studies on the effect of miR-378a
expression in muscle disorders would also be desirable.

The proangiogenic effect of miR-378a was observed in
tumors; however, no studies have been performed on the
angiogenic effects of miR-378a in physiological settings or
diseases where angiogenesis plays important roles, such as
diabetes and cardiovascular diseases. More study has to be
done to assess the mechanisms of miR-378a function in blood
vessel formation. Of note, in contrast with proangiogenic
role of miR-378a, inhibition of miR-378a-5p enhanced wound
healing process. This might suggest a role for miR-378a-5p
in diseases such as diabetes or in decubitus ulcers, in which
wound healing is impaired.

Of note is the confusion that has arises because of a
disarray in nomenclature with studies describing the same
molecule, miR-378a, as miR-422b, miR-378, or miR-378". In
addition, it is not always clear which of the two mature strands
of miR-378a is studied. This could lead to misunderstandings
and errors in interpreting the data published so far.
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