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We introduce strong vector mixed quasi-complementarity problems and the corresponding strong vector mixed quasi-variational
inequality problems. We establish equivalence between strong mixed quasi-complementarity problems and strong mixed quasi-
variational inequality problem in Banach spaces. Further, using KKM-Fan lemma, we prove the existence of solutions of these
problems, under pseudomonotonicity assumption. The results presented in this paper are extensions and improvements of some
earlier and recent results in the literature.

1. Introduction

In 1980, Giannessi [1] introduced vector variational inequal-
ities in a finite-dimensional Euclidean space. Motivated by
Giannessi [1], Chen and Cheng [2] studied vector variational
inequalities in infinite-dimensional Euclidean space and
applied them to the vector optimization problems. Since then,
vector variational inequalities and their generalizations have
been studied and applied to vector optimization problems,
vector complementarity problems, game theory, and so forth;
see, for example, [1–20] and references therein. It is well
known that the complementarity problems are closely related
to variational inequality problems. Complementarity theory
is introduced by Lemke [21] and Cottle andDantzig [5]. It has
emerged as an active and interesting field for researcher with
wide range of applications in pure and applied sciences. Com-
plementarity problems have been extended and generalized
in various directions to study a large class of problems arising
in industry, finance, optimization, physical, mathematical
and engineering sciences; see, for example [4–12, 14, 15, 20].
Recently, vector complementarity problems and their rela-
tions with vector variational inequality problems have been
investigated under pseudomonotone-type conditions and
positiveness-type conditions; see, for example [6, 8–10, 20].
However, to the best of our knowledge, only a few existence

results on the strong version of the vector variational inequal-
ity and vector complementarity problems were established.

Recently, Huang et al. [12] discussed equivalence results
among a vector complementarity problem, a vector varia-
tional inequality problem, a vector optimization problem,
andweakminimal element problem, under somemonotonic-
ity conditions and some inclusive-type conditions in ordered
Banach spaces. In 2005, Huang and Fang [9] introduced
several classes of strong vector F-complementarity problems
and give some existence results for these problems in Banach
spaces and discussed the least element problems of feasible
sets and presented their relations with the strong vector F-
complementarity problems.

Very recently, Khan [22] introduced and studied a
generalized vector implicit Quasi-Complementarity problem
and generalized vector implicit quasi variational inequality
problem. He investigated the nonemptiness and closedness
of solution sets of these problems and proved that solution
sets of both the problems are equivalent to each other under
some suitable conditions.

Inspired and motivated by the work going in this direc-
tion, in this paper we introduce and analyze a new class of
strong vector Quasi-Complementarity problem and the cor-
responding strong vector mixed quasi variational inequal-
ity problem in the setting of Banach space and establish
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equivalence results between them. By using the KKM-Fan
lemma, we derive the existence of solutions of strong vector
mixed quasi variational inequalities under pseudomono-
tonicity assumption and show that the solution of the strong
vector mixed quasi variational inequality is equivalent to
the solution of strong vector mixed Quasi-Complementarity
problems under suitable conditions. The results presented in
this paper are the generalization and improvement of existing
works of [6, 7, 9, 11, 15].

2. Preliminaries

Throughout this paper unless otherwise stated let𝑋 and 𝑌 be
two real Banach spaces. Let𝐾 be a nonempty, closed, convex
subset of a real Banach space 𝑋. A nonempty subset 𝑃 ⊂ 𝑌

is called convex, pointed, connected, and reproduced cone,
respectively, if it satisfies the following conditions: (i) 𝜆𝑃 ⊆ 𝑃,
for all 𝜆 > 0 and 𝑃+𝑃 ⊆ 𝑃; (ii) 𝑃∩−𝑃 = {0}; (iii) 𝑃∪−𝑃 = 𝑋;
(iv) 𝑃 − 𝑃 = 𝑋.

Given 𝑃 in 𝑌, we can define the relations “≤
𝑃
” and “≰

𝑃
”

as follows:

𝑥≤
𝑃
𝑦 ⇐⇒ 𝑦 − 𝑥 ∈ 𝑃,

𝑥≰
𝑃
𝑦 ⇐⇒ 𝑦 − 𝑥 ∉ 𝑃, ∀𝑥, 𝑦 ∈ 𝑌.

(1)

If “≤
𝑃
” is a partial order, then (𝑌, ≤

𝑃
) is called a Banach space

ordered by 𝑃. Let 𝐿(𝑋, 𝑌) denote the space of all continuous
linear mappings from𝑋 into 𝑌.

Now, we recall the following concepts and results needed
in this paper.

Definition 1. Amapping𝑓 : 𝐾×𝐾 → 𝑌 is said to be𝑃-convex
in first argument, if

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦, 𝑧) ≤𝑃 𝑡𝑓 (𝑥, 𝑧) + (1 − 𝑡) 𝑓 (𝑦, 𝑧) ,

∀𝑥, 𝑦, 𝑧 ∈ 𝐾, 𝑡 ∈ [0, 1] .

(2)

Definition 2. Let 𝑇 : 𝐾 → 𝐿(𝑋, 𝑌) and 𝐹 : 𝐾 × 𝐾 → 𝑌 be
the two nonlinear mappings. 𝑇 is said to be monotone with
respect to 𝐹 if

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≥𝑃 0,

∀𝑥, 𝑦 ∈ 𝐾.

(3)

Definition 3. Let 𝑇 : 𝐾 → 𝐿(𝑋, 𝑌) and 𝐹 : 𝐾 × 𝐾 → 𝑌 be
the two nonlinear mappings. 𝑇 is said to be pseudomonotone
with respect to 𝐹 if, for any given 𝑥, 𝑦 ∈ 𝐾,

⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≰𝑃\{0} 0

⇒ ⟨𝑇𝑦, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≥𝑃 0.

(4)

Remark 4. Every monotone with respect to 𝐹 is pseudomon-
otone with respect to 𝐹 but converse does not hold in general.
Definition 3 is vector version of 𝜃-pseudomonotonicity stud-
ied by Kazmi et al. in [23, 24].

Example 5. Let𝑋 = R, 𝐾 = R
+
, 𝑌 = R2, 𝑃 = R2

+
, and

𝑇 (𝑥) = (
0

sin 𝑥 cos 𝑥) ,

𝐹 (𝑦, 𝑥) = (
𝑦 + 𝑥

𝑦 + 𝑥
) , ∀𝑥, 𝑦 ∈ 𝐾.

(5)

Now,

⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥)

= (
𝑦 − 𝑥

(1 + sin 𝑥 cos 𝑥) (𝑦 − 𝑥))≰𝑃\{0} 0.
(6)

We have 𝑦 ≥ 𝑥. It follows that

⟨𝑇𝑦, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥)

= (
𝑦 − 𝑥

(1 + sin 𝑦 cos 𝑦) (𝑦 − 𝑥))≥𝑃 0.
(7)

So, 𝑇 is pseudomonotone with respect to 𝐹. However, for 𝑥 =
𝜋 and 𝑦 = 𝜋/2, it follows that

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) = (

−
𝜋

2

−
𝜋

2

) ̸≥
𝑃
0. (8)

This shows that 𝑇 is not a monotone with respect to 𝐹.

Definition 6. A mapping 𝑇 : 𝐾 → 𝐿(𝑋, 𝑌) is said to be
hemicontinuous if, for any 𝑥, 𝑦 ∈ 𝐾, the mapping 𝑡 → ⟨𝑇(𝑥 +

𝑡(𝑦 − 𝑥)), 𝑦 − 𝑥⟩ is continuous at 0+.

Definition 7. Amapping𝐹 : 𝐾×𝐾 → 𝑌 is said to be positively
homogeneous in first argument, if 𝐹(𝑡𝑥, 𝑦) = 𝑡𝐹(𝑥, 𝑦) for all
𝑥, 𝑦 ∈ 𝐾 and 𝑡 ≥ 0.

Definition 8. Let 𝐾 be a nonempty subset of a topological
vector space 𝑋. A set-valued map 𝑇 : 𝐾 → 2

𝑋 is said to
be a KKM mapping if, for each nonempty finite subset
{𝑥
1
, . . . , 𝑥

𝑛
} ⊂ 𝐾, co{𝑥

1
, . . . , 𝑥

𝑛
} ⊂ ⋃

𝑛

𝑖=1
𝑇(𝑥
𝑖
), where co

denotes the convex hull.

Lemma 9 (KKM-Fan Lemma (see [25])). Let 𝐾 be a
nonempty subset of Hausdorff topological vector space 𝑋. Let
𝑇 : 𝐾 → 2

𝑋 be a KKM-mapping such that for each 𝑥 ∈

𝐾, 𝑇(𝑥) is closed and for at least one 𝑥 ∈ 𝐾, 𝑇(𝑥) is compact,
then

⋂

𝑥∈𝐾

𝑇 (𝑥) ̸= 0. (9)

3. Strong Vector Mixed
Quasi-Complementarity Problems

Throughout this section, let 𝑋 be a real Banach space and
let 𝐾 ⊆ 𝑋 be a nonempty, closed, and convex subset of
𝑋. Let (𝑌, ≤

𝑃
) be an ordered Banach space induced by a

pointed, closed, convex cone 𝑃 with nonempty interior. Let
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𝑇 : 𝐾 → 𝐿(𝑋, 𝑌) and 𝐹 : 𝐾 × 𝐾 → 𝑌 be the two nonlinear
mappings. In this paper, we consider the following strong
vector mixed Quasi-Complementarity problems:

(i) Strong vector mixed Quasi-Complementarity prob-
lem (SVMQCP)

1
:

Find 𝑥 ∈ 𝐾 such that ⟨𝑇𝑥, 𝑥⟩ + 𝐹(𝑥, 𝑥) ̸≥
𝑃\{0}

0,

⟨𝑇𝑥, 𝑦⟩ + 𝐹(𝑦, 𝑥)≰
𝑃\{0}

0, for all 𝑦 ∈ 𝐾.

(ii) Strong vector mixed Quasi-Complementarity prob-
lem (SVMQCP)

2
:

Find 𝑥 ∈ 𝐾 such that ⟨𝑇𝑥, 𝑥⟩ + 𝐹(𝑥, 𝑥) = 0,

⟨𝑇𝑥, 𝑦⟩ + 𝐹(𝑦, 𝑥)≰
𝑃\{0}

0, for all 𝑦 ∈ 𝐾.

Closely related to (SVMQCP)
1
and (SVMQCP)

2
prob-

lems, we consider the following strong vector mixed quasi
variational inequality problem:

Strong vector mixed quasi variational inequality pro-
blem (SVMQVIP):

Find 𝑥 ∈ 𝐾 such that ⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹(𝑦, 𝑥) −
𝐹(𝑥, 𝑥)≰

𝑃\{0}
0, for all 𝑦 ∈ 𝐾.

The strong vector mixed quasi variational inequality
problem (SVMQVIP) is the generalization and extension
of many previously known vectors as well as scalar mixed
quasi variational inequalities. For the formulation, numerical
results, existence results, sensitivity analysis, and dynamical
aspects of the mixed quasi variational inequalities, see [3, 5,
7, 16, 17] and the references therein.

Remark 10. (1) If 𝑌 = R and 𝑃 = R+, then (SVMQCP)
1
and

(SVMQCP)
2
and (SVMQVIP) reduce, respectively, to the

mixed Quasi-Complementarity problem (MQCP):

(MQCP) Find 𝑥 ∈ 𝐾 such that ⟨𝑇𝑥, 𝑦−𝑥⟩+𝐹(𝑥, 𝑥) =
0, ⟨𝑇𝑥, 𝑦⟩ + 𝐹(𝑦, 𝑥) ≥ 0, for all 𝑦 ∈ 𝐾

and mixed quasi variational inequality problem (MQVIP):

(MQVIP) Find 𝑥 ∈ 𝐾 such that ⟨𝑇𝑥, 𝑦−𝑥⟩+𝐹(𝑦, 𝑥)−
𝐹(𝑥, 𝑥) ≥ 0, for all 𝑦 ∈ 𝐾,

which were introduced and studied by Farazjadeh et al. [7].
(2) If 𝐹 = 0, then (SVMQCP)

1
and (SVMQCP)

2
reduce

to the following strong vector complementarity problems
(SVCP):

(SVCP)
1
Find 𝑥 ∈ 𝐾 such that ⟨𝑇𝑥, 𝑥⟩ ̸≥

𝑃\{0}
0,

⟨𝑇𝑥, 𝑦⟩≰
𝑃\{0}

0, for all 𝑦 ∈ 𝐾,
(SVCP)

2
Find 𝑥 ∈ 𝐾 such that ⟨𝑇𝑥, 𝑥⟩ = 0,

⟨𝑇𝑥, 𝑦⟩≰
𝑃\{0}

0, for all 𝑦 ∈ 𝐾

and (SVMQVIP) reduces to the following strong vector vari-
ational inequality problem (SVVIP):

(SVVIP) Find 𝑥 ∈ 𝐾 such that ⟨𝑇𝑥, 𝑦 − 𝑥⟩≰
𝑃\{0}

0, for
all 𝑦 ∈ 𝐾.

First, we will investigate the equivalences among
(SVMQCP)

1
and (SVMQCP)

2
and (SVMQVIP), under some

suitable assumptions.

Theorem 11. (i) Suppose that ⟨𝑇𝑧, 𝑧⟩+𝐹(𝑧, 𝑧) ∈ 𝑃∪ (−𝑃), for
all 𝑧 ∈ 𝐾. If 𝑥 solves (SVMQCP)

1
then 𝑥 solves (SVMQVIP).

(ii) Let 𝐹 : 𝐾 ×𝐾 → 𝑌 satisfy 𝐹(2𝑥, 𝑦) = 2𝐹(𝑥, 𝑦), for all
𝑥, 𝑦 ∈ 𝐾 and ⟨𝑇𝑧, 𝑧⟩ + 𝐹(𝑧, 𝑧) ∈ 𝑃 ∪ (−𝑃), for all 𝑧 ∈ 𝐾. If 𝑥
solves (SVMQVIP) then 𝑥 also solves (SVMQCP)

1
.

Proof. (i) Let 𝑥 ∈ 𝐾 be the solution of (SVMQCP)
1
. Then

𝑥 ∈ 𝐾 such that
⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) ̸≥

𝑃\{0}
0, (10)

⟨𝑇𝑥, 𝑦⟩ + 𝐹 (𝑦, 𝑥) ≰
𝑃\{0}

0, ∀𝑦 ∈ 𝐾. (11)
Substituting 𝑦 = 𝑥 in Inclusion (11), we get

⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) ≰𝑃\{0} 0. (12)
Since ⟨𝑇𝑧, 𝑧⟩ + 𝐹(𝑧, 𝑧) ∈ 𝑃 ∪ (−𝑃), for all 𝑧 ∈ 𝐾, we have
⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) ≥𝑃 0 or ⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) ≤𝑃 0. (13)

From Inclusions (10), (12), and (13), we have
⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) = 0. (14)

From (11) and (14), we have
⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥)

= ⟨𝑇𝑥, 𝑦⟩ + 𝐹 (𝑦, 𝑥) − ⟨𝑇𝑥, 𝑥⟩ − 𝐹 (𝑥, 𝑥)

= ⟨𝑇𝑥, 𝑦⟩ + 𝐹 (𝑦, 𝑥)

≰
𝑃\{0}

0,

(15)

for all 𝑦 ∈ 𝐾. Thus, 𝑥 ∈ 𝐾 is the solution of (SVMQVIP).
(ii) Now, let 𝑥 ∈ 𝐾 be the solution of (SVMQVIP), then
⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≰𝑃\{0} 0, ∀𝑦 ∈ 𝐾. (16)

Since𝐹(2𝑥, 𝑦) = 2𝐹(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝐾, therefore it follows
that 𝐹(0, 𝑦) = 0, for all 𝑦 ∈ 𝐾. By substituting 𝑦 = 2𝑥 and
𝑦 = 0, respectively, in (16), we get

⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) ≰𝑃\{0} 0,

⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) ̸≥
𝑃\{0}

0.

(17)

Since ⟨𝑇𝑧, 𝑧⟩ + 𝐹(𝑧, 𝑧) ∈ 𝑃 ∪ (−𝑃), for all 𝑧 ∈ 𝐾, we have
⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) ≥𝑃 0 or ⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) ≤𝑃 0. (18)

From (17) and (18), we have
⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) = 0. (19)

By using Inclusions (16) and (19), we have

⟨𝑇𝑥, 𝑦⟩ + 𝐹 (𝑦, 𝑥)

= ⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥)

+ ⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥)

= ⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥)

≰
𝑃\{0}

0,

(20)
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for all 𝑦 ∈ 𝐾, which implies that 𝑥 solves (SVMQCP)
1
.

Remark 12. The condition 𝐹(2𝑥, 𝑦) = 2𝐹(𝑥, 𝑦), for all 𝑥, 𝑦 ∈
𝐾 holds if 𝐹 is positively homogeneous; that is, 𝐹(𝑡𝑥, 𝑦) =
𝑡𝐹(𝑥, 𝑦) for all 𝑡 ≥ 0. Hence, Theorem 11 generalizes and
improves the theorems in [6, 9, 11, 14, 15].

Here we give an example of a function 𝐹, which satisfies
the condition 𝐹(2𝑥, 𝑦) = 2𝐹(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝐾 but
not a positively homogeneous, which implies that previously
known results in [6, 9, 11, 14, 15] cannot be applied.

Example 13. Let 𝐹 : R ×R → R, defined by

𝐹 (𝑥, 𝑦) = {
2𝑥, if𝑥 rational,
0, if𝑥 irrational.

(21)

Then 𝐹 satisfies 𝐹(2𝑥, 𝑦) = 2𝐹(𝑥, 𝑦) but it is not positively
homogeneous.

Theorem 14. (a) If 𝑥 solves Problem (SVMQCP)
2
then 𝑥 solves

(SVMQVIP).
(b) Let 𝐹 : 𝐾 ×𝐾 → 𝑌 satisfy 𝐹(2𝑥, 𝑦) = 2𝐹(𝑥, 𝑦), for all

𝑥, 𝑦 ∈ 𝐾 and ⟨𝑇𝑧, 𝑧⟩ + 𝐹(𝑧, 𝑧) ∈ 𝑃 ∪ (−𝑃), for all 𝑧 ∈ 𝐾. If 𝑥
solves (SVMQVIP) then 𝑥 solves (SVMQCP)

2
.

Proof. (a) Let 𝑥 ∈ 𝐾 be the solution of (SVMQCP)
2
. Then

𝑥 ∈ 𝐾 such that

⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) = 0,

⟨𝑇𝑥, 𝑦⟩ + 𝐹 (𝑦, 𝑥) ≰
𝑃\{0}

0, ∀𝑦 ∈ 𝐾.

(22)

Now,

⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥)

= ⟨𝑇𝑥, 𝑦⟩ + 𝐹 (𝑦, 𝑥) − ⟨𝑇𝑥, 𝑥⟩ − 𝐹 (𝑥, 𝑥)

= ⟨𝑇𝑥, 𝑦⟩ + 𝐹 (𝑦, 𝑥)

≰
𝑃\{0}

0,

(23)

for all 𝑦 ∈ 𝐾. Thus, 𝑥 ∈ 𝐾 is the solution of (SVMQVIP).
(b) Now, let 𝑥 ∈ 𝐾 be the solution of (SVMQVIP), then

⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≰𝑃\{0} 0, ∀𝑦 ∈ 𝐾. (24)

Since𝐹(2𝑥, 𝑦) = 2𝐹(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝐾, therefore it follows
that 𝐹(0, 𝑦) = 0, for all 𝑦 ∈ 𝐾. By substituting 𝑦 = 2𝑥 and
𝑦 = 0, respectively, in (24), we get

⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) ≰𝑃\{0} 0,

⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) ̸≥
𝑃\{0}

0.

(25)

Since ⟨𝑇𝑧, 𝑧⟩ + 𝐹(𝑧, 𝑧) ∈ 𝑃 ∪ (−𝑃), for all 𝑧 ∈ 𝐾, we have

⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) ≥𝑃 0 or ⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) ≤𝑃 0. (26)

From (25) and (26), we have

⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥) = 0. (27)

By using (27), we have

⟨𝑇𝑥, 𝑦⟩ + 𝐹 (𝑦, 𝑥)

= ⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥)

+ ⟨𝑇𝑥, 𝑥⟩ + 𝐹 (𝑥, 𝑥)

= ⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥)

≰
𝑃\{0}

0,

(28)

for all 𝑦 ∈ 𝐾. Then (27) and (28) imply that 𝑥 solves
(SVMQCP)

2
.

4. Existence Results

First, we prove following Minty-type lemma with the help of
pseudomonotone mapping with respect to 𝐹.

Lemma 15. Let 𝐹 : 𝐾×𝐾 → 𝑌 be 𝑃-convex in first argument
and let 𝑇 : 𝐾 → 𝐿(𝑋, 𝑌) be a hemicontinuous mapping
and pseudomonotone with respect to 𝐹. Then the following two
problems are equivalent:

(A)

𝑥 ∈ 𝐾, ⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≰𝑃\{0}, ∀𝑦 ∈ 𝐾,

(29)

(B)

𝑥 ∈ 𝐾, ⟨𝑇𝑦, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≥𝑃 0, ∀𝑦 ∈ 𝐾.

(30)

Proof. (29) ⇒ (30). The result directly follows from pseu-
domonotonicity with respect to 𝐹.

Now, (30) ⇒ (29). For any given 𝑦 ∈ 𝐾, we know that
𝑦
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑥 ∈ 𝐾, for all 𝑡 ∈ (0, 1), as 𝐾 is convex. Since

𝑥 ∈ 𝐾 is a solution of problem (30), so for each 𝑥 ∈ 𝐾, it
follows that

⟨𝑇𝑦
𝑡
, 𝑦
𝑡
− 𝑥⟩ + 𝐹 (𝑦

𝑡
, 𝑥) − 𝐹 (𝑥, 𝑥) ≥𝑃 0. (31)

Now, we have

𝑡 ⟨𝑇𝑦
𝑡
, 𝑦 − 𝑥⟩ + 𝑡 (𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥))

≥ ⟨𝑇𝑦
𝑡
, 𝑦
𝑡
− 𝑥⟩ + 𝐹 (𝑦

𝑡
, 𝑥) − 𝐹 (𝑥, 𝑥)

≥
𝑃
0.

(32)

For 𝑡 > 0, we get

⟨𝑇𝑦
𝑡
, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≥𝑃 0. (33)

Since 𝑇 is hemicontinuous and 𝑃 is closed, letting 𝑡 → 0
+ in

inclusion (33), we get

⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≥𝑃 0, ∀𝑦 ∈ 𝐾. (34)

Hence,

⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≰𝑃\{0}, ∀𝑦 ∈ 𝐾. (35)

Therefore, 𝑥 ∈ 𝐾 is solution of problem (29). This completes
the proof.
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Now, with the help of Lemma 15, we have following
existence theorem for (SVMQVIP).

Theorem 16. Let𝑋 be real reflexive Banach space and let 𝑌 be
a Banach space. Let 𝐾 ⊂ 𝑋 be a nonempty, bounded, closed,
and convex subset of 𝑋. Let 𝐹 : 𝐾 × 𝐾 → 𝑌 be 𝑃-convex
and upper semicontinuous in first and second arguments,
respectively. Let 𝑇 : 𝐾 → 𝐿(𝑋, 𝑌) be hemicontinuous
and pseudomonotone with respect to 𝐹. Then (SVMQVIP) has
solution.

Proof. Define two set-valued mappings 𝐹, 𝐺 : 𝐾 → 2
𝐾 as

follows:

𝐺 (𝑦) = {𝑥 ∈ 𝐾 : ⟨𝑇𝑥, 𝑦 − 𝑥⟩

+𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≰𝑃\{0}} , ∀𝑦 ∈ 𝐾,

𝐻 (𝑦) = {𝑥 ∈ 𝐾 : ⟨𝑇𝑦, 𝑦 − 𝑥⟩

+𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≥𝑃 0} , ∀𝑦 ∈ 𝐾.

(36)

𝐺(𝑦) and 𝐻(𝑦) are nonempty, since 𝑦 ∈ 𝐺(𝑦) ∩ 𝐻(𝑦). We
claim that 𝐺 is a KKMmapping. If this is not true, then there
exists a finite set {𝑦

1
, . . . , 𝑦

𝑛
} ⊂ 𝐾 and 𝑡

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛 with

∑
𝑛

𝑖=1
𝑡
𝑖
= 1 such that 𝑦 = ∑𝑛

𝑖=1
𝑡
𝑖
𝑦
𝑖
∉ ⋃
𝑛

𝑖=1
𝐺(𝑦
𝑖
). Now, by the

definition of 𝐺, we have

⟨𝑇𝑦, 𝑦
𝑖
− 𝑦⟩ + 𝐹 (𝑦

𝑖
, 𝑦) − 𝐹 (𝑦, 𝑦) ≤

𝑃\{0}
, 𝑖 = 1, . . . , 𝑛.

(37)

Now, we have

0 = ⟨𝑇𝑦, 𝑦 − 𝑦⟩ + 𝐹 (𝑦, 𝑦) − 𝐹 (𝑦, 𝑦)

= ⟨𝑇𝑦,

𝑛

∑

𝑖=1

𝑡
𝑖
𝑦
𝑖
− 𝑦⟩ + 𝐹(

𝑛

∑

𝑖=1

𝑡
𝑖
𝑦
𝑖
, 𝑦) − 𝐹 (𝑦, 𝑦)

=

𝑛

∑

𝑖=1

𝑡
𝑖
[⟨𝑇𝑦, 𝑦

𝑖
− 𝑦⟩ + 𝐹 (𝑦

𝑖
, 𝑦) − 𝐹 (𝑦, 𝑦)]

≤
𝑃\{0}

,

(38)

which is not possible. Thus, our claim is verified. So 𝐺 is a
KKMmapping.

Now, since 𝑇 is pseudomonotone with respect to 𝐹,
therefore 𝐺(𝑦) ⊂ 𝐻(𝑦) for every 𝑦 ∈ 𝐾 and so 𝐻 is also a
KKMmapping. Nowwe claim that for each 𝑦 ∈ 𝐾,𝐻(𝑦) ⊂ 𝐾
is closed in the weak topology of𝑋.

Indeed, suppose 𝑥 ∈ 𝐻(𝑦)
𝑤

, the weak closure of 𝐻(𝑦).
Since𝑋 is reflexive, there is a sequence {𝑥

𝑛
} in𝐻(𝑦) such that

{𝑥
𝑛
} converges weakly to 𝑥 ∈ 𝐾. Then

⟨𝑇𝑦, 𝑦 − 𝑥
𝑛
⟩ + 𝐹 (𝑦, 𝑥

𝑛
) − 𝐹 (𝑥, 𝑥

𝑛
) ≥
𝑃
0. (39)

Since 𝐹(𝑦, ⋅) is upper semicontinuous and 𝑃 is closed,
therefore,

⟨𝑇𝑦, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≥𝑃 0 (40)

and so 𝑥 ∈ 𝐻(𝑦). This shows that𝐻(𝑦) is weakly closed, for
each 𝑦 ∈ 𝐾. Our claim is then verified. Since 𝑋 is reflexive

and 𝐾 ⊂ 𝑋 is nonempty, bounded, closed and convex, 𝐾
is a weakly compact subset of 𝑋 and so 𝐻(𝑦) is also weakly
compact. According to Lemma 9 (KKM-Fan Lemma),

⋂

𝑦∈𝐾

𝐻(𝑦) ̸= 0. (41)

This implies that there exists 𝑥 ∈ 𝐾 such that

⟨𝑇𝑦, 𝑦 − 𝑥⟩ + 𝑓 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≥𝑃 0, ∀𝑦 ∈ 𝐾. (42)

Therefore by Lemma 15, we conclude that there exists 𝑥 ∈ 𝐾
such that

⟨𝑇𝑥, 𝑦 − 𝑥⟩ + 𝐹 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑥) ≰𝑃\{0}, ∀𝑦 ∈ 𝐾. (43)

This completes the proof.

Theorem 17. Let 𝐹 : 𝐾×𝐾 → 𝑌 satisfy 𝐹(2𝑥, 𝑦) = 2𝐹(𝑥, 𝑦),
for all 𝑥, 𝑦 ∈ 𝐾. If all the assumptions ofTheorem 16 hold, then
(SVMQCP)

1
is solvable. In addition, if ⟨𝑇𝑧, 𝑧⟩ + 𝐹(𝑧, 𝑧) ∈ 𝑃 ∪

(−𝑃), for all 𝑧 ∈ 𝐾, then (SVMQCP)
2
is solvable.

Proof. The conclusion follows directly from Theorems 11, 14,
and 16.
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