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A predictor-corrector algorithm and an improved predictor-corrector (IPC) algorithm based on Adams method are proposed to
solve first-order differential equationswith fuzzy initial condition.These algorithms are generated by updating theAdams predictor-
corrector method and their convergence is also analyzed. Finally, the proposed methods are illustrated by solving an example.

1. Introduction

Fuzzy differential equations (FDEs), which are utilized for
the purpose of the modeling problems in science and engi-
neering, have been studied by many researchers. Most of the
practical problems require the solutions of fuzzy differential
equations (FDEs) which are satisfied with fuzzy initial condi-
tions; therefore a fuzzy initial problem occurs and should be
solved. However, for the vast majority of fuzzy initial value
problems, their exact solutions are difficult to be obtained.
Thus it is necessary to consider their numerical methods.

The concept of a fuzzy derivative was first introduced by
Chang and Zadeh [1]; it was followed up byDubois and Prade
[2] who used the extension principle in their approach. Other
fuzzy derivative concepts have been proposed by Puri and
Ralescu [3] and Goetschel Jr. and Voxman [4] as an extension
of the Hukuhara derivative of multivalued functions. In the
past decades, many works have been appeared on the aspects
of theories and applications on fuzzy differential equations;
see [5–12]. The notation of fuzzy differential equation was
initially introduced by Kandel and Byatt [13, 14] and later
they applied the concept of fuzzy differential equation to the
analysis of fuzzy dynamical problems [7, 15]. A thorough
theoretical research of fuzzy Cauchy problems was given by
Kaleva [16, 17], Wu and Song [18], Ouyang and Wu [19],
Kim and Sakthivel [20], and M. D. Wu [21]. A general-
ization of fuzzy differential equation was given by Aubin

[22, 23], Băıdosov [6], Kloeden [24], and Colombo and
Křivan [25].

For a fuzzy Cauchy problem

𝑦
󸀠

(𝑡) = 𝑓 (𝑡, 𝑦) , 𝑡
0
≤ 𝑡 ≤ 𝑇,

𝑦 (𝑡
0
) = 𝛼
0
,

(1)

in 1999, Friedman et al. [26] firstly treated it and obtained
its numerical solution by Euler method. In recent years,
some researchers such as Abbasbandy and Allahviranloo
applied the Taylor series method, the Runge-Kutta method,
and the linear multistep method to solve fuzzy differential
equations [5, 20, 27–32]. They proposed some numerical
methods and discussed the convergence and stability of their
methods under the fuzzy numbers background. However,
their methods always have some of low convergence order.

In this paper, based on Adams-Bashforth four-step
method and Adams-Moulton three-step method, two Adams
predictor-corrector algorithms are proposed to solve fuzzy
initial problems. The convergence of the proposed methods
is also presented in detail. Finally, an example is given
to illustrate our methods. The structure of this paper is
organized as follows.

In Section 2, some basic definitions and results are rec-
alled. An explicit Adams-Bashforth method and an implicit
Adams-Moulton method for solving FDEs are mentioned in
Section 3. The predictor-corrector method and the improved
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predictor-corrector (IPC) systems algorithm are introduced
in Section 4. The convergence of the proposed methods is
discussed in Section 5. An illustrating example is given in
Section 6 and the conclusion is drawn in Section 7.

2. Preliminaries

2.1. Fuzzy Numbers

Definition 1 (see [1]). A fuzzy number is a fuzzy set like 𝑢 :
𝑅 → 𝐼 = [0, 1] which satisfies the following:

(1) 𝑢 is upper semicontinuous;
(2) 𝑢 is fuzzy convex; that is, 𝑢(𝜆𝑥 + (1 − 𝜆)𝑦) ≥

min{𝑢(𝑥), 𝑢(𝑦)}, for all 𝑥, 𝑦 ∈ 𝑅, 𝜆 ∈ [0, 1];
(3) 𝑢 is normal; that is, there exists 𝑥

0
∈ 𝑅 such that

𝑢(𝑥
0
) = 1;

(4) supp 𝑢 = {𝑥 ∈ 𝑅 | 𝑢(𝑥) > 0} is the support of the 𝑢,
and its closure cl(supp 𝑢) is compact.

Let 𝐸1 be the set of all fuzzy numbers on 𝑅.

Definition 2 (see [2]). A fuzzy number𝑢 in parametric form is
a pair (𝑢, 𝑢) of functions 𝑢(𝑟), 𝑢(𝑟), 0 ≤ 𝑟 ≤ 1, which satisfies
the following requirements:

(1) 𝑢(𝑟) is a bounded monotonic increasing left continu-
ous function;

(2) 𝑢(𝑟) is a bounded monotonic decreasing left continu-
ous function;

(3) 𝑢(𝑟) ≤ 𝑢(𝑟), 0 ≤ 𝑟 ≤ 1.

Let 𝐼 be a real interval. A mapping 𝑦 : 𝐼 → 𝐸
1 is called a

fuzzy process and its 𝛼-level set is denoted by

[𝑦 (𝑡)]
𝛼

= [𝑦
𝛼

(𝑡) , 𝑦
𝛼

(𝑡)] , 𝑡 ∈ 𝐼, 𝛼 ∈ (0, 1] . (2)

Definition 3. A triangular fuzzy number is a fuzzy set 𝑢 in 𝐸1
that is characterized by an ordered triple (𝑥

𝑙
, 𝑥
𝑐
, 𝑥
𝑟
) ∈ 𝑅
3 with

𝑥
𝑙
≤ 𝑥
𝑐
≤ 𝑥
𝑟
such that [𝑢]0 = [𝑥

𝑙
, 𝑥
𝑟
] and [𝑢]1 = {𝑥

𝑐
}.

The 𝛼-level set of a triangular fuzzy number 𝑢 is given by

[𝑢]
𝛼
= [𝑥
𝑐
− (1 − 𝛼) (𝑥

𝑐
− 𝑥
𝑙
) , 𝑥
𝑐
+ (1 − 𝛼) (𝑥

𝑟
− 𝑥
𝑐
)] , (3)

for any 𝛼 ∈ 𝐼.

Definition 4 (see [9]). The supremum metric 𝑑
∞

on 𝐸1 is
defined by

𝑑
∞
(𝑢, V) = sup {𝑑

𝐻
{[𝑢]
𝛼
, [V]
𝛼
} : 𝛼 ∈ 𝐼} . (4)

With the spermium metric, the space (𝐸1, 𝑑
∞
) is a com-

plete metric space.

Definition 5 (see [9]). A mapping 𝐹 : 𝑇 → 𝐸
1 is Hukuhara

differentiable at 𝑡
0
∈ 𝑇 ⊂ 𝑅 if for some ℎ

0
> 0 the Hukuhara

difference

𝐹 (𝑡
0
+ Δ𝑡) ∼

ℎ
𝐹 (𝑡
0
) , 𝐹 (𝑡

0
) ∼
ℎ
𝐹 (𝑡
0
− Δ𝑡) (5)

exists in 𝐸1, for all 0 < Δ𝑡 < ℎ
0
, and if there exists an 𝐹󸀠(𝑡

0
) ∈

𝐸
1 such that

lim
ℎ→0+

𝑑
∞
(𝐹 (𝑡
0
+ Δ𝑡) ∼

ℎ

𝐹 (𝑡
0
)

Δ𝑡
, 𝐹
󸀠
(𝑡
0
)) = 0,

lim
ℎ→0+

𝑑
∞
(𝐹 (𝑡
0
) ∼
ℎ

𝐹 (𝑡
0
− Δ𝑡)

Δ𝑡
, 𝐹
󸀠
(𝑡
0
)) = 0.

(6)

The fuzzy set 𝐹󸀠(𝑡
0
) is called the Hukuhara derivative of 𝐹 at

𝑡
0
.

Recall that 𝑢 ∼
ℎ
V = 𝑤 ∈ 𝐸

1 is defined on 𝛼-level
sets, where [𝑢]𝛼 ∼

ℎ
[V]𝛼 = [𝑤]

𝛼, for all 𝛼 ∈ 𝐼. By the def-
inition of the metric 𝑑

∞
, all the 𝛼-level set mappings [𝐹(⋅)]𝛼

are Hukuhara differentiable at 𝑡
0
with Hukuhara derivative

[𝐹
󸀠
(𝑡
0
)]
𝛼 for each 𝛼 ∈ 𝐼 when 𝐹 : 𝑇 → 𝐸

1 is Hukuhara dif-
ferentiable at 𝑡

0
with Hukuhara derivative 𝐹󸀠(𝑡

0
).

Remark 6. If 𝐹 : 𝑇 → 𝐸
1 is Hukuhara differentiable and its

Hukuhara derivative 𝐹󸀠 is integrable over [0, 1], then

𝐹 (𝑡) = 𝐹 (𝑡
0
) + ∫

𝑡

𝑡0

𝐹
󸀠

(𝑠) 𝑑𝑠, (7)

for all 0 ≤ 𝑡
0
≤ 𝑡 ≤ 1.

Definition 7. Amapping 𝑦 : 𝐼 → 𝐸
1 is called a fuzzy process.

We designate

[𝑦 (𝑡)]
𝛼

= [𝑦
𝛼

1
(𝑡) , 𝑦
𝛼

2
(𝑡)] , 𝑡 ∈ 𝐼, 0 ≤ 𝛼 ≤ 1. (8)

The Seikkala derivative 𝑦󸀠(𝑡) of a fuzzy process 𝑦 is defined
by

[𝑦
󸀠

(𝑡)]
𝛼

= [(𝑦
𝛼

1
)
󸀠

(𝑡) , (𝑦
𝛼

2
)
󸀠

(𝑡)] , 0 ≤ 𝛼 ≤ 1, (9)

provided that this equation in fact defines a fuzzy number
𝑦
󸀠
(𝑡) ∈ 𝐸

1.

Remark 8. If 𝑦 : 𝐼 → 𝐸
1 is Seikkala differentiable and its

Seikkala derivative 𝑦󸀠 is integrable over [0, 1], then

𝑦 (𝑡) = 𝑦 (𝑡
0
) + ∫

𝑡

𝑡0

𝑦
󸀠

(𝑠) 𝑑𝑠, (10)

for all 𝑡
0
, 𝑡 ∈ 𝐼.

2.2. A Fuzzy Cauchy Problem. Consider the first-order fuzzy
differential equation 𝑦󸀠 = 𝑓(𝑡, 𝑦), where 𝑦 is a fuzzy function
of 𝑡, 𝑓(𝑡, 𝑦) is a a fuzzy function of the crisp variable 𝑡 and the
fuzzy variable 𝑦, and 𝑦󸀠 is the Hukuhara or Seikkala fuzzy
derivative of 𝑦. Given an initial value 𝑦(𝑡

0
) = 𝛼

0
, we can

define a first-order fuzzy Cauchy problem as follows:

𝑦
󸀠

(𝑡) = 𝑓 (𝑡, 𝑦) , 𝑡
0
≤ 𝑡 ≤ 𝑇,

𝑦 (𝑡
0
) = 𝑦
0
.

(11)

The existence theorem is obtained for the Cauchy problem
(11).
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Let [𝑦(𝑡)]𝛼 = [𝑦
𝛼
(𝑡), 𝑦
𝛼
(𝑡)]; if 𝑦(𝑡) is Hukuhara differ-

entiable then [𝑦󸀠(𝑡)]𝛼 = [(𝑦𝛼(𝑡))󸀠, (𝑦𝛼(𝑡))󸀠]. So (11) translates
into the following system of ODEs:

(𝑦
𝛼

(𝑡))
󸀠

= 𝑓
𝛼
(𝑡, 𝑦
𝛼

(𝑡) , 𝑦
𝛼

(𝑡)) ,

(𝑦
𝛼

(𝑡))
󸀠

= 𝑓
𝛼

(𝑡, 𝑦
𝛼

(𝑡) , 𝑦
𝛼

(𝑡)) ,

𝑦
𝛼
(𝑡
0
) = 𝑦
𝛼

0

,

𝑦
𝛼
(𝑡
0
) = 𝑦
𝛼

0
.

(12)

Theorem 9 (see [33]). Let one consider the FCP (11) where 𝑓 :
[𝑡
0
, 𝑇] × 𝐸

1
→ 𝐸
1 is such that

(i) [𝑓(𝑡, 𝑦)]𝛼 = [𝑓𝛼(𝑡, 𝑦𝛼(𝑡), 𝑦𝛼(𝑡)), 𝑓
𝛼

(𝑡, 𝑦
𝛼
(𝑡), 𝑦
𝛼
(𝑡))];

(ii) 𝑓𝛼 and 𝑓
𝛼

are equicontinuous and uniformly bounded
on any bounded set;

(iii) 𝑓𝛼 and 𝑓
𝛼

satisfy the Lipschitz conditions.

Then the FCP (11) and the system of ODEs (12) are
equivalent.

2.3. Interpolation for Fuzzy Numbers. The problem of inter-
polation for fuzzy sets is as follows.

Suppose that at various time instant 𝑡 information 𝑓(𝑡) is
presented as fuzzy set.The aim is to approximate the function
𝑓(𝑡), for all 𝑡 in the domain of 𝑓. Let 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
be

𝑛 + 1 distinct points in 𝑅 and let 𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛
be 𝑛 + 1 fuzzy

sets in 𝐸1. A fuzzy polynomial interpolation of the data is a
fuzzy-value function 𝐹 : 𝑅 → 𝐸

1 satisfying the following
conditions:

(1) 𝑓(𝑡
𝑖
) = 𝑢
𝑖
, for all 𝑖 = 0, 1, . . . , 𝑛;

(2) 𝑓 is continuous;
(3) if the data is crisp, then the interpolation 𝑓 is a crisp

polynomial.
A function 𝑓 fulfilling these conditions may be con-

structed as follows. Let 𝐶𝑖
𝛼
= [𝑢
𝑖
]
𝛼, for any 𝛼 ∈ [0, 1], 𝑖 =

0, 1, . . . , 𝑛. For each 𝑥 = (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
) ∈ 𝑅

𝑛+1, the unique
polynomial of degree ≤ 𝑛 is denoted by 𝑃

𝑋
such that

𝑃
𝑋
(𝑡
𝑖
) = 𝑥
𝑖
, 𝑖 = 0, 1, . . . , 𝑛,

𝑃
𝑋
(𝑡) =

𝑛

∑

𝑖=0

𝑥
𝑖
(∏

𝑖 ̸= 𝑗

𝑡 − 𝑡
𝑗

𝑡
𝑖
− 𝑡
𝑗

) .

(13)

Finally, for all 𝑡, 𝜉 ∈ 𝑅 are defined by 𝑓(𝑡) ∈ 𝐸1 such that

𝑓 (𝑡) (𝜉) = sup {𝛼 ∈ [0, 1] : ∃𝑋 ∈ 𝐶
0

𝛼

× 𝐶
1

𝛼
× ⋅ ⋅ ⋅ × 𝐶

𝑛

𝛼
, 𝑃
𝑋
(𝑡) = 𝜉} .

(14)

The interpolation polynomial can be written level setwise
as

[𝑓 (𝑡)]
𝛼

= {𝑦 ∈ 𝑅 : 𝑦 = 𝑃
𝑋
(𝑡) , 𝑥 ∈ 𝐶

𝑖

𝛼
, 𝑖 = 0, 1, . . . , 𝑛} ,

(15)
for 0 ≤ 𝛼 ≤ 1.

Theorem 10 (see [34]). Let (𝑡
𝑖
, 𝑢
𝑖
), 𝑖 = 0, 1, . . . , 𝑛 be the

observed data and suppose that each of the 𝑢
𝑖
= (𝑢
𝑙

𝑖
, 𝑢
𝑐

𝑖
, 𝑢
𝑟

𝑖
)

is an element of 𝐸1. Then for each 𝑡 ∈ [𝑡
0
, 𝑡
𝑛
], 𝑓(𝑡) =

(𝑓
𝑙
(𝑡), 𝑓
𝑐
(𝑡), 𝑓
𝑟
(𝑡)) ∈ 𝐸

1,

𝑓
𝑙

(𝑡) = ∑

𝑙𝑖(𝑡)≥0

𝑙
𝑖
(𝑡) 𝑢
𝑙

𝑖
+ ∑

𝑙𝑖(𝑡)<0

𝑙
𝑖
(𝑡) 𝑢
𝑟

𝑖
,

𝑓
𝑐

(𝑡) =

𝑛

∑

𝑖=0

𝑙
𝑖
(𝑡) 𝑢
𝑐

𝑖
,

𝑓
𝑟

(𝑡) = ∑

𝑙𝑖(𝑡)≥0

𝑙
𝑖
(𝑡) 𝑢
𝑟

𝑖
+ ∑

𝑙𝑖(𝑡)<0

𝑙
𝑖
(𝑡) 𝑢
𝑙

𝑖
,

(16)

where 𝑙
𝑖
(𝑡) = ∏

𝑖 ̸= 𝑗
((𝑡 − 𝑡

𝑗
)/(𝑡
𝑖
− 𝑡
𝑗
)), 𝑖 = 0, 1, . . . , 𝑛.

3. Adams Method

3.1. Adams-Bashforth Method. Now we are going to solve
fuzzy initial problem 𝑦

󸀠
(𝑡) = 𝑓(𝑡, 𝑦) by Adams-Bashforth

four-step method. Let the fuzzy initial values be 𝑦(𝑡
𝑖−3
),

𝑦(𝑡
𝑖−2
), 𝑦(𝑡
𝑖−1
), 𝑦(𝑡
𝑖
), that is,

𝑓 (𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
)) , 𝑓 (𝑡

𝑖−2
, 𝑦 (𝑡
𝑖−2
)) ,

𝑓 (𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
)) , 𝑓 (𝑡

𝑖
, 𝑦 (𝑡
𝑖
)) ,

(17)

which are triangular fuzzy numbers and are shown by

{𝑓
𝑙
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
)) , 𝑓
𝑐
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
)) , 𝑓
𝑟
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
))} ,

{𝑓
𝑙
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
)) , 𝑓
𝑐
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
)) , 𝑓
𝑟
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))} ,

{𝑓
𝑙
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
)) , 𝑓
𝑐
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
)) , 𝑓
𝑟
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
))} ,

{𝑓
𝑙
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
)) , 𝑓
𝑐
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
)) , 𝑓
𝑟
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
))} ,

(18)

also

𝑦 (𝑡
𝑖+1
) = 𝑦 (𝑡

𝑖
) + ∫

𝑡𝑖+1

𝑡𝑖

𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡. (19)

By fuzzy interpolation of 𝑓(𝑡
𝑖−3
, 𝑦(𝑡
𝑖−3
)), 𝑓(𝑡

𝑖−2
, 𝑦(𝑡
𝑖−2
)),

𝑓(𝑡
𝑖−1
, 𝑦(𝑡
𝑖−1
)), 𝑓(𝑡

𝑖
, 𝑦(𝑡
𝑖
)), we have

𝑓
𝑙
(𝑡, 𝑦 (𝑡)) = ∑

𝑙𝑗(𝑡)≥0

𝑙
𝑗
(𝑡) 𝑓
𝑙
(𝑡
𝑗
, 𝑦 (𝑡
𝑗
))

+ ∑

𝑙𝑗(𝑡)<0

𝑙
𝑗
(𝑡) 𝑓
𝑟
(𝑡
𝑗
, 𝑦 (𝑡
𝑗
)) ,

𝑓
𝑐

(𝑡) =

𝑖

∑

𝑗=𝑖−3

𝑙
𝑗
(𝑡) 𝑓
𝑐
(𝑡
𝑗
, 𝑦 (𝑡
𝑗
)) ,

𝑓
𝑟
(𝑡, 𝑦 (𝑡)) = ∑

𝑙𝑗(𝑡)≥0

𝑙
𝑗
(𝑡) 𝑓
𝑟
(𝑡
𝑗
, 𝑦 (𝑡
𝑗
))

+ ∑

𝑙𝑗(𝑡)<0

𝑙
𝑗
(𝑡) 𝑓
𝑙
(𝑡
𝑗
, 𝑦 (𝑡
𝑗
)) ,

(20)
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for 𝑡
𝑖−1
≤ 𝑡 ≤ 𝑡

𝑖
,

𝑙
𝑖−3
(𝑡) =

(𝑡 − 𝑡
𝑖−2
) (𝑡 − 𝑡

𝑖−1
) (𝑡 − 𝑡

𝑖
)

(𝑡
𝑖−3
− 𝑡
𝑖−1
) (𝑡
𝑖−3
− 𝑡
𝑖−1
) (𝑡
𝑖−3
− 𝑡
𝑖
)
≥ 0,

𝑙
𝑖−2
(𝑡) =

(𝑡 − 𝑡
𝑖−3
) (𝑡 − 𝑡

𝑖−1
) (𝑡 − 𝑡

𝑖
)

(𝑡
𝑖−2
− 𝑡
𝑖−3
) (𝑡
𝑖−2
− 𝑡
𝑖−1
) (𝑡
𝑖−2
− 𝑡
𝑖
)
≤ 0,

𝑙
𝑖−1
(𝑡) =

(𝑡 − 𝑡
𝑖−3
) (𝑡 − 𝑡

𝑖−2
) (𝑡 − 𝑡

𝑖
)

(𝑡
𝑖−1
− 𝑡
𝑖−3
) (𝑡
𝑖−1
− 𝑡
𝑖−2
) (𝑡
𝑖−1
− 𝑡
𝑖
)
≥ 0,

𝑙
𝑖
(𝑡) =

(𝑡 − 𝑡
𝑖−3
) (𝑡 − 𝑡

𝑖−2
) (𝑡 − 𝑡

𝑖−1
)

(𝑡
𝑖
− 𝑡
𝑖−3
) (𝑡
𝑖
− 𝑡
𝑖−2
) (𝑡
𝑖
− 𝑡
𝑖−1
)
≥ 0,

(21)

therefore the following results will be obtained:

𝑓
𝑙
(𝑡, 𝑦 (𝑡)) = 𝑙

𝑖−3
(𝑡) 𝑓
𝑙
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
))

+ 𝑙
𝑖−2
(𝑡) 𝑓
𝑟
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

+ 𝑙
𝑖−1
(𝑡) 𝑓
𝑙
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
))

+ 𝑙
𝑖
(𝑡) 𝑓
𝑙
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
)) ,

𝑓
𝑐
(𝑡, 𝑦 (𝑡)) = 𝑙

𝑖−3
(𝑡) 𝑓
𝑐
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
))

+ 𝑙
𝑖−2
(𝑡) 𝑓
𝑐
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

+ 𝑙
𝑖−1
(𝑡) 𝑓
𝑐
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
))

+ 𝑙
𝑖
(𝑡) 𝑓
𝑐
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
)) ,

𝑓
𝑟
(𝑡, 𝑦 (𝑡)) = 𝑙

𝑖−3
(𝑡) 𝑓
𝑟
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
))

+ 𝑙
𝑖−2
(𝑡) 𝑓
𝑙
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

+ 𝑙
𝑖−1
(𝑡) 𝑓
𝑟
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
))

+ 𝑙
𝑖
(𝑡) 𝑓
𝑟
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
)) .

(22)

From (3) and (19) it follows that

𝑦
𝛼
(𝑡
𝑖+1
) = [𝑦

𝛼
(𝑡
𝑖+1
) , 𝑦
𝛼
(𝑡
𝑖+1
)] , (23)

where

𝑦
𝛼
(𝑡
𝑖+1
)

= 𝑦
𝛼
(𝑡
𝑖
) + ∫

𝑡𝑖+1

𝑡𝑖

{𝛼𝑓
𝑐
(𝑡, 𝑦 (𝑡))

+ (1 − 𝛼) 𝑓
𝑙
(𝑡, 𝑦 (𝑡))} 𝑑𝑡,

𝑦
𝛼
(𝑡
𝑖+1
)

= 𝑦
𝛼
(𝑡
𝑖
) + ∫

𝑡𝑖+1

𝑡𝑖

{𝛼𝑓
𝑐
(𝑡, 𝑦 (𝑡))

+ (1 − 𝛼) 𝑓
𝑟
(𝑡, 𝑦 (𝑡))} 𝑑𝑡.

(24)

If (22) are situated in (24), we have

𝑦
𝛼
(𝑡
𝑖+1
) = 𝑦
𝛼
(𝑡
𝑖
)

+ ∫

𝑡𝑖+1

𝑡𝑖

{𝛼 (𝑙
𝑖−3
(𝑡) 𝑓
𝑐
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
))

+ 𝑙
𝑖−2
(𝑡) 𝑓
𝑐
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

+ 𝑙
𝑖−1
(𝑡) 𝑓
𝑐
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
))

+ 𝑙
𝑖
(𝑡) 𝑓
𝑐
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
)) )

+ (1 − 𝛼) (𝑙
𝑖−3
(𝑡) 𝑓
𝑙
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
))

+ 𝑙
𝑖−2
(𝑡) 𝑓
𝑟
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

+ 𝑙
𝑖−1
(𝑡) 𝑓
𝑙
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
))

+ 𝑙
𝑖
(𝑡) 𝑓
𝑙
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
)))} 𝑑𝑡,

𝑦
𝛼
(𝑡
𝑖+1
) = 𝑦
𝛼
(𝑡
𝑖
)

+ ∫

𝑡𝑖+1

𝑡𝑖

{𝛼 (𝑙
𝑖−3
(𝑡) 𝑓
𝑐
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
))

+ 𝑙
𝑖−2
(𝑡) 𝑓
𝑐
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

+ 𝑙
𝑖−1
(𝑡) 𝑓
𝑐
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
))

+ 𝑙
𝑖
(𝑡) 𝑓
𝑐
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
)))

+ (1 − 𝛼) (𝑙
𝑖−3
(𝑡) 𝑓
𝑟
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
))

+ 𝑙
𝑖−2
(𝑡) 𝑓
𝑙
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

+ 𝑙
𝑖−1
(𝑡) 𝑓
𝑟
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
))

+ 𝑙
𝑖
(𝑡) 𝑓
𝑟
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
)))} 𝑑𝑡.

(25)

The following results will be obtained by integration:

𝑦
𝛼
(𝑡
𝑖+1
) = 𝑦
𝛼
(𝑡
𝑖
) +

ℎ

24

× {−9 [𝛼𝑓
𝑐
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
))

+ (1 − 𝛼) 𝑓
𝑟
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
))]

+ 37 [𝛼𝑓
𝑐
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

+ (1 − 𝛼) 𝑓
𝑙
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))]
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− 59 [𝛼𝑓
𝑐
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
))

+ (1 − 𝛼) 𝑓
𝑟
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
))]

+ 55 [𝛼𝑓
𝑐
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
))

+ (1 − 𝛼) 𝑓
𝑙
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
))]} ,

𝑦
𝛼
(𝑡
𝑖+1
) = 𝑦
𝛼
(𝑡
𝑖
) +

ℎ

24

× {−9 [𝛼𝑓
𝑐
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
))

+ (1 − 𝛼) 𝑓
𝑙
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
))]

+ 37 [𝛼𝑓
𝑐
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

+ (1 − 𝛼) 𝑓
𝑟
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))]

− 59 [𝛼𝑓
𝑐
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
))

+ (1 − 𝛼) 𝑓
𝑙
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
))]

+ 55 [𝛼𝑓
𝑐
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
))

+ (1 − 𝛼) 𝑓
𝑟
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
))]} .

(26)

Thus

𝑦
𝛼
(𝑡
𝑖+1
)

= 𝑦
𝛼
(𝑡
𝑖
) +

ℎ

24
[−9𝑓
𝛼

(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
)) + 37𝑓

𝛼
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

− 59𝑓
𝛼

(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
)) + 55𝑓

𝛼
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
))] ,

(27)

𝑦
𝛼
(𝑡
𝑖+1
)

= 𝑦
𝛼
(𝑡
𝑖
) +

ℎ

24
[𝑓
𝛼
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
)) + 37𝑓

𝛼

(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

− 59𝑓
𝛼
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
)) + 55𝑓

𝛼

(𝑡
𝑖
, 𝑦 (𝑡
𝑖
))] .

(28)

Therefore the four-step Adams-Bashforth method for
solving fuzzy initial problems is obtained as follows:

𝑦
𝛼
(𝑡
𝑖+1
)

= 𝑦
𝛼
(𝑡
𝑖
) +

ℎ

24
[−9𝑓
𝛼

(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
)) + 37𝑓

𝛼
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

− 59𝑓
𝛼

(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
)) +55𝑓

𝛼
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
))] ,

𝑦
𝛼
(𝑡
𝑖+1
)

= 𝑦
𝛼
(𝑡
𝑖
) +

ℎ

24
[−9𝑓
𝛼
(𝑡
𝑖−3
, 𝑦 (𝑡
𝑖−3
)) + 37𝑓

𝛼

(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

− 59𝑓
𝛼
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
)) +55𝑓

𝛼

(𝑡
𝑖
, 𝑦 (𝑡
𝑖
))] ,

𝑦
𝛼
(𝑡
𝑖−3
) = 𝛼
0
, 𝑦

𝛼
(𝑡
𝑖−2
) = 𝛼
1
,

𝑦
𝛼
(𝑡
𝑖−1
) = 𝛼
2
, 𝑦

𝛼
(𝑡
𝑖
) = 𝛼
3
,

𝑦
𝛼
(𝑡
𝑖−3
) = 𝛼
4
, 𝑦

𝛼
(𝑡
𝑖−2
) = 𝛼
5
,

𝑦
𝛼
(𝑡
𝑖−1
) = 𝛼
6
, 𝑦

𝛼
(𝑡
𝑖
) = 𝛼
7

𝑖 = 3, 4, . . . , 𝑁 − 1.

(29)

3.2. Adams-Moulton Method. From [30], the Adams-
Moulton three-step method to solve fuzzy initial problem
𝑦
󸀠
(𝑡) = 𝑓(𝑡, 𝑦) is as follows:

𝑦
𝛼
(𝑡
𝑖+1
) = 𝑦
𝛼
(𝑡
𝑖
)

+
ℎ

24
[𝑓
𝛼
(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

− 5𝑓
𝛼

(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
))

+ 19𝑓
𝛼
(𝑡
𝑖
, 𝑦 (𝑡
𝑖
)) + 9𝑓

𝛼
(𝑡
𝑖+1
, 𝑦 (𝑡
𝑖+1
))] ,

𝑦
𝛼
(𝑡
𝑖+1
) = 𝑦
𝛼
(𝑡
𝑖−1
)

+
ℎ

24
[𝑓
𝛼

(𝑡
𝑖−2
, 𝑦 (𝑡
𝑖−2
))

− 5𝑓
𝛼
(𝑡
𝑖−1
, 𝑦 (𝑡
𝑖−1
))

+ 19𝑓
𝛼

(𝑡
𝑖
, 𝑦 (𝑡
𝑖
)) + 9𝑓

𝛼

(𝑡
𝑖+1
, 𝑦 (𝑡
𝑖+1
))] ,

𝑦
𝛼
(𝑡
𝑖−2
) = 𝛼
0
, 𝑦

𝛼
(𝑡
𝑖−1
) = 𝛼
1
, 𝑦

𝛼
(𝑡
𝑖
) = 𝛼
2
,

𝑦
𝛼
(𝑡
𝑖−2
) = 𝛼
3
, 𝑦

𝛼
(𝑡
𝑖−1
) = 𝛼
4
, 𝑦

𝛼
(𝑡
𝑖
) = 𝛼
5

𝑖 = 2, 3, . . . , 𝑁 − 1.

(30)

4. Predictor-Corrector Method

4.1. Adams Predictor-Corrector Method. The following algo-
rithm is based on Adams-Bashforth four-step method as a
predictor and also an iteration of Adams-Moulton three-step
method as a corrector.

Algorithm 11 (predictor-corrector four-step method). To
approximate the solution of the following fuzzy initial value
problem:

𝑦
󸀠

(𝑡) = 𝑓 (𝑡, 𝑦) , 𝑡
0
≤ 𝑡 ≤ 𝑇,

𝑦
𝛼
(𝑡
0
) = 𝛼
0
, 𝑦

𝛼
(𝑡
1
) = 𝛼
1
,

𝑦
𝛼
(𝑡
2
) = 𝛼
2
, 𝑦

𝛼
(𝑡
3
) = 𝛼
3
,
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𝑦
𝛼
(𝑡
0
) = 𝛼
4
, 𝑦

𝛼
(𝑡
1
) = 𝛼
5
,

𝑦
𝛼
(𝑡
2
) = 𝛼
6
, 𝑦

𝛼
(𝑡
3
) = 𝛼
7
,

(31)

positive integer𝑁 is chosen.

Step 1. Let ℎ = (𝑇 − 𝑡
0
)/𝑁,

𝑤
𝛼
(𝑡
0
) = 𝛼
0
, 𝑤

𝛼
(𝑡
1
) = 𝛼
1
, 𝑤

𝛼
(𝑡
2
) = 𝛼
2
,

𝑤
𝛼
(𝑡
3
) = 𝛼
3
,

𝑤
𝛼
(𝑡
0
) = 𝛼
4
, 𝑤

𝛼
(𝑡
1
) = 𝛼
5
, 𝑤

𝛼
(𝑡
2
) = 𝛼
6
,

𝑤
𝛼
(𝑡
3
) = 𝛼
7
.

(32)

Step 2. Let 𝑖 = 3.

Step 3. Let

𝑤
(0)𝛼

(𝑡
𝑖+1
) = 𝑤

𝛼
(𝑡
𝑖
)

+
ℎ

24
[−9𝑓
𝛼

(𝑡
𝑖−3
, 𝑤 (𝑡
𝑖−3
))

+ 37𝑓
𝛼
(𝑡
𝑖−2
, 𝑤 (𝑡
𝑖−2
))

− 59𝑓
𝛼

(𝑡
𝑖−1
, 𝑤 (𝑡
𝑖−1
))

+ 55𝑓
𝛼
(𝑡
𝑖
, 𝑤 (𝑡
𝑖
))] ,

𝑤
(0)𝛼

(𝑡
𝑖+1
) = 𝑤

𝛼
(𝑡
𝑖
)

+
ℎ

24
[−9𝑓
𝛼
(𝑡
𝑖−3
, 𝑤 (𝑡
𝑖−3
))

+ 37𝑓
𝛼

(𝑡
𝑖−2
, 𝑤 (𝑡
𝑖−2
))

− 59𝑓
𝛼
(𝑡
𝑖−1
, 𝑤 (𝑡
𝑖−1
))

+ 55𝑓
𝛼

(𝑡
𝑖
, 𝑤 (𝑡
𝑖
))] .

(33)

Step 4. Let 𝑡
𝑖+1
= 𝑡
0
+ 𝑖ℎ.

Step 5. Let

𝑤
𝛼
(𝑡
𝑖+1
) = 𝑤

𝛼
(𝑡
𝑖
)

+
ℎ

24
[𝑓
𝛼
(𝑡
𝑖−2
, 𝑤 (𝑡
𝑖−2
))

− 5𝑓
𝛼

(𝑡
𝑖−1
, 𝑤 (𝑡
𝑖−1
))

+ 19𝑓
𝛼
(𝑡
𝑖
, 𝑤 (𝑡
𝑖
))

+ 9𝑓
𝛼
(𝑡
𝑖+1
, 𝑤
(0)
(𝑡
𝑖+1
))] ,

𝑤
𝛼
(𝑡
𝑖+1
) = 𝑤

𝛼
(𝑡
𝑖−1
)

+
ℎ

24
[𝑓
𝛼

(𝑡
𝑖−2
, 𝑤 (𝑡
𝑖−2
))

− 5𝑓
𝛼
(𝑡
𝑖−1
, 𝑤 (𝑡
𝑖−1
))

+ 19𝑓
𝛼

(𝑡
𝑖
, 𝑤 (𝑡
𝑖
))

+ 9𝑓
𝛼

(𝑡
𝑖+1
, 𝑤
(0)
(𝑡
𝑖+1
))] .

(34)

Step 6. 𝑖 = 𝑖 + 1.

Step 7. If 𝑖 ≤ 𝑁 − 1 goto Step 3.

Step 8. Algorithm is completed and (𝑤𝛼(𝑡
𝑖
), 𝑤
𝛼
(𝑡
𝑖
)) approxi-

mates real value of (𝑌𝛼(𝑡
𝑖
), 𝑌
𝛼

(𝑡
𝑖
)) to the original differential

equations (𝑖 = 4, 5, . . . , 𝑁).

4.2. Improved Adams Predictor-Corrector Method. In the
above section, the predicted values 𝑦0

𝑖+1

, 𝑦
0

𝑖+1
and the cor-

rected values 𝑦
𝑖+1

, 𝑦
𝑖+1

have the local truncation errors as
follows:

𝑦 (𝑡
𝑖+1
) − 𝑦
0

𝑖+1

≈
251

720
ℎ
5
𝑦
(5)
(𝑥
𝑖
) ,

𝑦 (𝑡
𝑖+1
) − 𝑦
0

𝑖+1

≈
251

720
ℎ
5
𝑦
(5)
(𝑥
𝑖
) ,

𝑦 (𝑡
𝑖+1
) − 𝑦
𝑖+1
≈ −

19

720
ℎ
5
𝑦
(5)
(𝑥
𝑖
) ,

𝑦 (𝑡
𝑖+1
) − 𝑦
𝑖+1
≈ −

19

720
ℎ
5
𝑦
(5)
(𝑥
𝑖
) .

(35)

Thus there exists the error estimations

𝑦 (𝑡
𝑖+1
) − 𝑦
0

𝑖+1

≈ −
251

270
(𝑦
0

𝑖+1

− 𝑦
𝑖+1

) ,

𝑦 (𝑡
𝑖+1
) − 𝑦
0

𝑖+1
≈ −

251

270
(𝑦
0

𝑖+1
− 𝑦
𝑖+1
) ,

𝑦 (𝑡
𝑖+1
) − 𝑦
𝑖+1
≈ −

19

720
(𝑦
0

𝑖+1

− 𝑦
𝑖+1

) ,

𝑦 (𝑡
𝑖+1
) − 𝑦
𝑖+1
≈ −

19

720
(𝑦
0

𝑖+1
− 𝑦
𝑖+1
) .

(36)

Based on above results, we improve Adams predictor-
corrector four-step method into the following iterative com-
putation algorithm.

Algorithm 12 (improved predictor-corrector systems). To
approximate the solution of the following fuzzy initial value
problem:

𝑦
󸀠

(𝑡) = 𝑓 (𝑡, 𝑦) , 𝑡
0
≤ 𝑡 ≤ 𝑇,

𝑦
𝛼
(𝑡
0
) = 𝛼
0
, 𝑦

𝛼
(𝑡
1
) = 𝛼
1
,
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𝑦
𝛼
(𝑡
2
) = 𝛼
2
, 𝑦

𝛼
(𝑡
3
) = 𝛼
3
,

𝑦
𝛼
(𝑡
0
) = 𝛼
4
, 𝑦

𝛼
(𝑡
1
) = 𝛼
5
,

𝑦
𝛼
(𝑡
2
) = 𝛼
6
, 𝑦

𝛼
(𝑡
3
) = 𝛼
7
,

(37)

positive integer𝑁 is chosen.

Step 1. Let ℎ = (𝑇 − 𝑡
0
)/𝑁,

𝑤
𝛼
(𝑡
0
) = 𝛼
0
, 𝑤

𝛼
(𝑡
1
) = 𝛼
1
,

𝑤
𝛼
(𝑡
2
) = 𝛼
2
, 𝑤

𝛼
(𝑡
3
) = 𝛼
3
,

𝑤
𝛼
(𝑡
0
) = 𝛼
4
, 𝑤

𝛼
(𝑡
1
) = 𝛼
5
,

𝑤
𝛼
(𝑡
2
) = 𝛼
6
, 𝑤

𝛼
(𝑡
3
) = 𝛼
7
.

(38)

Step 2. Let 𝑖 = 3.

Step 3. Let

𝑝
(0)𝛼

𝑖+1

= 𝑤
𝛼
(𝑡
𝑖
)

+
ℎ

24
[−9𝑓
𝛼

(𝑡
𝑖−3
, 𝑤 (𝑡
𝑖−3
))

+ 37𝑓
𝛼
(𝑡
𝑖−2
, 𝑤 (𝑡
𝑖−2
))

− 59𝑓
𝛼

(𝑡
𝑖−1
, 𝑤 (𝑡
𝑖−1
))

+55𝑓
𝛼
(𝑡
𝑖
, 𝑤 (𝑡
𝑖
))] ,

𝑝
(0)𝛼

𝑖+1
= 𝑤
𝛼
(𝑡
𝑖
)

+
ℎ

24
[−9𝑓
𝛼
(𝑡
𝑖−3
, 𝑤 (𝑡
𝑖−3
))

+ 37𝑓
𝛼

(𝑡
𝑖−2
, 𝑤 (𝑡
𝑖−2
))

− 59𝑓
𝛼
(𝑡
𝑖−1
, 𝑤 (𝑡
𝑖−1
))

+ 55𝑓
𝛼

(𝑡
𝑖
, 𝑤 (𝑡
𝑖
))] .

(39)

Step 4. Let 𝑚
𝑖+1

= 𝑓(𝑡
𝑖+1
, 𝑝
𝑖+1

) + (251/270)(𝑐
𝑖
− 𝑝
𝑖

), 𝑚
𝑖+1

=

𝑓(𝑡
𝑖+1
, 𝑝
𝑖+1
) + (251/270)(𝑐

𝑖
− 𝑝
𝑖
).

Step 5. Let

𝑐
𝛼

𝑖+1
= 𝑦
𝛼
(𝑡
𝑖
)

+
ℎ

24
[𝑓
𝛼
(𝑡
𝑖−2
, 𝑤 (𝑡
𝑖−2
))

− 5𝑓
𝛼
(𝑡
𝑖−1
, 𝑤 (𝑡
𝑖−1
))

+ 19𝑓
𝛼
(𝑡
𝑖
, 𝑤 (𝑡
𝑖
))

+ 9𝑓
𝛼
(𝑡
𝑖+1
, 𝑤
(0)
(𝑡
𝑖+1
))] ,

𝑐
𝛼

i+1 = 𝑦
𝛼
(𝑡
𝑖−1
)

+
ℎ

24
[𝑓
𝛼

(𝑡
𝑖−2
, 𝑤 (𝑡
𝑖−2
))

− 5𝑓
𝛼
(𝑡
𝑖−1
, 𝑤 (𝑡
𝑖−1
))

+ 19𝑓
𝛼

(𝑡
𝑖
, 𝑤 (𝑡
𝑖
))

+ 9𝑓
𝛼

(𝑡
𝑖+1
, 𝑤
(0)
(𝑡
𝑖+1
))] .

(40)

Step 6. Let

𝑦
𝑖+1

= 𝑐
𝑖+1
−
19

720
(𝑐
𝑖+1
− 𝑝
𝑖+1

) ,

𝑦
𝑖+1
= 𝑐
𝑖+1
−
19

720
(𝑐
𝑖+1
− 𝑝
𝑖+1
) .

(41)

Step 7. 𝑖 = 𝑖 + 1.

Step 8. If 𝑖 ≤ 𝑁 − 1 goto Step 3.

Step 9. Algorithm is completed and (𝑤𝛼(𝑡
𝑖
), 𝑤
𝛼
(𝑡
𝑖
)) approxi-

mates real value of (𝑌𝛼(𝑡
𝑖
), 𝑌
𝛼

(𝑡
𝑖
)) to the original differential

equations (𝑖 = 4, 5, . . . , 𝑁).

5. Convergence

To integrate the system given in (11) from 𝑡
0
to a prefixed

𝑇 > 𝑡
0
, the interval [𝑡

0
, 𝑇] is replaced by a set of discrete

equally spaced grid points 𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
= 𝑇,

and the exact solution (𝑌(𝑡, 𝛼), 𝑌(𝑡, 𝛼)) is approximated by
some (𝑦(𝑡, 𝛼), 𝑦(𝑡, 𝛼)). The exact and approximate solutions
at 𝑡
𝑖
, 0 ≤ 𝑖 ≤ 𝑁, are denoted by 𝑌

𝑖
(𝛼) = (𝑌

𝑖
(𝛼), 𝑌

𝑖
(𝛼)) and

𝑦
𝑖
(𝛼) = (𝑦

𝑖

(𝛼), 𝑦
𝑖
(𝛼)), respectively. The grid points at which

the solution is calculated are 𝑡
𝑖
= 𝑡
0
+ 𝑖ℎ, ℎ = (𝑇 − 𝑡

0
)/𝑁,

0 ≤ 𝑖 ≤ 𝑁.
From (30), the polygon curves

𝑦 (𝑡, ℎ, 𝛼) = {[𝑡
0
, 𝑦
0

(𝛼)] , [𝑡
1
, 𝑦
1

(𝛼)] , . . . , [𝑡
𝑁
, 𝑦
𝑁

(𝛼)]} ,

𝑦 (𝑡, ℎ, 𝛼) = {[𝑡
0
, 𝑦
0
(𝛼)] , [𝑡

1
, 𝑦
1
(𝛼)] , . . . , [𝑡

𝑁
, 𝑦
𝑁
(𝛼)]}

(42)

are the implicit three-step approximation to 𝑌(𝑡, 𝛼) and
𝑌(𝑡, 𝛼), respectively, over the interval [𝑡

0
, 𝑇]. The following

lemma will be applied to show the convergence of these
approximations; that is,

lim
ℎ→0

𝑦 (𝑡, ℎ, 𝛼) = 𝑌 (𝑡, 𝛼) , lim
ℎ→0

𝑦 (𝑡, ℎ, 𝛼) = 𝑌 (𝑡, 𝛼) .

(43)
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Lemma 13. Let a sequence of numbers {𝑤
𝑛
}
𝑁

𝑛=0
satisfy

󵄨󵄨󵄨󵄨𝑤𝑛+1
󵄨󵄨󵄨󵄨 ≤ 𝐴

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨 + 𝐵

󵄨󵄨󵄨󵄨𝑤𝑛−1
󵄨󵄨󵄨󵄨 + 𝐶, 0 ≤ 𝑛 ≤ 𝑁 − 1, (44)

for some given positive 𝐴 and 𝐵, 𝐶. Then

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨 ≤ (𝐴

𝑛−1
+ 𝛽
1
𝐴
𝑛−3
𝐵 + 𝛽
2
𝐴
𝑛−5
𝐵
2
+ ⋅ ⋅ ⋅ + 𝛽

𝑠
𝐵
𝑛/2
)
󵄨󵄨󵄨󵄨𝑤1
󵄨󵄨󵄨󵄨

+ (𝐴
𝑛−2
𝐵 + 𝛾
1
𝐴
𝑛−4
𝐵
2
+ ⋅ ⋅ ⋅ + 𝛾

𝑡
𝐴𝐵
𝑛/2
)
󵄨󵄨󵄨󵄨𝑤0
󵄨󵄨󵄨󵄨

+ (𝐴
𝑛−2

+ 𝐴
𝑛−3

+ ⋅ ⋅ ⋅ + 1)𝐶

+ (𝛿
1
𝐴
𝑛−4

+ 𝛿
2
𝐴
𝑛−5

+ ⋅ ⋅ ⋅ + 𝛿
𝑚
𝐴 + 1) 𝐵𝐶

+ (𝜁
1
𝐴
𝑛−6

+ 𝜁
2
𝐴
𝑛−7

+ ⋅ ⋅ ⋅ + 𝜁
𝑙
𝐴 + 1) 𝐵

2
𝐶

+ (𝜆
1
𝐴
𝑛−8

+ 𝜆
2
𝐴
𝑛−9

+ ⋅ ⋅ ⋅ + 𝜆
𝑝
𝐴 + 1) 𝐵

3
𝐶 + ⋅ ⋅ ⋅ ,

(45)

when 𝑛 is odd and

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨 ≤ (𝐴

𝑛−1
+ 𝛽
1
𝐴
𝑛−3
𝐵 + 𝛽
2
𝐴
𝑛−5
𝐵
2
+ ⋅ ⋅ ⋅ + 𝛽

𝑠
𝐵
(𝑛/2)−1

)
󵄨󵄨󵄨󵄨𝑤1
󵄨󵄨󵄨󵄨

+ (𝐴
𝑛−2
𝐵 + 𝛾
1
𝐴
𝑛−4
𝐵
2
+ ⋅ ⋅ ⋅ + 𝛾

𝑡
𝐴𝐵
𝑛/2
)
󵄨󵄨󵄨󵄨𝑤0
󵄨󵄨󵄨󵄨

+ (𝐴
𝑛−2

+ 𝐴
𝑛−3

+ ⋅ ⋅ ⋅ + 1)𝐶

+ (𝛿
1
𝐴
𝑛−4

+ 𝛿
2
𝐴
𝑛−5

+ ⋅ ⋅ ⋅ + 𝛿
𝑚
𝐴 + 1) 𝐵𝐶

+ (𝜁
1
𝐴
𝑛−6

+ 𝜁
2
𝐴
𝑛−7

+ ⋅ ⋅ ⋅ + 𝜁
𝑙
𝐴 + 1) 𝐵

2
𝐶

+ (𝜆
1
𝐴
𝑛−8

+ 𝜆
2
𝐴
𝑛−9

+ ⋅ ⋅ ⋅ + 𝜆
𝑝
𝐴 + 1) 𝐵

3
𝐶 + ⋅ ⋅ ⋅ ,

(46)

when 𝑛 is even, where 𝛽
𝑠
, 𝛾
𝑡
, 𝛿
𝑚
, 𝜁
𝑙
, 𝜆
𝑝
are constants for all 𝑠, 𝑡,

𝑙,𝑚, and 𝑝.

Theorem 14. For any arbitrary fixed 𝑟 : 0 ≤ 𝑟 ≤ 1, the
implicit three-step Simpson approximations of (30) converge to
the exact solutions 𝑌(𝑡, 𝛼), 𝑌(𝑡, 𝛼) for 𝑌, 𝑌 ∈ 𝐶3[𝑡

0
, 𝑇].

Proof. It is sufficient to show

lim
ℎ→0

𝑦
𝑁

(𝛼) = 𝑌 (𝑇, 𝛼) , lim
ℎ→0

𝑦
𝑁
(𝛼) = 𝑌 (𝑇, 𝛼) . (47)

By Taylor’s theorem, we have

𝑌
𝑛+1
(𝛼)

= 𝑌
𝑛−1
(𝛼) +

ℎ

3
[𝑓 (𝑡
𝑛−1
, 𝑌
𝑛−1
(𝛼)) + 4𝑓 (𝑡

𝑛
, 𝑌
𝑛
(𝛼))

+𝑓 (𝑡
𝑛+1
, 𝑌
𝑛+1
(𝛼))] −

ℎ
5

90
𝑌
(5)
(𝜉
𝑛
) ,

𝑌
𝑛+1
(𝛼)

= 𝑌
𝑛−1
(𝛼) +

ℎ

3
[𝑓 (𝑡
𝑛−1
, 𝑌
𝑛−1
(𝛼)) + 4𝑓 (𝑡

𝑛
, 𝑌
𝑛
(𝛼))

+𝑓 (𝑡
𝑛+1
, 𝑌
𝑛+1
(𝛼))] −

ℎ
5

90
𝑌
(5)

(𝜉
𝑛
) ,

(48)

where 𝑡
𝑛−1

< 𝜉
𝑛
, 𝜉
𝑛
< 𝑡
𝑛+1

. Consequently

𝑌
𝑛+1
(𝛼) − 𝑦

𝑛+1

(𝛼)

= 𝑌
𝑛−1
(𝛼) − 𝑦

𝑛−1

(𝛼) +
ℎ

3
{𝑓 (𝑡
𝑛−1
, 𝑌
𝑛−1
(𝛼))

−𝑓 (𝑡
𝑛−1
, 𝑦
𝑛−1

(𝛼))}

+
4ℎ

3
{𝑓 (𝑡
𝑛
, 𝑌
𝑛
(𝛼)) − 𝑓 (𝑡

𝑛
, 𝑦
𝑛

(𝛼))}

+
ℎ

3
{𝑓 (𝑡
𝑛+1
, 𝑌
𝑛+1
(𝛼)) − 𝑓 (𝑡

𝑛+1
, 𝑦
𝑛+1

(𝛼))}

−
ℎ
5

90
𝑌
(5)
(𝜉
𝑛
) ,

𝑌
𝑛+1
(𝛼) − 𝑦

𝑛+1
(𝛼)

= 𝑌
𝑛−1
(𝛼) − 𝑦

𝑛−1
(𝛼) +

ℎ

3
{𝑓 (𝑡
𝑛−1
, 𝑌
𝑛−1
(𝛼))

−𝑓 (𝑡
𝑛−1
, 𝑦
𝑛−1
(𝛼)) }

+
4ℎ

3
{𝑓 (𝑡
𝑛
, 𝑌
𝑛
(𝛼)) {−𝑓 (𝑡

𝑛
, 𝑦
𝑛
(𝛼))}

×
ℎ

3
{𝑓 (𝑡
𝑛+1
, 𝑌
𝑛+1
(𝛼)) −𝑓 (𝑡

𝑛+1
, 𝑦
𝑛+1
(𝛼)) }

−
ℎ
5

90
𝑌
(5)

(𝜉
𝑛
) .

(49)

Denote𝑤
𝑛
= 𝑌
𝑛
(𝛼)−𝑦

𝑛

(𝛼), V
𝑛
= 𝑌
𝑛+1
(𝛼)−𝑦

𝑛+1
(𝛼).Then

󵄨󵄨󵄨󵄨𝑤𝑛+1
󵄨󵄨󵄨󵄨 ≤

4ℎ𝐿
1

3

󵄨󵄨󵄨󵄨𝑤𝑛+1
󵄨󵄨󵄨󵄨

+ (1 +
ℎ𝐿
2

3
)
󵄨󵄨󵄨󵄨𝑤𝑛−1

󵄨󵄨󵄨󵄨

+
ℎ𝐿
3

3

󵄨󵄨󵄨󵄨𝑤𝑛+1
󵄨󵄨󵄨󵄨 +

ℎ
5

90
𝑀,

󵄨󵄨󵄨󵄨V𝑛+1
󵄨󵄨󵄨󵄨 ≤

4ℎ𝐿
4

3

󵄨󵄨󵄨󵄨V𝑛+1
󵄨󵄨󵄨󵄨

+ (1 +
ℎ𝐿
5

3
)
󵄨󵄨󵄨󵄨V𝑛−1

󵄨󵄨󵄨󵄨

+
ℎ𝐿
6

3

󵄨󵄨󵄨󵄨V𝑛+1
󵄨󵄨󵄨󵄨 +

ℎ
5

90
𝑀,

(50)
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where 𝑀 = max
𝑡0≤𝑡≤𝑇

|𝑌
(5)
(𝑡, 𝛼)| and 𝑀 = max

𝑡0≤𝑡≤𝑇

|𝑌
(5)

(𝑡, 𝛼)|.
Set

𝐿 = max {𝐿
1
, 𝐿
2
, 𝐿
3
, 𝐿
4
, 𝐿
5
, 𝐿
6
} <

3

ℎ
, (51)

then
󵄨󵄨󵄨󵄨𝑤𝑛+1

󵄨󵄨󵄨󵄨 ≤
4ℎ𝐿

3 − ℎ𝐿

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨 +

3 + ℎ𝐿

3 − ℎ𝐿

󵄨󵄨󵄨󵄨𝑤𝑛−1
󵄨󵄨󵄨󵄨 +

1

30 (3 − ℎ𝐿)
ℎ
5
𝑀,

󵄨󵄨󵄨󵄨V𝑛+1
󵄨󵄨󵄨󵄨 ≤

4ℎ𝐿

3 − ℎ𝐿

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨 +

3 + ℎ𝐿

3 − ℎ𝐿

󵄨󵄨󵄨󵄨V𝑛−1
󵄨󵄨󵄨󵄨 +

1

30 (3 − ℎ𝐿)
ℎ
5
𝑀

(52)

are obtained, where |𝑢
𝑛
| = |𝑤

𝑛
| + |V
𝑛
|, so by Lemma 13, since

𝑤
0
= V
0
= 0 and 𝑤

1
= V
1
= 0 we have

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨 ≤

((4ℎ𝐿) / (3 − ℎ𝐿))
𝑛−1

− 1

(30 (ℎ𝐿 − 3)) / (3 − ℎ𝐿)

×
1

30 (3 − ℎ𝐿)
ℎ
5
(𝑀 +𝑀)

+ {𝛿
1
(
4ℎ𝐿

3 − ℎ𝐿
)

𝑛−4

+ 𝛿
2
(
4ℎ𝐿

3 − ℎ𝐿
)

𝑛−5

+ ⋅ ⋅ ⋅ + 𝛿
𝑚
(
4ℎ𝐿

3 − ℎ𝐿
) + 1}

× (
3 + ℎ𝐿

3 − ℎ𝐿
)(

1

30 (3 − ℎ𝐿)
ℎ
5
(𝑀 +𝑀))

+ {𝜁
1
(
4ℎ𝐿

3 − ℎ𝐿
)

𝑛−6

+ 𝜁
2
(
4ℎ𝐿

3 − ℎ𝐿
)

𝑛−7

+ ⋅ ⋅ ⋅ + 𝜁
𝑙
(
4ℎ𝐿

3 − ℎ𝐿
) + 1}

× (
3 + ℎ𝐿

3 − ℎ𝐿
)

2

(
1

30 (3 − ℎ𝐿)
ℎ
5
(𝑀 +𝑀))

+ {𝜆
1
(
4ℎ𝐿

3 − ℎ𝐿
)

𝑛−8

+ 𝜆
2
(
4ℎ𝐿

3 − ℎ𝐿
)

𝑛−9

+ ⋅ ⋅ ⋅ + 𝜆
𝑝
(
4ℎ𝐿

3 − ℎ𝐿
) + 1}

× (
3 + ℎ𝐿

3 − ℎ𝐿
)

3

(
1

30 (3 − ℎ𝐿)
ℎ
5
(𝑀 +𝑀)) + ⋅ ⋅ ⋅ .

(53)

If ℎ → 0 then 𝑤
𝑛
→ 0, V

𝑛
→ 0, which concludes the proof.

Theorem 15. For any arbitrary fixed 𝑟 : 0 ≤ 𝑟 ≤ 1, the explicit
four-step Milne approximations of (29) converge to the exact
solutions 𝑌(𝑡, 𝛼), 𝑌(𝑡, 𝛼) for 𝑌, 𝑌 ∈ 𝐶3[𝑡

0
, 𝑇].

Proof. Like Theorem 14, the conclusion can be obtained
easily.

Table 1: Comparisons between the exact solution and the numerical
solution.

𝑡 𝑌(𝑡, 𝑟) 𝑦(𝑡, 𝑟) Error
0.1 0.963635583813 0.963082998354 0.000552585459
0.2 0.975914722827 0.975304021448 0.000610701379
0.3 0.995959477182 0.995284547778 0.000674929403
0.4 1.022969627904 1.022223715555 0.000745912348
0.5 1.056214668049 1.055390307414 0.000824360635
0.6 1.095026491542 1.094115432142 0.000911059400
0.7 1.138792706547 1.137785830194 0.001006876353
0.8 1.186950506443 1.185837735978 0.001112770464
0.9 1.238981037065 1.237751235509 0.001229801555
1 1.294404203842 1.293045062928 0.001359140914

Table 2: Comparisons between the exact solution and the numerical
solution.

𝑡 𝑌
1
(𝑡, 𝑟) 𝑦

1
(𝑡, 𝑟) Error

0.1 1.004837418035 1.006647092872 0.001809674836
0.2 1.018730753077 1.020368214584 0.001637461506
0.3 1.040818220681 1.042299857123 0.001481636441
0.4 1.070320046035 1.071660686127 0.001340640092
0.5 1.106530659712 1.107743721032 0.001213061319
0.6 1.148811636094 1.149909259366 0.001097623272
0.7 1.196585303791 1.197578474398 0.000993170607
0.8 1.249328964117 1.250227622045 0.000898657928
0.9 1.306569659740 1.307382799060 0.000813139319
1 1.367879441171 1.368615200053 0.000735758882

6. Numerical Examples

Example 1 (see [33]). Consider the following fuzzy differen-
tial equation:

𝑦
󸀠

(𝑡) = −𝑦 (𝑡) + 𝑡 + 1, 𝑡 ≥ 0,

𝑦 (0) = (0.96, 1, 1.01) .

(54)

The exact solution of equation is

𝑌 (𝑡) = 𝑡 − 0.025𝑒
𝑡
+ 0.985𝑒

−𝑡
,

𝑌
1

(𝑡) = 𝑡 + 1.0𝑒
−𝑡
,

𝑌 (𝑡) = 𝑡 + 0.025𝑒
𝑡
+ 0.985𝑒

−𝑡
.

(55)

By using the Adams predictor-corrector four-step
method with𝑁 = 10 for some 𝑡 ∈ [0, 1], the results shown in
Tables 1, 2, and 3 are obtained.

And by using the improved Adams predictor-corrector
systems with𝑁 = 10 for some 𝑡 ∈ [0, 1], the results shown in
Tables 4, 5, and 6 are obtained.

The results of Example 1 are shown by Figures 1, 2, and 3.

7. Conclusion

In this paper two numerical methods with higher order
of convergence and not much amounts of computation for
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Figure 1: Comparisons between the exact solution 𝑌 and the
numerical solution 𝑦.
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Figure 2: Comparisons between the exact solution 𝑌
1 and the

numerical solution 𝑦1.
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Figure 3: Comparisons between the exact solution 𝑌 and the
numerical solution 𝑦.

Table 3: Comparisons between the exact solution and the numerical
solution.

𝑡 𝑌(𝑡, 𝑟) 𝑦(𝑡, 𝑟) Error
0.1 1.018894129717 1.019446715176 0.000552585459
0.2 1.036984860735 1.037595562114 0.000610701379
0.3 1.063452417560 1.064127346964 0.000674929403
0.4 1.097560862786 1.098306775134 0.000745912348
0.5 1.138650731584 1.139475092219 0.000824360635
0.6 1.186132431562 1.187043490962 0.000911059400
0.7 1.239480341921 1.240487218275 0.001006876353
0.8 1.298227552867 1.299340323332 0.001112770464
0.9 1.361961192623 1.363190994178 0.001229801555
1 1.430318295265 1.431677436179 0.001359140914

Table 4: Comparisons between the exact solution and the numerical
solution.

𝑡 𝑌(𝑡, 𝑟) 𝑦(𝑡, 𝑟) Error
0.1 0.963635583813 0.963525066721 0.110517091807𝑒 − 003

0.2 0.975914722827 0.975792582551 0.122140275815𝑒 − 003

0.3 0.995959477182 0.995824491301 0.134985880757𝑒 − 003

0.4 1.022969627904 1.022820445434 0.149182469764𝑒 − 003

0.5 1.056214668049 1.056049795922 0.164872127069𝑒 − 003

0.6 1.095026491542 1.094844279662 0.182211880038𝑒 − 003

0.7 1.138792706547 1.138591331277 0.201375270747𝑒 − 003

0.8 1.186950506443 1.186727952350 0.222554092849𝑒 − 003

0.9 1.238981037065 1.238735076754 0.245960311115𝑒 − 003

1 1.294404203842 1.294132375659 0.271828182845𝑒 − 003

Table 5: Comparisons between the exact solution and the numerical
solution.

𝑡 𝑌
1
(𝑡, 𝑟) 𝑦

1
(𝑡, 𝑟) Error

0.1 1.004837418035 1.005742255454 0.904837418035𝑒 − 003

0.2 1.018730753077 1.019549483831 0.818730753077𝑒 − 003

0.3 1.040818220681 1.041559038902 0.740818220682𝑒 − 003

0.4 1.070320046035 1.070990366081 0.670320046035𝑒 − 003

0.5 1.106530659712 1.107137190372 0.606530659712𝑒 − 003

0.6 1.148811636094 1.149360447730 0.548811636093𝑒 − 003

0.7 1.196585303791 1.197081889095 0.496585303791𝑒 − 003

0.8 1.249328964117 1.249778293081 0.449328964117𝑒 − 003

0.9 1.306569659740 1.306976229400 0.406569659740𝑒 − 003

1 1.367879441171 1.368247320612 0.367879441171𝑒 − 003

solving fuzzy differential equations were discussed in detail.
The proposed algorithms were generated by updating the
Adams-Bashforth four-step method and Adams-Moulton
three-step method. An example showed that the proposed
methods is more efficient and practical than some methods
appeared in the literature before.
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Table 6: Comparisons between the exact solution and the numerical
solution.

𝑡 𝑌(𝑡, 𝑟) 𝑦(𝑡, 𝑟) Error
0.1 1.018894129717 1.019004646809 0.110517091807𝑒 − 003

0.2 1.036984860735 1.037107001011 0.122140275816𝑒 − 003

0.3 1.063452417560 1.063587403441 0.134985880757𝑒 − 003

0.4 1.097560862786 1.097710045255 0.149182469763𝑒 − 003

0.5 1.138650731584 1.138815603711 0.164872127070𝑒 − 003

0.6 1.186132431562 1.186314643442 0.182211880038𝑒 − 003

0.7 1.239480341921 1.239681717192 0.201375270747𝑒 − 003

0.8 1.298227552867 1.298450106960 0.222554092849𝑒 − 003

0.9 1.361961192623 1.362207152934 0.245960311115𝑒 − 003

1 1.430318295265 1.430590123448 0.271828182845𝑒 − 003
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