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Abstract The viability of a variant of numerical stochastic
perturbation theory, where the Langevin equation is replaced
by the SMD algorithm, is examined. In particular, the con-
vergence of the process to a unique stationary state is rig-
orously established and the use of higher-order symplectic
integration schemes is shown to be highly profitable in this
context. For illustration, the gradient-flow coupling in finite
volume with Schrödinger functional boundary conditions is
computed to two-loop (i.e. NNL) order in the SU(3) gauge
theory. The scaling behaviour of the algorithm turns out to be
rather favourable in this case, which allows the computations
to be driven close to the continuum limit.

1 Introduction

Numerical stochastic perturbation theory (NSPT) [1–3] is
a powerful tool that allows many interesting calculations in
QCD and other quantum field theories to be performed to high
order in the interactions. For technical reasons, the compu-
tations proceed in the framework of lattice field theory, but
results for renormalized quantities in the continuum theory
can then be obtained through an extrapolation to vanishing
lattice spacing. NSPT can be highly automated and the appli-
cation of the method in finite volume and to correlation func-
tions of complicated composite fields gives rise to hardly any
additional difficulties.

Reliable extrapolations to the continuum limit require
accurate data at several lattice spacings in the scaling region.
NSPT calculations can therefore rapidly become large-scale
projects, where computational efficiency is all-important.
Traditionally, NSPT is based on the Langevin equation, but
the success of the HMC algorithm [4] in lattice QCD suggests
that the inclusion of a molecular-dynamics update step in the
underlying stochastic process might be beneficial. Smaller
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autocorrelation times and an improved scaling behaviour
towards the continuum limit could perhaps be achieved in
this way. Moreover, through the use of highly efficient sym-
plectic integration schemes, the systematic errors deriving
from the discretization of the simulation time may conceiv-
ably be reduced.

NSPT based on the SMD (stochastic molecular dynam-
ics, or generalized HMC) algorithm [5–7] has recently been
briefly looked at in Ref. [8] and was found to perform well.
Here we establish the convergence of the algorithm to a
unique stationary state and study its efficiency in the case of
the gradient-flow coupling in the SU(3) gauge theory. Vari-
ous technical problems are addressed along the way, among
them the modifications required to ensure that the stochastic
process does not run away in the gauge directions.

2 Stochastic molecular dynamics

In order to bring out the basic structure of the SMD-variant
of NSPT most clearly, a generic system described by a set
q = (q1, . . . , qn) of real coordinates and an action S(q) is
considered in this and the following two sections.

2.1 Preliminaries

The action S(q) is assumed to be differentiable and to have
an expansion in powers of a coupling g of the form

S(q) =
∞∑

r=0

gr Sr (q), (2.1)

where Sr (q) is a polynomial in q of degree dr ≥ 2. Moreover,
it is taken for granted that the leading-order term

S0(q) = 1

2
(q,�q) = 1

2

n∑

k,l=1

qk�klql (2.2)
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is a strictly positive quadratic form in the coordinates.
The observables O(q) of interest are assumed to be simi-

larly expandable and their expectation values

〈O〉 = 1

ZS

∫
dq1 . . . dqn O(q)e−S(q) (2.3)

then have a well-defined perturbation expansion with coeffi-
cients given by Feynman diagrams as usual.

2.2 SMD algorithm

The SMD algorithm operates in the phase space of the theory
and thus updates both the coordinates q and their canonical
momenta p = (p1, . . . , pn). An SMD update cycle consists
of a momentum rotation followed by a molecular-dynamics
evolution and, optionally, an acceptance–rejection step.

The momenta are rotated in a random direction according
to

p → c1 p + c2υ, (2.4)

where the momentum υ is randomly chosen from a Gaussian
distribution with mean zero and unit variance. The coeffi-
cients

c1 = e−γ ε, c2 = (1 − c2
1)

1/2, (2.5)

depend on the simulation time step ε > 0 and a parameter
γ > 0 that controls the rotation angle.

In the second step, the molecular-dynamics equations

∂t p = −∇S(q), ∂t q = p, (2.6)

are integrated from the current simulation time t to t +
ε using a reversible symplectic integration scheme (see
Sect. 2.3). The algorithm (momentum rotation followed by
the molecular-dynamics evolution) simulates the canonical
distribution

1

ZH
e−H(p,q), H(p, q) = 1

2
(p, p) + S(q), (2.7)

provided the integration errors are negligible or an
acceptance–rejection step is included in the update cycle
which corrects for these [9]. Stochastic estimates of the
expectation values (2.3) of the observables of interest are
then obtained by averaging their values over a range of sim-
ulation time.

2.3 Integration schemes

The molecular-dynamics equations may be integrated by
applying a sequence of the elementary steps

Ip,h : p → p − h∇S(q), (2.8)

Iq,h : q → q + hp, (2.9)

to the current momenta and coordinates, with step sizes h
proportional to ε. A well-known example is the leapfrog inte-
grator Ip,ε/2 Iq,ε Ip,ε/2, and several highly efficient schemes
are described in Ref. [10].

Integrators Iε of this kind are symplectic and they can be
(and are here) required to be reversible, i.e. to be such that

IεP Iε = P, (2.10)

where P stands for the momentum reflection p → −p.

3 Stochastic perturbation theory

Stochastic perturbation theory [11,12] is usually derived
from the Langevin equation by expanding the stochastic vari-
ables and the driving forces in powers of the coupling. In this
section, another (although probably closely related) form of
stochastic perturbation theory is discussed, which is obtained
by expanding the SMD algorithm in the same way.

3.1 SMD algorithm at weak coupling

Since the acceptance–rejection step is not smooth in the cou-
pling, its effects would be difficult to take into account in per-
turbation theory. In the following, the acceptance–rejection
step is therefore omitted, without further notice, and one is
thus left with an algorithm that simulates the system only up
to integration errors.

The histories p(t), q(t) of the momenta and coordinates
generated by the SMD algorithm depend on the coupling g
through the force term in the integration step (2.8). In par-
ticular, they are smooth functions of the coupling and may
consequently be expanded in the asymptotic series

p(t) =
∞∑

r=0

gr p̂r (t), q(t) =
∞∑

r=0

gr q̂r (t), (3.1)

where the leading-order histories p̂0(t), q̂0(t) coincide with
the ones generated by the algorithm in the free theory with
action (2.2).

In terms of the coefficients p̂r , q̂r , the momentum rotation
(2.4) becomes

p̂r → c1 p̂r + δr0c2υ (3.2)

and the molecular-dynamics integration steps (2.8), (2.9)
assume the form

I p̂r ,h : p̂r → p̂r − h F̂r (q̂0, . . . , q̂r ), (3.3)

Iq̂r ,h : q̂r → q̂r + h p̂r . (3.4)

The forces F̂r in Eq. (3.3) are given by

∇S(q) =
∞∑

r=0

gr F̂r (q̂0, . . . , q̂r ) (3.5)
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and it is understood that all momenta and all coordinates
are updated alternately so that the variables on the right of
Eqs. (3.3), (3.4) are always the current ones. For any given
initial data, these rules completely determine the histories
p̂r (t), q̂r (t).

3.2 Perturbation expansion of observables

Similarly to the gradient of the action, any observable

O(q) =
∞∑

r=0

gr Ôr (q̂0, . . . , q̂r ) (3.6)

may be expanded in powers of the coupling. The coefficients
kr (O) in the perturbation expansion

〈O〉 =
∞∑

r=0

kr (O)gr (3.7)

of its expectation value (2.3) then coincide with the aver-
ages of Ôr (q̂0(t), . . . , q̂r (t)) over the simulation time t up to
statistical (and integration) errors.

4 Convergence to a stationary state

Stochastic processes can run away or do not converge to
a stationary distribution for other reasons. In the case of
the stochastic perturbation theory described in Sect. 3, the
asymptotic stationarity of the underlying process can be
rigorously shown if the simulation step size ε is suffi-
ciently small. The range of step sizes, where convergence
is guaranteed, depends on the chosen integration scheme for
the molecular-dynamics equations and the matrix � in the
leading-order part (2.2) of the action.

4.1 Molecular-dynamics evolution in the free theory

If the coupling g is turned off, the molecular-dynamics equa-
tions become linear and their (approximate) integration from
time t to t + ε amounts to a linear transformation
(
p
q

)
→ M

(
p
q

)
(4.1)

of the current momenta and coordinates. The 2n×2n matrix
M in this equation has a block structure,

M =
(
Mpp Mpq

Mqp Mqq

)
, (4.2)

with n×n blocks that are polynomials in ε and the matrix �

with some numerical coefficients. In particular, they are com-
muting real symmetric matrices. In the case of the leapfrog
integrator,

Mpp = Mqq = 1 − 1

2
ε2�, Mpq = −ε�

(
1 − 1

4
ε2�

)
,

Mqp = ε, (4.3)

an explicit expression for the blocks can be obtained for other
popular integrators as well (see Appendix A).

The symplecticity and reversibility of the chosen integra-
tion scheme imply

Mpp = Mqq , (4.4)

MppMqq − MpqMqp = 1. (4.5)

It follows from these relations that the Hamilton function

Ĥ(p, q) = 1

2
(p, p) + 1

2
(q, �̂q), (4.6)

�̂ = −Mpq(Mqp)
−1 = � + O(ε), (4.7)

is exactly conserved by the integrator. In the following, ε and
� are assumed to be such that Mqp is non-singular and �̂

positive definite. Both conditions are met in the case of the
leapfrog integrator if ε2 ‖�‖ < 4, where ‖�‖ is the largest
eigenvalue of �. The probability distribution

P̂(p, q) ∝ e−Ĥ(p,q) (4.8)

is then well-behaved and preserved by the SMD algorithm,
since it is preserved both by the momentum rotation and the
molecular-dynamics evolution.

4.2 Convergence of the leading-order process

For any initial distribution of the momenta and coordinates,
the SMD algorithm produces a sequence of distributions,
which converges to the stationary distribution (4.8) in the
free theory. One can show this by working out the action of
an SMD update cycle on a given distribution, but the con-
vergence of the algorithm may be established more easily
starting from the identity
(
p(t)
q(t)

)
= M̃t/ε

(
p(0)

q(0)

)
+c2

t−ε∑

u=0

M̃ (t−u)/ε−1M

(
v(u)

0

)
,

(4.9)

where υ(u) is the momentum chosen randomly in the
momentum rotation (2.4) at simulation time u = 0, ε, 2ε, . . .

and

M̃ = M

(
c1 0
0 1

)
. (4.10)

The long-time behaviour of the momenta and coordinates
thus depends on the properties of the matrix M̃ .

The blocks Mpp, Mpq , Mqp and �̂ are commuting real
symmetric matrices. Since

M2
pp = 1 − Mqp�̂Mqp (4.11)
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and since �̂ is assumed to be positive definite, the eigenvalues
of Mpp have magnitude strictly less than 1. The eigenvalues
of M̃ are then

λ± = 1

2

{
(1 + c1)μ ±

√
(1 + c1)2μ2 − 4c1

}
, (4.12)

where μ runs through the eigenvalues of Mpp. In particular,
|λ±| < 1 and M̃ is thus a contraction matrix.

The first term on the right of Eq. (4.9) consequently dies
away exponentially with increasing simulation time t . Since
the random momenta are normally distributed, the momenta
and coordinates at large t are then normally distributed as
well, with mean zero and variances equal to their two-point
autocorrelation functions. In the large-time limit, theqq auto-
correlation function, for example, is given by

〈q(t)q(s)〉υ =
t≥s

{
M̃ (t−s)/εK

}

qq
, (4.13)

K = c2
2

∞∑

u=0

M̃u/εMP+
{
M̃u/εM

}T
, P+ =

(
1 0
0 1

)
,

(4.14)

and the other two-point functions by the pp, pq and qp
blocks of the matrix on the right of Eq. (4.13). The kernel K
satisfies

M̃K M̃T = K − c2
2MP+MT , (4.15)

i.e. an inhomogeneous linear equation that has a unique solu-
tion, since M̃ is a contraction matrix. A few lines of algebra
then show that

K =
(

1 0
0 �̂−1

)
(4.16)

solves the equation. In particular, the variances of the
momenta and coordinates at any fixed simulation time coin-
cide with the ones of the stationary distribution (4.8), which
proves that the latter coincides with the distribution simulated
by the SMD algorithm.

4.3 Convergence beyond the leading order

The assumed structure of the action S(q) implies that the
force in the molecular-dynamics integration step (3.3) is of
the form

F̂r (q̂0, . . . , q̂r ) = �q̂r + F̂ ′
r (q̂0, . . . , q̂r−1), (4.17)

where the second term on the right is a polynomial in the
coordinates up to order r − 1. If the history of the latter and
the associated momenta is already known (including their
values at the intermediate integration steps), the integration
of the molecular-dynamics equations at order r thus amounts
to solving an inhomogeneous linear recursion. A moment of
thought then reveals that

(
p̂r (t)
q̂r (t)

)
= M̃t/ε

(
p̂r (0)

q̂r (0)

)

+
t∑

u=ε

M̃ (t−u)/ε V̂r ( p̂0(u), . . . , q̂r−1(u)) (4.18)

for all r ≥ 1. The “vertices” V̂r ( p̂0, q̂0; . . . ; p̂r−1, q̂r−1) in
this formula are polynomials in their arguments, whose exact
form depends on both the integration scheme and the forces
(4.17).

Recalling Eq. (4.9) and the fact that M̃ is a contraction
matrix, the convergence of the autocorrelation functions of
the momenta and coordinates at large times t may now be
shown recursively from order 0 to any finite order r . Equation
(4.18) actually allows the highest-order variables in any cor-
relation function to be expressed through lower-order ones
up to an exponentially decaying contribution. Clearly, in the
large-time limit, the autocorrelation functions do not depend
on the initial distribution of the variables and are stationary,
i.e. invariant under time translations.

The expectation values of the coefficients in the perturba-
tion expansion (3.6) of the observables coincide with a sum
of autocorrelation functions of the coordinates at equal times.
Their convergence at large times is therefore guaranteed as
well.

4.4 Summary

The discussion in this section shows that the SMD algorithm
converges to all orders of perturbation theory if the matrix �

is strictly positive and if ε2 ‖�‖ < κ , where κ depends on the
molecular-dynamics integrator. In the case of the leapfrog,
the second-order OMF and the fourth-order OMF integrators,
κ is equal to 4, 6.51 and 9.87, respectively (cf. Appendix A).

5 Stochastic perturbation theory in lattice QCD

With respect to the generic system considered so far, the sit-
uation in lattice QCD is complicated by the gauge symmetry
and the quark fields. In this section, stochastic perturbation
theory is first set up for the pure SU(N ) gauge theory. The
modifications required for the damping of the gauge modes
are then discussed and the section ends with a brief descrip-
tion of how the quarks can be included in the simulations.

5.1 Lattice fields

The lattice theory is set up on a T × L3 lattice with periodic
boundary conditions in the space directions and Schrödinger
functional (SF) [13,14] or open-SF [15] boundary conditions
in the time direction. In both cases the link variablesU (x, μ)

satisfy
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U (x, k) = 1, k = 1, 2, 3, (5.1)

at time x0 = T and additionally at x0 = 0 if SF boundary
conditions are chosen. The notation used in the following
coincides with the one previously employed in Ref. [15]. In
particular, all dimensionful quantities are expressed in units
of the lattice spacing.

The momenta π(x, μ) of the link variables U (x, μ) take
values in the Lie algebra su(N ) of the gauge group. They
vanish at the boundaries of the lattice, where the link variables
are frozen to unity. The scalar product of any two momentum
fields,

(π, υ) =
∑

x,μ

w−1
x,μπa(x, μ)υa(x, μ), (5.2)

includes a conventional weight factor

wx,u =
{

2 if μ > 0 and x0 = 0 or x0 = T
1 otherwise

(5.3)

which will reappear below in various expressions.
Infinitesimal gauge transformations are fields ω(x) of

su(N ) elements defined on the sites x of the lattice. They van-
ish at x0 = T and must, furthermore, be constant at x0 = 0
if SF boundary conditions are imposed. In the latter case, the
fields may be split in two parts according to

ω(x) = (1 − x0/T ) ω(0) + ω̂(x), (5.4)

where ω̂(x) vanishes at x0 = 0, T and is otherwise uncon-
strained. A possible choice of scalar product is then

(ω, ν) = T L3ωa(0)νa(0) +
∑

x

ω̂a(x)ν̂a(x), (5.5)

while in the case of open-SF boundary conditions

(ω, ν) =
∑

x

w−1
x ωa(x)νa(x) (5.6)

with wx = 2 at x0 = 0, T and wx = 1 elsewhere.
Independently of the boundary conditions imposed on the

gauge field, the quark fields are required to vanish at both
x0 = 0 and x0 = T . No weight factor is included in the
scalar product of these fields.

5.2 Basic stochastic process

In the absence of quark fields, the SMD algorithm proceeds
along the lines of Sect. 2. For the action S(U ) of the gauge
field any of the frequently used ones may be taken. The
Hamilton function from which the SMD algorithm derives is
then given by

H(π,U ) = 1

2
(π, π) + S(U ). (5.7)

In particular, the random field in the momentum rotation

π(x, μ) → c1π(x, μ) + c2υ(x, μ) (5.8)

must be distributed with probability density proportional to

e− 1
2 (υ,υ).
If the weight factor wx,μ in the scalar product (5.2) is also

included in the symplectic structure (i.e. the Poisson bracket),
the molecular-dynamics equations assume the form

∂tπ(x, μ) = −g0wx,μ(∂ax,μS)(U )T a,

∂tU (x, μ) = g0π(x, μ)U (x, μ). (5.9)

For later convenience, the expressions on the right of the
equations have been scaled by the bare gauge coupling g0,
an operation that could be undone by rescaling the simulation
time. The integration steps (2.8) and (2.9) are then given by

Iπ,h : π(x, μ) → π(x, μ) − hg0wx,μ(∂ax,μS)(U )T a,

(5.10)

IU,h : U (x, μ) → ehg0π(x,μ)U (x, μ). (5.11)

Since it will be omitted in perturbation theory, the
acceptance–rejection step needed to correct for the integra-
tion errors is not described here.

5.3 Perturbation expansion

In perturbation theory, the link variables are represented by
a gauge potential Aμ(x) through

U (x, μ) = exp{g0Aμ(x)} = 1 +
∞∑

r=0

gr+1
0 Ûr (x, μ),

Û0(x, μ) = Aμ(x). (5.12)

The gauge potential takes values in su(N ) and satisfies the
same boundary conditions as the momentum field

π(x, μ) =
∞∑

r=0

gr0π̂r (x, μ). (5.13)

When the gauge and momentum fields are replaced by these
expansions, the SMD algorithm leads to a hierarchy of
stochastic equations as in the case of the generic system con-
sidered in Sect. 3.

At lowest order in the coupling, the momentum is rotated
according to Eq. (5.8) (with π̂0 in place of π ) and the inte-
gration steps (5.10), (5.11) become

Iπ̂0,h : π̂0(x, μ) → π̂0(x, μ) − h(�Û0)(x, μ), (5.14)

IÛ0,h : Û0(x, μ) → Û0(x, μ) + hπ̂0(x, μ), (5.15)

where � is the symmetric linear operator in the leading-order
expression

S0(U ) = 1

2
(A,�A) (5.16)

for the gauge action.
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5.4 Damping of the gauge modes

The space H1 of gauge potentials may be split into the
subspace HL

1 of gauge modes and its orthogonal comple-
ment HT

1 . There is a one-to-one correspondence between the
infinitesimal gauge transformations, introduced in Sect. 5.1,
and the gauge modes through the forward difference operator

(dν)(x, μ) = ∂μν(x), (5.17)

which maps any field ν in the spaceH0 of infinitesimal gauge
transformations to a field dν ∈ HL

1 . The adjoint operator d∗
goes in the opposite direction and is defined by the require-
ment that

(dν, A) = (ν, d∗A) (5.18)

for all ν ∈ H0 and A ∈ H1. In particular, the subspace HT
1

coincides with the space of gauge potentials A satisfying
d∗A = 0 (d∗ is given explicitly in Appendix B).

Since the gauge modes are annihilated by �, the HL
1 -

component of the leading-order gauge field Û0 performs a
random walk and thus slowly runs away in the course of a
simulation. Stability can be regained by applying a gauge
transformation

π(x, μ) → (x)π(x, μ)(x)−1,

(x) = exp{εg0ω(x)}, (5.19)

U (x, μ) → (x)U (x, μ)(x + μ̂)−1, (5.20)

to the fields after each SMD update cycle, where ω ∈ H0 is a
new field that is evolved together with the other fields. There
are two update steps for this field, the first,

ω(x) → c1ω(x), (5.21)

being applied together with the momentum rotation and the
second,

ω(x) → ω(x) + ελ0(d
∗C)(x), (5.22)

Cμ(x) = 1

2g0

{
U (x, μ) −U (x, μ)−1

− 1

N
tr

[
U (x, μ) −U (x, μ)−1

]}
, (5.23)

at the end of the molecular-dynamics evolution. The param-
eter λ0 > 0 controls the feedback from the current gauge
field to the gauge-damping field ω(x) and can, in principle,
be set to any value. Clearly, the history of gauge-invariant
observables is not affected by these modifications of the SMD
algorithm, but as discussed below (in Sect. 5.5), they have
the desired damping effect on the gauge modes.1

1 In the continuous-time limit ε → 0, the time-dependence of the
gauge-damping field is governed by a first-order differential equation
and the modified algorithm integrates a form of the stochastic molecular-

Like the other fields, the gauge-damping field is expanded
in a series

ω(x) =
∞∑

r=0

gr0ω̂r (x) (5.24)

in perturbation theory. At leading order, the new update steps
are then

ω̂0(x) → c1ω̂0(x), (5.25)

ω̂0(x) → ω̂0(x) + ελ0(d
∗Û0)(x), (5.26)

Û0(x, μ) → Û0(x, μ) − ε(dω̂0)(x, μ), (5.27)

and the higher-order rules have the familiar hierarchical
structure.

5.5 Long-time stationarity of the process

Although the stochastic process now includes variables with-
out associated momenta, the discussion in Sect. 4 applies here
too with only minor changes. In particular, the convergence
of the process to a unique stationary state is guaranteed to all
orders of the coupling, if the matrix M̃ describing the evolu-
tion of the fields (π̂0, Û0, ω̂0) at leading order is a contraction
matrix.

Since the gauge modes are zero modes of �, the subspace
of field vectors

(π̂0, Û0, ω̂0) = (d ν̂0, dσ̂0, ω̂0), ν̂0, σ̂0 ∈ H0, (5.28)

is invariant under the action of M̃ . When restricted to its
orthogonal complement (which is invariant too), the matrix
describes the evolution of the HT

1 -components of π̂0, Û0.
The chosen boundary conditions (SF or open-SF) imply the
strict positivity of � in this subspace and M̃ is therefore a
contraction matrix there if

ε2‖�‖ < κ, (5.29)

where κ depends on the molecular-dynamics integrator
(cf. Sect. 4.4).

In the subspace (5.28) of the gauge modes, on the other
hand, the action of M̃ amounts to applying the linear trans-
formation
⎛

⎝
ν̂0

σ̂0

ω̂0

⎞

⎠ →
⎛

⎝
c1 0 0
εc1 1 − ε2λ0d∗d −εc1

0 ελ0d∗d c1

⎞

⎠

⎛

⎝
ν̂0

σ̂0

ω̂0

⎞

⎠ (5.30)

to the fields. The associated eigenvalues are equal to c1 or to

1

2

{
b ±

√
b2 − 4c1

}
, b = 1 + c1 − ε2λ0μ

2, (5.31)

Footnote 1 continued
dynamics equations, which coincides with the standard one up to a
time-dependent gauge transformation (see Appendix C).

123



Eur. Phys. J. C (2017) 77 :308 Page 7 of 16 308

where μ2 is any eigenvalue of d∗d. This operator has no
zero modes and some simple estimates then show that M̃ is a
contraction matrix in the subspace of gauge modes, provided
the bound

ε2λ0‖d∗d‖ < 2(1 + c1) (5.32)

holds.
Convergence of the stochastic process to equilibrium is

thus guaranteed if the inequalities (5.29) and (5.32) are both
satisfied. With the chosen boundary conditions,

‖�‖ ≤ 16k, ‖d∗d‖ ≤ 16, (5.33)

where k is equal to 1, 5/3 and 3.648 in the case of the Wilson
[16], tree-level Symanzik improved [17,18] and Iwasaki [19]
gauge action, respectively. In practice, the constraints (5.29)
and (5.32) therefore tend to be fairly mild and the main con-
cern is to ensure that the integration errors are sufficiently
small at the chosen values of ε.

5.6 Inclusion of the quark fields

As in the case of the HMC algorithm [4], the effects of the
quarks can be included in SMD simulations by adding a mul-
tiplet of pseudo-fermion fields to the theory with the appro-
priate action. The details are not important here and it suffices
to know that the action is a sum of terms, one per pseudo-
fermion field φ, of the form

Spf(U, φ) = (R(U )φ, R(U )φ), (5.34)

with R(U ) being some gauge-covariant linear operator (see
Ref. [20], for example).

Only few modifications of the SMD update cycle are
required in the presence of the pseudo-fermion fields. Simi-
larly to the momentum field, each field is rotated according
to2

φ(x) → c1φ(x) + c2(R(U )−1η)(x) (5.35)

at the beginning of the cycle, where η is a Gaussian ran-
dom field with mean zero and unit variance. The molecular-
dynamics evolution of the gauge and momentum field then
proceeds at fixed pseudo-fermion fields, with the contribu-
tion of the pseudo-fermion action to the driving force prop-
erly taken into account. Clearly, the gauge transformation
(5.19), (5.20) applied at the end of the update cycle must be
extended to the pseudo-fermion fields.

When the algorithm is expanded in powers of the cou-
pling g0, the renormalization of the quark masses should be
taken into account so that the masses in the leading-order
stochastic equations are the renormalized ones. The pseudo-
fermion fields decouple from the other fields at lowest order

2 There is no reason other than simplicity to set the parameter γ that
determines the rotation angle to the same value for all fields.

and are simulated exactly by the random rotation (5.35). Con-
vergence of the stochastic process to a unique stationary state
is then again guaranteed to all orders, if the bounds (5.29)
and (5.32) are satisfied.

6 Computation of the gradient-flow coupling

The gradient-flow coupling in finite volume with SF bound-
ary conditions has recently been used in step scaling stud-
ies of three-flavour QCD [22,23]. Such calculations serve
to relate the low-energy properties of the theory to the high-
energy regime, where contact with the standard QCD param-
eters and matrix elements can be made in perturbation theory
[24] (see Ref. [25] for a review).

In the following, the perturbation expansion of the
gradient-flow coupling is determined in the SU(3) Yang–
Mills theory up to two-loop order, using the SMD-variant of
NSPT described in the previous section. To one-loop order,
the expansion coefficient in the MS scheme of dimensional
regularization is known in infinite volume since a while [26],
but a huge effort plus the best currently available techniques
were required to be able to extend this calculation to the next
order [27]. In finite volume with SF boundary conditions,
these techniques do not apply and a similar analytical com-
putation may be practically infeasible at present.

6.1 Definition of the coupling

The renormalized coupling considered in this paper belongs
to a family of couplings based on the Yang–Mills gradient
flow. Explicitly, it is given by [21]

ḡ2 = k
{
t2〈E(t, x)〉

}

T=L ,x0=L/2,
√

8t=cL
, (6.1)

where E(t, x) denotes the Yang–Mills action density at flow
time t and position x , c is a parameter of the scheme and the
proportionality constant k is determined by the requirement
that ḡ2 coincides with g2

0 to lowest order of perturbation
theory. Most of the time c will be set to 0.3, which implies a
localization range of the action density of about 0.3 × L .

On the lattice, the gradient flow is implemented as in
Ref. [15]. The Wilson action, with boundary terms so as to
ensure the absence of O(a) lattice effects in the flow equa-
tion, is thus used to generate the flow. For the action density
E(t, x) in Eq. (6.1) either the Wilson action density or the
square of the familiar symmetric “clover” expression for the
gauge-field tensor is inserted. Furthermore, alternative cou-
plings, where the full action density is replaced by its spatial
or time-like part, are considered as well.

All in all this makes six different action densities and cou-
plings, labeled w, ws, wt, c, cs, and ct, where the letters
stand for Wilson, clover, space and time, respectively (Ect,
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for example, denotes the clover expression for the time-like
part of the action density).

6.2 Expansion in powers of αs

The gradient-flow coupling has an expansion

ḡ2 = 4π
{
αs + k1α

2
s + k2α

3
s + · · ·

}
(6.2)

in powers of the running coupling αs in the MS scheme of
dimensional regularization at momentum scale q, with coef-
ficients k1, k2, . . . depending on q and L . If q is scaled with
L like

q = (cL)−1, (6.3)

the coefficients are of order one and independent of L in the
continuum theory [28].

In the following k1 and k2 are computed by combining the
expansion

t2〈E(t, x)〉 = E0g
2
0 + E1g

4
0 + E2g

6
0 + · · · (6.4)

obtained in NSPT with the relation

αs = α0 + d1α
2
0 + d2α

3
0 + · · · , α0 = g2

0

4π
, (6.5)

between αs and the bare coupling. For the Wilson gauge
action (which is the action used in NSPT), the coefficients
d1 and d2 are accurately known [29]. The coefficients k1, k2

determined in this way depend on the spacing of the simulated
lattices so that an extrapolation to the continuum limit is then
still required.

6.3 Computation of the coefficients Ek in NSPT

In order to cancel the O(a) lattice effects in Ek , the action
of the theory must include boundary counterterms at x0 = 0
and x0 = T with a tuned coupling [13]3

ct = 1 + c(1)
t g2

0 + c(2)
t g4

0 + · · · . (6.6)

In the case of the Wilson action,

c(1)
t = −0.08900(5), c(2)

t = −0.0294(3), (6.7)

as was shown long ago [30–32]. The counterterms lead to
further terms in the forces that drive the molecular-dynamics
evolution, but do not require a modification of the general
framework described in Sect. 5. Alternatively, the effects of
the counterterms can be included in the calculations by treat-
ing ct − 1 as a second coupling.

Once a representative sample of gauge configurations
(5.12) has been generated, the stochastic estimation of the
gradient-flow coupling requires E(t, x) to be expanded in
powers of g0 for each of these configurations. To this end,

3 In Ref. [15] the improvement coefficient ct is denoted by c′
G.

Table 1 Simulation parameters

L γ ε �tms/ε Nms

10 5.0 0.168 190 59400

12 5.0 0.168 190 59880

14 5.0 0.168 190 59400

16 5.0 0.168 190 59880

18 4.5 0.168 240 58800

20 4.0 0.168 290 59400

24 3.0 0.190 270 71880

28 3.0 0.144 340 79200

32 3.0 0.126 480 88400

40 3.0 0.100 950 80100

the gauge field Vt (x, μ) at flow time t is represented by a
gauge potential Bμ(t, x) according to

Vt (x, μ) = exp{g0Bμ(t, x)} = 1 +
∞∑

r=0

gr+1
0 V̂t,r (x, μ).

(6.8)

The numerical integration of the flow equation, using a
Runge–Kutta integrator, for example, then amounts to apply-
ing a sequence of integration steps to the expansion coeffi-
cients of the field as in the case of the integration of the
molecular-dynamics equations. Gauge damping is however
not required here, since the linearized flow is transversal and
leaves the gauge modes unchanged.

6.4 Simulation parameters and tables of results

The parameters of the NSPT runs performed for the “mea-
surement” of E0, E1, E2 are listed in Table 1. In all cases,
the gauge-damping parameter λ0 was set to 2 and the fourth-
order OMF integrator was employed for the molecular-
dynamics equations (cf. Appendix A). Measurements were
made after every �tms/ε update cycles using a third-order
Runge–Kutta integrator for the gradient flow [26], with step
size varying from 0.002 at small flow times to 0.1 at large
times. With this scheme, the gradient-flow integration errors
are guaranteed to be completely negligible with respect to the
statistical errors. The number Nms of measurements made is
listed in the last column of Table 1 (the programs that were
used in these simulations can be downloaded from http://
luscher.web.cern.ch/luscher/NSPT).

At the chosen values of the parameters, the bounds (5.29)
and (5.32) are satisfied by a wide margin so that the conver-
gence of the SMD algorithm is rigorously guaranteed. The
results obtained on the simulated lattices for the expansion
coefficients k1 and k2 and their statistical errors are listed in
Appendix D, for c ∈ {0.2, 0.3, 0.4} and all choices w,c,ws,. . .
of the action density (cf. Sect. 6.1).
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7 Statistical and systematic errors

The values of k1 and k2 obtained in NSPT depend on the
scheme parameter c, the lattice size L (in lattice units), the
simulation step size ε and the SMD parameter γ . No attempt
is made here to determine all these dependencies in detail.
Instead some basic facts and empirical results are discussed
that helped controlling the errors in the case of the simu-
lations reported in this paper (see Refs. [8,33] for related
complementary studies of the φ4 theory).

7.1 Autocorrelations and statistical variances

Usually the variances of the observables are a property of the
simulated field theory and hence independent of the simula-
tion algorithm. In NSPT this is not so, because the algorithm
is not exact, but mainly because the square of the order-r
coefficient Ôr of an observable O in general does not coin-
cide with the order-2r coefficient of another observable. The
time average of Ô2

r and thus the variance of Ôr are then not
necessarily determined by the theory alone. For illustration,
the dependence on γ of the variances of the coefficients in

t2

L3

∑

x

E(t, x) = Ê0g
2
0 + Ê1g

4
0 + Ê2g

6
0 + . . . (7.1)

(where x0 = L/2 and
√

8t = cL as before) is shown in Fig. 1.
As will be discussed in Sect. 7.3, the integration errors are
negligible with respect to the rapid growth of the variances
of the one- and two-loop coefficients seen at small γ , which
is therefore entirely an effect of the change of algorithm.

In practice one would like to minimize the computational
work required to obtain the calculated coefficients to a given
statistical precision. The simulation algorithm should thus be
tuned so as to minimize the products

τint(Ôr ) × var(Ôr ) (7.2)

0 1 2 3
γ

10−6

10−5

10−4

k = 2
k = 1
k = 0

Fig. 1 Variances of Êc
k at fixed L = 16, ct = 1, c = 0.3 and ε = 0.238

versus γ . The dotted lines connecting the data points are drawn to guide
the eye. Beyond γ = 3 the variances are practically constant

Table 2 Autocorrelation times of Êc
k and associated products (7.2)†

γ k = 0 k = 1 k = 2

0.5 2.0 1.6 × 10−6 2.0 9.4 × 10−6 2.0 8.8 × 10−5

1.0 2.7 2.2 × 10−6 3.0 5.2 × 10−6 2.9 1.0 × 10−5

2.0 5.9 4.9 × 10−6 6.7 6.8 × 10−6 7.3 8.1 × 10−6

2.5 6.7 5.6 × 10−6 8.4 8.1 × 10−6 9.2 9.1 × 10−6

3.0 7.7 6.2 × 10−6 9.4 8.4 × 10−6 11.2 9.8 × 10−6

5.0 10.9 8.7 × 10−6 13.0 1.1 × 10−5 16.6 1.3 × 10−5

9.0 14.8 1.2 × 10−5 17.7 1.4 × 10−5 21.5 1.5 × 10−5

† All lattice and algorithm parameters are as in Fig. 1. The autocorre-
lation times are given in units of simulation time

of the integrated autocorrelation times and variances of
the order-r coefficients Ôr of the observables O of inter-
est. Empirical studies show that the two factors often work
against each other, i.e. algorithms tuned for small autocorre-
lations tend to give large variances and vice versa.

The autocorrelation times of the coefficients Êc
k , for exam-

ple, grow monotonically with γ (see Table 2). At the chosen
point in parameter space, the associated products (7.2) are
then minimized at values of γ around 0.5, 1.0 and 2.0 for
k = 0, 1 and 2. The example shows that there may be no
uniformly best choice of γ , but a range of values, where all
coefficients of interest are obtained reasonably efficiently.

7.2 Critical slowing down

The behaviour of the autocorrelation times and variances near
the continuum limit L → ∞ depends on the simulation
algorithm and the observables considered. When NSPT is
based on the Langevin equation, the autocorrelations of the
coefficients of multiplicatively renormalizable quantities can
be shown to diverge proportionally to L2 [34,35], while their
variances grow at most logarithmically [36].

At large γ , the variant of NSPT studied here is expected to
behave similarly, since the SMD algorithm then effectively
integrates the Langevin equation. Choosing γ to depend on L
in some particular way may, however, conceivably lead to an
improved scaling behaviour. In the free theory, for example,
the autocorrelation times grow proportionally to L rather than
L2 if γ is scaled like 1/L [5–7]. Beyond the leading order,
the situation is complicated by the algorithm-dependence of
the variances and the effects of the parameter tuning are then
not easy to predict.

Considering the fact that the computational cost of the
measurements of Êk tends to be larger than the one of the
SMD update cycles, the parameters of the runs on the large
lattices (those with L = 24, . . . , 40 in Table 1) were cho-
sen so that subsequent measurements are practically uncor-
related. At fixed γ = 3 the required increase with L of the
measurement time separation �tms then turned out to be quite
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moderate. Moreover, from L = 24 to L = 40, the variances
of Êk grow only slowly (at c = 0.3 and for k = 0, 1 and 2
by about 2, 19 and 30 percent).

7.3 Integration errors

As already noted in Appendix A, the theory is very accu-
rately simulated at leading order if the fourth-order OMF
integrator is used for the molecular-dynamics equations. The
expectation values of the coefficient Ê0 calculated in the runs
listed in Table 1 in fact all agree with the known analytic for-
mula [15,21] within a relative statistical precision of about
2 × 10−4.

Beyond the leading order, the integration errors remain
difficult to detect in empirical studies (see Fig. 2). The sta-
bility bounds (5.29), (5.32) are respected in all these runs
and the coefficients Ĥ0, . . . , Ĥ4 of the Hamilton function H
are accurately conserved, with deficits decreasing like ε5 (as
has to be the case in the asymptotic regime of a fourth-order
integrator). It thus seems safe to conclude that the integra-
tion errors in the tests reported in Fig. 2 are smaller than the
statistical errors.

Apart from adjustments to match the target statistics, the
step sizes in the runs listed in Table 1 were, for L ≥ 24, scaled
proportionally to 1/L so that the integration errors fall off like
1/L4 at large L and thus much more rapidly than the leading
lattice effects. Since the statistical errors are approximately
the same in all runs, the scaling of the step sizes may be a
luxury, but was applied here as a safeguard measure against
an enhancement of systematic errors through the continuum
extrapolation.

7.4 Extrapolation to the continuum limit

With O(a)-improvement in place, the L-dependence of the
one-loop coefficient kw

1 is asymptotically given by [37,38]

1.12

1.14

1.16
k1
c

1 2 4 8 16 32
−2.4

−2.0

−1.6 k2
c

( 0.1)4

Fig. 2 Dependence of kc
1 and kc

2 at L = 24, ct = 1 and c = 0.3 on
the simulation step size ε (note the log scale on the abscissa). In the
range of data shown, ε increases from 0.1 to 0.238. Each data point is
based on approximately 104 statistically independent measurements of
the coefficients Êc

0, Êc
1 and Êc

2

0 0.002 0.004 0.006 0.008 0.01
1/L2

1.15

1.20

1.25

1.30

k1
w

Fig. 3 Extrapolation of the simulation results for kw
1 at c = 0.3 to the

continuum limit (open point). The full line is obtained by fitting the
data in the range 10 ≤ L ≤ 40 with the asymptotic expression (7.3). A
linear fit in the range 16 ≤ L ≤ 40 (dashed grey line) lies practically
on top of the full line

kw
1 =

L→∞ a0 + {a1 + b1 ln L}L−2 + O(L−3), (7.3)

where the leading-order term, a0, coincides with the coeffi-
cient k1 in the continuum theory. The available data are well
described by this asymptotic expression down to L = 10 if
c ≥ 0.3 and L = 12 if c = 0.2 (see Fig. 3). Note the fact that
the data points in Fig. 3 are uncorrelated and that random
fluctuations by more than one standard deviation are conse-
quently not improbable in a sample of 10 points. Plots of the
other one-loop coefficients kc

1, k
ws
1 , . . . look much the same.

Even though only a short extrapolation is required to reach
the continuum limit, there is no way the extrapolation errors
can be rigorously assessed. Following standard practice, the
errors are estimated by varying the fit procedure within rea-
sonable bounds. In particular, fits are discarded if the quality
of the fit is low or if the fit parameters are poorly determined.
Another indication of the size of the extrapolation errors is
provided by the deviations of the results obtained using the
“w” and the “c” data, respectively. The errors of the results
quoted in Table 3 include both the statistical and an estimate
of the extrapolation errors.

With increasing loop order, the continuum extrapolations
tend to become more difficult, partly because one loses sta-
tistical precision and partly because the asymptotic formu-
lae describing the leading lattice effects have more and more
terms. In particular, with respect to the one-loop coefficients,
the coefficients at the next order are obtained about 10 times
less precisely and their asymptotic form

kw
2 = a0 + {a1 + b1 ln L + c1(ln L)2}L−2 + O(L−3)

(7.4)
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0 0.002 0.004 0.006 0.008 0.01
1 /L2

−2.2

−2.0

−1.8

−1.6

k2
w

Fig. 4 Extrapolation of the simulation results for kw
2 at c = 0.3 to the

continuum limit (open point). The full line is obtained by fitting the data
in the range 10 ≤ L ≤ 40 according to Eq. (7.4), with the two lowest
modes of the design matrix projected away. In the range 16 ≤ L ≤ 40
the data can also be fitted by a straight line (dashed grey line)

includes an additional logarithm. Combinations of the loga-
rithms in this expression only too easily accurately approx-
imate a constant in the range of the available data, but may
blow up closer to the continuum limit and then strongly influ-
ence the result of the extrapolation.

In the present context, the goal is not to determine the
values of the coefficients a1, b1 and c1, but to perform a short
extrapolation of the data to the continuum limit. A sensible
way to stabilize fits of the data by the asymptotic expression
(7.4) is then to constrain the minimization of the likelihood
function to the directions in parameter space orthogonal to its
flattest directions (see Fig. 4). The results quoted in Table 3
were obtained in this way and by varying the fit procedure,
as in the case of the one-loop coefficients, in order to assess
the extrapolation errors.

7.5 Miscellaneous remarks

Lattice effects.Since the smoothing range of the gradient flow
decreases with c, it is no surprise that the coefficients k1, k2

calculated in NSPT are found to be increasingly sensitive to
lattice effects when c is lowered. The continuum extrapola-
tion of the data then becomes more and more difficult and
eventually requires larger lattices to be simulated.
Infinite-volume limit. The gradient-flow coupling in infinite
volume runs with the flow time t and may be expanded in

Table 4 Ratio ρ2 = β2/β0 of coefficients of the β-function

c ρ2 ρs
2 ρt

2

0.2 −2.38(6) −2.51(6) −2.22(7)

0.3 −2.99(4) −3.74(5) −2.29(6)

0.4 −4.88(6) −8.04(7) −2.21(8)

powers of αs at scale q = (8t)−1/2, as in Eq. (6.2), the
one- and two-loop coefficients in the continuum limit being
k1 = 1.0978(1) [26] and k2 = −0.9822(1) [27]. In the finite-
volume scheme considered in this paper, and after passing to
the continuum limit, the infinite-volume limit is reached by
sending c to zero. The results listed in Table 3 cannot be
reliably extrapolated to c = 0, but the values of k1, . . . , kt

2 at
c = 0.2 are actually already quite close to the infinite-volume
values quoted above.
Three-loop β-function. The L-dependence of the gradient-
flow coupling α = ḡ2/4π is governed by the renormalization
group equation

L
∂α

∂L
= β0α

2 + β1α
3 + β2α

4 + . . . , (7.5)

where β0 = 11(2π)−1 and β1 = 51(2π)−2 are the universal
one- and two-loop coefficients of the Callan–Symanzik β-
function. Using the results quoted in Table 3, the three-loop
coefficient may be calculated in a few lines (see Table 4). The
coefficient thus has opposite sign and is significantly larger
than in the MS scheme, particularly so at c = 0.4 and if the
spatial part of the Yang–Mills action density is inserted in
the definition (6.1) of the coupling.

8 Conclusions

In stochastic perturbation theory the fields are represented by
a series of coefficient fields that solve the underlying stochas-
tic equation order by order in the interactions. Beyond the
leading order, the probability distributions of the coefficient
fields are however not a priori known and actually depend on
the chosen stochastic process. The variances of the observ-
ables of interest must consequently be expected to vary with
the parameters of the simulation algorithm, an effect that
tends to considerably complicate the situation with respect
to the one in simulations based on importance sampling.

Table 3 Values of k1 and k2 in
the continuum limit

c k1 ks
1 kt

1 k2 ks
2 kt

2

0.2 1.089(6) 1.106(7) 1.066(7) −1.21(6) −1.29(6) −1.12(7)

0.3 1.112(5) 1.220(6) 1.005(7) −1.76(4) −2.17(5) −1.36(6)

0.4 1.297(5) 1.685(6) 0.935(6) −3.06(6) −4.78(7) −1.47(8)
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The SMD algorithm provides a technically attractive basis
for NSPT. Compared to the traditional version of NSPT [1–
3], where the starting point is the Langevin equation, a signif-
icantly improved efficiency is achieved, particularly so near
the continuum limit. Moreover, the available highly accu-
rate integrators for the molecular-dynamics equations allow
the integration errors to be easily kept under control. For the
reasons mentioned above, some tuning of the friction param-
eter γ is however required and must take into account the
variances of the observables of interest.

The inclusion of the quark fields in the SMD algorithm
along the lines of Sect. 5 is straightforward and is not
expected to slow down the simulations by a large factor [3]. In
general, the cost of NSPT computations very much depends
on the observables considered, the order in perturbation the-
ory and the desired precision of the results.

The statistical errors of the expansion coefficients kl of the
gradient-flow coupling, for example, appear to grow rapidly
with the loop order l. In practice some loss of precision from
one order to the next is tolerable, since the coefficients get
multiplied by αl+1

s in the perturbation series (6.2). An exten-
sion of the computations to three-loop order would how-
ever only make sense if k1 and k2 are recalculated with
errors about an order of magnitude smaller than the ones
quoted in Table 3. Furthermore, the relation between αs and
the bare coupling would need to be worked out to three
loops.
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Appendix A: OMF molecular-dynamics integrators

Among the popular integrators used in lattice QCD, there
are two schemes proposed by Omelyan, Mryglod and Folk
(OMF) [10], one of second order in the integration step size
and the other of fourth order. Here their efficiency is stud-
ied by comparing the distribution (4.8) actually simulated at
leading order of stochastic perturbation theory with the exact
distribution.

A.1 Second-order OMF integrator

The sequence of update steps (2.8), (2.9) is

Iε = Ip,ε1 Iq,ε2 Ip,ε3 Iq,ε2 Ip,ε1 , εk = rkε, (A.1)

r1 = 0.1931833275037836, r2 = 1/2, r3 = 1 − 2r1,

(A.2)

in this case. Using an algebraic manipulation program, the
expressions

Mqp = ε

(
1 − 1

4
r3ε

2�

)
, (A.3)

�̂=�

(
1− 1

2
r1ε

2�

) (
1− 1

2
r1r3ε

2�

) (
1− 1

4
r3ε

2�

)−1

(A.4)

are then easily obtained. The convergence of the SMD algo-
rithm is thus guaranteed if ε2 ‖�‖ < 6.51. With respect to
the leapfrog integrator, and if the step size ε is adjusted so
that the number of force evaluations per unit time is the same,
this scheme achieves a reduction of the relative deviation of
�̂ from � by a factor 25.

A.2 Fourth-order OMF integrator

This integrator is of the form (A.1) too, but with 11 steps
instead of 5. The associated step sizes in units of ε are

r1 = 0.08398315262876693,

r2 = 0.2539785108410595,

r3 = 0.6822365335719091,

r4 = −0.03230286765269967,

r5 = 1/2 − r1 − r3, r6 = 1 − 2(r2 + r4), (A.5)

and the matrices Mpq and Mqp are polynomials in ε2� of
degree 5 and 4 times ε� and ε, respectively. In this case, Mqp

is non-singular and

�̂ = �
{

1 + a1ε
4�2 + a2ε

6�3 + · · ·
}

, (A.6)

a1 = −2.58(1) × 10−5, a2 = −1.88(1) × 10−5, (A.7)

is positive if ε2 ‖�‖ < 9.87.
As is evident from Eqs. (A.6), (A.7), this integrator is

impressively accurate. If ‖�‖ = 16 and ε = 0.2, for exam-
ple, the relative deviation of �̂ from � is at most 1.6 × 10−5

and thus about a factor 12 smaller than the deviation in the
case of the second-order OMF integrator (with an adjusted
step size of ε = 0.08).
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Appendix B: Explicit form of d∗

The operator d∗ depends on the chosen boundary conditions
and the scalar products in the field spaces H0 and H1 (cf.
Sect. 5.1). For SF boundary conditions

(d∗A)(x) = −T − x0

T 3L3

T−1∑

y0=0

∑

y

A0(y) −
3∑

μ=0

∂∗
μAμ(x),

(B.1)

where

∂∗
μAμ(x) =

{
Aμ(x) − Aμ(x − μ̂) if 0 < x0 < T,

0 otherwise,
(B.2)

while in the case of open-SF boundary conditions,

(d∗A)(x) = −
3∑

μ=0

∂∗
μAμ(x), (B.3)

where now

∂∗
μAμ(x) =

⎧
⎨

⎩

Aμ(x) − Aμ(x − μ̂) if μ > 0 or 0 < x0 < T,

2A0(x) if μ = 0 and x0 = 0,

0 otherwise.

(B.4)

Appendix C: Gauge-damped stochastic equations

In the continuous-time limit ε → 0, the gauge-damped SMD
algorithm described in Sect. 5 integrates the stochastic equa-
tions

∂tUt (x, μ) = g0
{
πt (x, μ) − ∇μωt (x)

}
Ut (x, μ), (C.1)

∂tπt (x, μ) = −g0wx,μ(∂ax,μSG)(Ut )T
a − γπt (x, μ)

+ ηt (x, μ) + g0 [ωt (x), πt (x, μ)] , (C.2)

∂tωt (x) = −γωt (x) + λ0(d
∗Ct )(x), (C.3)

where πt ,Ut , ωt denote the momentum, gauge and gauge-
damping fields at simulation time t (and the link field Ct is
given by Eq. (5.23) with U replaced by Ut ). The normaliza-
tion of the Gaussian random field is such that

〈ηat (x, μ)ηbs (y, ν)〉 = 2γwx,μδabδμνδ(t − s)δxy (C.4)

and

∇μωt (x) = Ut (x, μ)ωt (x + μ̂)Ut (x, μ)−1 − ωt (x) (C.5)

stands for the gauge-covariant gradient of the gauge-damping
field.

As in the case of the SMD algorithm, the gauge-damping
terms can be removed from the continuous-time process by
applying a time-dependent gauge transformation to the fields
πt ,Ut and ηt . Up to a rescaling of the simulation time and
the momentum field by the coupling g0, Eqs. (C.1), (C.2)
then reduce to the standard stochastic molecular-dynamics
equations [5–7]. The gauge damping can also easily be shown
to coincide with the standard one in the Langevin limit γ →
∞ [39].

Appendix D: Tables of simulation results

See Tables 5, 6, 7, 8, 9 and 10

Table 5 Values of the
expansion coefficient k1 at
c = 0.2

L kw
1 kc

1 kws
1 kcs

1 kwt
1 kct

1

10 1.4876(9) 1.3126(12) 1.5044(12) 1.3396(16) 1.4708(13) 1.2857(18)

12 1.3971(10) 1.2908(12) 1.4166(14) 1.3169(16) 1.3777(15) 1.2648(18)

14 1.3199(12) 1.2564(13) 1.3378(15) 1.2784(17) 1.3021(17) 1.2345(19)

16 1.2676(12) 1.2262(13) 1.2867(16) 1.2483(17) 1.2485(18) 1.2042(20)

18 1.2319(13) 1.2026(14) 1.2518(17) 1.2249(18) 1.2121(19) 1.1804(21)

20 1.2063(13) 1.1842(14) 1.2270(18) 1.2069(18) 1.1857(20) 1.1617(21)

24 1.1725(14) 1.1587(14) 1.1910(18) 1.1784(18) 1.1540(20) 1.1390(21)

28 1.1561(14) 1.1466(14) 1.1756(18) 1.1670(18) 1.1367(21) 1.1263(21)

32 1.1369(14) 1.1298(14) 1.1578(18) 1.1514(18) 1.1161(20) 1.1083(21)

40 1.1202(15) 1.1159(15) 1.1401(19) 1.1363(19) 1.1004(22) 1.0957(22)
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Table 6 Values of the
expansion coefficient k1 at
c = 0.3

L kw
1 kc

1 kws
1 kcs

1 kwt
1 kct

1

10 1.3120(21) 1.3062(24) 1.4241(28) 1.4409(30) 1.2021(30) 1.1745(34)

12 1.2539(23) 1.2545(24) 1.3710(31) 1.3869(32) 1.1391(32) 1.1250(35)

14 1.2200(25) 1.2225(26) 1.3316(32) 1.3448(33) 1.1105(36) 1.1027(38)

16 1.1952(26) 1.1977(27) 1.3061(33) 1.3164(34) 1.0866(38) 1.0816(39)

18 1.1800(27) 1.1823(28) 1.2937(35) 1.3023(36) 1.0685(39) 1.0647(40)

20 1.1671(27) 1.1691(28) 1.2799(35) 1.2870(36) 1.0566(40) 1.0537(41)

24 1.1515(27) 1.1532(27) 1.2595(35) 1.2646(35) 1.0456(39) 1.0441(40)

28 1.1468(28) 1.1482(28) 1.2593(36) 1.2632(36) 1.0365(41) 1.0354(42)

32 1.1312(28) 1.1322(28) 1.2444(35) 1.2474(36) 1.0203(41) 1.0194(41)

40 1.1264(30) 1.1271(30) 1.2359(39) 1.2378(39) 1.0192(45) 1.0187(45)

Table 7 Values of the
expansion coefficient k1 at
c = 0.4

L kw
1 kc

1 kws
1 kcs

1 kwt
1 kct

1

10 1.3582(35) 1.4408(38) 1.7545(48) 1.8741(50) 0.9928(49) 1.0415(53)

12 1.3373(37) 1.3953(39) 1.7405(52) 1.8244(53) 0.9651(52) 0.9994(55)

14 1.3337(41) 1.3772(43) 1.7303(55) 1.7927(57) 0.9667(57) 0.9930(59)

16 1.3197(43) 1.3527(44) 1.7097(57) 1.7568(58) 0.9592(61) 0.9793(63)

18 1.3183(44) 1.3444(45) 1.7137(59) 1.7513(60) 0.9525(61) 0.9681(63)

20 1.3181(45) 1.3396(46) 1.7111(59) 1.7419(59) 0.9543(64) 0.9673(65)

24 1.3121(44) 1.3271(44) 1.6983(58) 1.7197(58) 0.9544(61) 0.9636(62)

28 1.3116(46) 1.3227(47) 1.7068(59) 1.7226(60) 0.9456(66) 0.9523(67)

32 1.2987(46) 1.3070(47) 1.6918(60) 1.7038(60) 0.9349(65) 0.9399(66)

40 1.3012(50) 1.3066(51) 1.6876(65) 1.6953(65) 0.9433(72) 0.9467(72)

Table 8 Values of the
expansion coefficient k2 at
c = 0.2

L kw
2 kc

2 kws
2 kcs

2 kwt
2 kct

2

10 −1.863(9) −1.893(12) −1.919(12) −1.985(16) −1.807(12) −1.801(18)

12 −1.760(11) −1.742(13) −1.820(14) −1.826(17) −1.700(15) −1.658(19)

14 −1.706(12) −1.679(14) −1.755(16) −1.739(17) −1.657(17) −1.620(20)

16 −1.655(13) −1.630(14) −1.718(17) −1.702(18) −1.593(19) −1.558(21)

18 −1.608(15) −1.586(16) −1.674(19) −1.660(20) −1.542(22) −1.512(24)

20 −1.562(16) −1.544(17) −1.611(20) −1.597(21) −1.513(24) −1.490(25)

24 −1.486(17) −1.474(18) −1.534(22) −1.526(23) −1.438(25) −1.423(27)

28 −1.473(18) −1.465(19) −1.520(24) −1.515(24) −1.426(28) −1.415(29)

32 −1.365(18) −1.357(19) −1.438(24) −1.433(24) −1.293(28) −1.282(28)

40 −1.317(21) −1.312(21) −1.398(28) −1.395(28) −1.236(32) −1.230(32)
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Table 9 Values of the
expansion coefficient k2 at
c = 0.3

L kw
2 kc

2 kws
2 kcs

2 kwt
2 kct

2

10 −2.134(23) −2.229(26) −2.582(31) −2.765(33) −1.695(33) −1.706(37)

12 −2.036(25) −2.097(27) −2.502(34) −2.618(36) −1.580(37) −1.587(40)

14 −2.036(28) −2.084(30) −2.469(36) −2.555(38) −1.611(41) −1.624(44)

16 −1.999(30) −2.034(31) −2.427(38) −2.488(40) −1.580(45) −1.589(47)

18 −1.944(33) −1.969(34) −2.385(42) −2.433(43) −1.511(49) −1.514(50)

20 −1.919(35) −1.939(36) −2.349(44) −2.388(45) −1.498(52) −1.500(54)

24 −1.889(36) −1.905(37) −2.267(48) −2.294(48) −1.518(54) −1.524(55)

28 −1.912(40) −1.924(40) −2.337(51) −2.357(51) −1.497(60) −1.500(60)

32 −1.770(40) −1.778(40) −2.222(51) −2.238(51) −1.327(60) −1.328(61)

40 −1.794(45) −1.800(46) −2.229(58) −2.239(58) −1.368(68) −1.370(69)

Table 10 Values of the
expansion coefficient k2 at
c = 0.4

L kw
2 kc

2 kws
2 kcs

2 kwt
2 kct

2

10 −3.118(41) −3.417(45) −4.908(56) −5.384(59) −1.468(58) −1.605(63)

12 −3.039(45) −3.248(47) −4.858(61) −5.183(63) −1.361(64) −1.463(67)

14 −3.164(50) −3.321(52) −4.950(67) −5.189(70) −1.511(70) −1.594(73)

16 −3.124(53) −3.241(55) −4.863(71) −5.041(73) −1.52(8) −1.58(8)

18 −3.054(58) −3.142(59) −4.82(8) −4.96(8) −1.42(8) −1.46(8)

20 −3.106(61) −3.179(63) −4.88(8) −4.99(8) −1.47(9) −1.50(9)

24 −3.080(62) −3.131(63) −4.75(8) −4.83(8) −1.54(9) −1.56(9)

28 −3.125(69) −3.163(70) −4.89(9) −4.95(9) −1.49(10) −1.51(10)

32 −2.996(70) −3.025(71) −4.79(9) −4.84(9) −1.33(10) −1.35(10)

40 −3.06(8) −3.08(8) −4.77(10) −4.79(10) −1.49(11) −1.50(12)
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