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Abstract

Combinations of common germline low-maoderate susceptibility alleles may be
responsible for some of the 90% of ovarian cancer (OC) cases not explained by

known risk genes. These alleles may also affect survival of OC patients.

The effects of 34 tagging single nucleotide polymorphisms (tSNPs) from candidate
oncogenes (BRAF, ERBB2, KRAS, NMI and PIK3CA) and 63 tSNPs from
“functionally” relevant genes (AIFM2, AKTIP, AXIN2, CASP5, FILIP1L, RBBPS,
RGC32, RUVBL1 and STAG3) on the risk and survival of OC sufferers were evaluated
with ~1,800 cases and 3,045 controls. Associations were found between disease risk
and NMI rs11683487 (P-gominant=0.004) and RUVBL 1 rs13063604 (P-treng=0.0192).
These associations were not independently validated with additional samples,
however, they remained significant when the results from both stages of genotyping
were combined (P<0.05). Global tests of association with OC risk were significant
for BRAF, ERBB2, CASP5 and RUVBL1 (P-gi0ba<0.05). However, there was no
evidence of an excess of significant associations from 340 SNPs investigated with

the admixture maximum likelihood test (P-eng=0.068).

BRAF, FILIP1L, KRAS, RBBP8 and RUVBL1 were a so associated with the survival
of al OC cases (P<0.05). When analysis was restricted to the 4 main histological
subtypes of OC, additional associations were identified. Although these results are
of particular interest, they were based on relatively small numbers of samples and

have not been corrected for multiple testing, therefore they should be treated with



caution. The results from the secondary objective of the project, to evaluate whole
genome amplification (WGA) of DNA and SNP multiplex platforms, are also

described.

To conclude, associations were identified between candidate oncogenes and
functionally relevant genes on the survival and susceptibility of ovarian cancer. The
performance of WGA DNA on SNP multiplex genotyping platforms highlighted the
importance of comparing WGA DNA with corresponding gDNA in order to

ascertain quality of genotyping on the platform.
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1.1: Background

Ovarian cancer is the sixth most common cancer in women worldwide, but the
initiation, progression and metastasis of the diseaseis still poorly understood (Parkin
et al. 2005). The global incidence of ovarian cancer is approximately 205,000 per
year and the death rateis 125,000 ayear. Ovarian cancer is more common in
Northern Europe, North America and other devel oped areas of the world (Parkin et
al. 2005, Sankaranarayanan and Ferlay 2006). Africaand Asia have the lowest
incidence of the disease (Parkin et al. 2005). The cumulative lifetime risk of ovarian
cancer in the general population is 1% by the age of 70 years, but the risk is higher in
individuals with afamily history of breast or ovarian cancer (Sharmaet al. 2001).
Individuals with an affected first degree relative have a 3.1% chance of developing
ovarian cancer (Stratton et al. 1998). Aside from age, family history is the strongest

known risk factor for ovarian cancer (Ramus et al. 2007).

1.2: Symptoms and diagnosis of ovarian cancer

Although there are some symptoms associated with ovarian cancer, these symptoms
are usualy vague and non-distinct from other conditions such asirritable bowel
syndrome. This can lead to adelay in diagnosing and treating ovarian cancer.
Symptoms of ovarian cancer include a conspicuous abdominal mass, vaginal
bleeding unrelated with menstruation, distended and hard abdomen, and abdominal

pain (Lurie et al. 2009).
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Recently, the “risk of malignancy index” (RMI) has been developed in order to pre-
clinically assess an individual’ s risk of cancer, before they are referred to a
gynaecological oncology clinician, if necessary. In ovarian cancer, the combined
results of blood CA-125 levels (the molecular biomarker of ovarian and other
cancers), menopausal status and transvaginal ultrasound results are used to estimate a
woman'’srisk of disease before referral to a gynaecological oncologist

(http://info.cancerresearchuk.org/cancerstats/types/ovary/symptoms/ ?a=5441).

Definitive diagnosis of ovarian cancer is through histological examination of a

suspected tumour.

1.3: Histological patholoqy of ovarian cancer

Ovarian cancer can occur in the ovarian surface epithelium, germ cells or stroma.
Approximately 90% of ovarian cancer cases are of epithelial origin and of these 90%
are malignant carcinomas (Auersperg et al. 2001, Weiss et al. 1977). There are three
categories of epithelial ovarian cancer: benign cystadenomas, borderline epithelia
ovarian cancer and invasive carcinomas (Scully 1999). Epithelial neoplasms are
believed to arise from the ovarian surface epithelium, benign epithelial inclusion
cysts and cyst-adenomas (Cheng et al. 2004), or in rare cases, from ovarian
endometrial foci. Thereisalso atheory proposing that some cases of ovarian cancer

initiate from the fallopian tube (Dubeau 2008).

1.3.1: Histological subtypes

There are severa histological subtypes of invasive epithelial ovarian cancer. The

histological classification of ovarian cancer isreviewed in Kaku et al. (2003) and
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Christie and Oehler (2006). These include serous adenocarcinoma, mucinous
adenocarcinoma, endometrioid adenocarcinoma and clear cell carcinoma
(McCluggage 2008). The serous histological subtype of ovarian cancer is the most
common subtype, occurring in approximately 50% of malignant cases (Koonings et
al. 1989; Seidman et al. 2004). Kooning et al found that there were differencesin
the age distributions of histological subtypes. Thereis conflicting data on whether
the mucinous or the endometrioid is the second most common histological subtype.
Seidman et al found that the frequencies of endometrioid, mucinous and clear cell
ovarian cancer were 6.8%, 6% and 10%, respectively, from a sample of 220 cases
(Seildman et al. 2004). However, Kooning et al established from 180 patients that
the frequencies of endometrioid, mucinous and clear cell histological subtypes were
11%, 9% and 4%, respectively. Each histological subtype has a different underlying
pathogenesis and “natural behaviour” in terms of disease progression. However, it
has been shown that there is an element of subjectivity in the pathological typing of

some samples (M cCluggage 2008).

The differences in the underlying pathogenesis and behaviour of the tumours have
led to the suggestion that the histological subtypes of ovarian cancer are different
diseases, rather than different forms of the same disease. This suggestion is
supported by the distinct molecular changes found in the different histol ogical
subtypes of ovarian cancer. KRAS mutations are predominantly found in mucinous
tumours. However, aterations of PTEN and CTNNBL are found in low grade
endometrioid carcinomas; and BRCA1, BRCA2, TGFBR2 and HNF1B are associated
with the clear cell subtype. The serous subtype can be separated into low and high

grade carcinomas, which correlate with different molecular changes. Whilst
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mutations in TP53, BRCA1 and BRCA2 are associated with high grade serous
carcinomas, mutations in BRAF and KRAS are found in low grade serous tumours

(Christie and Oehler 2006).

1.3.2: Stages of ovarian cancer

Staging of ovarian tumours is the definitive method of confirming ovarian cancer
diagnosis. Staging ovarian cancer involves a pathological examination of the size of
the tumour and whether the tumour has spread. The Fédération Internationale de
Gynécologie et d'Obstétrique (FIGO) staging system is commonly used for this
purpose. There are four major stages of ovarian cancer, and within each stage there
are 3 sub-groups, except stage 1V. In stage | (early stage) ovarian cancer the tumour
is confined to either or both ovaries. Stage Il comprises of tumours in one or both
ovaries with pelvic extension. Stage |11 involves ovarian tumour(s) with
microscopically confirmed peritoneal metastases outside of the pelvis and or regional
lymph node metastases. Stage IV, the most advanced, involves distant metastases

(http://info.cancerresearchuk.org/cancerstats/types/ovary/symptoms/?a=5441).

1.3.3: Grading of ovarian cancer

The grade of an ovarian tumour is based on the appearance of the cellsunder a
microscope. There are 3 grades given to tumours, grade 1 (low-grade) contains well-
differentiated cells, which look similar to normal cells. Grade 1 cells are slow-
growing and are unlikely to spread. Grade 2 cells are moderately differentiated and
appear more abnormal than the low grade cells. Grade 3 cells are poorly

differentiated and fast-growing, with a high likelihood of spreading.
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The stage, grade and histologica subtype of the tumour are used for diagnostic
purposes and to provide a prognosis. The pathologica information is also used to

evaluate the most appropriate treatment to use.

1.4: Treatment and survival of ovarian cancer patients

The primary treatment for the vast majority of ovarian cancer is surgical removal of
the tumour. However, the full course of treatment is based on the type of ovarian
cancer and also the stage of the tumour. Patients with borderline or low grade stage |
tumours are likely to only require surgery, while those with stages 11 or I11 usually
have surgery, followed by adjuvant, platinum-based combination
chemotherapy(Cancer Research UK

http://www.cancerhelp.org.uk/hel p/default.asp?page=3084). Patients with stage IV

ovarian tumours tend to require more aggressive treatment, if the patient is well
enough. Treatment of stage IV tumours typically involves shrinking the tumour with
chemotherapy before and after debulking surgery. Radiotherapy isalso used, in
some cases, to relieve symptoms

(http://www.cancerhel p.org.uk/hel p/defaul t.asp?page=3084).

Thefive-year survival rate for ovarian cancer is between 20-30%, which is not
different from around 30 years ago, and overall, 60% of ovarian cancer sufferersdie
from their disease (Vanderhyden et al. 2003). The relatively unvarying mortality
rate for ovarian cancer over the past 30 years is a sharp contrast to the mortality rates
of breast and cervical cancer over the same time period (see Figure 1.1). Thus,

although the mortality rates of breast and cervical cancers were greater than that of
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ovarian cancer in 1971, there have been consistent and significant reductions in the
mortality rates for breast and cervical cancers since 1990 and 1976, respectively
(Figure 1.1). Asaconsequence of these reductions, the mortality rate of cervical
cancer has been less than ovarian cancer since 1988, and in the year 2003 the rate for
cervical cancer was approximately 5 deaths per 100,000 patients compared with 12

per 100,000 for ovarian cancer.
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20
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Year of death

Figure 1.1: Trend of mortality rates for ovarian, breast and cervical cancer (1971-

2003)

Engel and colleagues found 10-year survival rates between 32 and 34% for their
ovarian cancer study participants, who were Caucasians from Germany. They aso
reported that despite improvementsin the treatment of the disease and better survival
of patients with FIGO stages | and I1; the same did not apply to those with FIGO
stages I11-1V, and overall, there was no significant increase in the survival rate of

ovarian cancer sufferers (Engel et al. 2002).
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The pathological stage of ovarian tumours at diagnosis has the strongest effect on
survival. Patientswith late stage (FIGO Il or 1V) tumours have lower survival
probabilities and thus worse prognosis, than those with early stage disease. The 5-
year survival rate for ovarian cancer diagnosed in the early stagesis greater than
70%. However, only 20% of ovarian cancer sufferers are diagnosed with early stage
disease. In contrast, the 5-year survival rate reduces to approximately 15% for late
stage disease with distant metastases, which affects a third of patients diagnosed
(Cancer Research UK

http://info.cancerresearchuk.org/cancerstats/types/ovary/survival/). Ovarian cancer

isnormally diagnosed when the disease is at an advanced stage, at which point, the
prognosisis poor. This contributes to the high mortality from the disease. The age
of the patient at diagnosisis aso a determinant of survival. Older patients have
poorer prognosis, compared with younger patients. However, this could be due to

younger patients, despite their illness, being generally healthier than older patients.

1.5: Risk and protective factors of epithelial ovarian cancer

Aside from age, family history is the strongest risk factor for ovarian cancer (Amos
and Struewing 1993). In families with affected individuals, the risk is conferred by
the inheritance of a germline mutation. Other risk factors for ovarian cancer include
early menarche, late menopause, infertility, nulliparity and low parity (Hildreth et al.
1981; Mori et al. 1988; DePasguale et al. 1998). Age has the strongest impact on the
risk of ovarian cancer; as age increases, so does the risk of the disease. Greater than
80% (5,506 out of 6,596) of new ovarian cancer cases diagnosed in the UK in 2006

were at least 50 years old (Cancer Research UK). The age distribution of new
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ovarian cancer cases in the UK are shown in Figure 1.2. Many of these other risk
factors are aresult of continuous ovulation, which encompasses early menarche, late

menopause, nulliparity and low parity.
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Figure 1.2: Age-distribution of new ovarian cancer casesin 2006 (UK)

N=6,596

There is conflicting evidence for the association between talcum powder use and
ovarian cancer risk. Some studies have found that talcum powder use is associated
with amoderate increase in ovarian cancer risk (Cramer et al. 1999, Gertig et al.
2000, Mills et al. 2004), but meta-anal yses have not found a statistically significant
association (Gross and Berg 1995, Huncharek et al. 2003). Studies of menopausal
women on hormone replacement therapy have found that there is an increased risk of
ovarian cancer in women who use oestrogen only treatment for more than 10 years,
but the mechanisms through which the tumours arise are unknown (Folsom et al.

2004, Lacey et al. 2002, Rodriguez et al. 2001). Furthermore, thereisalso
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conflicting data on whether factors such as consumption of acohol, coffee, calcium,
lactose, fibre or smoking increase susceptibility to ovarian cancer (Mori et al. 1988;

Whittemore et al. 1988; Cramer 1989).

Use of the oral contraceptive pill is known to be a protective factor against the
development of ovarian cancer (Casagrande et al. 1979; Franceschi et al. 1991). The
ora contraceptive pill prevents ovulation by mimicking the levels of hormones
normally present during pregnancy. Other factors such as high parity, increased
duration of breast feeding, hysterectomy and tubal ligation have also been associated
with reduced risk of the disease (Hildreth et al. 1981; Cramer et al. 1983;

Whittemore et al. 1992; Hankinson et al. 1993).

1.6: Incessant ovulation and ovarian cancer

The ovarian surface epithelium is a monolayer of cells which covers the outside of
the ovary (Vanderhyden et al. 2003) and ovarian cancer is believed to ariseasa
result of the continuous rupturing and mitotic repairing of the ovarian surface
epithelium throughout awoman'’slife (Auersperg et al. 2001). Humans and
chickens are two of very few animals known to spontaneously develop ovarian
cancer. Fathallawasthe first person to suggest a connection between incessant

ovulation and ovarian cancer in women and hens (Fathalla 1971).

Every time mitosis occurs, thereisarisk of DNA mutation. During ovulation, a
follicle ruptures, releasing an ovum from the ovary. The ruptured follicleis

subsequently awound, which must be repaired by mitosis. This knowledge
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combined with the fact that every time mitosis occursthereisarisk of DNA
mutation, suggests a mechanism for the development of neoplasm in the ovaries. It
has been proposed that the constant rupturing and repairing of the wounds on the
ovarian surface throughout awoman’s reproductive life contributes to the lifetime

risk of ovarian cancer.

Ovarian cancer is primarily seen in perimenopausal and postmenopausal women.
Greater than 90% of ovarian cancer cases are seen in women who are over 40 years
old and the average age at which women in the general population are diagnosed is
60 years, and 50 years for familial cases (Holschneider and Berek 2000). This and
other ovarian cancer risk factors, such as high parity, oral contraception use, support
the incessant ovulation theory for the mechanism through which the disease arises

(Casagrande et al. 1979).

1.7: Animal models of ovarian cancer

Little is known about the initiation, progression and metastasis of ovarian cancer
despite research using ascites, primary ovarian tumour cell lines and animal models.
Two varieties of animal models are used: those which spontaneously develop
ovarian cancer (such as hens, some strains of mice, Wistar and Sprague-Dawley rats)
and those which can be induced to devel op ovarian cancer (sheep, guineapig,
rabbits) (Vanderhyden et al. 2003). Animal models used in ovarian cancer research
are reviewed by Vanderhyden et al. (2003). Anima models have been useful in
elucidating; the mechanism through which ovulation occurs, how inclusion cysts

develop and the affects of steroidsin vivo, but some of the results are conflicting,

31



Chapter 1: Introduction

and the disease is still poorly understood.
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Figure 1.3: Accumulation of mutations leading cancer devel opment

(Figure adapted from (Alberts 1994))

32



Chapter 1: Introduction

1.8: Genetics of epithelial ovarian cancer

Although the genetics of the initiation, progression and metastasis of ovarian cancer
are poorly characterised, the general development of cancer is better understood.
Normal cells are believed to transform into neoplastic cells after the acquisition of
several mutations. Figure 1.3 shows the schematic progression of atumour from a
single mutated cell to aclump of mutated cells in a process known as clonal
evolution (Alberts 1994). The mutation of some genes such as BRCA1, BRCA2 and
TP53 have been proposed to lead to genomic instability, where the rate of gene
mutation is accelerated due to the loss of genomic integrity and also the loss of a
cell’s ability to regulate normal cellular processes. The single mutated cell must
have a mutation that givesit agrowth advantage over the surrounding cells. The
successive proliferation of the mutated cell and its daughter cells tend to lead to
additional mutations. The clones with mutations for a growth advantage are

continuously selected for and may become malignant.

Although the acquisition of mutationsis essentia for tumour development, the
accumulation of mutations is not enough to cause cancer. A cell with the
prerequisite genetic changes for cancer must be able to: evade apoptosis and the
host’ s immune system; either have an increased rate of cell proliferation, or a
decreased rate of cell death; become insensitive to internal and external inhibitory
signals (i.e. cell-to-cell contact inhibition, anti-growth signals); become self
sufficient in growth signals and either prevent cell differentiation; or promote cell
de-differentiation (Boon 1993, Hanahan and Weinberg 2000). Angiogenesis must
also occur in order for atumour mass to get sufficient nutrients to grow beyond a
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critical size. Ovarian cancer and other malignancies occur as aresult of the
accumulation of genetic alterations and favouring environment for tumour growth.
Two groups of genes which are implicated in ovarian cancer development are

oncogenes and tumour SUPPressor genes.

1.8.1: Oncogenes

Proto-oncogenes are essential in the normal functioning of cells, particularly in the
regulation of cell division, proliferation, survival, motility and apoptosis. In adults,
proto-oncogenes respond to stimuli from wound sites to repair the damage by
stimulating growth factors. Oncogenes are mutated forms of proto-oncogenes.
Some activating mutations can be within coding regions or regulatory elements.
Proto-oncogenes can a so be transformed by amplification of the region. Chemical
carcinogens, ionising radiation, errorsin DNA replication and faulty DNA damage
repair can also cause the activating mutations (Balmain et al. 2003). Mutated
oncogenes may still be able to elevate growth factor production and stimulate cell
mitosis, but the activity may be poorly regulated, and this lack of regulation can lead
to the transformation of normal cellsinto tumour cells (Hogdall et al. 2003a, Rhim
1988). Proto-oncogenes primarily have a dominant effect on cells, therefore the
mutation of asingle copy of the geneis sufficient for the gene to become an

oncogene (Aunoble et al. 2000).

A number of oncogenes have been implicated in the development of ovarian cancer.
These oncogenes include AKT2, BCL2, BRAF, CDKN2A, MYC, CSF1R, CTNNBL,

EGFR, ERBB2, FGF3, HRAS, KRAS, MDM2 and PIK3CA.
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BCL2, which islocated on chromosome 18g21.3, isinvolved in inhibiting apoptosis
(White and Gilmore 1996). BCL2 has been found to be over-expressed in 39% of

ovarian tumours (Baekelandt et al. 1999).

The v-raf murine sarcoma viral oncogene homologue B1 (BRAF) is a proto-
oncogene located on chromosome 7g34. The gene encodes a 84.4kDa protein,
which acts as an effecter downstream of KRAS in the RAS-RAF-
mitogen/extracellular signal-regulated kinase (MEK)-extracellular signal regulated
kinase (ERK), and mitogen-activated protein kinase (MAPK) pathway. This
pathway is critical in the transduction of cell growth signals from the cytoplasm into
the nucleus (Russell and McCluggage 2004). Over-expression of BRAF has been
found in ovarian, aswell as avariety of other cancers, including melanomas,
colorectal and thyroid cancer (Sieben et al. 2004). Mutationsin BRAF in ovarian
cancer have been reported to be as high as 36% (Sieben et al. 2004). However,
according to the Catalogue Of Somatic Mutations In Cancer (COSMIC), a database
from the Sanger Institute which catal ogues mutations reported in ovarian and other
malignancies, BRAF is one of the most mutated genes in ovarian cancer, with a

frequency of 12% (www.sanger.ac.uk/genetics/ CGP/cosmic/). Activating mutations

of BRAF are more common in early stage ovarian cancer. BRAF mutations are

predominantly found in tumours of the low grade serous histological subtype (Ho et
al. 2001, Sieben et al. 2004). Mutations in BRAF have previously been shown to be
associated with poor survival in patients diagnosed with papillary thyroid cancer and

colon cancer (Abubaker et al. 2007, Samowitz et al. 2005).
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The v-Ki-ras2 Kirsten rat sarcomavira oncogene homologue (KRAS) is located on
chromosome 12p12.1. The proto-oncogene encodes a 21.6 kDa protein, whichis
upstream of BRAF in the RAS-RAF-MEK-ERK-MAP kinase pathway (Russell and
McCluggage 2004). Mutations in one of three RA S proto-oncogenes (KRAS, HRAS
or NRAS), which result in the genes becoming activated are found in approximately
25% of human cancers (Gemignani et al. 2003). KRAS like BRAF, isone of the
most mutated genes found in ovarian cancer tumours and cell lines, with a frequency
of 15% (Forbes et al. 2006). Codons 12 and 13 of the oncogene appear to be
mutation “hotspots’. Mutations in KRAS are predominantly found in mucinous
histological subtype of ovarian cancer (50-68%), however mutations in codons 12
and 13 have also been observed in some non-mucinous ovarian cancers (Cuatrecasas
et al. 1997, Cuatrecasas et al. 1998, Gemignani et al. 2003). Like BRAF, KRAS
mutations tend to be detected in stage 1 tumours (Gemignani et al. 2003, Ho et al.
2001, Sieben et al. 2004). Furthermore, somatic alterations in KRAS have been
associated with poor surviva in patients with colorectal, lung and pancreatic cancers

(De Roock et al. 2007, Kim et al. 2008, Lievre et al. 2006).

CDKNZ2A isacdl cycle control gene on chromosome 9p21.3. CDKN2A induces cell
cycle arrest at G1 and G2/M checkpoints. CDKN2A is mutated in 10% of ovarian

tumours and cell lines (www.sanger.ac.uk/genetics/ CGP/cosmic/).

CTNNBL islocated on chromosome 3p22-p21.3 and isinvolved in cell proliferation.
This gene encodes B-catenin, which is a member of the Wnt signal transduction
pathway. Approximately 30% of endometrioid ovarian carcinomas have CTNNB1

mutations. It has been demonstrated that the p-catenin is normally degraded by
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APC. However, mutant forms are resistant to the degradation, and thus accumul ate
in the cytoplasm. B-catenin may form complexes with transcription factors such as
TCF/Lef-1, which trang ocates into the nucleus and activates transcription of genes,
such as MYC, CCND1 (also known as cyclin D1), C-JUN and FRA-1 (Christie and

Oehler 2006, Schlosshauer et al. 2002).

The v-erb-b2 erythroblastic leukaemia viral oncogene homologue 2 (ERBB2), also
known as human epidermal growth factor receptor-2 (HER-2) and
neuro/glioblastoma derived oncogene homologue (NEU) is a proto-oncogene located
on chromosome 17g21.1. The ERBB2 proto-oncogene encodes a transmembrane
protein, which acts as a growth factor receptor and is involved in cell proliferation
and cell differentiation (Wu et al. 2004). The over-expression of ERBB2 is believed
to cause the transcriptional activation of genesinvolved in cell proliferation
(Aunoble et al. 2000). Ovarian, breast, prostate, lung, gastrointestinal, kidney, liver
and bladder cancers have been shown to over-express ERBB2 (Wu et al. 2004). For
ovarian cancer, between 20-30% of stage |11 and IV tumours, primary tumour cells
and cell lines over-express ERBB2 (Hellstrom et al. 2001). Protein expression using
antibody staining on a subset of ovarian tumours from the MALOVA study showed
that 39% of the carcinomas over-expressed ERBB2 (Hogdall et al. 2003). These
findings are indicative of atumour growth advantage when ERBB2 is over-
expressed (Hellstrom et al. 2001). The variationsin ERBB2 expression in the
MALOVA study correlated with survival; where over-expression of ERBB2 was
associated with poor clinical outcome (Hogdall et al. 2003). It has also been found
that ovarian cancer cases homozygous for a polymorphism in ERBB2, 1655V, which

results in the production of the valine amino acid instead of isoleucine, have a
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shorter survival period compared with the common homozygotes (who produce the
isoleucine amino acid) (Pinto et al. 2005). Associations between ERBB2 over-
expression in tumours and survival have aso been reported for breast and colon

cancers (Fritz et al. 2005).

The catalytic Class IA p110-alpha subunit of phosphatidylinositol 3-kinase (PIK3),
which is known as PIK3CA islocated on chromosome 3926.3. This oncogeneisa
lipid kinase, which isinvolved in the regulation of cell proliferation, adhesion
transformation, survival, apoptosis, and motility (Cantley 2002, Fruman et al. 1998,
Voliniaet al. 1994). There are two “hot spots” in which mutations in PIK3CA
cluster — exons 9 and 20. Exon 9 contains the sequence for the helical domain, and
exon 20 encodes the kinase domain. Mutations in these “hot spots’ of the gene have
been found in primary tumours and cell lines of cancers such as ovary, breast, lung,
brain, colon and stomach (Muller et al. 2007). Shayesteh et al. initially identified
the over-expression of PIK3CA in 7 out of 9 ovarian carcinomacell lines. Thisover-
expression correlated with fluorescent in situ hybridisation (FISH) data, which
showed that PIK3CA was amplified in approximately 58% of the primary ovarian
tumours (Shayesteh et al. 1999). Therole of PIK3CA in tumour progression is
reviewed in (Roymans and Slegers 2001, Samuels and Ericson 2006). In addition,
mutations in the gene or over-expression of the gene may be correlated with worse
clinical outcome in patients with ovarian, breast, thyroid, lung and colon cancer

(Abubaker et al. 2007, Kato et al. 2007, Li et al. 2006, Woenckhaus et al. 2007).

MYC is atranscription factor which has amagjor role in neoplastic transformation.

MYC over-expression caused by gene amplification induces uncontrolled hyper-
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proliferation and occursin approximately 30% of epithelial ovarian cancers
(Aunoble et al. 2000). Some of the oncogenes and tumour suppressor genes

implicated in ovarian cancer are shownin Table 1.1.

1.8.2: Tumour suppressor genes

Tumour suppressor genes (TSGs) are responsible for the inhibition of cell
proliferation. The inactivation of a TSG resultsin a decrease in the expression of the
TSG, which may lead to neoplastic growth. It has been proposed that there are two
categories of TSGs. gatekeepers and caretakers. Gatekeepers are genes which act
directly to regulate cell proliferation (Levitt and Hickson 2002). The retinoblastoma
(RB1) and adenomatous polyposis coli (APC) genes are gatekeepers. The normal
RBL1 protein represses cell proliferation and also regulates transcription (Classon and
Harlow 2002). Loss of function mutationsin both copies of RB1 may result in a
mutated form of the protein being produced, which isincapable of performing its
normal function. Mutations in the RB1 gene can lead to retinoblastoma,
osteosarcoma and small-cell lung cancer (Taya1997). APC isbelieved to inhibit the
[-catenin protein, which isinvolved in the regulation of cell signal transduction,
growth and adhesion (Fearnhead et al. 2002). The loss of these functions can lead to
cells devel oping the anchorage independent characteristic of cancer cells and
unregulated cell proliferation. Mutationsin APC may lead to familial adenomatous

polyposis coli and sporadic colon cancer (Seitz et al. 2003).
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Table 1.1: Oncogenes and tumour suppressor genes involved in ovarian cancer

development
Gene ‘ Chromosome | Function | M utations (%)
Oncogenes

Regulation of cell proliferation. AKT isamajor

AKT2 19913.2 mediator of survival signalsthat protect cells 17*
from undergoing apoptosis.
Acts as an ubiquitin ligase promoting

BCL2 12g15 proteasome dependent degradation of p53. 39*
Transcriptional target of p53.
Involved in the transduction of mitogenic

BRAF 7q34 signals from the cell membrane to the nucleus. 12
Induces cell cycle arrest at G1 and G2/M
checkpoints, blocking them from
phosphorylating RB1 and preventing exit from

CDKN2A | 9p21.3 GL1 phase of the cell cycle. P16-INK4a could 10
act as a negative regulator of normal cells
proliferation.

MYC 8024.21 Transcription factor. Involved in regulation of 30%
gene expression.
Receptor. CSFAR activation by CSF1 resultsin

CS1R 5qg32 increased growth, proliferation and 4
differentiation.

ERBB? 17q11.2-g12, Receptor tyrosine kinase. Transmembrane 1

17921.1 receptor.
Involved in the transduction of mitogenic
Q

KRAS 12p12.1 signals from the cell membrane to the nucleus. 15

PIK3CA 30263 ?gnal transduction. Activated by growth 8
actors.

Tumour suppressor genes

Transcription factor. Plays essential rolein

BRCA1 17921 DNA repair. Needed for cell arrest after DNA 3
damage.
Transcription factor. Involved in DNA double

BRCA2 13g12.3 strand break repair and homologous 2
recombination.
A phosphatase that negatively regulates the

PTEN 10g23.31 AKT/PKB pathway. Involved in cell cycle 8
progression and cell survival.

P53 17p13.1 Transcription factor. Induces cell growth 8
arrest/apoptosis.
Antagonist of the Wnt signalling pathway.

APC 5qg21-g22 Involved in cell migration, cell adhesion, 9
transcriptional activation, and apoptosis.

RB1 13q14.2 Negatlye .regul ator of the cell cycle. Regulates 10
transcription.

* over-expressed/amplified.
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Caretaker tumour suppressor genes, such as BRCAL, BRCA2 and TP53, encode
proteins which are involved in the regulation of DNA replication, gene transcription,
DNA repair or cell cycle checkpoints. All of these processes help maintain the
integrity of the genome (Levitt and Hickson 2002). The BRCA1, BRCA2 and TP53
tumour suppressors are important in ovarian and breast cancers. BRCA1 and BRCA2
have many functions within the cell, which include DNA damage repair, DNA
recombination, transcription and cell cycle checkpoint regulation (Venkitaraman
2002). Mutationsin BRCA1 and BRCAZ2 can lead to the accumul ation of mutations
within a cell because of the loss of the appropriate DNA repair mechanism. This
allows cells containing mutations to progress through cell cycle checkpoints. The
BRCAL and BRCAZ2 genes are very important in familial cases of breast and ovarian
cancer, and their expression is reduced in some sporadic cancers, however mutations
in these genes are relatively low (3% and 2%, respectively) when all ovarian cancers

are considered (www.sanger.ac.uk/genetics/ CGP/cosmic/).

PTEN is mutated in 8% of ovarian tumours

(www.sanger.ac.uk/genetics/CGP/cosmic/). The TSG islocated on chromosome

10g23.3, which encodes a phosphatase protein that inhibits the AKT/PKB signal
transduction pathway. The proteinisinvolved in cell cycle progression and cell
survival. The expression of the gene can lead to cell cycle arrest, apoptosis and a

reduction of cell motility (Christie and Oehler 2006).

The TP53 proteinis crucia for transcription, DNA repair, cell cycle control and
apoptosis (French et al. 2001, Hullaet al. 2001). TP53 is one of the most often

mutated genes in human cancer — over 50% of sporadic tumours have an alteration in
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the TP53 gene (www-p53.iarc.fr). Twenty-eight per cent of ovarian cancers contain

TP53 mutations (www.sanger.ac.uk/genetics CGP/cosmic/). TP53 is also the causal

gene of Li-Fraumeni syndrome, which is characterised by an increased susceptibility
to cancers. Mutations in TP53 are predominantly found in the DNA binding domain
of the gene, which disrupts the ability of the protein to bind DNA and activate

transcription (Iwakuma et al. 2005).

1.8.3: Epithdial ovarian cancer and inheritance

Meta-analyses of case-control and cohort studies has demonstrated that an individual
with an affected first degree relative has a 3% risk of developing ovarian cancer
(Stratton et al. 1998). Thisvalue is greater than the risk for awoman in the general
popul ation devel oping ovarian cancer (1%). Since twins, both monozygotic and
dizygotic, generaly share the same environment in utero and after birth, twin studies
enabl e the estimation of the overall contribution of inherited genesto the
development of cancers. Monozygotic twins are genetically identical, and dizygotic

twins share approximately 50% of their segregating genes.

Twins who are concordant for a cancer have atumour of the same anatomical site. It
can be said that genetics plays an important role in the development of cancer if the
proportion of monozygotic twins concordant for a cancer is greater than that of
dizygotic twins. A twin study published in 2000 compared the concordance of
cancer in monozygotic and dizygotic twins. They found that genetic factors made a
major contribution to susceptibility of cancers such as breast, stomach, lung,
colorectal and prostate as well as ovarian cancer. From Lichtenstein’s study, the

heritability of ovarian cancer was estimated to be 22% (Lichtenstein et al. 2000).
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Approximately 5-10% of ovarian cancer cases are inherited. Familial ovarian cancer
is subdivided into three categories: (i) site specific ovarian cancer, (ii) breast and
ovarian cancer syndrome, and (iii) hereditary non-polyposis colorectal cancer
(HNPCC, aso known as Lynch Il syndrome) (Prat et al. 2005). Site-specific ovarian
cancer and inherited breast and ovarian cancer syndrome are deemed to be part of the
same disease syndrome spectrum because they are associated with germ-line BRCAL

and BRCA2 mutations (Prat et al. 2005).

Linkage analysis of breast and ovarian cancer families have shown that ovarian
cancer is caused by BRCA1 and BRCAZ in the majority (> 90%) of breast and
ovarian cancer syndrome families with more than 3 affected individuals. It has been
demonstrated that mutations in BRCAL or BRCA2 co-segregate with the disease
within families. Mutations in the DNA mismatch repair genes, MSH2, MLH1,
PMS1, PMS2 and MSH6/GTBP inherited from HNPCC families account for

approximately 10% of familial cases of ovarian cancer (Sharmaet al. 2001).

1.8.4: High risk/high penetrance genes

Mutations in some genes cause avery high risk of developing a cancer. These genes
are known as high risk susceptibility genes, and in cancer, most appear to have a
dominant effect on the development of the cancer. The inheritance of a mutated
form of the high risk gene resultsin a greater chance of developing the disease.
Normally, the Mendelian dominant mode of inheritance means that the inheritance of
one mutated copy of the causal gene is sufficient to cause the disease in the

offspring. In hereditary cancer, an affected individual usualy inherits a mutated
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copy of the gene (such as BRCA1 or BRCA2), thisis known as thefirst hit. The
second copy of the geneislost by another mechanism, such as somatic mutation,
loss of heterozygosity or methylation (the second hit) (Knudson 1971). These form
the basis of the two-hit hypothesis, which was proposed as a possible explanation of

the devel opment of cancer.

Familial cancers appear at an earlier onset because the affected individual s already
have a mutated gene (first hit), thereforeit is assumed that it requires lesstimeto
acquire the second hit compared with sporadic cases, who need to attain both hits
through somatic mutation. The dominant effects of genes on cancer development are
demonstrated by the adenomatous polyposis coli (APC) gene and familial
adenomatous polyposis (FAP) syndrome. FAP is characterised by the presence of
hundreds to thousands of polyps in the colon or rectum before 40 years of age. FAP
is caused by mutations in the APC gene. The children of FAP patients have a 50%
chance of inheriting the mutated gene. Colorectal tumours from FAP patients show
that in addition to the germline mutated copy of the APC gene, somatic mutation

results in the inactivation of the normal gene copy (Fearnhead et al. 2002).

1.8.5: Ovarian cancer and high susceptibility genes

A gene which confers increased susceptibility to ovarian cancer alone has not been
isolated. BRCA1 and BRCAZ are large genes which co-segregate with the majority
of hereditary breast and ovarian cancer. BRCA1 and BRCA2 were both mapped
through linkage analysis of families with breast and ovarian cancer syndrome.
BRCA1 isan 81.09 kb tumour suppressor gene which was mapped to chromosome

17912-21in 1994 (Miki et al. 1994). BRCAZ2 (84.19kb) was mapped to chromosome
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13912-13 in 1995 and the gene was identified on chromosome 13g12.3 in 1996
(Wooster et al. 1995). BRCA1 and BRCA2 consist of 24 and 28 exons, respectively,
and exon 11 from both genes constitute 60% of their coding DNA sequences (K ote-

Jarai and Eeles 1999).

These two genes account for approximately 45% of epithelial ovarian cancer familia
cases (Ramus et al. 2007). Most cases (approximately 90%) with greater than 3
first-degree relatives with ovarian cancer and breast cancer are due to BRCA1 and
BRCA2 mutations (Pharoah and Ponder 2002). However, there are some large
ovarian cancer families, which are not linked to BRCAL or BRCA2 (Ramus et al.
2007). Some of the remaining high penetrance familial cases are linked to mutations
in mismatch repair genes in hereditary non-polyposis colorectal cancer (HNPCC)
cases (Lakhani and Flanagan 2002). The mutations and linkage analysis studies are

reviewed in (Pharoah and Ponder 2002, Prat et al. 2005).

Although BRCA1 and BRCA2 germline mutations in breast cancer occur with equal
frequency, BRCA1 mutations are approximately four times more common than
BRCA2 mutations in ovarian cancer (Gayther et al. 1999). BRCA1 mutation carriers
from breast and ovarian cancer families have a greater than 40% lifetime risk of
ovarian cancer, and BRCA2 mutation carriers have a 10% risk of ovarian cancer.

The fact that not all individuals with a BRCA1 or BRCA2 mutation develop ovarian
or breast cancer suggests that the genes are not fully penetrant — a mutation does not
correlate to the development of a malignancy in all mutation-carriers. The

incompl ete penetrance of BRCA1 and BRCA2 may be explained by the position of

the mutation within the genes, modifying genes and environmental factors, which
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affect the chances of a BRCAL and BRCA2 mutation carrier developing ovarian
cancer (Thompson and Easton 2002). It has been demonstrated that BRCAL and
BRCA2 mutation carriers on long term oral contraceptive pills have areduced risk of

ovarian cancer (Whittemore et al. 2004).

The diagnosis of cancer is at ayounger age for mutation carriers when compared
with non-carriers (Laplace-Marieze et al. 1999, Pharoah and Ponder 2002). Thereis
also evidence suggesting that BRCAL mutation carriers are more likely to have
serous adenocarcinoma histological subtype tumours than non-familial cases
(Lakhani and Flanagan 2002, Rubin et al. 1996). Furthermore, there isinconclusive
data for survival in BRCA1 and BRCA2 mutation carriers. Some studies have
reported that BRCA1 and BRCAZ2 carriers with ovarian cancer have better long-term
survival compared with non-carriers (Boyd et al. 2000; Chetrit et al. 2008).
However, others have demonstrated survival advantage, which were not statistically
significant between BRCA1 and BRCA2 mutation carriers and non-carriers (Pharoah

et al. 1999, Ramus et al. 2001).

To conclude, these high risk susceptibility genes account for approximately 10% of
all ovarian cancer cases (see Figure 1.4). This poses the important question — “isa
proportion of the remaining ovarian cancer cases attributable to moderate or low

penetrance genes?’
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O BRCA1
B BRCA2
E HNPCC
B All others

Figure 1.4: Contribution of high-risk susceptibility genes to epithelial ovarian
cancer

HNPCC - genes associated with hereditary non-polyposis colon cancer

1.8.6: Moderate/low penetrancerisk susceptibility

Statistical modelling using data from high-risk families and popul ation-based
ovarian cancer cases, have suggested that a dominant or recessive high susceptibility
gene predisposing to ovarian cancer is unlikely (Antoniou et al. 2000). There was no
significant difference between simulation of a hypothetical high risk gene with
BRCAL and BRCA2 and simulation without the hypothetical gene. The modelling
also showed that common genes with low penetrance or rare alleles with higher risks
were compatible with the observed data. However, the results from simulations of a
model of relatively common alleles with moderate penetrance were inconsistent with
the observed data. These suggest that some of the familial risks could be due to

environmental, or modifying genetic factors (Antoniou et al. 2000).
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1.8.7: Polygenic modél of ovarian cancer

Linkage and segregation anaysis of non-BRCA1 and -BRCA2 families and
epidemiological modelling have suggested that ovarian cancer may be a polygenic
disease. This polygenic theory is attractive because ovarian cancer, as with other
complex diseases, islikely to be influenced by many genes, as well as environmental
factors. The common variant: common disease hypothesisis correlated with the
polygenic model (Risch, N. and Merikangas 1996; Chakravarti 1999). The
hypothesi s proposes that some genetic variants, with moderate effects, become
common over time. These variants may predispose to common diseases and the
combinations of the variants may affect differencesin disease susceptibility (Pharoah

et al. 2004).

Inlight that it isunlikely that there is another high-risk ovarian cancer susceptibility
gene, and twin studies have suggested that genes are more important than shared
environment in ovarian cancer development, it is feasible that polymorphisms of
candidate genes may confer moderate- or low-penetrance susceptibility. This project
aims to evaluate the risks of ovarian cancer associated with common genetic

polymorphisms of candidate genes.

1.9: Linkage and case-control studies

Linkage analysis led to the discovery of mutationsin BRCA1 and BRCA2 in breast
and ovarian cancer syndrome families. However, linkage analysis and segregation
analyses have not been successful in identifying other high-risk ovarian cancer

susceptibility genes. Genetic susceptibility association studiesinvolve the
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comparison of the frequencies of candidate susceptibility variants in ovarian cancer
cases with matched (by age, ethnicity, area of residence, sometimes socio-ecomonic
status, parity, oral contraceptive use and other epidemiological factors depending on
the number of study participants), unaffected controls to ascertain whether there are
significant differences between cases and controls. Association studies can also be
used to identify genetic factors which may influence response to treatment or overall
survival from the disease. In survival association studies, comparisons are made
between the frequencies of the genetic variables of individuals still aive, and those

who have died, within a specified period of time.

As ovarian cancer has late onset and poor survival, there are insufficient numbers of
older members of pedigrees to perform associations with families. Thus, case-
controls association studies have greater statistical power than familial association
studies to detect ovarian cancer susceptibility variants with moderate effects.
Statistical power refersto the probability of rgjecting afase null hypothesis. As
statistical power increases, the likelihood of obtaining a false negative result (type Il
error) decreases, therefore increasing the chance of finding atrue association. Type |
error isthe regjection of the null hypothesis due to chance findings. For example, the
5% significance level suggests that thereisa5 in 100 probability of obtaining a

positive result by chance.

1.9.1: Single nucleotide polymor phisms

A single nucleotide polymorphism (SNP) isvariation at asingle basein a DNA
sequence, which occurs with a frequency of > 1% in the population. SNPswith

allele frequencies greater than 5% are called common polymorphisms. SNPs are the
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most abundant polymorphisms in humans, with approximately 10 million variantsin
the human genome (Sobrino et al. 2005). The vast majority of SNPs are bi-all€lic,
which means there are two variants for the particular SNP, with one copy inherited

from each parent (Doris 2002), see Figure 1.5.

T
ATGCATACATAGCT
TACGTATGTATCGA
—————————— Homozygous for A
I .
S SP (o a ATGCATACATAGCT Genotype: AA
heterozygous person) TACGTATGTATCGA
T
! e
T — T
Matemal | ATGCATACATAGCT ATGCATACATAGCT
chromosome”  TACGTATGTATCGA TACGTATGTATCGA Heterozygous for SNP
—_—— ey = Genotype: AG
Paternal ATGCATGCATAGCT ATGCATGCATAGCT
chromosome.  TACGTACGTATCGA TACGTACGTATCGA
[ 1 —
\ L ——
ATGCATGCATAGCT
TACGTACGTATCGA Homozygous for G
I
————————————— Genotype: GG
ATGCATGCATAGCT
TACGTACGTATCGA
|

Figure 1.5: A single nucleotide polymorphism and it’ s possible genotypes

Between 3-5% of the human genome encode proteins, therefore the majority of
SNPs are in non-coding regions of the genome, such as the introns of genes, between
genes or in regions without open reading frames. SNPs within coding regions of
genes are of particular interest because there is a greater chance that they may result
in avariation of the biological function of the protein either by altering the folding of
the protein, or the binding of the protein. A SNP can be coding or non-coding.

Coding SNPs are located in the exons of genes and can be transcribed into amino
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acids. Coding SNPs can be synonymous or non-synonymous. The adlelesof a
synonymous SNP result in the same amino acid being produced, due to the
redundancy of amino acid codons. However, non-synonymous SNPs result in
different amino acids being produced. These are known as missense SNPs. The
amino acids translated from missense SNPs may have different charges, which may
affect protein folding and binding, and subsequently the function of the protein.
Another type of non-synonymous SNP exists, nonsense SNPs — these result in one of
the alleles encoding a STOP codon, which may lead to atruncated protein being
produced, if at all. However, most nonsense SNPs are mutations rather than

polymorphisms.

SNPsin the untrandated regions (UTR) 5’ or 3' of genes are aso of interest. SNPs
inthe5 UTR may contain sequences involved in promoting translation initiation.
5 UTRs often contain binding sites for proteins which may influence mRNA
stability or trandation. SNPsin 3" UTR may also be part of sequences for binding

sitesfor proteinsinvolved in mMRNA stability or location of proteins within the cell.

Within a population, the frequencies of the alleles may be different; however the
proportions of the genotypes add up to one in a population in Hardy-Weinberg
equilibrium (HWE) (thisis discussed below). The more frequent aleleis known as
the common or mgjor alele, and the less frequent is the rare/minor alele. Asshown
in Figure 1.6, the allele frequencies of a SNP may be different within different

populations. These differencesin the allele frequencies between different
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populations highlight the importance of ascertaining the ethnicity of study

participants and stratifying populations during analysis.

BRCA1rs8070179 alleles BRCA1rs8070179 genotypes
0.034
Sub-Sahara Africa Sub-Sahara Africa -°°’
Japanese Japanese T-“ZZ [ A
]
A
o mp AG
Chinese Chinese ‘ 0444 [ GG
Caucasian Caucasian s
- A J

BRCA2r5206119 alleles

Sub-Sahara Africa Sub-Sahara Africa

Japanese Japanese £

;o -

Chinese Chinese

uCC
CcT
=TT

-

Caucasian Caucasian

Figure 1.6: Different alele and genotype frequencies in different popul ations

1.9.2: Hardy-Weinberg equilibrium

The Hardy-Weinberg principle states that allele and genotype frequencies at an
autosomal locus within an infinitely large population will reach equilibrium in a
single generation where there is random mating, and there are no selective pressures,
mutations, migration/emigration or random genetic drift or flow. The Hardy-
Weinberg method has been demonstrated to be robust when estimating the allele
frequencies of SNPs which are not “physiologically meaningful”, such asthe
polymorphisms which encode the ABO blood groups, enzymes and DNA markers

(Elston et al. 2002). The term “physiologically meaningful” refers to the fact that,
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for example, blood performs the same function, regardless of the ABO group. It
must be taken into consideration that despite the same function being performed,
there are differences which prevent the transfer of blood from an individual with
blood group A or B to a person whose blood group is O. The Hardy-Weinberg
method is robust despite the fact that the chances of any population being able to
meet all the conditions of the Hardy-Weinberg principle at any one time are very
small. HWE is extensively used because the statistical power of detecting deviation
from the HWE within large populationsis aso very small as aresult of minute

deviations (Chakraborty and Rao 1972; Elston et al. 2002).

If abi-allelic SNP is considered, where the common alleleis denoted by “A”, the
rare dlele by “a”, with allele frequencies p and g, respectively; when a population is
in HWE, the frequency of “A” isp; the frequency of “a’ isq, and p+g=1. The
Punnett square below shows how genotypes can be derived from parents

heterozygous at a SNP.

Punnett square for Hardy-Weinberg equilibrium (HWE)

Femal e gametes
A (p) a(a)
Male A (p) AA (p°) Aa (pa)
gametes a(g) Aa (pa) aa(q)

Therefore, if apopulation isin equilibrium, the frequencies the genotypes would be:

AA (common homozygotes) = |O2;
Aa (rare homozygotes) = a0
Aa (heterozygotes) = 2pq.
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1.9.3: Linkagedisequilibrium

Linkage disequilibrium (LD) is the non-random association of alleles at two or more
loci. Neighbouring SNPstend to bein LD — the SNPs are correlated with each
other. Theterm “tag” is sometimes used to describe the correlation between SNPs
with the same or similar minor allele frequencies (MAF). The correlation between
neighbouring SNPs makes it unnecessary to genotype all the SNPs within a gene or
chromosomal locusin order to test for association with disease. SNP tagging is
described in detail in section 1.9.8 on page 60. There are two main ways of
measuring LD between SNPs: disequilibrium coefficient (r?), and normalised
measure of Lewontin (D’). r?isameasure of the statistical correlation between two
loci. For example, at two bi-allelic SNP loci on the same chromosome, if the
common and rare alleles of the first locus are denoted as A and a, respectively, and
the alleles of the second locusis B and b. When r? is used to calculate the LD
between the alleles, the allele frequencies for A, a, B and b, are written as za, 7, 7
and 7, respectively, and the frequencies of the haplotypes (the combinations of the

aleles of thetwo loci) are wag, mab, Tas aNd 7y, Then

2 _ (7 pg _7TA7TB)2

AT TRy

r

(Pritchard and Przeworski 2001)

D’ isderived from D, which measures the deviation of the frequencies of alleles or
hapl otypes from the equilibrium state. Therefore, D is calculated by subtraction the
expected allele frequency from the observed frequency. For haplotype frequencies

D=rama-TAbTaB
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D issignificantly greater than O when thereis LD between aleles. D’ isthe absolute
ratio of D compared with its minimum value, when D<O, or its maximum value,
when D>0. D’ iscalculated by:

D

VT A7y

(Devlin and Risch 1995). When two loci arein complete LD, r’=1 and D'=1, and

D'=

both r? and D’ tends towards O as the degree of correlation decreases; “0”
corresponds to no LD/correlation. r? and D’ can be calculated in terms of each other

and allele frequencies, and r? can be calculated from D by the equation:

2 D*

TN Qg Ty,

(Hedrick and Kumar 2001). r?is more commonly used in genetic association studies
because it isinversely correlated to the sample size needed, given afixed genetic
effect. Therefore, the genotypes of a SNP can be predicted from a genotyped SNP
with an r*>0.8 correlation. An r*>0.8 suggests a>80% correlation between the

SNPs.

1.9.4: Thelnternational HapM ap Pr oj ect

The International HapMap Project records genetic variants, genotypes and
sequences of 30 sets of (2 parents and an adult child) trios of Y oruba people from
Ibadan, Nigeria; 30 trios of north and west European descent — from the Centre
d'Etude du Polymorphisme Humain (CEPH) research in the United States of
America; 45 unrelated individuals from Beijing, China; and 45 unrelated individuals
from Tokyo, Japan. Theresults are freely available to researchers and they may be
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used as areference for genetic association studies. The project aimsto identify and
record all differences and similarities within the subjects in the project

(www.hapmap.orq).

1.10: Association study approaches

The vast mgjority of association studies in ovarian cancer have been conducted on
candidate genes from pathways which have been implicated in neoplastic
transformation, such as mismatch repair, cell cycle control and oestrogen pathways
(Gayther et al. 2007, Goodman J. E. et al. 2000, Goodman M. T. et al. 2001b, Song
et al. 20063, Song et al. 2006b, Spurdle et al. 2000). Table 1.2 shows some

significant genetic association studies in ovarian cancer.

1.10.1: Functional SNP, candidate gene appr oach

Thefirst association studies in ovarian cancer were conducted on single nucleotide
polymorphisms (SNPs), with variants which result in different amino acids. It was
believed that association studies of these functional SNPs would be successful in
identifying ovarian cancer susceptibility genes. However, the approach was not as
successful as expected and resulted in the identification of an association with a
variant (131 allele of F31I) of STK-15, a putative oncogene (Dicioccio et al. 2004).
This approach was a so used in a study which found that the V108M polymorphism
of the catechol-O-methyltransferase (COMT) gene was not associated with ovarian

cancer risk (Goodman, J. E. et al. 2000).
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Table 1.2: Published susceptibility association studies on ovarian cancer (positive results)
Gene SNP No. No. controls OR (95% CI) P-value Study Population Reference
cases approach

P53 AT72Arg 51 30 4,16 0.0058 a Greek (Agorastos et al. 2004)

lle
CYP1AL | CYPIAL*3 | 117 202 6.08(3.73-10.95) | <I1x10°® a Turkey (Aktas et al. 2002)

va
BRCA2 N372H 1121 2643 1.36 (1.04-1.77) 0.03 a UK, Austrdia (Auranen et al. 2003)
XRCC2 R188H 1600 4241 0.3(0.1-0.9) 0.003 a SaK”CLaJSSaA”) (Denmark, | A ranen et al. 2005)
XRCC3 rsl799796 | 1600 4241 0.08 (0.7-0.9) 0.049 a Sf‘(“Cf‘JS'Si”) (Denmark, | A ranen et al. 2005)
GST G% I'\I" 1 293 219 1.54 (1.06-2.14) 0.025 a UK (Baxter et al. 2001)
PGR +331G/A 973 802 0.46 (0.09-0.97) - a White American, (Berchuck et al. 2004)

Australian
STK15 F31l 1821 2467 1.17 (1.02-1.35) 0.03 a Sf‘(”CLaJSSi”) (Benmark, | i cioccio et al. 2004)
MLH1 G>A nt-93 899 931 1.5(1.3-1.9) 5x10° a Canadian mixed (Harley et al. 2008)
TGFBRL TGFiRl 6| 1155 983 1,53 (1.07-2.17) 0.017 a 'Ljas'/{ Jamaica, UK, |y amani et al. 2003)
+331G/A . .

PgR (10805068 | 4% 534 1.68 (1.09-2.59) - a USA - mixed (Risch, H. A. et al. 2006)
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Gene SNP No. No. controls OR (95% CI) P-value Study Population Reference
cases approach

EPHX Tyrl13His 545 287 0.38 (0.17-0.87) - a Australia (Spurdle et al. 2001)

PGR V660L 987 1034 0.70 (0.57-0.85) - a White USA (Terry et al. 2005)

FSHR Thr307Ala | 202 266 2.60 (1.56-4.34) | <0.0005 a China (Yang et al. 2006)

FSHR Asn680Ser | 202 266 2.89(1.73-4.84) | <0.0005 a China (Yang et al. 2006)

BRCAL | Q356R 312 401 0.9 (0.5-1.4) 0.64 a Caucasian, African | \yenham et al. 2009)
American

CYP17 A2 200 241 1.86 (1.26-2.75)* 0.002 alb Caucasian (Garner et al. 2002)

CYP1B1 V432l 129 144 3.8 (1.2-11.4) 0.005 alb | White Asian, (Goodman, M. T. et al.
Hawaiian 20014a)

XRCC2 R188H 1600 4241 0.3(0.1-0.9) - b Caucasian (Denmark, | 5|\ anen et al. 2005)
UK, USA)

VDR 17975232 72 148 2.8 (1.2-7.0) 0.02 b USA Caucasian (Lurie et al. 2007)

VDR rs10735810 | 72 148 2.5(1.3-4.8) 0.04 b USA Caucasian (Lurie et al. 2007)

SOD2 Val-9aa 125 193 2.1 (1.1-4.0) 0.04 b USA - mixed (Olson et al. 2004)

VDR rs11568820 | 94 173 0.5 (0.3-0.9) 0.03 b USA Japanese Lurie et al. 2007)
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Gene SNP No. No. controls OR (95% CI) P-value Study Population Reference
cases approach

RB1 rs2854344 | 1514 2415 0.73 (0.61-0.89) 0.0009 blc Sf‘(”CLaJSSaA”) (Denmark, | s5ng et al. 2006b)

RB1 rs4151620 | 1514 2415 0.19 (0.07-0.53 0.00005 blc Sf‘(”CLaJSSaA”) (Denmark, | s5ng et al. 2006b)

SHMTL rs9900104 | 829 941 1.2 (1.0-1.4) 0.02 c USA Caucasian (Kelemen et al. 2008)

PMS2 rs7797466 | 1531 2570 1.17 (1.03-1.33) 0.013 c Sf‘(“Cf‘JS'Si”) (Denmark, 1 s5ng et al. 2006a)
Caucasian, African

CDKNIB | rs2066827 | 4526 6913 0.93 (0.87-0.995) 0.036 d American, Asian, (Gayther et al. 2007)
Hawaiian
Caucasian, African

CDKN2A | rs3731257 | 4526 6913 0.91 (0.85-0.98) 0.008 d American, Asian, (Gayther et al. 2007)
Hawaiian

PgR 1s1042838 | 7614 651" 1.17 (1.01-1.36) 0.036 d USA —mixed, UK, | peryce et al. 2008)
Denmark

AURKA rs2273535 | 4624 8113 1.12 (1.01-1.24) 0.03 d Sf‘(“CSSSaA” —Denmark, | pamus et al. 20084)

RB1 rs2854344 | 4624 8113 0.87 (0.76-0.98) 0.025 d Sf‘(“Cf‘JS'Si” —Denmark, | pamus et al. 20084)

i 19 Caucasian — Denmark, | (Song et al. 2009b)
9p22 rs3814113 | 4487 7021 0.82(0.79-0.86) | 5.1x 10 e UK. USA. Auralia

-; P-value not given; a: functional SNP, candidate gene; b: functional SNP, candidate pathway; c: tSNPs, candidate pathway; d: consortium; e: genome-wide, consortium;
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1.10.2: Functional SNP, candidate pathways appr oach

The functional SNP approach was then used on candidate genes from molecular
pathways which were believed to be involved in ovarian cancer development.
Auranen et al (2005) conducted an association study on genes (BRCA1, NBS1,
RAD51, RAD52, XRCC2 and XBCC3) involved in the DNA double strand break
repair pathways. They found evidence for a decrease in ovarian cancer risk with the
rare variants in XRCC2 and XRCC3 (R188H and rs1799796, respectively) (Auranen
et al. 2005). Associations between ovarian cancer risk and genesinvolved in steroid
hormone metabolism and catechol estrogen formation have al so been investigated.
Individuals who carried the leucine allele for the V432L polymorphism in CYP1B1

had an increased risk of ovarian cancer (Goodman, M. T. et al. 2001b).

1.10.3: Tagding SNPs, candidate pathways appr oach

The next SNP association study approach involved the use of tagging SNPs (tSNPs)
from candidate genes within a pathway. The tagging SNP approach takes advantage
of the LD between neighbouring SNPs. SNPsin complete LD (r’=1) are said to tag
each other. Therefore, the genotype of a SNP which is tagged by another can be
determined from the genotype of the tagging SNP (if they have the same minor allele
frequencies[MAF]). SNPswhich are in strong LD are inherited together, but their
polymorphisms may have different MAF. The pairwise correlation coeffiecient (rzp)
is the best way to measure how well a SNP tags another SNP. r?, takes into account
the loss of power incurred by using the tSNP as a marker, rather than as the causal
SNP. r% isameasure of how well a haplotype of tSNPstags asingle SNP that is

inefficiently tagged by single SNPs (Song et al. 2006a). The SNP whichis
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genotyped is known as the tagging SNP (tSNP). Figure 1.7 shows the principle of

tagging SNPs.

(@1 23 45 67 89 10 11 1213 1415 16 17 1819 2021 22 23 24 25
L o s e
(b)1 45 12 16 18 24
-‘—*—-I—.J—*-l—ﬁ-
()1 16
a—-l—.—h-l—-
(dy =2 8 16 23 25

——-—-—I—I—hl—u

Figure 1.7: Principles of tagaing SNPs

(a) This hypothetical gene contains 25 SNPs. (b) SNPs of the same colour are correlated, thus tag
each other, (c) therefore only 1 SNP needs to be genotyped to gain information about all the SNPs it
tags. (d) Therefore only 5 SNPs in the gene need to be genotyped in order to acquire information
about all 25 SNPsin the gene.

The correlation between two SNPs is measured by r’. Normally an r? of 0.8 is
chosen, which meansthereis at least 80% correlation between the tSNP and al the
SNPsit tags. This approach ensures that not all 10 million SNPs need to be
genotyped in order to ascertain the genotypes of each SNP. Only approximately
500,000 tSNPs need to be genotyped to gain information about the remaining 9.5

million variants. The tSNP may be a marker of the causative SNP. This approach
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was used to evaluate associations between MLH1, MLH3, MSH2, MSH6, PMSL and
PMS2 from the mismatch repair pathway and ovarian cancer. Therare aleles of
MSH6 (rs3136245) and MSH3 (rs6151662) were associated with a decrease in
ovarian cancer risk, and PMX2 (rs7797466) was associated with an increase in
ovarian cancer risk (Song et al. 2006a). This approach has also been used to identify
apositive association between avariant in SHMT1, a member of the one-carbon
transfer pathway, and an increase in ovarian cancer susceptibility (Kelemen et al.

2008).

1.10.4: Consortium approach

The consortia approach is currently the most popular strategy for genetic association
studies in ovarian cancer research. This approach allows staged genotyping designs
in amulti-centre collaboration. Theinitia stage is the genotyping of the tSNPs from
the candidate genes by a group or a small number of groups within a consortium.
Positive associations are genotyped by the remaining groups within the consortium
to validate or refute the findings of the initial stage of research. This approach gives

more statistical power to a study, reducing type | error.

The Ovarian Cancer Associations Consortium (OCAC) isamultinational consortium
which co-ordinates ovarian cancer research. The group ensures that research is not
duplicated unnecessarily and allows easy sharing of data. At present, the OCAC
consists of 20 groups, which have published a two-stage study on candidate genes
from the cell cycle control pathway (Gayther et al. 2007). In thefirst stage of the
study, 88 tSNPs in 13 genes were genotyped in three study populations (MALOVA,

SEARCH and GEOCS [previously FROC], aso known as Stanford) consisting of
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approximately 1,500 cases and 2,500 controls. There were 13 statistically significant
associations found between the variants and ovarian cancer. Approximately 50% of
the significant SNPs conferred an increased risk of ovarian cancer. Stage 2 of the
study involved the genotyping of the five most significant tSNPs from stage 1 on
approximately 2,000 cases and 3,200 controls by the remaining groups within the
OCAC. Thefive most significant tSNPs from stage 1 were not significant with the
stage 2 samples done. There were only significant associations between ovarian
cancer risk and the rare variants from CDKN2A (rs3731257) and CDKN1B
(rs2066827) SNPs when the data from stages 1 and 2 were pooled (Gayther et al.

2007).

The consortium approach has aso been used in other studies: seven best candidates
from publication (Ramus et al. 2008), progesterone receptor (Pearce et al. 2008).
These studies have highlighted the importance of validating resultsin larger studies.
The lack of replication of statistically significant associations independently in later
stages/studies suggests that the initial associations may have been chance findings.
The larger sample sizes from consortia also allow stratification of samples by
histology, race, grade, stage etc. for further analysis. Another advantage of this

approach is that negative results can also be confirmed with additional samples.

1.10.5: Genome-wide, consortium approach

Genome-wide association studies have proved to be a success in the identification of
genes which may be associated with ovarian, breast, colon and prostate cancer risks
(Easton et al. 2007, Song et al. 2009, Thomas et al. 2008, Y eager et al. 2007, Zanke

et al. 2007). In genome-wide association studies, the tagging SNP approach is used
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to genotype evenly distributed SNPs within the genome and eval uate the effect of the
genotyped tSNPs on disease risk. These studies tend to use a staged-design,

whereby highly significant associations are further assessed in succeeding stages
with additional studies. The datafrom the different stages are combined to increase

the statistical power of detecting associations.

Genome-wide association studies have also been used in the investigation of
susceptibility genesin other complex disorders such as diabetes and heart disease
(Cupples et al. 2007, Sladek et al. 2007). Some of the results from these studies
have been highly significant. In the breast cancer genome-wide association study, an
association was found between avariant in FGFR2 (afibroblast growth factor
receptor) and an increase in breast cancer risk, P=2x10"® (Easton et al. 2007).
Genome-wide association studies involve the genotyping of thousands of SNPs
throughout the human genome and performing association analyses on the SNPs

genotyped.

Recently, the OCAC has published results from genome-wide association studies of
ovarian cancer. The study also used the consortia approach in a 3-stage design. In
the first stage 507,094 SNPs were genotyped in 1,817 invasive epithelia ovarian
cancer cases and 2,353 unaffected controls. The 22,790 top ranked significantly
associated polymorphisms were genotyped in an additional 4,274 ovarian cancer
cases and 4,809 controls. Moreover, stage 3 involved genotyping the most
significant SNPs from stage 2 in a further 2,670 cases and 4,668 controls. The data
from all three stages were combined to increase the power of the study. Therare

allele of the most significant SNP, rs3814113, was associated with a reduced risk of
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ovarian cancer (combined stage 1-3 OR=0.82 (0.79-0.86), Pyeng = 5.1 x 10™) (Song

et al. 2009¢).

1.11: Survival analysis

Thereis substantial evidence showing that cancer patients have different responses
to the same treatment (M cGuire et al. 1996; Piccart et al. 2000), and chemotherapy
resistance remains avery important issue; chemotherapy resistance is reviewed by
(Lage and Denkert 2007). There have also been reports suggesting that
chemotherapy resistance may be affected by germline genetic variation (Marsh 2005,
Villafranca et al. 2001). These findingsindicate that it is feasible that genetic
polymorphisms may influence a patient’ s response to treatment, and thus survival
from the disease. The effects may be attributed to polymorphismsin genes encoding
drug targets, drug-metabolising enzymes and/or drug transporters (Pinto et al. 2005).
Molecular markers such as ERBB2 and TYMS have been identified for predicting
overal survival after diagnosis of cancer ERBB2-positive breast cancer, and serous
ovarian cancer (Hsu et al. 2004; Piccart-Gebhart et al. 2005; Romond et al. 2005).
Although there have been improvements in the response to adjuvant chemotherapy,
the mgjority of ovarian cancer patients go into remission, developing recurrent

disease. Some of these recurrent cases are drug-resistant (Bristow et al. 2002).

Differencesin survival of ovarian cancer patients have been found between BRCAL
and BRCA2 mutation carriers and non-mutation carriers (Chetrit et al. 2008, Tan et
al. 2008). There are aso publications, including findings from this project, on the

effects of common genetic polymorphisms from candidate genes in mismatch repair
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and cell cycle control pathways, and combinations of variants in the vascular
endothelial growth factor (EGF) gene (Hefler et al. 2007, Mann et al. 2008, Nagle et
al. 2007, Quaye et al. 2009, Quaye et al. 2008, Song et al. 2008). All of these
results suggest that it is feasible that common genetic variants may affect survival

from ovarian cancer.

Aswell as establishing associations between genetic polymorphisms and
susceptibility to devel oping a disease, association studies can also be used to identify
genetic variants that may influence survival from the disease. To do this, follow-up
dataisrequired to ascertain the vital statistics of the patients recruited into a study
over aperiod of time (usually over 10 years). Although participating patients may
die from other causes, such as heart failure, stroke etc, many are likely to die from
ovarian cancer. Itisalso likely that the sufferers would eventually die from the
disease, particularly because many cases are diagnosed in the advanced stages of

disease.

In survival analyses, the frequencies of genotypes are compared between the patients
which have, unfortunately, died and those still alive over atime period. Variants of
SNPs are said to be associated with survival if astatistically significant differenceis
observed between the frequencies of the genotypes/alleles within the groups of
survivors and those who die over the time period. Survival is measured by the
hazard ratio (HR), which essentially, is a measure of the risk of death, based on the
individual’ s genotype. Survival analyses using genetic polymorphisms as variables

have the potential of identifying genotypes which may predict a patient’s survival
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over aperiod of time. This has the potential of becoming a prognostic tool and may

also be used for identifying suitable individuals for targeted therapy.

Survival analysis may also be used to establish response to therapy or overall clinical
outcome. The former could potentially be used for targeted treatment, and the latter
for prognostic purposes. There are studies which have investigated and, in some
instances, identified associations between SNPs and response to trestment,

progression-free survival and overall clinical outcome.

Associations have been found between variants of genes such as ABCB1, ERCC1
and IL8 and response to treatment. ABCBL is atransporter protein, whichis
involved in multi-drug resistance. Associations have been found between variants of
ABCB1 in the tumour DNA of ovarian cancer cases and response to paclitaxel and
carboplatin (Green et al. 2008). Associations between progression-free survival and
ovarian cancer patients and polymorphisms of ABCBL1 in germline DNA have also
been reported (Johnatty et al. 2008). Similar associations have been observed
between ECCR1 and response to platinum-based treatment (with tumour and
germline DNA) and progression-free survival (Krivak et al. 2008). ECCRl isa
component of the nucleotide excision repair pathway. The geneisinvolved in the
repair of DNA lesions, such as those caused by ultraviolet light and electrophilic
compounds. Cisplatin, a platinum-based chemotherapy agent which is used to treat
many different types of cancer, including ovarian cancer, is an electrophilic
compound. The drug resultsin the cross-linking of DNA, which consequently

triggers the apoptosis pathway.
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Although the findings of these publications are of interest, the results should be
treated with caution since many of the findings are based on small numbers of
samples (<200) (Green et al. 2006; Kang et al. 2006; Saldivar et al. 2007; Green et
al. 2008; Schultheis et al. 2008; Steffensen et al. 2008). Some of the publications
reporting significant findings between a common polymorphism and response to

treatment or survival arelisted in Table 1.3 (page 69).

Survival association studies have also been conducted on the effect of common
polymorphism on overall survival from ovarian cancer (Dhar et al. 1999; Spurdle et
al. 2001; Hefler et al. 2003; Hogdall et al. 2003; Li et al. 2005; Pinto et al. 2005;
Beeghly et al. 2006; Gadducci et al. 2006; Green et al. 2006; Higashi et al. 2006;
Kang et al. 2006; Obata et al. 2006; Santos et al. 2006; Six et al. 2006; Hefler et al.
2007; Nagle et al. 2007a; Nagle et al. 2007b; Mann et al. 2008; Song et al. 2008),
with some statistically significant results (Dhar et al. 1999; Hefler et al. 2003;
Hogdall et al. 2003; Li et al. 2005; Pinto et al. 2005; Beeghly et al. 2006; Green et
al. 2006; Higashi et al. 2006; Obata et al. 2006; Santos et al. 2006; Six et al. 2006;
Nagle et al. 2007a; Nagle et al. 2007b; Mann et al. 2008; Song et al. 2008). Some of

these are shownin Table 1.3.
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Refer encel sour ce of

Gene SNP No. cases | HR/responserates P-value Treatment/ Population DNA
Responseto treatment
) AA* (19%); AT* Cyclophosphamide & USA: 45 Caucasian, 8 .
IL-8 T251A 53 (09%); vs TT+ (50%) | 0008 beecioUmeD i (Schultheis et al. 2008)
ERCC1 | Codon118SNP | 159 TT* (44%), CT* | () a5 Platinum-based Danish (Steffensen et al. 2008)
(41%), CC* (15%) ' '
ERCC1 Asnl18Asn 60 OR=0.17 (0.04-0.74) 0.018 Platinum-taxane Korean (Kang et al. 2006)°
Progr ession-free survival
(ccr, Cr) - Cyclophosphamide & USA: 45 Caucasian, 8 .
CXCR2 C+785T 53 7.4monthsvs (TT*)- |  0.026 : : ’ (Schultheis et al. 2008)
bevacizumab other
3.7 months
ABCB1 2677 G>TIA 914 0.7 (0.46-1.04) 0.039 Pac"taxde'of‘ et‘;i‘reﬁ"’p'a"”’ Australia (Johnatty et al. 2008)
ERCC1 C8092A 233 1.44 (1.06-1.94) 0.018 Paclitaxel & cisplatin | U Z14 CAUGSAY vk et al. 2008)
* . i
NG XPG 146 | (GG 83monthsvs | 4 Carboplatin USA: 135 Caucasian, 21| oy givar et al. 2007)
24.6 months other
Overall survival
ERCC1 C8092A 233 1.5 (1.07-2.09) 0018 | Cisplatin& paclitaxel | YN 2145?;@""”; B (Krivak et al. 2008)
Hapl otype of
634CIC, . .
VEFG 1154G/G 563 2.1(1.1-3.9) 0.02 Platinum-based Austria, Germany (Hefler et al. 2007)
_2578CIC)
TP53 codon 72 114 HR>1 0.011 Cisplatinum & paclitaxel Portugal (Santos et al. 2006)
PMS2 rs2228006 1473 0.84 (0.71-0.99) 0.04* Unknown Caucaggqng;k USA, (Mann et al. 2008)
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Refer encel sour ce of

Gene SNP No. cases | HR/responserates P-value Treatment/ Population DNA
rs3217933; 1,488 1.16 (1.03-1.31) 0.02 Caucasian UK. USA
CCND2 rs3217901; 1,489 1.14 (1.02-1.27) 0.024 Unknown DenmarI; ' (Song et al. 2008)
rs3217862 1,480 0.85 (0.73-1.00) 0.043
CCNE1 (3218038 1,489 1.39 (1.04-1.85) 0.033 Unknown Caucagzxaﬁ USA, (Song et al. 2008)
CYP17 5 UTR Cadlee 454 1.30(1.02- 1.68) 0.04 Platinum based Australian (Nagle et al. 2007a)
GSTP1 lle105val 448 0.77 (0.61-0.99) 0.04 Platinum based Australian (Nagle et al. 2007a)
VDR Fokl 101 0.18 (0.005-0.61) 0.006 Paclitaxel & carboplatin, Japan (Tamez et al. 2009)°

HR — hazard ratio; mo — months; § - based on tumour DNA; *Genotype; * No longer significant after adjusting for prognostic factors, however the effect became more

pronounced.
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1.12: The admixture maximum likelihood test

To date, there has been limited success in identifying germline variants associated
with ovarian cancer predisposition. Many of the statistically significant associations
are based on relatively small numbers of samples, where the statistical power to
detect true positivesisreduced. Furthermore, very few of the published results are
corrected for multiple testing. One possible reason for the lack of multiple testing
correction isthat thereis alack of agreement on the most suitable test to use,
because of the correlation between many of the polymorphisms evaluated within a
project. Thisincreasingly important issue has resulted in much discussion and
investigation in the most appropriate method for assessing and correcting for this

“experiment-wise” type | error.

The need for correction for experiment-wise type | error has led to a proposal of a
global null hypothesis of no associations between any of the genetic variants from a
project, and an aternative hypothesis that there are true positive significant
associations between the SNPs and disease risk. A number of methods have been
proposed with the aim of testing whether the null hypothesis can be regjected. The
simple Bonferroni correction for multiple testing only performed best when there
were only three statistically significant SNPs or 5% of the total number of SNPs

tested, whichever is smaller (Pharoah et al. 2007, Tyrer et al. 2006).

Some of the proposed methods for testing the global significance of association
studies include those described in (Hoh et al. 2001; Schaid et al. 2005), as well as
the improved Bonferroni procedure (Simes 1986), truncated product (Zaykin et al.
2002), ranked truncated product of P-values (Dudbridge and Koeleman 2003). The

71



Chapter 1: Introduction

admixture likelihood (AML) test is a method that was created in order to assess
whether there are statistically significant differences between the proportion of
significant SNPs from a group/sel ection genotyped, and that which would be

expected by chance (Tyrer et al. 2006).

The AML method has been tested against many of the tests currently available for
controlling for multiple testing over avariety of scenarios for the aternative
hypothesis, and it was found to have the same or improved statistical power than all
the other methods tested (rank truncated product, unrestricted maximum likelihood,
restricted space maximum likelihood, most significant SNP, Global 2, Best subset
¥?) ((Tyrer et al. 2006), (Pharoah et al. 2007)). The AML test has already been used
on genotyping data from breast cancer association studies. In the study, the 710
common polymorphisms of 117 candidate genes were evaluated with AML to
establish the global association between the variants and susceptibility to breast
cancer (Pharoah et al. 2007). Thetest found that although the effects of individual
SNPs are likely to be small, there were some variants which are associated with risk
of breast cancer (Pharoah et al. 2007). The AML method will be used to evaluate
whether a statistically significant proportion of SNPs were found to be associated
with ovarian cancer risk from genotyping data spanning the past few years, and the

effect size of these associ ations.

1.13: DNA amplification and genotyping platforms

Along with the evolution of the approaches used in genetic association studies of
ovarian cancer, there have been developments in genotyping platforms. Genotyping
platforms are used to ascertain the genotype of an individual. Although TagMan®
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and other single SNP genotyping platforms are still popular with research groups,
thereis an increasing need for multiplex genotyping platforms to be used. Multiplex
platforms enable the genotyping of more than one SNP in asinglereaction. The
multiplex levels currently available differ widely from 12-plex (up to 12 SNPs
genotyped in asingle reaction) up to 96-plexes and more. The advent of the chip
genotyping technology also alows thousands of SNPs to be genotyped in asingle
reaction. However, chip genotyping technology is only ever likely to be used for
genome-wide association studies or evaluation of whole chromosomes due to the
number of SNPs which can be analysed from a single reaction. The SNP multiplex
genotyping technique offers the potentia of reducing the time, amount of reagents

and money spent on genotyping, and in some instances, the quantity of DNA used.

1.13.1: Whole genome amplification

The number of SNPs genotyped has increased exponentialy as new approaches are
designed. This has highlighted the importance of addressing the issue of limited
amount of DNA from study individuals and the increasing number of SNPs from
candidate genes which need to be genotyped. Whole genome amplification of DNA
samples and SNP multiplex genotyping platforms are possible solutions for these
problems. Whole genome amplification (WGA) methods are used to replicate the
genome of an individual by varying magnitudes, depending on the method used.
The WGA technique offers the potential of producing limitless quantities of DNA
from research participants - if the re-amplification claims of some WGA products
areto be believed. However there have been conflicting reports of the accuracy of

the replication of some WGA methods.
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Many research groups have reported complete, or near compl ete (>99%)
concordance between non-amplified genomic material and the corresponding, whole
genome-amplified DNA (Jasmine et al. 2008, Pan et al. 2008, Sorensen et al. 2007).
However, others have found discordances between the non-amplified and amplified
DNA (Pinard et al. 2006, Talseth-Palmer et al. 2008). These discordances have
predominantly been aresult of preferential amplification of some alleles at
heterozygous loci. The fidelity of the replication of the DNA needs to be assessed
due to the small effects expected in low-moderate risk models. There are two major
types of WGA techniques, polymerase chain reaction (PCR)-based, and multiple

strand displacement.

1.13.1.1. PCR-based whole genome amplification

PCR-based WGA involves the amplification of the genome, using the PCR process,
with primers which will result in the amplification of the whole genome, rather than
small regions. There are several PCR-based WGA methods commercially available;
Primer Extension Preamplification (PEP, (Zhang et al. 1992)), GenomePlex (Sigma-
Aldrich®) and Degenerate Oligonucleotide PCR (DOP-PCR, (Telenius et al. 1992))
are such methods. PEP uses 15-mer random primers and the Tag polymerase, at low
annealing temperature (to ensure low stringency binding to genomic sites). DOP-
PCR isfairly similar to PEP, however there are some essential differences. Semi-
degenerate oligonucleotide primers (for example ACG TGC GAG NNN NNN NNN
GCT CAT) and ahigher PCR annealing temperature is utilised in the DOP-PCR
process. The Tag polymeraseisaso used in DOP-PCR. Taqg is known to produce
short fragments of amplified material (approximately 3 kilobases [kb]), whichis

suitable for SNP genotyping studies, however, not for al DNA analysis protocols.
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GenomePlex® is also a PCR-based WGA method, however, the genomic DNA is
converted to an OmniPlex® Library. The OmniPlex Library consists of fragmented
DNA, whose flanking regions have been converted to PCR-amplifiable units. The
library is amplified with universal primers. The method is said to generate 5-10ug of
amplified DNA from nanogram quantities of template DNA (Sigma-Aldrich). The

GenomePlex processisillustrated in Figure 1.8.

Genomic DNA

Partial Fragmentation
L J

Conversion to PCR-
Amplifiable Units
L 4

OmniPlex Library

PCR with Universal Primers

&

r

Amplified
OmniPlex
Library

Figure 1.8: Schematic diagram of whole genome amplification with GenomePlex

1.13.1.2. Multiple displacement amplification

Whole genome amplification methods such as GenomiPhi™ (GE Healthcare, UK)
and REPLI-g™ (Qiagen, UK) come under the multiple displacement amplification

category of WGA. Both methods are based on the processillustrated in Figure 1.9.
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Binding of primersto template DNA
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formed DNA
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Figure 1.9: Schematic diagram of multiple strand displacement

GenomiPhi and REPL I-g use random hexamers and the bacteriophage Phi29 (¢29)
DNA polymerase, which has 3’ to 5 exonuclease proofreading activity. The ¢29
polymerase does not detach from the template during the amplification process, and
isthus, capable of producing amplified DNA that is up to 100kb in length. The
major differences between GenomiPhi and REPLI-g are that the former uses heat to
denature the template DNA, and the latter uses alkaline denaturation. The methods

also differ in the quantities of amplified material produced. REPLI-g, apparently
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generates up to 45ug of amplified DNA material, however GenomiPhi generates

between 4-7ug of product.

1.13.2: SNP multiplex genotyping platfor ms

SNP multiplex genotyping methods alow the use of relatively low concentrations of
DNA for the genotyping of more than one polymorphism, usually greater than 12
SNPs, in singlereactions. The use of SNP multiplex genotyping platforms should
drastically reduce the time required for |aboratory work and the amount of DNA
used for the number of SNPs per reaction. There are various ways in which the
genotypes of multiple polymorphisms can be ascertained from a single reaction.

These include fluorescence, mass and micro-arrays.

There are increasing numbers of multiplex genotyping platforms, such as SNPstream
(microarray), SNPlex (fluorescence and mass, see Figure 1.10), OpenArray
(microarray), IPLEX (mass), [llumina GoldenPath (microarray) and Fluidigm
(microarray). Figure 1.10 shows the binding of a PCR product of a fluorescently
tagged allele and a mass modifier which will enable the distinction of different SNPs
in aSNPlex reaction. The ZipCode sequence ensures the binding of the PCR
product of interest to the complementary ZipChute sequence on the hybridisation
plate before the genotype is determined. The performances of the multiplex
genotyping platforms need to be assessed to determine the suitability of the available
DNA. Therefore, the performance of DNA amplified with four WGA methods:
Genomeplex, GenomiPhi, primer extension PCR (PEP) and REPLI-g will be
investigated on TagMan and SNP multiplex genotyping platforms (iPLEX,

OpenArray and SNPlex).
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Figure 1.10: The binding of biotinylated amplicons to streptavidin-coated SNPlex
hybridisation plate

Probes and linkers are linked together by phosphorylation. Blue- genome equivalent regions, red-
universal reverse priming site, green-universal PCR priming site. After this step, the unbound probes,
and bottom parts of linkers are enzymatically digested. The ligated probes and linkers are PCR
amplified with biotin tagged universal primers. The products from this are denatured, the supernatant,
containing the linker-probe, are removed. Leaving the biotinylated amplicons to bind with
streptavidin-coated plates.

1.14: Project aims

The aims of this project are:
1. Todetermineif thereis an effect of common variants and haplotypes of

candidate oncogenes on the risk of invasive epithelia ovarian cancer.

2. Todetermineif thereis an effect of common variants and haplotypes of
functional candidate genes (associated with neoplastic suppression of ovarian

cancer cell lines) on predisposition to ovarian cancer.
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. To use the admixture maximum likelihood test to assessif a significant
number of associations have been found from ovarian cancer association

studies.

. To evauate the effect of tSNPs and hapl otypes from candidate oncogenes on

all-cause mortality of ovarian cancer patients.

. Toinvestigate the effect of tSNPs and haplotypes in a series of “functional”

candidates identified from in vitro studies on all-cause survival of ovarian

cancer patients.

. To evaluate the ease of use and quality of whole genome amplification

methods.

. To evaluate the performance of non-amplified and whole amplified DNA on

multiplex SNP genotyping platforms.
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Chapter 2. Materialsand Methods

2.1: Introduction

This chapter will describe the materials and methods used in this research. All the
samples anal ysed were Caucasians who were either healthy, unaffected controls or

individuals diagnosed with invasive epithelia ovarian cancer.

2.1.1: Ethics Statement

The collection and genetic analysis of all samples was approved by local review
boards and ethics committees, and informed written consent was obtained from all

study participants.

2.2: Study individuals

Thirteen population-based case control ovarian cancer sample series were used in the
analyses, totalling 6,245 cases and 8,787 controls. These studies comprised of
residents of the United Kingdom (SEARCH and UKOPS); Australia (AUS);
Denmark (MALOVA); Germany (GER, BAVARIA), Poland (POCS, also known as
JAC), and the United States of America (GEOCS, USC, DOVE, HOPE, NCOCS and
HAWAII). Although many of the sample sets included non-Caucasian individuals,
only the genotypes of non-Hispanic Caucasian samples of North European descent
were analysed. This decision was taken because there are some significant
differencesin the allele frequencies of some SNPs within different ethnicities, and
some variants are polymorphic in some ethnicities, but not others. The analysis of

genotypes of only Caucasian minimises population stratification. Thiswas discussed
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in chapter 1. Follow-up datawas only available for the GEOCS, MALOVA,
SEARCH and UKOPS studies. The DOVE, HOPE, AUSTRALIA, JAC, BAV,
GER, HAW and NCOCS studies were only used in the validation of statistically

significant findings from stage 1 genotyping results.

The Genetic Epidemiology Ovarian Cancer Study (GEOCS, formerly known as
FROC and Stanford) comprised of 327 cases and 429 controls. The cases were
invasive epithelial ovarian cancer patients aged between 20 and 64 years, who were
diagnosed with the disease between 1997-2002, from Alameda, Contra Costa, Marin,
San Francisco, San Mateo and Santa Clara of the Greater Bay Area of San Francisco,
USA. The affected individuals were all prevalent cases, therefore, they were
recruited into the study after the cancer was diagnosed. The controls were recruited
into the GEOCS study through random-digit dial identification from the same towns
and cities of the Greater Bay Area Cancer Registry San Francisco asthe cases. The
controls were age (5-year categories) and ethnicity matched with the cases. The
DNA from the study participants was extracted from blood samples and exfoliated
buccal cells from mouthwash rinses with the Puregene Kit (Gentra Systems,
Minneapolis, MN), (Lum and Le Marchand 1998). The vita status information of
the GEOCS cases was obtained from the Greater Bay Cancer Registry, San
Francisco twice during the study. The most current follow-up occurred in 2004.
Computerised hospital tumour registry data or medical records were used for
updated vital status by cancer registry staff. The state's death index was also used to
follow the vital status of patients. There was alag time of approximately 18 months

with the state’ s death index. 147 deaths have occurred to date (45%). The majority
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of the genotyping was on DNA that had been whole genome amplified with primer

extension pre-amplification (PEP).

The Malignant Ovarian Cancer prediction study (MALOVA) contained 1221
controls and 446 cases from Denmark. The criteriafor cases were women aged
between 30 and 80 years, who were diagnosed with an invasive epithelial ovarian
tumour over the December 1994 and May 1999 time period. Cases were recruited
from 18 hospitals from the municipalities of Copenhagen, Frederiksborg, and
counties within Copenhagen, Frederiksborg, Roskilde, Western Sealand, Storstram,
Funen, Southern Jutland and Northern Jutland. All the cases were recruited into the
study at surgery before diagnosis of the disease, therefore they are said to be incident
cases. Follow-up to establish the patients’ vital statistics occurred until 2003.
Individuals living in Denmark have a unique personal identification number which
was used to identify patients who were alive, aswell as those who had died or
emigrated. The cause of death of those who died during follow-up was determined
by matching medical records with a Danish Hospital Reference System. Currently,
there have been 301 (67%) deaths. Unaffected controls were obtained from the
genera female population within the same areas as the cases and the age range was
also 30-80 years. Genomic DNA from both cases and controls were extracted from
pre-operative blood samples by Whatman International Ltd with chloroform protocol

(Ely, UK).

The UK SEARCH ovarian cancer study (SEARCH), consisted of 1,215cases of
ovarian cancer and 1,229 controls from an ongoing, population-based ovarian cancer

case-control study covering the regions served by the East Angliaand West
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Midlands cancer registriesin the UK. The cases were younger than 70 years from
East Anglia, West Midlands and Trent regions of England. Prevalent cases
diagnosed between 1991 and 1998, of which there were 284 participants, were
recruited for the study. The incident cases were recruited from 1998 onwards.
Active follow-up was conducted at 3 and 5 years after diagnosis, and then at 5-year
intervals by the Eastern and West Midlands cancer registries. The latest update was
on 31" August 2007. Follow-up involved searching hospital information systems for
recent visits and contacting general practitioners for the patient’ s vital statusif a
recent visit had not occurred. There were 230 (27%) deaths at the time of analysis.
Healthy individuals, aged between 45 and 74 years, from the EPIC-Norfolk
constituent of the European Prospective Investigation of Cancer (EPIC) cohort of
25,000 people were recruited as controls. The controls were from the same
geographical region as the cases. The blood DNA of study participants was

extracted by Whatman International Ltd.

The participants of the United Kingdom Ovarian Population Study (UKOPS) were
recruited from the UK. There were 691 cases and 1,051 controls. The cases were
recruited from 10 maor Gynaecological Oncology National Health Service centres
in England (University College London Hospital, East Kent, Gateshead, Southend,
Bristol, Middlesbrough, Manchester and Portsmouth), Wales (North Wales) and
Northern Ireland (Belfast), from 2006 onwards. The UKOPS controls, aged 50-76
years from the general population, were apparently healthy postmenopausal females
who were recruited into the United Kingdom Collaborative Trial of Ovarian Cancer
Screening (UKCTOCS) study. However, 75 of the cases were identified through the

UKCTOCS study. DNA was extracted with the chloroform extraction method
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(Sambrook and Russell 2001). The control women were followed up for cancers
through the Office of National Statistics. The most current follow-up for the
UKCTOCS samples was June 2008, and in August 2008 for the remaining samples.
Survival datawas available for 401 of the cases at the time of analysis. Of these
cases, 148 were diagnosed with ovarian cancer after recruitment into the study, and
the remaining were prevalent cases. At the time of anaysis, there were 83 deaths

(21%) out of the 391 cases with complete follow-up data.

The University of Southern California/lLos Angeles County case-control studies of
ovarian cancer (USC), from the USA, consisted of 434 ovarian cancer cases and 584
healthy controls, aged between 18-84 years. Recruitment began in 1993 and is
ongoing as part of alarger study, known as the Los Angeles County Case-Control
Studies of Ovarian Cancer (LAC-CCOC). The cases were identified from the
Surveillance, Epidemiology, and End Results (SEER) registry. Unaffected study
participants (controls) were matched with the cases in terms of age, race, socio-
economic status, parity, oral contraceptive use, geographical residence and other
ovarian cancer risk factors, however only non-Hispanic Whites were analysed in this
study. DNA was extracted from blood lymphocytes with the chloroform extraction
(Sambrook and Russell 2001) process or the Qiagen Blood Kit (Qiagen, Chatsworth,
CA, USA). The DNA samples were sent to Molecular Staging, Inc. (New Haven,
CT, USA) for whole genome amplification with RepliG™., There was no follow-up

for this study.



Table 2.1: Ovarian cancer case-control populations used in study
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Cases Controls
Population* Age Part.™ . Age Part.™ .
Total (years) | rate (%) Ascertainment Total (years) | rate (%) Ascertainment
Incident cases diagnosed 1994 -1999 Random selection of females from the
MALOVA
(Denmark) 446 35-79 79 from municipalities of Copenhagen & 1,221 35-79 67 computerized Central Population
Frederiksberg & surrounding counties. Register.
Cases from East Anglian, West Midlands
! ' Selected from the EPIC-Norfolk cohort
SE(ﬁi(;H gg‘& 2174 | 69 & Tremt ;38;0{9%??;%”§é_fggj£t 1229 | 3977 | 84 | of 25000 individuals based in the same
cases diagnosed 1998 on\’/vards. geographical regions as the cases.
Consecutive cases diagnosed from 1997- e e
: Random-digit dial identification from
(?LEJ(S)AC)S 327 23-64 75 2002&” ?Srt?mesralg?:{;rc?:cgancer 429 19-66 75 study area. Frequency matched to cases
cgistry ' for race/ethnicity & 5 year age group.
USC Rapid case ascertainment through Los Neighbourhood recruited controls,
(USA) 197 18-84 73 Angeles Cancer Surveillance program 224 21-78 73 frequency matched to cases for age &
from 1999-2004. ethnicity from 1993-2004.
Cases from 10 gynaecological oncology Qgﬁqaéner}t:gn??ﬁethﬁﬁ;ilm%nojgﬂﬂ
UKOPS | 506 | 3585 | 86 National Health Service centres 55 | 5076 | o7 artcipeting in the UKCTOCS
(UK) (185)° throughout the UK, from January 2006 | (467)° '|3| e(? fg trough th
onwards Followed up for cancers through the
) Office of National Statistics.
Cases diagnosed with primary invasive rITTr e
DOVE ovarian cancer between 2002-2005 from Random-digit dial identification from
584 35-74 75 . 716 35-74 82 study area. Frequency matched to cases
(UsA) a 13-county area of Western Washington o
Sate for race/ethnicity & 5 year age group.
. Random selected woman from
BAV 228 | 25-81 No?t%ﬁgaégvasreid Stéfrymféﬁ % E&?ﬁ?ﬁnném 234 | 24-86 Erlangen, Northern Bavaria, Germany
(Germany) & Y, Recruitment from May 2002 to August

from May 2002 to August 2008.

2008.
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Cases Controls
Population* Age Part.™ . Age Part.™ .
Total (years) | rate (%) Ascertainment Total (years) | rate (%) Ascertainment
Incident cases diagnosed 1993 -1996 Two controls per case matched by age
GER from two study areasin southern and recruitment area were selected from
(Germany) 218 21-74 58 Germany and identified through frequent 416 23-75 51 arandom sample of the general female
Y monitoring of hospitals serving the study population in study area selected using
areas. population registries
Cases diagnosed with epithelial ovarian Healthy women from the general
POCS i cancer in five gynaecological oncology i population were randomly selected and
(Poland) 603 23-82 80 centres in Poland; between 1998 and 593 24-74 90 matched to cases with the same year of
2006. birth and geographical region.
. . -~ Controlsidentified from same
NCOCS Identified from 48 counties within .
(USA) 622 20-74 70 Northern California 747 22-75 63 region. Frequency matched to cases for
age and race.
Randomly selected from Hawaii
HAWAII i Rapid case ascertainment through : Department of Health Annual
(UsA) 0 18-84 66 Hawaii Tumour Registry. 158 27-86 69 Survey of the representatives
households.
Comprised of Cancer registries of New Randomly selected from
AUS South Wales and Victoria. Recruited Commonwealth electoral roll.
(Austraia) 768 19-79 84 through surgical treatment centres 1122 ) 1913 4 Frequency matched for age and
throughout Australia. geographical region.
Variable source including physician Identified in same regions as cases.
HOPE i offices cancer registries & pathology i Frequency matched for age & ethnicity.
(UsA) 276 25-80 69 databases from counties of Western PA 636 25-80 81 All participants undergo home
Eastern OH & Western NY. interviews.
Total 6,245 8,787

§ - additional samples used in validation of functional candidates results. Part.™ - participation.
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Diseases of the Ovary and their Evaluation (DOVE) study, aso fromthe USA, is
part of the SEER registry. There were 584 cases aged between 35-74 years,
diagnosed with primary invasive ovarian cancer between 2002 and 2005 from a
thirteen-county area of western Washington State. Controls were selected through
random digit dialling. There were 716 controls who were matched to the age groups,
race/ethnicity and area of residence as the cases. DNA of the cases and controls was

isolated from blood or buccal cell samples.

The Hormones and ovarian cancer prediction study (HOPE) from the USA, recruited
study participants from the counties of western Pennsylvania, eastern Ohio and
western New York. The 276 invasive epithelial ovarian cancer cases were identified
from avariety of sources including physicians' offices, cancer registries and
pathology databases from the study region. Both cases and controls were individuals
aged between 25 and 80 years. The 636 controls were recruited from the same cities
asthe cases. The controls were frequency matched for age. The case-control

popul ation sets are summarised in Table 2.1.

The Australian (AUS) case-control samples series comprised of sample collections
from the Australian Cancer Study (ACS) and the Australian Ovarian Cancer Study
(AOCS). Therewere atota of 768 cases and 1,122 controls when the two studies
were amalgamated. The controls of both studies were randomly selected from
Commonwealth electoral roll, and age- and geographical region-matched to the
cases. The controls were aged between 19 and 81 at the time of recruitment.
Participant recruitment occurred between 2002 and 2005 for ACS, and 2002-2006

for AOCS.
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The cases from the ACS study were recruited from Cancer registries of New South
Wales and Victoria; and the cases from the AOCS study were recruited from surgical
treatment centres in Australia, and also cancer registries of Queensland, and South

and West Australia. Age range of cases was 23-80 years.

The 603 invasive epithelial ovarian cancer cases from the Poland Ovarian Cancer
Study (POCYS), previously known as JAC, were recruited between 1998 and 2006,
from five gynaecological oncology centres from four cities (Szczecin, Opole, Poznan
and Rzeszéw) in Poland. There was a participation rate of 80% among the ovarian
cancer sufferers approached. The controls (593 individuals) of the study comprised
of randomly selected healthy women from the general population. There was a 90%
participation rate among the controls. The controls were matched to the cases by

geographical region of residence and the year of birth.

The BAVARIA study consisted of 234 unaffected controls and 228 women
diagnosed with invasive epithelial ovarian cancer. The patients were recruited from
May 2002 to August 2008 from hospitals within Erlangen, of Northern Bavaria,
Germany. The apparently healthy controls, aged between 24 and 86 years, were
randomly selected from the same geographical area as the cases in the same time

period.

German Ovarian cancer study (GER) consisted of 416 healthy controls (58%
participation rate), and 218 individuals with ovarian cancer. Incident cases of

ovarian cancer, diagnosed in individuals aged between 20 and 75 years were
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recruited from two study areas in southern Germany. The cases were recruited from
1993 to 1996 through frequent monitoring of hospitals within the study areas.
Controls from the general population were matched, 2:1 with the cases, for age and

area of residence. The controls were randomly selected from population registries.

Confirmed cases of primary epithelial ovarian cancer from the Hawaii Ovarian
Cancer Study (HAWAII) were recruited from residents of Oahu. The 70 affected
participants were diagnosed between 1 June 1993 and 30 June 1999 in the major
hospitals of Oahu. The 158 controls of the study comprised of unaffected women
from the genera population of Oahu. Controls were selected from lists of women
who had been interviewed by the Health Surveillance Program of the Hawaii
Department of Health. Participants of the Health Care Financing Administration of
Oahu aged 65 years or older were randomly selected as potential controls. The
controls were ethnicity and 5-year age matched with the casesin order to help
minimise selection/ascertainment bias. DNA was extracted from peripheral blood
leukocytes by SDS/proteinase K treatment and phenol/chloroform extraction. All
the participants analysed in the study were Caucasian. There were 70 cases and 158

controls. These samples were only used in the stage 2, validation studies.

The North Carolina Ovarian Cancer Study (NCOCS) samples used comprised of 622
cases and 747 controls, all of whom were Caucasian. Eligible cases were recruited
from a 48-county area of North Carolina. Rapid case ascertainment was used to
identify potential study participants from the North Carolina Central Cancer
Registry. Thisregistry contains information on cancer sufferers from the general

population of the state. Patients with primary ovarian cancer aged between 20 and
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74 years from the 48 counties within North Carolinafulfilled the study entry criteria.
List assisted random dialling was used to identify population-based controls from the
same 48-county region as the cases. The controls were also ethnicity and 5-year age
matched with the cases. The DNA was extracted using the PureGene DNA isolation

protocol.

2.3: Gene and tagging SNP selection of candidate oncogenes

Various oncogenes have been implicated in the development of ovarian cancer; these
include AKT2, BCL2, BRAF, CMYC, CTNNB1, ERBB2, KIT, KRAS MUC1, MUC2
and PIK3CA. SNP genotyping data on the Centre d'Etude du Polymorphisme
Humain (CEPH) population for AKT2, BCL2, BRAF, CMY C, CTNNB1, ERBB2,
KIT, KRAS, MUC1, MUC2, NMI and PIK3CA were downloaded from The
International HapMap Project, Data Release 20/phase 11 Jan06. NMI is not an
oncogene, but was accidentally selected as aresult of the information being
displayed when CMYC, an alias of MYC, was entered as a search term in HapMap.
There was genotyping data available for only two common SNP (minor alele
frequency >0.05) for MYC, so this oncogene was excluded from further evaluation.
The genotyping data downloaded for these genes was CAU, which is areference for
Caucasians of north European populations. The gene selection processis discussed

in chapter 3.

The reference genotyping data from HapMap was used to select a group of SNPs
from each gene (with minor allele frequency [MAF] of at least 5%), which could
subsequently betagged. To do this, the genotype information was imported into

Haploview version 3.32 (Barrett et al. 2005) and Tagger (de Bakker et al. 2005).
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Haploview is a programme which was designed primarily for haplotype analysis.
The programme can be used to perform: linkage disequilibrim (LD) and haplotype
block analyses; haplotype population frequency estimation; single SNP and

hapl otype association tests; and permutation testing for association significance.
Tagger contains an algorithm which performs tagging SNP (tSNP) selection. Tagger
isable to produce alist of tSNPs by initialy selecting a set of SNPs which are to be

captured through the tagging approach.

The LD between a pair of SNPs s established so that SNPs which arein strong LD
capture each other, and therefore only one tSNP needs to be genotyped. This
tagging approach is known as the pair-wise method for SNP selection. It ispossible
that a SNPisin strong LD with several SNPs. This SNP is selected to be the tSNP

and it is said to capture all the SNPsiit tags.

Aggressive tagging is another method of tSNP selection. Theinitial stage of
aggressive tagging is the same as that of pair-wise tagging. The additional steps
include using multi-marker/SNP tests to try to capture SNPs which could not be
tagged by other SNPs with the pair-wise approach. Multi-marker tests are used
because in some instances, a combination of markersisin stronger LD with a SNP
than another single SNP. The software then “ peels back” the tSNP list by replacing
some of the tSNPs with multi-marker SNPs. Haploview and Tagger have severa
options which can be changed by the user, and thus a user is able to select tSNPs

based on acriterion.
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Haploview and Tagger were used to select tSNPs that capture common genetic
variation (minor alele frequency > 5%) from the candidate genes, and putative
regulatory regions up and down stream of the gene (within 5kb), with a minimum
squared correlation of 0.8 (? > 0.8). r*> 0.8 meansthat thereis at least 80%
correlation between the genotype tSNP and the SNPs that it tags. The quality of the
HapMap data was also ascertained and only SNPs with sufficiently good quality data
were selected for tagging. The selection criteriafor good quality data was based on
>80% genotyping data of the CEPH participants for each common polymorphism.
The other criteriafor SNP selection were for the Hardy-Weinberg equilibrium p-
value to be greater than 0.01, the minimum percentage of non-missing genotypes for
each SNP (of the HapMap data) to be > 80% and the maximum number of
Mendelian inheritance errors in the HapMap CEPH trios to be no greater than 1.
The 2-3 multi-marker (aggressive) tagging option of Tagger was used to select

tSNPs.

If aselected tSNP failed assay design or genotyping, an aternative tSNP was chosen
where possible. The sequences for the SNPs were obtained from the National Center
for Biotechnology Information (NCBI) SNP database, dbSNP,

(http://www.ncbi.nim.nih.gov/SNP/) and were used for SNP pooling and primer

design.

2.4: Microcdl-mediated chr omosome transfer of chromosome 18

The microcell-mediated chromosome transfer of chromosome 18 (MMCT-18) in
vitro and in vivo experiments were performed by Dr Dimitra Dafou. Details of the

experimental procedure of the MMCT of chromosome 18 can be found in (Dafou et
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al. 2008). Briefly, donor mouse A9 cells containing normal human chromosome 18
were micronucleated with 48 hours of colcemid. The human chromosome was
tagged with selectable fusion gene marker, hygromycin phosphotransferase.
Polyethylene glycol was used to fuse the donor cells to the endometrioid TOV21G,
and the clear cell TOV 112D, ovarian cancer cell lines. Thisprocedureis
summarised in Figure 2.1. Microcells containing the human chromosome were
selected with hygromycin B. TOV21G and TOV 112D hybrid clones were isolated

and expanded after 2-3 weeks of culture.

cDe(I)Inor Micronuclei
, @@
) —0Ox
v'
colcemid
48h Fusion

Figure 2.1: Schematic diagram of microcell-mediated chromosome transfer (MMCT)

(printed with permission from Dr Dimitra Dafou). * Hybrid cells contained an extra copy or a
fragment of normal human chromosome 18. The clones showed in vivo and in vitro characteristics

suggesting their phenotype was reverting back to that of non-neoplastic cells.
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The tumourigenicity of the resulting recipient: donor hybrid clones were assessed
using in vitro and in vivo assays. Fluorescence in situ hybridisation (FISH) was also

used to visualise the incorporated chromosomes in the hybrid clones.

Microsatellite analysis and array comparative genomic hybridisation were used to
evaluate the regions of chromosome 18 which were transferred into the hybrid
clones. The whole chromosome was transferred into the TOV21G cell line hybrids,
however only the chromosomal region 18p11.21 — 18qg11.2 was transferred into the
TOV 112D hybrids. Two hybrid clones from each cell line (18G1 and 18G5 from
TOV21G, and clones18D22 and 18D23 from TOV 112D) were selected based on

their phenotypic characteristics - in vivo and in vitro tumour suppression.

The Applied Biosystems 32K gene expression array platform (Applied Biosystems)
was used to evaluate the global gene expression levels of each parental ovarian
cancer cell line and their corresponding “reverted” hybridsin triplicate. The Spotfire
DecisionSite™ software for functional genomics (Spotfire AB, Goteborg, Sweden)
and R version 1.9.1. were used to assess the fold change in gene expression between
each hybrid and their parental cell linein the 32,878 probes of 29,098 genes. The
corresponding P-values for the fold changes in gene expression were evaluated with
an anaysis of variance (ANOVA) test. The pooled datafrom both hybrids of each

of the cell lines were also analysed using Spotfire DecisionSite™ and R software.

2.5: Gene and tagging SNP selection of “functional” candidate genes

Candidate genes were selected based on significant differential expression between
MMCT-18 hybrids and the parental ovarian cancer cell lines. Geneswith
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concordant and consistent expression fold changes (up or down regulation following
the insertion of the normal human chromosome 18), within the two hybrid clones,
were selected. Genes with consistent expression changes between the TOV21G and
TOV 112D were also selected for amaster-list. The master-list of the candidate
genes selected based on consistent fold changes in expression between parental and
the hybrids, and statistically significant P-values for the fold changes, isgivenin

Appendix |. The candidate gene selection process is described in detail in Chapter 3.

2.6: Selection of genes tagging SNPs analysed with admixture

maximum likelihood test

The admixture maximum likelihood (AML) test involved the evaluation of
genotyping data of 3 population-based studies (GEOCS [327 cases, 429 controlg],
MALOVA [446 cases, 1,221 controls] and SEARCH [847 cases, 1,229 controls]).
The results of the associations from the genotyping data had previously been

reported in (Dicioccio et al. 2004; Auranen et al. 2005; Song et al. 2006a; Song et

al. 2006b; Gayther et al. 2007; Song et al. 2007; Ghoussaini et al. 2008; Quaye et al.
2009). Over the course of the last 6 years, there have been developmentsin SNP
association studies. The rationale and approaches used in SNP selection have also
changed. Thelimited successin finding strongly associated genes with ovarian
cancer development has aso lead to new approaches being used to identify candidate

genes.

Candidate gene selection for ovarian cancer associations studies have predominantly
been based on biological pathways that are predicted to be involved in ovarian

carcinogenesis. These pathways include DNA double strand break repair, DNA
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mismatch repair and cell cycle control. Coding SNPs from the DNA double strand
repair (BRCAL, NBSL, RAD51, RAD52, XRCC2 and XRCC3 genes) and cell cycle
control (STK15 gene) pathways were selected in the earliest studies. The alleles of
these functional SNPs resulted in different amino acids being produced. These
variants were selected because it was biologically plausible that they would be
directly involved in altering protein function through the folding and binding of the
protein. These changes would be expected to affect ovarian cancer development or

susceptibility if there was a significant association.

The LD between SNPs was advantageously used in the tagging SNP approach of
candidate genes from the DNA mismatch repair pathway, and al subsequent
candidate genes (from cell cycle and oncogene pathways and MMCT-18). The
tagging approach enabled the genotyping of smaller numbers of SNPs from genes,
which would provide genotyping data for a greater number of SNPs overall.
Oncogenes and tumour suppressor genes which were known or predicted to be

involved in ovarian cancer devel opment were also selected for associations studies.

Candidate genes were al so selected based on differential expression of cancer
parental cell lines and their suppressed, non-neoplastic normal chromosome 18
hybrids (from the functional MM CT-18 study). The genes selected from the
MMCT-18 study were the only genes chosen based on putative, functionally relevant
candidate genes for ovarian cancer agtiology through in vitro and in vivo assays.
Furthermore, candidate SNPs validated by OCAC were selected because they had
been found to be significantly associated with ovarian cancer in other population-

based studies (from other members of the Ovarian Cancer Association Consortium
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[OCAC]) or associated with breast cancer (identified by the Breast Cancer

Association Consortium- [BCAC])).

2.7: Laboratory work

The vast mgjority of the experiments were conducted in the laboratories at
University College London. Due to the collaborative nature of the studies, some of
the genotyping was aso conducted at Strangeways Research Laboratory at the
University of Cambridge (GEOCS and SEARCH for al SNPs except MMCT and
some oncogenes), University of Southern California (HOPE, DOVE, NCOCS) and

Austraia (AUS).

The MALOVA samples were normalised to 50ng/ul with distilled water into deep-
well plates with the 8-span liquid handling (LiHa) arm of the Tecan Freedom EVO®
workstation (Tecan, Reading, UK). LiHaaccurately distributes low volumes with
the aid of pinch valves. Filter tips were used to minimise contamination. The LiHa
and TeMO®, a 96-head multi-channel pipette, were used to dilute some of the
50ng/ul DNA to 2ng/ul. The TeMO was also used to dispense 5ul of the 2ng/ul DNA
to 384-well, barcoded PCR plates. Barcoded plates were used for ease of tracking

the DNA plates (and sample).

2.8: Whole genome amplification methods

Ninety-five MALOVA control samples and one non-template test control (NTC)
were whole genome amplified with GenomePlex™, GenomiPhi ™, primer extension
pre-amplification (PEP) and REPLI-g™. The starting concentrations of DNA

amplified with GenomePlex™, GenomiPhi™ and REPLI-g was 100ng of DNA.
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20ng of DNA was used for PEP amplification. All amplification reactions were

performed manually in 96-well PCR plates.

2.8.1: Whole genome amplification with GenomePlex

100ng of 95 MALOV A samples were amplified with the GenomePlex® Whole
Genome Amplification (WGA?2) kit 2 (Sigma, Poole, Dorset, UK). 2uL of 50ng/uL
DNA was diluted with 8uL distilled water and fragmented at 95°C for 4 minutes. An
OmniPlex library mix, containing 2uL of 1x Library Preparation Buffer and 1uL of
the Library Stabilization Solution were added to each sample. The mixture was
subsequently incubated for 2 minutes at 95°C. The mixture was cooled on ice and
1yl of Library Preparation Enzyme was added. The DNA-library solution was
incubated for the following conditions: 16°C for 20 minutes, 24°C for 20 minutes,
37°C for 20 minutes, 75°C for 5 minutes and cooled to 4°C. A mixture containing
7.5uL of 10x Amplification Master Mix, 47.5uL of nuclease-free water and 5uL of
WGA DNA polymerase was added to each sample. The mixture was thermocycled
for 95°C for 3 mins, 14 cycles (of 94°C for 15 secs and 65°C of 5 mins); and cooled

to 4°C.

A working stock of the amplified material at the concentration of 2ng/ul was stored

at 4°C, and the original and 20ng/ul stock were stored at -20°C.

2.8.2: Whole genome amplification with GenomiPhi

The GenomiPhi DNA amplification kit (GE Healthcare, Bucks, UK) was also used
to amplify the 95 MALOVA DNA samples. The DNA (2uL of 50ng/uL) was

denatured at 95°C for 3 minutes. An amplification mix containing QuL of
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GenomiPhi reaction buffer and 1uL of the GenomiPhi ¢29 enzyme was added to
each sample. The DNA-amplification mixture was incubated at 30°C for 16 hours.

The reaction was heat inactivated at 65°C for 10 minutes and cooled to 4°C.

2.8.3: Whole genome amplification with PEP

For each primer extension pre-amplification (PEP) reaction, 10ul of 2ng/uL of the 95
MALOVA samples were amplified in 50uL final volume reactions. The 40uL PCR
reaction for each sample consisted of 22.75uL water, 5uL of 10x PEP buffer (1.5nM
Mg), 2uL of 25nM magnesium, 5uL of 2nM dNTP, 5uL of 2000uM PEP N15-mer
(5 NNN NNN NNN NNN NNN 3'), and 0.25uL Qiagen Taq polymerase. The PCR
master-mix containing the PCR components were added to the DNA samples, and
subsequently thermocycled for the following conditions: activation of the enzyme
for 3 minutes at 94°C, 50 cycles of (94°C for 3 mins, 37°C for 2 mins, 37°C to 55°C
[RAMP at 10 seconds per °C], 55°C for 4 mins), incubated at 72°C for 5 mins and

cooled to 4°C.

2.8.4: Whole genome amplification with REPL | -g

100ng of 95 MALOVA samples were amplified with REPLI-g Midi Kit (Qiagen,
West Sussex, UK). 500uL of Solution A was prepared with 40uL 5M potassium
hydroxide (KOH) and 10uL of 0.5M ethylenediamine tetra-acetic acid (EDTA)
(pH8) which had been diluted in 450uL deionised water. 280pL of denaturing
buffer was made up with 35uL Solution A and 245uL nuclease-free water. 560uL of
neutralisation buffer was prepared with 56uL Solution B and 504uL nuclease-free

water.
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0.5uL of tris-EDTA (TE) was added to 2uL of 50ng/uL DNA sample. 3uL of
denaturation buffer was added to the DNA. This denaturing mixture was mixed,
spun and incubated at room temperature for 3 minutes. 5ulL of the neutralisation
buffer was mixed into the samples to neutralise the denaturing reaction. A 40uL
master-mix, containing 32.4uL nuclease-free water, 15uL 4x REPLI-g buffer and
0.6uL REPLI-g DNA polymerase, was added to each 10uL denatured and
neutralised DNA solution. These solutions were mixed, pulse centrifuged and
incubated at 30°C for 16 hours. The amplification reaction was inactivated by

incubating the plate at 65°C for 3 minutes. The amplified DNA was cooled to 4°C.

The DNA of an additional 95 samples were amplified with REPLI-g by a colleague,

Mr Mark Cox, to further investigate concordance of the amplified DNA.

2.9: DNA quantification with PicoGreen

The whole genome amplified DNA were quantified with Quant-iT™ PicoGreen®
dsDNA assay (Molecular Probes, Invitrogen, Paisley, UK). A 200-fold dilution of
the concentrated DM SO solution (from the PicoGreen kit) was made with TE in a
plastic container in adark room. Calf thymus DNA (Sigma) was diluted to generate
ahigh-range size standard which would be used to extrapol ate the concentration of
the sample DNA. 100uL of the calf thymus stock (1ug/mL) was diluted with 900uL
of TE, to make a concentration of 100ug/mL. 84uL of TE was added to 16uL of the
100pg/mL DNA to make a concentration of 16pug/mL. A 1:5 dilution of the
16pg/mL DNA was made with 100uL of the 16pg/mL DNA and 400uL of TE (to
make a DNA concentration of 3.2ug/mL. Serial dilutions of the DNA were made
using 200uL DNA and 200uL TE asindicated below, starting with 3.2u/mL:
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Volumeof TE (uL) Volumeof caf DNA Calf DNA concentration
(L) (ng/mL)
0 200 3.2
200 200 1.6
200 200 0.8
200 200 0.4
200 200 0.2
200 200 0.1
200 200 0.05
200 0 0

(The 1.6pg /mL DNA was made by mixing 200uL of the 3.2ug/mL DNA with
200pL of TE. The 0.8ug/mL DNA concentration was made by mixing 200ul of the

1.6pg/mL DNA with 200ul TE. Etcetera...).

50uL of the diluted PicoGreen was added to 50ul of the diluted calf thymus DNA
(standard) intriplicate in ablack plate. 5ul of each WGA DNA sample was diluted
with 45ul TE and 50ul of diluted PicoGreen was added the black plate. The Tecan
Genios plate reader was used to measure the DNA concentration and the data was

analysed with the Magellan software (Tecan, Dorset, UK).

2.10: Genotyping platforms

The ninety-five MALOV A samples which were whole genome amplified with
GenomePlex, GenomiPhi, PEP and REPLI-g, and their corresponding non-amplified
genomic DNA were genotyped with TagMan®, iPLEX®, SNPlex® and TagMan®

OpenArray.

2.10.1: TagMan® genotyping

For each 5uL TagMan (Applied Biosystems, Warrington, UK) genotyping reaction,

amaster-mix containing 2.44uL distilled water, 2.5ul Applied Biosystem’s SNP
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genotyping master-mix, and 0.06uL 80x Custom Assay-by-Design TagMan probe
(Applied Biosystems), was added to 10ng of DNA. TagMan genotyping reactions
for oncogene and MMCT-18 tSNPs were conducted at half volume (2.5uL);
appropriate adjustments were made to the volumes of reaction components used.
Normally alarge mastermix was made which contained enough reaction mix for the
samples being genotyped. The 5uL or 2.5uL reaction mix was dispensed into the
appropriate wells of the dried DNA plates with the liquid handling (LiHa) arm of the
Tecan Evo 200 robot. The DNA — master-mix solution was thermocyled for the
following conditions: activation at 95°C for 10 mins, anneal ed/extended for 40
cycles of (95°C for 15 seconds, 60°C for 1 min), and cooled to 4°C. All
thermocycling was performed on Auto-Lid Dual 384-well GeneAmp® PCR System
9700 instruments and end reaction products were read on the 7900HT Fast Real-
Time PCR System using the Sequence Detection Software. Although the vast
majority of Applied Biosystems TagMan assay clustered well with the annealing
temperature at 60°C, some required different temperatures. Therefore, each TagMan
assay was tested (with 95 DNA samples and an NTC) with the annealing
temperature at 60°C, before whole population sets were genotyped. An additional 5-
10 anneal extend PCR cycles were performed if the clusters were sub-optimal. 1f
thisfailed, or the assay did not produce distinct clusters for the genotypes, the probe

test was repeated with annealing temperature of 54°C.

2.10.2: iPLEX genotyping

The MassARRAY iPLEX SNP multiplex genotyping platform was used to genotype
whole genome amplified samples, and genomic GEOCS, MALOVA and SEARCH

samples for the oncogene study, and iPLEX Gold was used to genotype MALOVA,
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SEARCH and UKOPS for the MM CT-18 study. iPLEX Gold is an upgrade to the
IPLEX system. Theonly real difference between the platforms are the multiplex
levels. While up to 29 SNPs can be genotyped with the iPLEX assay in asingle
reaction, up to 40 SNPs can be assayed with the upgrade. iPLEX Gold has awider
mass range from which alleles/SNPs can be detected. The GEOCS and SEARCH
samples were air-dried genomic samples, which had been plated a year prior to the
lab work. Wet MALOV A DNA was used in theiPLEX runs. Desalted forward,
reverse and extend primers for the iPLEX panels were manufactured by Metabion
(Martinsried, Germany). The PCR with the forward and reverse primers were
performed at UCL with the Tecan robot, and all post-PCR processing was conducted

at Sequenom Europe in Hamburg, Germany, by the author.

A primer mix, comprising of 120uL of 500nM of each of the forward and reverse
primers of all the SNPs were combined, resulting in afinal concentration of 100nM
in each 5uL reaction. A dNTP mix was also prepared with equal amounts (400uL)
of 100nM dATP, dCTP, dGTP and dTTP. A PCR cocktail containing the following
for each sample: (1.85uL distilled Milli-Q water, 0.625uL of PCR buffer with 10X
magnesium chloride [MgCl;], 0.325uL of 25mM MgCl5,, 0.1uL of 25mM dNTP mix,
1ul of primer mix [S00nNM of each primer], and 0.1uL of 5U/uL Hotstar Tag® DNA

polymerase enzyme), was prepared and added to 10ng of DNA.

In athermocycler, the reaction mixture was activated at 94°C for 15 mins, cycled 45
times (at 94°C for 20 secs, 56°C for 30 secs, 72°C for 60 secs), and inactivated at
72°C for 60 secs. Unincorporated dNTPsin the PCR amplification mixture were

dephosphorylated with a shrimp alkaline phospatase (SAP) cleaning step. This
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involved incubating the PCR-amplified mixtures with 2uL of SAP mix (which
comprised of 1.53uL distilled Milli-Q water, 0.17uL of 10x SAP buffer and 0.3uL of
1U/uL SAP enzyme for each sample). The incubation steps were 37°C for 20
minutes and 85°C for 5 minutes. The dephosphorylated mixture was then cooled to
4°C. The SAP cleaning was necessary in order to prevent the remaining dNTPs
being incorporated in the primer extension reactions, which could subsequently

result in contamination peaks being present in the results.

The extend primers were pooled into four groups according to the mass of the extend
primers. The signal-to-noise ratios of the extend primers decrease with increasing
extend primer mass, therefore these adjustments in extend primer concentrations
were required in order to equilibrate the signal-to-noise ratios of the extend primers
of different masses. The extend primers were arranged into increasing masses, and
the primers were split into 4 groups. Therefore, lower mass primers were grouped
with other low mass primers and high mass primers were grouped with other high
mass primers. Thefinal concentration of the lowest mass primers was half of those
in the highest mass group. Thus an extend primer mix was prepared whereby the
final concentrations of the group 1 extend primers (lowest mass) was 0.625uM,
group 2 was 0.833uM, group 3 was 1.042uM, and group 4 (highest mass) was

1.25uM.

AniPLEX reaction mix was made up of (for each sample): 0.755uL distilled water,

0.2uL of 10X iPLEX buffer, 0.2uL of iPLEX termination mix, 0.804ul of the extend

primer mix and 0.041uL of the iPLEX enzyme. 2uL of this cocktall was added to
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each sample. The mixture was mixed and covered with adhesive seal. Thiswas

subsequently cycled for the following PCR conditions:

HOLD A0CYCLES HOLD HOLD
Hold 5 cycles
94°C 94°C 52°C 80°C 72°C 4°C
30 secs 5 seconds 5 secs 5 secs 3mins 15 mins

The iPLEX reaction products were desalted by adding 25uL of water and 6mg of
Clean resin (using adimple plate). A nano-dispenser was used to dispense the
iIPLEX reaction products onto a 384-element SpectroCHIP bioarray. The
SpectroCHIPs were read on Bruker™ Autoflex, a matrix-assisted laser

desorption/ionization time of flight (MALDI-TOF) mass spectrometer.

2.10.3: SNPlex genotyping

SNPlex is a48-plex SNP genotyping method from Applied Biosystems. The
genomic and amplified DNA were genotyped on two separate occasions on the
SNPlex platform. Thefirst run was manually performed at UCL by the author and
Applied Biosystems SNPlex technical expert. The SNP pass rates from this run
were very poor, therefore the experiments were repeated by another Applied
Biosystems SNPlex technical expert at their laboratory in Warrington, UK. The

results of the second run are discussed in this work.

50ng of the genomic MALOVA DNA and 100ng of the corresponding whole
genome amplified products were genotyped with the SNPlex platform. To fragment

the genomic DNA, 2.5uL of the 20ng/uL stock plate was dispensed into a 384 well
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plate and incubated at 95°C for 5 minutes. The samples were dried down after DNA
fragmentation. The whole genome amplified products, which did not require
fragmentation, were also air-dried. The fluorescent probes and linkers were
phosporylated with the following mixture: for each samples, 0.1uL pooled SNPlex
ligation probes, 0.05uL of 48-plex SNPlex universal linkers, 0.125uL of nuclease-
free water, 0.05uL of 10x SNPlex kinase buffer, 0.025uL of SNPlex kinase, 0.1uL of
5x SNPlex enhancer, and 0.05uL 10x dATP. This mixture, known as the SNPlex
Ligation probe pool, was incubated at 37°C for 1 hour. The activated probe pool was

diluted 1:1 with 0.1xTE of pH8.

The ligation reaction was performed with the oligonucleotide ligation assay (OLA)
and the activated SNPlex ligation probe pool. The OLA was prepare on ice, and
consisted, for each sample, of 3.422uL of nuclease-free water, 0.5uL of SNPlex
ligation buffer, 0.025uL of SNPlex ligase, 0.053uL AmpErase® UNG. The4uL
OLA master-mix and 1uL of the activated SNPlex ligation probe pool was added to
each DNA sample. The DNA plate containing the ligation reaction mixture was
covered with an adhesive cover and incubated at 4°C for 10 mins, placed on a
thermocycler which was at 90°C. The plate was thermocycled for the following
conditions: 3 mins at 90°C; 30 cycles of the 3 step (15 secs at 90°C, 30 secs at 60°C,

30 secs at 51°C with 2% RAMP); incubated for 10 mins at 99°C, and cooled to 4°C.

The ligation product was purified by exonuclease digestion. To do this, a2x
exonuclease master-mix was prepared on ice. For each sample, the master-mix
contained 4.2uL nuclease-free water, 0.5uL of 10x SNPIex exonuclease buffer,

0.2uL of SNPlex lambda exonuclease, 0.1uL of SNPlex exonucleasel. 5uL of the
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master-mix was added to each sample, the sample plate was covered, vortexed, and
pulse spun. The plate was transferred to athermocycler at 37°C, and incubated at
37°C for 90 mins, 80°C for 10 min and cooled to 4°C. The exonuclease reaction

product was diluted with 15uL nuclease-free water.

The PCR master-mix was prepared with 2.42uL of nuclease-free water, 5uL of 2x
SNPIex amplification master-mix and 0.5uL of 20x SNPlex amplification primers.
7.92uL of the PCR master-mix was added to each well of anew 384-well plate, and
2.08uL of the diluted exonuclease reaction product was aso added to the plate. The
plate was covered, pulse spun and thermocycled for: 95°C for 10 mins, 30 cycles of

95°C for 15 and 63°C for 1min, and then cooled to 4°C.

A 1:10 dilution of the Wash Buffer was made with deionised water. The wells of the
Hybridization Plate were washed three times with 100uL of diluted Wash Buffer.
17.491uL of the SNPlex Hybridisation binding buffer was diluted with 0.009uL of
the positive hybridisation control. Thiswas subsequently added to the SNPlex
hybridisation plate. The PCR products were bound to the hybridisation plate by
transferring 1.5uL from each well of the diluted PCR product to the Hybridisation
Plate and incubating at room temperature on arotary shaker for 1 hour. Inthis
reaction, the biotinylated amplicons from the PCR products are bound to the
streptavidin coat on the hybridisation plate. The plate was centrifugated at
1000RPM for 1min, the supernatant was removed, and the plate was washed three
times with 100uL of diluted SNPlex Wash buffer. 50uL of 0.1N sodium hydroxide
(NaOH) was added to each sample in the hybridisation plate, the plate was covered

and incubated for 30 mins on arotary shaker at room temperature.
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The hybridisation plate was removed from the rotary shaker, spun at 1000RMP for 1
min, and the supernatant was removed. The hybridisation plate was washed five
times with diluted 100uL SNPlex hybridisation wash buffer. Anincubation oven
was equilibrated to 37°C. A hybridisation master-mix was prepared with 0.05uL of
SNPIex ZipChute mix, 11.25uL of SNPlex Denaturant and 13.7uL of SNPlex
ZipChute dilution buffer for each sample. 25uL of hybridisation master-mix was
added to each sample in the hybridisation plate. The plate was covered and incubated

at 37°C on arotary shaker for 1 hour.

A sample loading mix was prepared, which contained, for each sample, 0.59uL of
SNPlex size standard and 16.91uL of SNPlex sample loading reagent. The
hybridisation plate was briefly spun and the supernatant was removed. The plate
was washed four times with 100uL of diluted hybridisation buffer. The plate was
spun upside down at 100RPM for 1 min on a stack of paper towels. 17.5uL of
SNPIex sample loading mix was added to each well of the hybridisation plate. The
plate was covered and incubated at 37°C for 30 mins. 7.5uL of the productsin the
hybridisation plate was transferred to a new 384-well optical reaction plate. The
plate was read on the Applied Biosystem 3730xI DNA Anayzer. The results were
analysed with GeneMapper 4.0 software. The manufacturer default settings were

used to analyse the data.

2.10.4: OpenArray genotyping

The TagMan® OpenArray™ genotyping system is another mid-range genotyping

platform from Applied Biosystems. The 32-plex format was used for these
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experiments, with which up to 96 samples can be genotyped on a single OpenArray
Genotyping plate. However, 16-, 64-, 128-, 192- and 256-plex formats are also
availablefor 144, 48, 24, 16 and 12 samples, respectively. Each OpenArray
genotyping plate consists of 48 subarrays and each subarray is comprised of 64
through-holes. The hydrophobic and hydrophilic coatings ensure that the through-
holes can retain 33nL reaction volume. The OpenArray genotyping plates were

manufactured with the 32 TagMan SNP assays, with an assay in each through-hole.

2ul of TagMan® OpenArray™ Master-Mix was mixed with each well of a 384-well
PCR sample plate (1ul of 50ng/uL genomic DNA or 2ul of 50ng/uL of WGA-DNA).
The master-mix-DNA solutions were transferred from the sample plate to the
OpenArray Genotyping plates. To do this, the sample plate was divided into eight
different sections, consisting of 12-well by 4-well areas as shown in Figure 2.2.
Plate guides were used to ensure that the appropriate sections of the sample plate
were transferred to the OpenArray plate. The plate guide was placed over the
sample plate. A tip block was placed over the appropriate section of the plate guide.
OpenArray Loader tips were placed into each whole of the tip block. The tip block,
with the loader tipsinserted, was dlid up and down approximately 50 times until the

tips were filled to Imm above the bottom edge of the tip block.
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Figure 2.2: Sections of the OpenArray sample plate

Each OpenArray sample plate section contains 48 wells.

The samplesin the loader tips were transferred to the OpenArray plate with the auto

loader. The loaded OpenArray plate was placed into an OpenArray genotyping case,

which was filled with immersion fluid. The genotyping case was sealed with glue on

the OpenArray case sealing station. The genotyping case was cleaned and placed in

the Bio-Rad thermal cycler for the following conditions:

Step Temperatureand Time

RAMP 0.8°C/ second to 95.5°C

Hold 91.0°C for 10:00 mins
0.5°C/sRAMP to 51.0°C
Hold 51.0°C for 23s
0.8°C/sRAMP o 53.5°C

O

ANNEALING & HoLd 53.5°C for 30s _

EXTENDING: 0.8°Cls Rﬁ\MPtO 545°C

50 CYCLES Hold 54.5°C for 13s
0.8°C/sto 97.0°C
Hold 97.0°C to 22s
0.8°C/sRAMP 0 92.0°C
Hold 92.0°C for 7s<

Hold 20°C for 5 mins

Hold 4°C for Forever

S - seconds, mins - minutes

The genotyping case was “imaged” with the OpenArray™ NT Imager software. The

genotypes were manually called after training by Applied Biosystems OpenArray

technical expert.

110



Chapter 2: Materials & methods

2.11: Sequencing

DNA sequencing of 95 MALOVA cases amplified with REPLI-g was performed
with the help of Mark Cox. The samples were sequenced for two regions of BRCAL,
316705 (exon 11), and 316700 (exon 13), in order to further investigate discordances

between the genomic control DNA and corresponding REPLI-g DNA.

10ng of the amplified DNA was sequenced using the BRCA1 (v1) Variant SeqR kit
(Applied Biosystems). 95-well plates were used. For each sample, areaction mix
containing: 5uL of 2x AmpliTag Gold® Master mix, 1.6 uL of 50% UltraPure™
Glycerol, 1.0uL (0.6uM/uL) of Forward VariantSEQr RSA primer, 1.0uL (0.6
uM/uL) of Reverse VariantSEQr™ RSA primer, and 1uL of distilled water, was
prepared. 10pl of the reaction mix was added to each sample. The plates were
covered, vortexed, pulse centrifuged and thermocycled on AB9700 cyclers. The
PCR cycling conditions were: heat activation at 96°C for 5 min, followed by 40
cycles of 94°C for 30 sec, 60°C for 45 sec, and 72°C for 45 sec; final extension of
72°C for 10 min, and cooled to 4°C. The PCR reactions products were cleaned by
adding 2uL of ExoSAP-IT® (USB Corporation), and incubating at 37°C for 30 min

followed by heat inactivation at 80°C for 15 min.

The forward Sequencing Master Mix contains the M 13 Forward primer and the
reverse contains the M 13 Reverse primer. The forward and reverse sequencing
reaction mix was then prepared by mixing 4uL of BigDye® Terminator Mix v1.1
with 1uL of 3.2pmol/uL M13 forward or reverse primer, 3uL of deionised water.
8uL of the sequencing mix was added to 2uL of the PCR product. The sequencing
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mixture was thermocycled at 96 °C for 1 min, 25 cycles of 96 °C for 10 sec, 50 °C
for 5 sec, and 60 °C for 4 min, then cooled to 4 °C. The sequencing reaction was
cleaned-up by mixing 2.5uL of 125mM EDTA and 30uL of 100% ethanol with the
sequencing products, and incubating at room temperature for 15 min. The DNA
plate was subsequently centrifuged at 2500xg for 30 min at 4°C. The supernatant
was removed, 30 uL of 70% ethanol was added to each sample, and the plate was
centrifuged upside-down at 1650xg for 15 min at 4°C. The supernatant was
removed, the plate was | eft to air dry, and the pellet was re-suspended in 10uL of Hi-
Dye Formamide. The sequences were analysed (after performing electrophoresis on
the 3730xI DNA Analyzer with POP-7™) with SeqScape® v2.5 software (Applied

Biosystems).

2.12: Genotyping quality control

All genotyping for the association studies was conducted in 384-well plate format.
Each plate contained at |east one non-template negative test control (NTC) and
twelve duplicate samples, which accounted for 3% of the total proportion of
samples. Studies were excluded from analysisif the concordance between the
duplicate samples was less than 98%. Genotyping of sample plates were either
repeated, where possible, or excluded from anaysisif the NTCsfailed. For the
oncogene and the BCAC, mismatch repair, cell cycle control, DNA repair pathways
of the AML method, studies with call rates |ess than 90% were excluded from
analysis. For the MMCT-18 study, and OCAC genotyping SNPs, the OCAC
genotyping quality control guidelines were used. These guidelines encompassed the
above, with the addition that 384-well DNA sample plates with call ratesless than
90% were to be excluded from anaysis.
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2.13: Statistical methods

All statistical analysis was performed on the STATA version 8.2 statistical package

(College Station, TX, www.stata.com).

2.13.1: Genetic Susceptibility

Due to the lack of apparent drive for evolution in humans, it is expected that
populations within their respective ethnic groups are in Hardy-Weinberg equilibrium
(HWE). Therefore, deviation from HWE was assessed in controls for each study
population for each assay using standard ytest. The y?test measures the extent to
which observed values differ from the expected proportion of genotypes (Norman
and Streiner, 2008). For each population set, ¥° (1 degree of freedom) was used to
assess deviations from genotype frequencies of the control subjects from those
expected under Hardy-Weinberg equilibrium (HWE). For the polymorphisms
analysed from the oncogene and the BCAC, mismatch repair, cell cycle contral,
DNA repair pathways, sample sets which were significantly out of HWE (P<0.05),
had genotype clustering was evaluated and sampl e sets with good quality clustering
were included in the analysis. For the genotyping data from the MMCT-18
candidate genes, the sample sets were excluded from anaysisif they deviated from

HWE at P<10™.

Logistic regression is a statistical model, which can be used for predicting the
probability of the occurrence of an event, taking into account risk factors, for
example, the chance of a person having a heart attack is dependent on their age, sex

and body massindex. In genetic association studies, logistic regression is used to
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produce a model to predict the probability that an individual will be affected by
ovarian cancer, given their genotype. Thisis done by using the genotyping results
to determine the frequency of each genotype in the cases and the controls and
comparing the frequencies to ascertain whether there are significant differences

between cases and controls for each genotype.

Associations between invasive epithelial ovarian cancer and each SNP were assessed
using two tests; the one-degree of freedom Cochran—Armitage trend test and the
general two-degrees of freedom y” test (heterogeneity test). The y° test for trend was
stratified by study to account for any differences within the sample sets.
Unconditional logistic regression was used to assess the relationship between each
tSNP and risk of ovarian cancer for each population set, then the pooled samples
(stratified by study) with the primary test of association being atest for trend (P-
trend). The dependent variable (outcome/risk of ovarian cancer), can be estimated

with the logistic regression model, which is generally written as:

IN(ODDS)= By + By + Box s + ot B X

which can be re-written, this study, as:
Ln(riSk Of be' ng affeth) = ﬂimercept + ﬂgenotype + ﬁsample_set

A “Do-file”, which contains afile with alist of commands for STATA to run when
requested, was used to analysing groups of SNPs. However, the same results could
be obtained by using the following STATA commands.

xi:logistic status i.set i.SNP

est sto A

xi:logistic status i.set if(SNP!=.)
Irtest A
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The above commands are comprised of unconditional logistic regression with terms
for disease status (whether case or control) and sample set with and without aterm
for genotype-study interaction. The likelihood ratio test (Irtest) assesses the fit of the
model with genotypes nested within a model without aterm for genotypes. The P-
value <0.05 suggests that the null hypothesis that there is no association between the

genotypes and risk of disease should be rejected.

Homogeneity between the samples sets was al so assessed to ensure there were no
statistically significant differences in the distribution of genotypes within the
different population set. Homogeneity between studies was tested with likelihood
ratio tests to compare the logistic regression models with and without a genotype-
stratus interaction term. Statistically significant (P<0.05) heterogeneity between
sample sets was usually caused by a study with different minor allele frequency for a
particular polymorphism. Should this arise, the study would be excluded and the test
for homogeneity repeated. If there was still statistically significant heterogeneity

between studies, the genotyping datafor the polymorphism would be excluded.

Trend tests are used for categorical dataanalysis. In genetic association studies,
affected status is categorical (an individual is acase or acontrol); the genotypes are
also categorical and ordered — for example, if the common adlele at a SNP siteis
denoted as“A” and therare alleleis“a’, anindividual is either homozygous for the
common alele (AA), heterozygous (Aa) or homozygous for therare allele (ag). The
oddsratio (OR) isthe ratio of the odds of an event (developing ovarian cancer)

occurring in one group (homozygotes of the common allele[y]) compared with to
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the odds of the same event occurring in another group (heterozygous[z]). The OR

can be calculated with the formula

or=Y/(1=Y)
2/(1-2)

Which can be simplified to:

R= y(l_ 2)
2(1-y)

(Elston et al. 2002).
The ovarian cancer risks associated with being a heterozygote or a rare homozygote

were estimated as OR with associated 95% confidence intervals by unconditional

logistic regression with the common homozygote as the baseline comparator.

2.13.2:Haplotype definition and analysis

The confidence interval option (Gabriel et al. 2002) of the Haploview programme
was used, with some minor adjustments to include adjacent SNPs, to define the

hapl otype blocks of the candidate genes. However, the cumulative frequency of the
common haplotypes was maintain at >90%. Only tSNPs successfully genotyped
were used to define the haplotype blocks, using the HapM ap reference genotyping
data. Quality control checks were performed on the haplotype frequencies per study,

based on the genotype data.

The TagSNPs programme (Stram et al. 2003) was used to model multi-marker
hapl otypes from aggressive SNP tagging and also haplotypes of each gene when

hapl otype analysis was performed. TagSNPs implements an expectation-substitution
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approach to account for the uncertainty caused by the unphased genotype data
(Stram et al. 2003). The programme outputs estimates of the haplotype dosages for
each haplotype for each individual, and logistic regression is performed on the

estimates.

The genotyping data for nominally significant tSNPs were modelled with the log-
additive, co-dominant, dominant and recessive genetic models and compared with
likelihood ratio tests to ascertain the genetic model of best fit. Thisanaysiswas
only conducted with associations between a SNP and ovarian cancer overall (not

with histological subtypes).

The aetiology of ovarian cancer is very heterogeneous, and it has been demonstrated
that mutation in particular genes are predominantly found in specific histological
subtypes of the disease (Christie and Oehler 2006). Due to this heterogeneity,
analysis was aso restricted to the mgor histological subtypes of ovarian cancer
(serous, endometrioid, mucinous and clear cell). Univariate unconditional logistic
regression was used to test for associations of the germline polymorphisms and
haplotypes of the candidate genes. The global effects of haplotypes of each gene or
hapl otype block were assessed with logistic regression and likelihood ratio tests.
Models with and without the multiplicative effects of the haplotypes (minus the most

common haplotype) were evaluated.

2.13.3: Admixture maximum likelihood test

The admixture maximum likelihood (AML) test is a method which was created for

assessing the overall evidence for an excess of statistically significant associations
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between the genetic polymorphisms and risk of diseases (such as breast or ovarian
cancer) in case-control studies (Tyrer et al. 2006). The AML test was used to this
effect with the genotyping data from candidate genes from DNA repair, mismatch
repair, cell cycle control, oncogenes associated with ovarian cancer, differentially
expressed genes from in vitro functional experiments, and candidate SNPs from the

OCAC.

The AML method concurrently estimates the proportion of underlying false
hypotheses, as well as testing the global null hypothesis of no association between
the polymorphisms and risk of disease. The method does this by formulating the
aternative hypothesis based on the probability (o) that a given SNP is associated
with disease and the estimated effect size of the polymorphism. The calculated xz
statistic of a SNP associated with disease is distributed, asymptotically, as a non-
central 5 distribution with the usual degrees of freedom and a non-centrality

parameter, 1.

The non-centrality parameter, which is closely related to the contribution of the SNP
to the genetic variance of thetrait, is a measure of the size of effect of the
polymorphism. The AML method assumes that the non-centrality parameter for all
variantsis the same, in order to make the model more parsimonious. Thus, the non-
centrality parameter will be estimated. However, thisis required because power will
increase if the non-centrality parameter is the same for associated SNPs, as fewer

parameters need to be optimised.
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If n is assumed to be the same for each associated SNP, then a and 1 can be
estimated by maximum likelihood, and atest of the null hypothesis, of no
association, can then be obtained as alikelihood ratio test. In the instances where
some variants were correlated, as many of the polymorphisms are in these studies,
the same procedure can generate pseudo-maximum likelihood estimates, asif the
germline variants are not correlated. The statistical significance of the AML test can
then be determined by simulation testing. One thousand permutations were used to
ascertain the significance of the AML test based on the ovarian cancer genotyping

data

The genomic control method for adjusting for cryptic population stratification was
used on all polymorphisms analysed. Population stratification refersto the
differences with in populations which may lead to fal se positive associations
between genes or polymorphisms and disease risk. The genomic control approach,
which isdescribed in Devlin et al. (2001), estimates and takes into consideration the
“over dispersion” of statistics used to evaluate association when there is population
stratification. The genomic control approach involves estimating and taking into
account the degree of over-dispersion caused by population stratification, by
analysing polymorphisms, including some associated with disease risk, throughout

the genome (Devlin et al. 2001).

Genotyping data from breast cancer case-control samples from the genome-wide
association study (Easton et al. 2007; Hunter et al. 2007) were used to estimate the
degree of over-dispersion of statistics, also known as inflation test statistic (Pharoah

et al. 2007). The genotyping data consisted of 280 randomly selected, unlinked
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polymorphisms from 4,037 breast cases and 4,012 controls. A more conservative
inflation statistic (10%), than the one estimated from the genomic controls for the
breast cancer study was used to adjust the P-trend for cryptic population

stratification.

2.13.4: Survival analysis

There was a variable time between diagnosis and patient recruitment, therefore
subjects were only considered to be at risk from the date of recruitment (blood
draw). This provides an unbiased estimate of the relative hazard, provided that the
proportional hazard assumption is not violated. The assumptions of proportional
hazard are that the hazard ratios are constant over time and the hazard ratios are
proportiona within the different genotype groups across time. The survival period

was defined as starting at date of blood draw.

All-cause mortality was the only end-point collected; censoring was at the date a
participant was last known to be alive or at 10 years after diagnosisif the participant
was still alive. Log-log survival curves were used to check that the assumptions of
proportional hazards were met. The primary tests were likelihood ratio test for trend

(1 degree of freedom), based on the number of rare alleles carried.

The Cox regression for survival analysis, stratified by study, was used to estimate the
hazard ratio (HR) per rare dlele carried. The Cox regression for surviva analysis
(aso known as proportional-hazards regression) model s the effect of variables

(genotypes), over the time an event (death) takes to occur, or within a specified time
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period. The model produces estimates of hazard ratios for the explanatory variables

(genotypes).

The STATA commands for performing Cox regression survival analyses are as
follows:

e stset yearoutcome, failure(outcome) enter(yearenter) exit(time 10)

e Xi:stcox SNPi.study
the first command informs STATA of the names of the appropriate variable names
which are essential for performing survival analysis (for example information
regarding whether an event (death/”failure”’) has occurred can be found from the
“outcome’ variable; yearenter=([date of blood draw] — [date of diagnosis])/365.25;
yearoutcome = ([date last seen or date of death] — [date of diagnosis])/365.25).
Survival over 10 years was investigated. The second command runs the Cox

regression test on the selected SNP, stratified by study.

The hazard ratios of all variables were adjusted for prognostic factors; age at
diagnosis, tumour stage, tumour grade and histological subtype, where survival
modelling showed that the prognostic factor significantly affected chances of
survival. Theinclusion of these prognostic factors in the survival models is known
as multivariate survival analysis. These factors (age at diagnosis, tumour stage,
tumour grade and histological subtype) are known to affect patient survival. The
adjustments were made in order to observe whether the association remained after

adjustments for known prognostic factors.
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Univariate Cox regression anaysis, stratified by study, was also used when the
genotyping data was restricted to the four major histological subtypes of epithelia
ovarian cancer (serous, endometrioid, mucinous and clear cell) to determine if the
tSNPs were associated with survival in individuals with the particular histology.
Clinical factors such as age, tumour stage and grade are known to affect survival.
Therefore, they must be adjusted for in order to ascertain whether statistically
significant associations were attributable to the SNP, and not to the clinical factors.
The effects of clinical factors are discussed in more detail in Chapter 3. The effects
of the clinical factors were tested with:

e Xi: stcox i.agegroup i.gradei.stagei.set
the dummy variables generated by the command (for statistically associated factors)
could be saved by renaming the variable name. For example:

e rename _lIstage 2 stage?
Multivariate survival analysis was performed with terms for the statistically
associated clinical factors. For example:

e Xi:stcox SNP stage? i.study

As with the susceptibility analysis, the TagSNPs programme was used to estimate
hapl otype dosages of each individual, for the survival analysis. The haplotype dose
was based on the maximum likelihood of haplotypes of the candidates. Cox
regression analysis, stratified by study, was also used to assess the effect of each
haplotype dose on survival. Inthe STATA command, the name of the SNP was

replaced with the name of the haplotype to assess its affect.
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2.13.5: Kaplan-Meier survival estimates

Kaplan-Meier survival estimates are used to plot survival curvesin order to illustrate
survival over aperiod of time of the different groups (of genotypes, or clinical
factors) being analysed and compared. The graphs can be generated in STATA with
the command:

e Xi: stsgraph, by(var)
(var refersto variable, such as genotype, age at diagnosis, tumour histology, grade or

stage).

The Kaplan-Meier survival estimator of the survival function at timet (or the

probability of surviving up to timet) is calculated by the following formula:

S(t) isthe survival function at timet
n; corresponds to the number "at risk” just prior to timet;,

and d;, the number of deaths at time t; (Hosmer et al. 2008).
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Chapter 3: Results - The effects of common
SNPs and haplotypes variants of oncogenes and
functional candidate geneson therisk of

ovarian cancer

3.1: Introduction

Hypothesis:

Common germline genetic variants in candidate genes connected with ovarian cancer

devel opment can influence the risk of epithelial ovarian cancer.

(1) Todetermineif thereisan effect of common variants and haplotypes of
candidate oncogenes on the risk of invasive epithelia ovarian cancer.

(2) Todetermineif thereisan effect of common variants and haplotypes of
functiona candidate genes (associated with neoplastic suppression of ovarian cancer
cell lines) on predisposition to ovarian cancer.

(3) To usethe admixture maximum likelihood test to assess if a significant number

of associations have been found from ovarian cancer association studies.

Objectives:
(1) To usetwo-tailed unconditional logistic regression analysis to evaluate
associations between common variants and haplotypes in 2 sets of candidate genes

(oncogenes. BRAF, ERBB2, KRAS, NMI and PIK3CA; and functional candidates:
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AIFM2, AKTIP, AXIN2, CASP5, FILIP1L, RBBP8, RGC32, RUVBL1 and STAG3)
and risk of invasive epithelial ovarian cancer.

(2) To investigate associations between the variant and haplotypes of these genes on
the 4 mgor ovarian cancer histological subtypes. serous, endometrioid, mucinous
and clear cell.

(3) To use the admixture maximum likelihood experiment-wise test for association
to evaluate the overall evidence of association between 340 common variants (in 74
genes and 10 regions without known genes or open reading frames) and risk of

ovarian cancer.

3.2: Investigation of the effect of candidate oncogenes on risk of

ovarian cancer

Oncogenes, such as MYC, KRAS, BRAF and ERBB2 have been shown to be mutated
or amplified in ovarian tumours. However, it is not known whether germline
variants of the normal copies of these genes may predict awoman’srisk of ovarian
cancer. The following describes the selection of candidate oncogenes and the results
of the analyses of the common polymorphisms and hapl otypes of the genes on

ovarian cancer risk.

3.2.1: Candidate oncogene and tSNP selection

The am of the candidate oncogene selection was to find genes, with implicationsin
ovarian cancer development, which would fit into asingle iPLEX SNP multiplex
genotyping run, and the minimum numbers of tSNPs remaining for genotyping by
the TagMan platform. TheiPLEX genotyping platform can genotype up to 27

variants in asingle reaction. Furthermore, the cost of genotyping with the TagMan
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platform increased with rising numbers of tSNPs which required genotyping with the
platform, therefore, the number of SNPs which could not be genotyped on iPLEX
had to be kept to a minimum. It became apparent that although BCL2 and KIT were
good candidate oncogenes for the study, too many tSNPs, 86 and 30, respectively,
would need to be genotyped in order to genotype enough SNPs to gain genotyping
datafor the whole genes. Therefore, they were excluded from the selection. There
was only 1 tSNP for MUC1 (and 2 tSNPs for MYC), which suggested that the genes
were either insufficiently tagged or there was not enough genotyping data available
from HapMap for efficient tagging. Therefore, these genes were aso excluded.

Table 3.1 shows the number of tSNPs for all the candidate genes initially selected for

tagging.
Table 3.1: Number of tagging SNPs of candidate oncogenes
Gene Total SNPs No. criteria SNPs No. tSNPs
AKT2 33 17 4
BCL2 374 170 86 Excluded
BRAF 158 75 9
CTNNB1 88 22 11
ERBB2 16 6 3
KIT 147 71 30 Excluded
KRAS 59 46 11
MDM2 50 10 5
MUC1 3 1 1 Excluded
MUC2 17 14 10
MYC 15 2 2 Excluded
NMI* 45 25 6
PIK3CA 53 36 11

Criteria SNPs— Minor alele frequency >0.05; HWE > 0.01; * NMI was erroneously selected from
HapMap dueto itsinteraction with MYC — its data is presented under CMYC, an diasof MYC. The
mistake was not realised until the samples had been genotyped with iPLEX.

The National Center for Biotechnology Information (NCBI) Single Nucleotide
Polymorphism website www.nchbi.nlm.nih.gov/projects/SNP/, aso known as doSNP,

was used to find the Fasta sequence of each tSNP of AKT2, MUC2, BRAF, KRAS,
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NMI, PIK3CA, MDM2, ERBB2 and CTNNBL1. TheiPLEX Assay Design software
was used to design panels based on four different combinations of candidate

oncogenes (see Table 3.2).

Table 3.2: SNP panels from iPLEX assay design software

No. tSNPsin No. tSNPsnot in
Gene Total
panel panel
Panel 1
ERBB?2 2 1 3
KRAS 7 4 11
NMI 6 - 6
PIK3CA 11 11
Panel 2
BRAF 8 2 10
ERBB?2 3 3
KRAS 7 4 11
NMI 7 2 9
Panel 3
BRAF 6 3 9
ERBB?2 3 0 3
KRAS 8 3 11
NM 5 1 6
PIK3CA 5 6 11
Panel 4
ERBB2 2 1 3
MDM2 3 2 5
MUC2 7 3 10
KRAS 5 6 11
BRAF 5 5 10

Panel — refersto iPLEX panel.

The best iPLEX assay design pool, Panel 3, contained tSNPs of BRAF, NMI,
ERBB2, KRAS and PIK3CA, which were also considered to be good candidates due
to their known or predicted involvement in ovarian cancer development. Therefore,
Panel 3 was selected for genotyping. TheiPLEX assay pool comprised of 27 tSNPs.
The best panel (with the most important genes and minimum number of tSNPs

which would have to genotyped with TagMan) was chosen.

127



3.2.2: Oncogenes - Samples and methods

Chapter 3: Results - susceptibility

The stage 1 samples consisted of GEOCS, MALOVA, SEARCH, UKOPS and USC

(A) series of population-based studies. Stage 2 samples, comprising of the DOVE,

HOPE and USC (B) studies, were used for the validation of significant findings from

stage 1. The numbers of samples for each study are listed in Table 3.3.

Table 3.3: Samples used in oncogene study

Study Controls Total cases H I.St(.)l oy .
Serous Endometrioid | Mucinous | Clear cell

GEOCs 429 327 166 47 29 23
MALOVA 1221 446 275 56 43 33
SEARCH 855 730 254 130 94 62
UKOPS 271 116 65 20 10 12
USC (A) 224 197 115 22 16 8
Total stage 1 3000 1816 875 275 192 138
DOVE 716 584 303 86 18 30
HOPE 636 276 157 39 13 21
USC (B) 360 237 161 33 19 14
Total stage 2 1792 1097 621 158 50 65
I‘gaéaages 4713 2013 1496 433 242 203

All study individuals included in the analysis were non-Hispanic Whites.

In total, 40 tSNPs were selected to tag the common germline variants of the

candidate oncogenes (BRAF, ERBB2, KRAS, NMI and PIK3CA). A combination of

IPLEX and TagMan were used to genotype the first stage samples, and only Tagman

was used to genotype second stage samples. Whole genome amplified samples were

also genotyped on iPLEX - the results for these and problems with the iPLEX

platform are discussed in Chapter 5.
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3.2.3: Quality control

There were 12 duplicate samples per 384-well plate. Studies with less than 98%
concordance between the total number of duplicate samples were excluded from
analysis. Sample setswhich had acall rate <90% for a SNP were aso excluded

from analysis. There were no studies which were out of Hardy-Weinberg

equilibrium.

Of the 27 tSNPs genotyped on iPLEX, 2 (rs10842513 and rs6944385) failed quality
control dueto failed assays (failed PCR) and one was monomorphic (rs11047917).
The GEOCS study performed extremely poorly on iPLEX, with only 5 tSNPs from
the panel achieving call rates greater than 90%. The reason for the poor call rates
may have been due to degraded non-amplified DNA, which had been plated and
dried a year prior to the experimental work. These samples were used because the
IPLEX manufacturers, Sequenom, advised the use of non-amplified DNA for the
study, and these were the only remaining non-amplified DNA for GEOCS.
Consequently, the iPLEX genotyping results from the GEOCS sample set were

excluded from analysis.

TagMan assays of al polymorphisms not genotyped on iPLEX were manufactured,
where possible and GEOCS, UKOPS and USC (A) were genotyped with the
TagMan platform. Of the 40 tSNPs required to be genotyped in order to get full
gene coverage, 34 were successfully genotyped with IPLEX and TagMan. The six
remaining tagging variants had either failed assay design, manufacture or probe

testing and could not be efficiently genotyped by any other polymorphism.
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3.2.4: Associations between candidate genes and ovarian cancer risk

Two-tailed unconditional logistic regression was used to determine the effect of
common variants, and haplotypes of the oncogenes on risk of ovarian cancer. A
SNP or haplotypeis said to be associated with ovarian cancer susceptibility when
there isasignificant difference in the frequency of genotypes or haplotypes between
cases and controls. Two-tailed unconditional logistic regression was used because
no assumptions were made about the effect of the tSNP or haplotype prior to
analysis—i.e. no assumptions were made about whether a SNP/hapl otype would

increase or decrease predisposition to ovarian cancer.

Odds ratios are used as a measure of the effect of the variant or haplotype on the risk
of disease. An odds ratio <1 correspondsto areduced risk of disease, and odds
ratios >1 - increased risk. The genetics and histological pathology of ovarian cancer
suggest different aetiologies for the histological subtypes of the disease. In order to
establish the effects of the candidate oncogenes on the risk of serous, endometrioid,
mucinous and clear cell subtypes, the logistic regression analysis was restricted to
these particular subtypes. The results from these tests are below. The results
reported below are of the stage 1, unless otherwise stated. All reported P-values are
2-tailed. The numbers of samples for each genotype group are shown in Appendices
I1-A and |1-B for the oncogene and MM CT-18 candidate genes, respectively, and the
genotype and haplotype-specific risks for al oncogenes are shown in Appendices

[1-Ato I11-J.
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Initialy, the associ ations between the risk of ovarian cancer and the common
variants of candidate genes were assessed with all ovarian cancer cases pooled. The
statistically significant association from this analysis was validated with addition

samples.

There was no evidence of association between risk of ovarian cancer and common
variants of BRAF, ERBB2, KRAS and PIK3CA when all cases were combined (Table
3.4). Therarealeeof atSNPin NMI (rs11683487) showed evidence of association
with reduced risk of ovarian cancer (heterozygous odds ratio [OR] with 95%
confidence intervals [CI] 0.80 [95% CI 0.69-0.93] homozygous OR 0.87 [0.71-1.02],
P =0.038). The HetOR isthe odds ratio for individuals heterozygous for the variant,
and HomOR is the odds ratio for individuals homozygous for the rare allele. Both
HetOR and HOmOR are compared with the homozygotes of the common allele. The
association is aresult of therare allele of NMI rs11683487 being more frequent in
the controls (46.3%) compared to cases (43.9%). There were 1,464 cases and 2,564

controls successfully genotyped for this SNP.

The genetic model of best fit for the NMI rs11683487 tSNP was a dominant model
(rare allele carriers vs common allele homozygotes) because the odds ratios were
similar in the heterozygotes and rare homozygotes. The similarity of the odds ratios
of the heterozygotes and rare homozygotes suggested that this was aresult of either a
single or 2 copies of therare allele. When the heterozygotes and rare homozygotes
were grouped for analysis, the odds ratio for the dominant model was OR=0.81

(0.71- 0.94), P=0.004 for all cases analysed.
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Table 3.4: Genotype-specific risks of pooled stage 1 oncogene data

Gene SNP name Cases | Controls | MAF HetORS® HomOR® TrF;-nd
rs10487888 1680 2694 0.47 1.09 (0.93 - 1.28) 1.02 (0.86 - 1.22) 0.9
rs1733832 1159 2043 0.06 1.08 (0.86 - 1.36) 3.39(0.96 - 11.89) 0.2
11267622 1751 2880 0.24 0.99 (0.87-1.12) 0.97 (0.75 - 1.26) 0.79
rs13241719 1602 2488 0.31 0.98 (0.85- 1.12) 0.86 (0.69 - 1.08) 0.27

BRAF rs17695623 1744 2901 0.07 0.97 (0.81- 1.16) 1.14 (0.52 - 2.46) 0.86
rs17161747 1771 2909 0.5 1.13(0.93-1.38) 1.29 (0.57 - 2.93) 0.18
rs17623382 1764 2900 0.12 1.01(0.87-1.17) 1.01 (0.61 - 1.66) 0.9
rs6944385 1758 2893 0.14 1.14(0.99- 1.32) 0.99 (0.66 - 1.50) 0.14
rs1267622,
1s6944385: AA 1786 2948 0.76 1.02 (0.79- 1.33) 1.04 (0.80-1.34) 0.77
rs2952155 1667 2678 0.24 1.01 (0.89-1.15) 1.11 (0.84 - 1.47) 0.57

ERBB2 rs2952156 1766 2912 0.29 0.97 (0.86 - 1.10) 1.15(0.89 - 1.49) 0.74
rs1801200 1766 2916 022 | 1.04(092-119) | 101(0.77-131) | 064
rs12305513 1788 2934 0.1 0.87 (0.74 - 1.03) 0.71(0.38- 1.31) 0.053
rs12822857 1751 2901 0.47 1.01(0.88-1.17) 0.94(0.80- 1.12) 0.53
rs10842508 1776 2935 0.25 0.97 (0.86 - 1.10) 0.95(0.73- 1.22) 0.57
rs12579073 1765 2900 0.48 0.97 (0.84-1.12) 0.92 (0.78 - 1.09) 0.36
rs10842513 1770 2878 0.09 1.03(0.87-1.21) 0.93 (0.50- 1.74) 0.86
rs4623993 1748 2892 016 | 0.96(0.83-110) | 113(0.77-167) | 085
rs6487464 1763 2895 0.38 1.04 (0.91-1.18) 0.99 (0.82- 1.19) 0.94
rs10842514 1757 2886 0.44 0.98 (0.86 - 1.13) 1.08 (0.91 - 1.29) 0.42
rs11047917 1476 2456 0.06 0.92(0.75- 1.14) 1.62 (0.57 - 4.57) 0.71
rs4623993,

KRAS rs12579073; 1717 2818 0.1 0.96 (0.80 - 1.15) 0.94 (0.56 - 1.57) 0.63
TC
rs12822857,
rs10842508; 1730 2857 0.23 0.99 (0.87- 1.13) 1.04 (0.80 - 1.36) 0.93
AC
12822857,
rs10842514; 1715 2806 0.4 1.04 (0.91-1.20) 1.12(0.94 - 1.34) 0.23
GT
rs12822857,
rs12579073,
r<B487464: 1689 2746 0.39 1.04 (0.89-1.21) 1.06 (0.88 - 1.29) 0.51
GAC
rs394884 1708 2852 0.15 1.01(0.88-1.17) 1.40 (0.84 - 2.32) 0.47
rs11551174 1159 2040 0.06 0.96 (0.76 - 1.23) 1.23 (0.45- 3.38) 0.92

NMI rs289831 1665 2718 0.13 1.05(0.91-1.22) 1.08 (0.61 - 1.89) 0.48
rs3771886 1764 2927 0.41 1.03 (0.90 - 1.18) 1.19 (1.00 - 1.42) 0.075
rs11683487 1464 2564 0.46 0.80 (0.69 - 0.93) 0.87 (0.71- 1.02) 0.038
rs2113509 1776 2944 0.13 1.05(0.91-1.21) 1.16 (0.68 - 1.97) 0.42
rs2865084 1164 2046 0.06 1.14 (0.89 - 1.45) 0.43 (0.37 - 0.50) 0.29
rs7621329 1749 2818 0.16 0.99 (0.86 - 1.13) 1.23(0.86- 1.77) 0.64
rs1517586 1739 2908 0.1 0.98 (0.83 - 1.15) 0.77 (0.42 - 1.40) 0.54

PIK3CA rs2699905 1741 2855 0.27 1.01 (0.88-1.15) 0.89(0.71- 1.11) 0.49
rs7641889 1779 2939 0.07 0.89 (0.74 - 1.07) 1.28 (0.58 - 2.84) 0.38
rs7651265 1794 2883 0.1 0.89 (0.76 - 1.04) 1.58 (0.89 - 2.80) 0.54
rs7640662 1765 2916 0.15 1.02 (0.89-1.17) 0.85(0.57-1.27) 0.86
rs2677760 1762 2925 0.49 1.01 (0.87 - 1.16) 1.04 (0.88-1.23) 0.67

MAF — minor alele frequency; Het: heterozygous; Hom — homozygous, OR= odds ratio (with associated 95%
confidence intervalsin parentheses); § compared with common homozygous; Emboldened tSNP, and P-values

are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.
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Validation of association with NMI rs11683487 association

The association found between the rare allele of NMI rs11683487 and a decrease in
therisk of invasive epithelial ovarian cancer was further investigated by performing
a second stage of genotyping. Three additional populations from the USA (USC B);
DOVE and HOPE), which comprised of an extra 1,097 cases and 1,712 controls
were used in this second stage. There was no evidence of association between the
rare alele of NMI rs11683487 and risk of ovarian cancer with the stage 2 samples
alone (dominant model: OR= 0.01[0.85-1.20]; Pyominant=0.92). When the datafrom
both stages was subsequently combined and analysed with unconditional logistic
regression the association with rs11683487 was weaker, but still statistically

significant (OR= 0.89 [0.80- 0.99]; Peominant =0.0317; Table 3.5).

Table 3.5: The effect of NMI rs11683487 on the risk of ovarian cancer in
Stages 1 & 2 cases

Dominant model

Stage | Controls | Cases OR® (95% CI) Pvalue
1 2564 1464 0.81 (0.71-0.94) 0.004
2 1712 1097 0.01 (0.85-1.2) 0.92

1&2 4276 2561 0.87 (0.8-0.99) 0.0317

OR - oddsratio; ClI — confidence interval; § compared with common homozygous; Embol dened
tSNP, and P-values are statistically associated with susceptibility; emboldened OR are statistically
significant or do not cross 1.

The forest plot in Figure 3.3 shows the effect size and the corresponding confidence
intervals of the variant per study and stage(s). Forest plots are plotted on the natural
logarithmic scale with the odds ratio represented by the diamond, the corresponding
95% confidence intervals shown as the horizontal lines, and no effect on risk
symbolised by avertical line. Oddsratios |eft of the vertical line (<1) imply a

decrease in odds ratio, therefore protective effect of the rare variant, and those on the
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right (>1) — increased risk of disease. Statistically significant associations have

confidence intervals not crossing the vertical line.

The NMI SNP rs11683487 tags eight other SNPs with r’> 0.8 (rs3854012,
rs3771882, rs4665150, rs1048135, rs11730, rs13004590, rs12987765 and
rs17798290). rs11683487 tags rs1048135 with an r’=1 (perfectly correlated).
rs1048135 is a non-synonymous coding SNP and the rare (G) allele codes for a
leucine instead of serine. The programme PMut (Ferrer-Costa et al. 2005), predicted
that the rare allele (coding for leucine) had a pathologica significance score of 3/10
and was classed as ‘damaging’ using the SIFT programme (Ng and Henikoff 2001;

Ng and Henikoff 2002) . The bioinformatics tool, PupaSNP

(http://pupasuite.bioinfo.cipf.es/) (Conde et al. 2006; Reumers et al. 2007) also
suggested that this allele may disrupt the binding of exonic splicing enhancers. In
addition, PupaSNP indicated that rs11683487 and rs11730 may have transcription

and translation regulatory functions, and that rs11730 may affect exon splicing.

Combinations of SNPs, in a haplotype, have aso been suggested ble to affect an
individual’s disease risk. A haplotype is a combination of alleles at multipleloci on
the same chromosome, which are transmitted as a single unit (haplotype block). A
hapl otype block comprises aregion of a chromosome which is unlikely to undergo
recombination. Figure 3.2 shows the two haplotype blocks of KRAS, which was the
only oncogene with more than 1 haplotype block. The variants shown in the figure

were those genotyped in this study.
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Figure 3.1: Forest plots of tSNP rs11683487 in the NMI gene in ovarian cancer

case-control populations
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In the haplotype analysis, the frequencies of the haplotypes in cases and healthy
controls are compared to ascertain whether thereis statistically significant
difference. A common haplotype occurs in a population with a frequency of >5%.
In haplotype analysis, these common haplotypes were analysed as an individual
entity, and the rare haplotypes were grouped. The overall effect of the gene on

disease risk was also assessed in the global analysis.

Haplotype block 1 of KRAS comprised of 3 tagging variants, spanning 6 kilobases
(kb), and haplotype block 2 consisted of the 6 tSNPs over 20kb. It isimportant to
note that the variants shown in the haplotypes are tagging SNPs, and therefore
encompass 50 common SNPs captured with r’=0.8 in the KRAS gene, (see Figure

3.2).

There were 4 common haplotypes of KRAS block 1, and 11 of haplotype block 2
(Figure 3.3). Within each representation of haplotype, the common aleleis denoted
by “0”, and therare by “1”. The most frequent haplotype of KRAS block 1, h100,
includes the rare alele of rs12305513, and the common alleles of rs12822857 and
rs10842508, respectively. The“h” in front of the alleles represents “haplotype”, and
is used to distinguish between haplotypes and other strings of “0” and “1” which

may occur in adocument.
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Figure 3.2: Haplotype blocks of KRAS SNPs genotyped

(@) Haplotypes blocks based on genotyped KRAS tSNPs; (b) the total number of SNPsin the
hapl otypes (captured by the tSNPs); colour scheme: standard (D’/LOD) — white (D’<1, LOD<?2),
shades of pink/red (D’'<1, LOD>2), blue (D’=1, LOD<2) and bright red (D’'=1, LOD>2),
numbers shown in sgares (LD values) are based on D’

137



Chapter 3: Results - susceptibility

Block 1 Block 2

™M N~ [oe) ™ ™ <t N~
I Y9} (@] N~ I ™M <t I —

B X 8 0 S & 8 ¢ & R 9
™ (e8] Lo o [eo]

N N o N o (o] o —

Bl o o 52.1 0 o 0o oM o 30.6
0 0 O 22.8 B o o oW o 12.9
o o 151 B o oW o o 11.9

Bl o Bl o5 B o NN o o 106

o o o o0 o 5.5
0 0 oM o o 5.4
B o o 0o 0 o© 5.4
o o @ o o 47
Bl o oM o BN 43
B o o o0 o© 32
0 0 0 0 0 O 31

Figure 3.3: Common haplotypes of KRAS

“0” —common alele of SNP; “1” —rare dllele.

Associ ations between haplotypes of the oncogenes and risk of ovarian cancer were
also evaluated. There was no evidence of association between risk of ovarian cancer

and haplotypes of KRAS and PIK3CA (Table 3.6).

Statistically significant associations were found between common hapl otypes of
BRAF, ERBB2 and NMI and risk of ovarian cancer at the 5% significance level. The
h00001 haplotype of NMI correlated with a decreased risk of ovarian cancer
(OR=0.9110.84-0.99], P=0.0276). Another haplotype of NMI, h00010, was a so

marginally associated with the risk of ovarian cancer (P=0.043; Table 3.6).
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Table 3.6: Haplotype analysis results for BRAF, ERBB2, KRAS, NMI and PIK3CA

Freq (% Global P-

Gene Haplotype in c?)qn'grol)s OR (95% CI) P-value value
h10000000 215 1,07 (0.97-1.19) 0.182
h10010000 19.4 0.88 (0.76-1.01) 0.07
h00000000 17.3 0.90 (0.78-1.04) 0.15

BRAF h10010010 11.8 0.96 (0.82-1.12) 0.57 0,005
h00100000 103 0.81 (0.68-0.95) 0.012
h00101001 6.8 0.94 (0.78-1.13) 0.49
h01100001 6.1 1.15 (0.95-1.39) 0.14
h00000100 5.2 1.08 (0.88-1.31) 0.48
hooo 536 0.95 (0.87-1.04) 0.284
h110 163 1.19 (1.03-1.37) 0.016

ERBB2 hoo1 16 1.17 (1.02-1.34) 0.022 0.034

ho10 6.6 0.99 (0.82-1.20) 0.9

h111 6.5 0.84 (0.68-1.05) 0.12
h100 52.1 102 (0.94-1.11) 0.66

ha';ﬁ)’;\yspe h00O 228 1.00 (0.9 1.11) 0.99 016
e hoo1 15.1 103(091-1.16) 067
h101 95 0.89(0.77-1.04) 0.5
h000010 306 1.04 (0.95-1.15) 0.389
h100010 129 1.00 (0.85-1.17) 0.98
h100100 119 1.03 (0.88-1.19) 0.75
h101100 106 0.98 (0.84-1.14) 0.77
h010000 55 1.01 (0.82-1.25) 0.91

KRA; Qgﬁ'gtype h000100 5.4 0.92 (0.73-1.18) 0.52 0.56
h100000 5.4 0.81 (0.65-1.01) 0.06
h001100 4.7 0.96 (0.74-1.24) 0.74
h100101 4.3 0.82 (0.64-1.05) 0.11
h110000 3.2 0.94 (0.70-1.27) 0.69
h000000 31 0.89 (0.64-1.23) 0.48
h000O01 459 0.91 (0.84-0.99) 0.027

M h00010 337 111(1.003-122)  0.043 0.6
h10100 11.8 1.09 (0.95-1.25) 0.22
h01010 5.7 1,05 (0.84-1.3) 0.67
h00000001 482 102 (0.93-1.11) 0.713
h00010010 14.8 1.01 (0.89-1.14) 0.91
h00000000 102 0.94 (0.81-1.09) 0.39

PIK3CA h00110000 9.7 0.98 (0.84-1.14) 0.79 0.69

h01001100 6.6 0.94 (0.79-1.12) 05

h01000100 4 1.02 (0.82-1.28) 0.84
h11000000 3.9 1.20 (0.97-1.48) 0.102

OR - oddsratio, CI - confidence interval; SNP order in haplotypesis 5’ to 3' of the genes — BRAF: rs10487888,
rs1733832, rs1267622, rs13241719, rs17695623, rs17161747, rs17623382, rs6944385; ERBB2: rs2952155,
rs2952156, rs1801200; KRAS (block 1): rs12305513, rs12822857, rs10842508; KRAS (block 2): rs12579073,
rs10842513, rs4623993, rs6487464, rs10842514, rs11047917; NMI: rs394884, rs11551174, rs289831,
rs3771886, rs11683487; PIK3CA: rs2865084, rs7621329, rs1517586, rs2699905, rs7641889, rs7651265,

rs7640662, rs2677760.
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Although no associations were found between the tSNPs of BRAF and ERBB2,
correlations were found with the combinations of tSNPs from these oncogenes and
risk of ovarian cancer. There was an association between the h00100000 haplotype
of BRAF and areduced risk of all ovarian cancer cases (OR=0.81[0.68- 0.95],
P=0.012). Statistically significant ERBB2 haplotype-effects were observed with the
risk of ovarian cancer. Both associated haplotypes, hO01 and h110, correlated with
an increase in ovarian cancer risk when al cases were analysed (OR=1.17[1.02-
1.34], P=0.022; and (OR=1.19 [1.03-1.37], P=0.016), respectively. The fact that
both h110 and hOO1 were associated with an increased risk of ovarian cancer could
not be explained because there was no common allele which could explain the
associations found with h110 and h001; the haplotypes contained opposite alleles at
al loci. HapMap genotype data was used to investigation whether these hapl otypes
shared a common untagged variant, however, this was without success. Globaly,
hapl otypes of BRAF and ERBB2 were associated with ovarian cancer susceptibility

(P=0.005; and P=0.034, respectively).

Ovarian cancer is known to be heterogeneous, and the aetiologies of the four major
histological subtypes are believed to be through different pathways. It is, therefore,
of considerable interest to evaluate the effect of the oncogene variants and

hapl otypes on the risk of the serous, mucinous, endometrioid and clear cell
histological subtypes of ovarian cancer. It isimportant to treat the results with
caution because the numbers of the individual histological subtypes are far less than
when al cases are grouped; therefore the power to detect true positive associations is
reduced. The power to detect an association with the recessive, dominant and co-

dominant genetic models with 3,000 controls, 875 serous ovarian cancer cases for a

140



Chapter 3: Results - susceptibility

SNP with MAF=0.46 and an effect size of 1.2 at the 5% significance level are 40%,
55% and 92%, respectively. Serousisthe most common histological subtype,
therefore the power to detect associations for the remaining common subtypes are

further reduced. The results will be described on a gene-by-gene basis.

The association between the rare allele of NMI rs11683487 and reduced risk of
ovarian cancer remained when the analysis was restricted to the serous and mucinous
subtypes from the stage 1 data; (HetOR=0.81 [0.67-0.98], HomOR=0.80 [0.63-1.01],
P=0.0377; HetOR=0.67 [0.47-0.96], HOmOR=0.62 [0.39-0.99], P=0.0269)
respectively. However, the associations were not as significant as for all cases -
Table 3.7. Aswith all cases, the associations were not independently validated in
with the stage 2 data, however the association with the mucinous subtype remained

when the results from stages 1 and 2 were pool ed.

The associations observed between the h00001 and h00010 hapl otypes of NMI and
risk of ovarian cancer also remained when the analysis was restricted to the serous
subtype (see Table 3.8). The effect size was these associations were marginally
stronger; however the significance was reduced, suggesting these are likely to be
false positives. Nonetheless, all of the associations found with the NMI haplotypes
were supported by the single tSNP findings with NMI rs11683487, which was in the

last position of the haplotype.
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Table 3.7: The effect of NMI rs11683487 on the risk of ovarian cancer in Stages 1 &

2 cases
. Dominant model
Stage Controls | Cases | Histology OR® (95% CI) Pvalue
1464 All 0.81 (0.71-0.94) 0.004
Stage 1 2564 713 Serous 0.8 (0.67-0.95) 0.0112
154 M ucinous 0.81 (0.68-0.96) 0.0163
1097 All 0.01 (0.85-1.2) 0.92
Stage 2 1712 711 Serous 1.02 (0.84-1.25) 0.8319
50 Mucinous 1.38(0.73-2.62) 0.314
2561 All 0.87 (0.8-0.99) 0.0317
Stages1 & 2 4276 1424 Serous 0.89 (0.78-1.02) 0.0824
204 Mucinous 0.84 (0.71-0.99) 0.0419

MAF — minor allele frequency; OR — odds ratio; CI — confidence interval; § compared with common
homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with
susceptibility; emboldened OR are statistically significant or do not cross 1.

Table 3.8: Haplotype analysis results for NMI (P<0.05)

Haplotype Freq (%) Histology OR (95% CI) P-value | Global P-value
All 0.91 (0.84-0.99) 0.0276
Serous 0.89(0.8-1) 0.048
h00001 45.9 Endometrioid 1.05(0.87-1.25) 0.631
Mucinous 0.84 (0.68-1.05) 0.128

Clear cell 0.96 (0.74-1.23) 0.729 0.26

All 1.11(1-1.22) 0.043
Serous 1.13(1.01-1.28) 0.041
h00010 33.7 Endometrioid 0.9(0.74-1.1) 0.305
Mucinous 1.11 (0.88-1.4) 0.361
Clear cell 0.97 (0.74-1.28) 0.832

OR - oddsratio, Cl - confidence interval; in the haplotypes, t: ‘0'= common aleleand ‘1’ = rare alele;
SNP order in haplotypesis 5’ to 3’ of the gene : rs394884, rs11551174, rs289831, rs3771886,
rs11683487.

Associations between KRAS and ovarian cancer susceptibility

When the effects of KRAS common variants and haplotypes on ovarian cancer risk

were assessed, there was evidence suggesting that 3 variants of KRAS were

associated with risk of the mucinous histological subtype of invasive epithelia
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ovarian cancer. The frequency of the rare allele of rs10842514 was significantly
greater in cases of mucinous subtype compared to healthy controls. The minor alele
frequency (MAF) of therare dlele, “T”, of the variant in the controls was 0.44,
however, 0.54 the cases. The rare alele of rs10842514 was associated with a 2.02-
fold increase in the risk of the mucinous subtype (heterozygous odds ratio [OR] with
95% confidence intervals [Cl] =1.13 [95% CI 0.78-1.64], homozygous OR=2.02
[1.35-3.01], P-trend = 6x10™), see Table 3.9. ThistSNPisinintron 2 of KRAS, and
to date, it does not tag any other SNP within or flanking KRAS. The association was
not found with other subtypes of ovarian cancer or all subtypes combined, therefore

if the association istrue positive, it is unique to the mucinous subtype.

An association was also found between the mucinous histological subtype and two
other polymorphisms of KRAS. Those homozygous for the rare allele of rs12822857
had a reduced risk of mucinous ovarian cancer. The heterozygous genotype of
rs6487464 was al so associated with a 0.61-fold reduction in the risk of the subtype in
individuals heterozygous for the tSNP; see Table 3.9. However, it is still unknown
how mutations or variation of KRAS may result in the mucinous subtype. The results

for al the tSNPs genotyped for KRAS can be found in Appendix I11-E.

The associations between these variants and risk of mucinous subtype of ovarian
cancer are of particular interest because mutations in KRAS have previously been
reported to be associated with this subtype. Gemignani et al found that of 22
mucinous ovarian carcinomas, 50% had mutations in the KRAS oncogene, compared

with 4 (5%) of 82 non-mucinous tumours (Gemignani et al, 2003).
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Table 3.9: Genotype-specific risks of KRAS tSNPs (P<0.05)

Gene tSNP MAF | Controls | Cases Histology HetOR (95% CI)* HomOR (95% CI)* | P-trend
1751 All 1.01(0.88-1.17) 0.94 (0.80-1.12) 0.5281

835 Serous 1.08 (0.90-1.30) 0.97 (0.78-1.20) 0.8167

rs12822857 | 0.47 2901 268 Endometrioid 0.99 (0.73-1.33) 1.06 (0.75-1.50) 0.7605

187 M ucinous 0.74 (0.53-1.04) 0.63 (0.41-0.96) 0.0232

132 Clear cell 1.14(0.75-1.74) 1.04 (0.63-1.72) 0.8398

1763 All 1.04(0.91-1.18) 0.99 (0.82-1.19) 0.9408

836 Serous 1.09 (0.92-1.29) 0.98 (0.77-1.24) 0.8783

KRAS | rs6487464 | 0.38 2895 269 Endometrioid 1.13(0.86-1.5) 1.15(0.79-1.67 0.3878
192 Mucinous 0.61 (0.44-0.85) 0.76 (0.50-1.18) 0.0379

136 Clear cell 1.02 (0.70-1.48) 0.95 (0.56-1.61) 0.8918

1757 All 0.98 (0.86-1.13) 1.08 (0.91-1.29) 0.4153

835 Serous 1.04 (0.87-1.24) 1.09 (0.88-1.36) 0.4379

rsl0842514 | 0.44 2886 269 Endometrioid 0.85(0.64-1.13) 0.97 (0.68-1.38) 0.7294

188 M ucinous 1.13(0.78-1.64) 2.02(1.35-3.01) 0.0006

134 Clear cell 0.95 (0.64-1.40) 0.79 (0.47-1.33) 0.4026

MAF: minor alele frequency; Cons: controls; Het: heterozygous; Hom: homozygous; OR: odds ratio; Cl: confidence interval, *
compared with common homozygote. Enboldened OR and P-trend values are statistically significant.
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Gene/ Freq . o
block Haplotype (%) Histology OR (95% CI) P-value
All 1.04 (0.95-1.15) 0.389
Serous 1.07 (0.94-1.21) 0.306
h000010 30.6 Endometrioid 0.99 (0.81-1.21) 0.916
Mucinous 1.3(1.03-1.64) 0.025
KRAS Clear cell 0.79 (0.59-1.06) 0.121
haplotype
block 2 All 0.89 (0.64-1.23) 0.48
Serous 1.08 (0.75-1.58) 0.67
h000000 31 Endometrioid 0.36 (0.14-0.92) 0.033
Mucinous 0.3 (0.09-0.99) 0.049
Clear cell 0.61(0.21-1.78) 0.365

OR - oddsratio, CI - confidence interval, In the haplotypes, 1: ‘0'= common aleleand ‘ I'=rare alelg;
SNP order in haplotypesis5' to 3' of the genes —KRAS (block 2): rs12579073, rs10842513,
rs4623993, rs6487464, rs10842514, rs11047917

When the frequencies of the haplotypes of KRAS haplotype block 1 and 2 were
compared between cases and controls, statistically significant differences were found
between 2 haplotypes of KRAS block 2 and the risk of the mucinous subtype of
ovarian cancer. The h000010 haplotype of KRAS block 2 was associated with a 1.3-
fold increase in the risk of the mucinous subtype (OR=1.3 (1.03-1.64), P=0.025.
Conversdly, the hO00000 haplotype of the same block was associated with a
decreased risk of the subtype, OR=0.3 (0.09-0.99), P=0.049. The associations
between h000010 and h000000 and risk of mucinous ovarian cancer are supported
by the presence of the common allele of rs6487464 in the fourth position of the
haplotype, and the rare allele of rs10842514 in the fifth position. Thisis because the
rare allele of rs6487464 was associated with reduced risk, and the rare allele of
rs10842514 with increased risk. However, this haplotype is not the only one with
this combination of aleles of rs6487464 and rs10842514. Assuming that the
association found between the rare allele of rs10842514 and increased risk of the

mucinous subtype is atrue positive, it is feasible that the associations between the
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h000000 and h000010 haplotypes of KRAS block 2 were due, primarily to the alleles

of rs10842514.

Analysis of the effect of haplotype on disease risk can sometimes elucidate
associations which could not be identified through individual SNP analysis. Itis
believed that the combinations of alleles, rather than individual variant may affect
disease risk. Such an association was found between the hO00000 hapl otype of
KRAS and reduced risk of endometrioid ovarian cancer. This association was aso
found with the mucinous histological subtype. The association between h000000
and risk of the endometrioid subtype was marginally more significant than the
mucinous subtype (OR=0.36 [0.14-0.92], P=0.033), with similar odds ratio (Table
3.10 — page 145). See Appendix Il1-F for the results for all the common and

combined rare haplotypes of KRAS.

Associations between BRAF and ovarian cancer susceptibility

There was evidence suggesting that three variants of BRAF aso influenced the risk
of mucinous histological subtype of invasive epithelia ovarian cancer. Therare
aleles of two of the variants, rs1267622 and rs17695623, were associated with a
decreased risk of the subtype (see Table 3.11). Therare alele of BRAF rs10487888,
conversely, was associated with an increased risk of the subtype; HetOR=1.32 (0.86-
2.03), HomOR=1.61 (1.03-2.53), P=0.0357 (Table 3.11). The associations with
these variant were also unigue to the subtype. The results for all the BRAF common

variants can be found in Appendix I11-A.
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There were 8 common (haplotype frequency >5% in control samples) BRAF
haplotypes (see Appendix 111-A). Analysis showed that a haplotype with a6.8%
frequency was associated with areduced risk of mucinous ovarian cancer (OR=0.54
[0.31-0.93], P=0.027). The BRAF tSNPs, rs10487888, rs1267622 and rs17695623
areinthefirgt, third and eighth positions, respectively, of the haplotype. rs10487888
tags rs1267622 with r*=0.318, and rs17695623 with r*=0.097; and rs1267622 and

rs17695623 tag each other with r*=0.306.

The hapl otype showing significant association with mucinous ovarian cancer
contained the common allele of rs10487888, and the rare alleles of rs1267622 and
rs17695623, both of which were associated with decreased risk (Table 3.11), which
may explain the association. The combination of the alleles supported areduction in
risk of the mucinous subtype. However, this combination of alleles of the above
variants also occurred in another haplotype of BRAF (h01100001), which had an
odds ratio of lessthan 1, but was not significantly associated with risk of mucinous

ovarian cancer (OR=0.93 [0.58-1.48], P=0.76); Table 3.12.

There was an association between the h00100000 haplotype of BRAF and a reduced
risk of al ovarian cancer cases (OR=0.81 [0.68- 0.95], P=0.012). The association
with this haplotype, which occurred at a frequency of 10.3% in controls, remained
when analysis was restricted to serous only cases — OR=0.8 (0.66-0.98), P=0.028 -
Table 3.12. Although there were no other statistically significant associations of this
hapl otype and the other histological subtypes of ovarian cancer, the odds ratios for
endometrioid, mucinous and clear cell histological subtypes were similar to that of

serous (Table 3.12).
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Table 3.11: Genotype-specific risks of common BRAF tSNPs (P<0.05)

Gene tSNP MAF | Controls | Cases Histology HetOR (95% CI) | HomOR (95% CI) | P-trend
1680 All 1.09 (0.93-1.28) 1.02 (0.86-1.22) 0.902

804 Serous 1.21 (0.99-1.49) 1.09 (0.87-1.37) 0.5747

rs10487888 | 0.47 2694 251 | Endometriod |  0.84 (0.61-1.17) 0.88 (0.61-1.25) 0.5007

180 M ucinous 1.32 (0.86-2.03) 1.61 (1.03-2.53) 0.0357

125 Clear cell 1.04 (0.66-1.64) 0.88 (0.52-1.48) 0.5947

1751 All 0.99 (0.87-1.12) 0.97 (0.75-1.26) 0.7894

831 Serous 1.04 (0.88-1.22) 0.90 (0.64-1.26) 0.9055

BRAF | rs1267622 | 0.24 2880 268 | Endometriod |  0.76 (0.58-1.01) 1.06 (0.63-1.77) 0.2725
187 M ucinous 0.67 (0.48-0.94) 0.71 (0.35-1.43) 0.0278

135 Clear cell 1.24 (0.87-1.78) 1.12 (0.53-2.37) 0.3392

1744 All 0.97 (0.81-1.16) 1.14 (0.52-2.46) 0.8642

829 Serous 1.04 (0.83-1.31) 1.19 (0.45-3.10) 0.6437

rs17695623 | 0.07 2901 264 | Endometriod |  0.99 (0.68-1.45) 0.63 (0.08-4.85) 0.8421

186 M ucinous 0.47 (0.26-0.86) 0.79 (0.10-6.08) 0.0191

135 Clear cell 1.25 (0.78-2.03) 1.37(0.18-10.56) | 0.3393

MAF — minor alele frequency; Het — heterozygous, Hom — homozygous, OR — odds ratio; Cl — confidence interval; § compared with common homozygous,
Emboldened tSNP and histology names, and P-val ues are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

148



Chapter 3: Results - susceptibility

Table 3.12: Haplotype analysis results for BRAF (P<0.05)

Gene | Haplotype T([:;* Histology OR* (95% CI)" P-value
All 0.88 (0.76-1.01) 0.07
Serous 0.99 (0.86-1.15) 0.921
h10010000 194 Endometrioid 1.04 (0.82-1.31) 0.769
Mucinous 0.92 (0.69-1.22) 0.547
Clear cell 0.67 (0.46-0.97) 0.033
All 0.81 (0.68-0.95) 0.012
Serous 0.8 (0.66-0.98) 0.028
BRAF h00100000 10.3 Endometrioid 0.88 (0.64-1.21) 0.439
Mucinous 0.87 (0.59-1.27) 0.463
Clear cell 0.86 (0.55-1.34) 0.508
All 0.94 (0.78-1.13) 0.49
Serous 1.09 (0.88-1.35) 0.444
h00101001 6.8 Endometrioid 0.99 (0.69-1.42) 0.947
Mucinous 0.54 (0.31-0.93) 0.027
Clear cell 1.36 (0.87-2.11) 0.175

OR - oddsratio; CI - confidence interval; in the haplotypes, ‘0'= common alleleand ‘' 1'= rare allele; SNP
order in haplotypesis5' to 3’ of the genes— BRAF: rs10487888, rs1733832, rs1267622, rs13241719,
rs17695623, rs17161747, rs17623382, rs6944385.

Another haplotype of BRAF, h10010000, was associated with a reduced risk of the
clear cell subtype — OR=0.67 (0.46-0.97), P=0.033. The combined rare haplotypes
of BRAF were also associated with a decrease in the risk of serous ovarian cancer
(P=0.038; see Table 3.12), however the frequency of the combined rare haplotype
was lessthan 1. Therefore only asmall number of samples with the rare haplotypes

would have had areduced risk of the subtype, if the association is atrue positive.

Associations between ERBB2 and ovarian cancer susceptibility

Of the 3 common tagging variants of ERRB2 genotyped, there was evidence of
association between rs1801200 and risk of the endometrioid subtype of ovarian
cancer. Therareallele of ERBB2 rs1801200 was associated with an increased risk of

endometrioid disease (HetOR=1.16 [0.88-1.52], HOmOR=1.71 [1.05-2.76],
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P=0.0389; Table 3.13). Thisvariant was not statistically associated with all cases or
the other subtypes of ovarian cancer. The heterozygous risk for clear cell cases was
OR=1.51, and the confidence intervals did not cross 1, (1.05-2.17), however this
correlation was not statistically significant, although the P-value was close to
significance at the 5% level (P=0.0564). The results of the ERBB2 variants arein

Appendix 111-C.

The ERBB2 rs1801200 polymorphism is a non-synonymous coding SNP. The*A”
allele, which isthe maor form of the SNP, encodes isoleucine, whilethe “G” dlele
encodes valine. The polymorphism is conserved in mice and the sequence is also

predicted to be an exonic splicing enhancer.

Statistically significant ERBB2 hapl otype-effects were observed with the risk of
ovarian cancer — see Appendix I11-D for the results of all the ERBB2 haplotypes.
h001 and h110, which were associated with the risk of all subtypes combined were

also clear cell and mucinous subtypes, respectively, see Table 3.14.

The ERBB2 variant which was associated with ovarian cancer risk, rs1801200, was
in the last position of the haplotypes. The fact that both h110 and h001 were
associated with an increase in risk of ovarian cancer could not be explained by this
variant because it would suggest that the 2 different alleles both result in increased
risk of disease. The other loci of the haplotype aso contained opposite aleles,
therefore, there was no common allele which could explain the associations found

with h110 and hOO1.

150



Chapter 3: Results - susceptibility

Table 3.13: Genotype-specific risks of common ERBB2 tSNPs (P<0.05)

Gene tSNP MAF | Controls | Cases Histology HetOR® (95% CI) | HomOR® (95% CI) | P-Trend
1766 All 1.04 (0.92-1.19) 1.01 (0.77-1.31) 0.6401
847 Serous 1.04 (0.88-1.22) 0.86 (0.60-1.23) 0.8257
ERBB2 | rs1801200 | 0.22 2916 263 | Endometriod | 1.16(0.88-1.52) 1.71 (1.05-2.76) 0.0389
188 Mucinous 0.79 (0.57-1.11) 0.82 (0.41-1.66) 0.2007
134 Clear cell 1.51(1.05-2.17) 1.30 (0.61-2.76) 0.0564

MAF — minor allele frequency; Het — heterozygous, Hom — homozygous; OR — odds ratio; Cl — confidence interval; § compared with common homozygous; Emboldened
tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

Table 3.14: Haplotype analysis results for ERBB2 (P<0.05)

Gene Haplotype | Freq (%) Histology OR* (95% CI)" P-value*
All 1.19(1.03-1.37) 0.016
Serous 1(0.85-1.19) 0.964
h110 16.3 Endometrioid 1(0.75-1.34) 0.982
Mucinous 1.39 (1.02-1.9) 0.036
Clear cell 0.94 (0.63-1.4) 0.752
ERBB2 All 1.17 (1.02-1.34) 0.022
Serous 1.08 (0.92-1.27) 0.329
h001 16 Endometrioid 1.25(0.97-1.62) 0.079
Mucinous 0.88(0.63-1.23) 0.466
Clear cell 1.6 (1.15-2.21) 0.005

OR - oddsratio, Cl -confidence interval; in the haplotypes: ‘0'= common alele and ‘ 1'= rare alele; SNP order in haplotypes: rs2952155, rs2952156,
rs1801200.

151



Chapter 3: Results - susceptibility

Both the size of the effect and the significance between the h001 hapl otype of
ERBB2 and increased risk of ovarian cancer became stronger when analysis was
restricted to the clear cell subtype only (OR=1.6 [1.15-2.21], P=0.005). The
muci nous subtype was associated with the other significant haplotype, h110,

OR=1.39 (1.02-1.9), P=0.036 (see Table 3.14).

Associations between Pl K3CA and ovarian cancer susceptibility

There was no evidence of association between tSNPs PIK3CA and susceptibility to
invasive epithelial ovarian cancer when all the cases of stage 1 samples were
analysed (see Appendix I11-1). However, astatistically significant association was
found between the rare allele of rs2865084 and risk of the endometrioid subtype
when analysis was restricted to this subtype, — HetOR=1.6 (1.03-2.5), HomOR=0.3
(0.22-0.42), P=0.0344; Table 3.15. Interestingly, for all but the clear cell subtype,
there was a suggestion that the heterozygotes for the tSNP had an increased risk of
disease, however al rare homozygotes had a reduced risk of the disease (the
confidence interval did not cross 1) — Appendix Il1-I. The odds ratios for al cases
and the all individual subtypes did not cross 1, which suggest an association with
rare homozygosity of the variant despite P>0.05 for all but the endometrioid samples
—see Table 3.15. PIK3CA rs2865084 tags 4 other SNPs. All of these SNPs are
intronic, however they are all conserved. rs2865084 isin a transcription factor
binding site, upstream of the gene. Analysis of the PIK3CA haplotypes showed that
the h11000000 hapl otype was associated with amarginally increased risk of the
endometrioid subtype (P<0.05, Table 3.16). However, corrections for multiple
testing would attenuate the association. The odds ratios for all the PIK3CA

hapl otypes are shown in Appendix 111-J.
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Table 3.15: Genotype-specific risks of common PIK3CA tSNPs (P<0.05)

Gene tSNP MAF | Controls | Cases Histology HetOR® (95% CI) | HomOR® (95% CI) | P-Trend
1164 All 1.14 (0.89-1.45) 0.43 (0.37-0.50) 0.294
525 Serous 1.13(0.83-1.55) 0.77 (0.63-0.93) 0.428
PIK3CA | rs2865084 | 0.06 2046 183 | Endometrioid 1.60 (1.03-2.50) 0.30 (0.22-0.42) 0.034
135 Mucinous 1.32(0.77-2.25) 0.32 (0.22-0.46) 0.309
95 Clear cell 0.51(0.21-1.28) 0.37 (0.24-0.57) 0.147

MAF — minor alele frequency; Het — heterozygous, Hom — homozygous; OR — odds ratio; Cl — confidence interval; § compared with
common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR
are statistically significant or do not cross 1.

Table 3.16: Haplotype analysis results for PIK3CA (P<0.05)

OR - oddsratio; Cl - confidence interval, Freg=frequency in controls; In the haplotypes, ‘0’'= common alleleand ‘1'=rare allele; SNP order

Gene Haplotype | Freq (%) Histology OR (95% CI) P-value PG-i/(;tlJﬁle
All 1.20(0.97-1.48) 0.102
Serous 1.29 (0.99-1.67) 0.055
PIK3CA h11000000 3.9 Endometrioid 1.49 (1-2.22) 0.049 0.69
Mucinous 1.07 (0.63-1.82) 0.795
Clear cell 0.91 (0.47-1.79) 0.793

in haplotypesis5’ to 3 of PIK3CA: rs2865084, rs7621329, rs1517586, rs2699905, rs7641889, rs7651265, rs7640662, rs2677760.
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3.3: The Effect of tagging SNPs and haplotypes of functional

candidate genes on risk of ovarian cancer

Deletions on chromosomes 4, 5, 6, 13, 14, 15 and 18 have frequently been observed
in primary ovarian cancer cell lines with the metaphase comparative genomic
hybridisation procedure. Thereis also strong evidence from in vitro assays
suggesting that the incorporation of a normal chromosome 18 into 2 ovarian cancer
cancer cell lines can lead to the suppression of the neoplastic phenotype (Dafou et al.
2009). The micro-cell mediated chromosome transfer of anormal chromosome 18
(MMCT-18) has aso been demonstrated to result in the suppression of the
tumourigenic phenotype in prostate and pancreatic cancer cell lines (Padalecki et al.
2001; Lefter et al. 2002; Gagnon et al. 2006). These observations suggest that
chromosome 18 harbours tumour suppressor genes which may contribute to these

suppressions (Lefter et al. 2004; Dafou et al. 2009).

Although there has been some degree of success in identifying germline
polymorphisms associated with ovarian cancer predisposition with the candidate
gene approach, aimost all associations have been borderline significant with small
effect sizes. It is possible that the limited success may be because the candidate gene
selection process is usually based on a predicted function or mutations found in
tumours rather than on “functional” evidence. The microcell-mediated chromosome
transfer (MMCT) technique was used in the hope of identifying putative functionally

relevant genes involved in ovarian cancer aetiology.

The MMCT method was used to transfer normal human chromosome 18 (MMCT-

18) into ovarian cancer cell lines. Invitro and in vivo assays were used to ascertain
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the effect of the transferred chromosome on the neoplastic phenotype of the resultant
recipient/donor hybrids. Differencesin gene expression were assessed between the
parental cancer cell lines, and the neoplastically suppressed hybrid cells, in order to
establish if the incorporation of chromosome 18 resulted in a phenotypic change

which could be correlated to biological and/or molecular function.

3.3.1: Gene and tSNP sdlection of functional candidate genes

The global differential gene expression results from the micro-cell mediated
chromosome 18 transfer (MM CT-18) were obtained for each cell line containing
columns for: gene ID, probe ID, gene name, cytoband, fold change (hybrid/parenta),
log, of the fold change and P-value. Although the gene expression results were not
validated with quantitative (Q)-PCR, the experiments were conducted in triplicate
and the results corrected for multiple testing. The gene lists contained data on
32,878 probes for 32,000 genes; there was more than 1 probe for some genes due to
different transcripts for the genes being available. Genesfrom all chromosomes
were anal ysed because genes have dynamic interactions with others throughout the
whole genome. It isfeasible that although a gene on chromosome 18 may not
directly affect tumourigenicity, the gene may interact with or regul ate other genes

which may have an effect on the suppression of tumour growth.

For the selection of candidate genes, the gene list from the parental and hybrid cell
lines of TOV 112D was combined with the gene list from TOV21G expression data,
matching gene and probe IDs. A simple colour scheme was created for fold change
for easy visualisation and data sorting. Green corresponded to down-regulation of

gene expression in hybrids in comparison with their respective parental cell line, and
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red for up-regulation of gene expression of hybrids. Probes with missing data for

both cell lines were excluded. Genes with inconsistent fold change directions within

and between cell lines were also excluded. For probes where there were missing

datafor 1 of the parental/hybrid cell lines, the data from the other parental/hybrid

triowas used. Gene lists were created for genes which were:

up-regulated in the hybrids of both cell lines (62 genes);

down-regulated in the hybrids of both cell lines (993 genes);
up-regulated in TOV21G hybrids (264 genes);

down-regulated in TOV21G hybrids (1089 genes);

up-regulated in TOV 112D hybrids (72 genes);

down-regulated in TOV 112D hybrids (312 genes);

up-regulated in TOV 21G hybrids chromosome 18 only (31 genes);
down-regulated in TOV 21G hybrids chromosome 18 only (44 genes);
up-regulated in TOV 112D hybrids chromosome 18 only (24 genes);
down-regulated in TOV 112D hybrids chromosome 18 only (53 genes);
up-regulated in TOV 112D hybrids chromosome 18 break-point region (5
genes);

down-regulated in TOV 112D hybrids chromosome 18 break-point region (8

genes).

Figure 3.4 shows aflow chart of the candidate gene selection process.
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Figure 3.4: Flow chart of functional candidate gene salection
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The genes from these lists were ranked by p-values and differential gene expression
fold change. From the gene lists with concordant fold change in both cell-lines, the
top 30 ranking P-values and fold changes from both cell lines were selected for the
master list. From the other gene lists, the top 15 ranking genes according to P-value
and fold change were selected for the master list. There were 192 genesin the
master list (Appendix 1), of which there were some genes that were duplicated from
the different lists. The gene size and functions for the genes in the master list were

obtained from Entrez Gene (http://www.ncbi.nlm.nih.gov/sites/entrez) and

Genecards (http://genecards.org/). The genes were subsequently tagged as described

in Chapter 2.

The master list was narrowed down by excluding genes with less than one common
variant (MAF > 0.05) per 2kb of gene; less than 3 tagging SNPs (tSNPs); greater
than 20 tSNPs. Genes were excluded from selection if the function of the gene was
unknown. Genes with inconsistent fold change data (i.e. up-regulated in one hybrid,
but down-regulated in the other hybrid of the same cell-line) were a so discarded.
Thisresulted in the exclusion of 107 genes/probes from the master list. Many genes
from those excluded would have been very interesting to study (such as APOBEC3C,
TUBA1L, HIF1A, ANXA13, DIO2, C200rf100, LI1X1, C180rf34, GAMP, TPM3,
DNAJBL, HEY1, SERINC2, RARB, RCDHB2, EPS15L 2, S_.C38A6 and MAPT) — see

Appendix | for the functions of these genes.

Genes were then sdl ected based on their function and role in ovarian and other

malignancies, using literature searches and Oncomine (http://www.oncomine.org/).

The hypothesis was that common variants and haplotypes of differentialy expressed
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candidate genes selected based on in vitro and in vivo functiona evidence may affect

awoman’ s risk of ovarian cancer.

At least 1 candidate gene was selected from each genelist. The genes selected from
each list were: one from “down-regulated in TOV 112D hybrids’ (RGC32 [FC=3,
P=1.79x10®]); two from “up-regulated in TOV112D hybrids’ (FILIP1L [FC=4.9,
P=3.44x10"°], AXIN2 [FC=5.2, P=0.0027]); one from “down-regulated in the
TOV21G hybrids’ (SQSTM1 [FC=109.9, P=1.29x10"]); two from “up-regulated in
TOV21G hybrids’ (CASP5 [FC=6.9, P=1.7x10%], STAG3 [FC=8.6, P=6.4x10");
two from “down-regulated in both cell lines” (RUVBL1 [TOV21G: FC=46.7,
P=2.22x10"% TOV112D: FC=2, P=9.49x10°%], SFR® [TOV21G: FC=76.9,
P=0.0028; TOV112D: FC=4.3, P=0.0019]); three from “up-regulated in both cell-
lines’ (AIFM2 [TOV21G: FC=3.4, P=0.0014; TOV112D: FC=1.8, P=0.003], AKTIP
[TOV21G: FC=5.7, P=0.006; TOV112D: FC=3, P=0.0067], EIF4B [TOV21G:
FC=8.8, P=0.09; TOV112D: FC=4, P=0.0014]); and one from “chromosome 18, up-

regulated in TOV112D” (RBBPS [FC=2.9, P=0.023)).

IPLEX Gold Assay Design software was used to create multiplex panels with the
tSNPs from these genes. The candidate genes selected for genotyping were based on
the multiplex levels within two panels, how many SNPs from each gene were
included in the panel; the rankings of the gene within the lists; and the function of
the gene. The candidate genes selected from the MM CT gene expression results for
IPLEX Gold genotyping were AIFM2, AKTIP, AXIN2, CASP5, EIF4B, FILIPILL,

RBBP8, RGC32, RUVBL1, SFRS9, SQSTM1 and STAGS3 (see Table 3.17).
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Table 3.17: Candidate “functional” genes from MMCT-18 study
Regulation : : No.
inegrllybrids Gene Cytoband Function Size (bp) SNPs tSNPs
Downin Cell cycle progression regulation.
TOV112D RGC32 | 13g14.11 | Induced by p53 inresponseto 13,323 17 8
hybrids DNA damage.
. FILIP1L | 3g12.1 Down regulated in ovarian cancer. | 281,369 135 8
Upin 17403 Inhibitor of B-catenin in the Wnt
TOV_112D AXIN2 22 signalling pathway. In region of 33,084 14 12
hybrids q LOH in breast & other cancers.
. 11g22.2- | Regulation of apoptosis.
Upin CASP5 223 14,729 17 9
TOV21G _
hybrids STAG3 79221 Component of cohesi n complex. 43,764 28 3
Chromosome segregation.
. May beinvolved in cell
Downin differentiation, apoptosis, immune
Tov21G | SQSTML | 5635 response and regulation of K(+) 17,181 15 10
hybrids
channels
Interacts with MYC. Formsa
Downin RUVBL1 | 3g21 complex which may beinvolved in 42,857 29 7
TOV112D cell growth.
& TOV21G Plays arolein constitutive splicing
hybrids SFRSO 12024.31 | and can modulate the selection of 8,087 5 3
aternative splice sites.
TP53-induced apoptosis.
AIFM2 10g22.1 Overexpression has been shown to 34,711 17 13
induce apoptosis.
Upin - —
TOV112D Apoptosis. Protein interacts
& TOV21G directly with PKB/Akt and
hybrids AKTIP 16912.2 modulates PKB activity by 11,978 7 4
h enhancing the phosphorylation of
PKB's regulatory sites.
EIF4B 12g13.13 | Trandation initiation factor. 35,770 40 8
RB1 binding protein. Believed to
modul ate the functions of BRCA1
Chri8 ui in transcriptional regulation, DNA
rioupin repair, and/or cell cycle checkpoint
TOV.112D RBBP8 18q11.2 control. Has been proposed that 93,155 39 4
hybrids this gene may be a tumour
suppressor acting in the same
pathway as BRCAL.

SNP selection criteria: minor allele frequency > 0.05, Hardy-Weinberg equilibrium p-value > 0.01
using HapMap Data Release 22.
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The sequences of the tagging SNP of the differentially expressed candidate genes
were formatted for the iIPLEX Gold Assay design software, in differing gene
combinations to assess the most efficient multiplexes for panels. The assay panel
design chosen contained the most interesting candidate genes in terms of known
function (AIFM2, AKTIP, AXIN2, CASP5, FILIP1L, RBBP8, RGC32, RUVBL1 and
STAG3), would result in 10 tSNPsin total being genotyped by TagMan if al the
polymorphisms were successfully genotyped on the iPLEX Gold system. The
functions of the candidate genes that were chosen for the association study are
summarised in Table 3.17. The panel aso contained assays for BRCAL (rs799917)
and BRCA2 (rs144848) SNPs, which had been genotyped and sequenced. These
variants were used for quality control purposes. The panel selected comprised of a

27-plex and 33-plex.

3.3.2:. MMCT-18 samples and methods

Due to the poor performance of the GEOCS samples on the iPLEX platform in the
oncogene study, it was excluded from the stage 1 set of samples. More SEARCH
and UKOPS samples were available for stage 1 than for the oncogene study.
Additional SEARCH cases and UKOPS cases and controls were also available for
stage 2 validation. These extra samples came from ongoing participant recruitment
and preparation of samples. The sample setsused in this“functiona” study are
shown in Table 3.18. The histological subtype datafor BAVARIA and the new

SEARCH and UKOPS cases are currently not available.

Three different popul ations were used in stage 1 of this study. These populations

consisted of: (1) The Danish MALOVA study; (2) The UK SEARCH study; (3) the
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UKOPS study from the UK. In total, there were 1,799 invasive epithelial ovarian
cancer cases and 3,045 unaffected controlsin this series. Stage 2 samples were used
to validate findings from stage 1. See Table 3.18 for the numbers of cases and

controls genotyped from each population set.

Table 3.18: Ovarian cancer case-control populations included in functional study

Study Controls Total cases Serous Endometrioid Mucinous Clear cell
MALOVA 1221 446 275 56 43 33
SEARCH 1229 847 328 138 104 83
UKOPS 595 506 246 84 48 49
Total stage 1 3045 1799 849 278 195 165
AUS 1122 768 464 105 27 50
BAV 234 228 Unknown Unknown Unknown  Unknown
DOVE 716 584 303 86 18 30
GEOCS 429 327 166 47 29 23
GER 416 218 103 21 21 6
HAWAII 158 70 36 11 2 6
HOPE 603 280 159 40 13 21
JAC 593 603 300 62 49 12
NCOCS 747 622 242 50 33 22
usc 546 391 161 33 19 14
UKO-P2 467 553 Unknown Unknown Unknown  Unknown
Total stage 2 6031 4590 1934 455 211 184
I‘;aégages 9076 6389 2783 733 406 349

The stage 2 samples comprised of case-control studies from Australia (AUYS),
Germany (BAVARIA; and GER), Poland (JAC), the United Kingdom (UKO (B) -
consisting of 368 SEARCH cases; and 185 UKOPS cases and 467 controls), and the

United States of America (DOVE; GEOCS; HAWAII; HOPE; NCOCS and USC).

A total of 68 tSNP were identified from the nine candidate genes. Of these, five

tSNPs (AIFM2 rs2271695; AXIN2 rs2240308 and rs4128941; RGC32 rs3783197;
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and RUVBL1 rs13091198) failed assay design, manufacture, probe testing or QC.
Therefore, the stage 1 samples were successfully genotyped with 63 tSNPs from
AIFM2, AKTIP, AXIN2, CASP5, FILIP1L, RBBP8, RGC32, RUVBL1 and STAG3
with acombination of iPLEX Gold and Tagman SNP genotyping platforms.
Overal 95% of the candidate genes were covered by the tSNPs which were
successfully genotyped (288 variants covered by the genotyped tSNPs out of atotal

303 variants).

3.3.3: Ovarian cancer risks associated with common genetic variation in

functional candidate genes

The genotype distributions for the tagging SNPs of the MM CT-18 candidate genes
aretabulated in Appendix 11-B. The results of the logistic regression are shown in

Appendix IV-A to IV-R.

When the effects of the common variants of the MM CT-18 candidate genes on
predisposition of ovarian cancer were assessed, there was no evidence of association
with AIFM2, AKTIP, FILIP1L, RBBP8, RGC32 and STAG3. A tSNP from AXIN2,
CASP5 and RUVBL1 were associated with risk of ovarian cancer. Therare alele of
AXINZ2 rs11079571 was associated with an increase in ovarian cancer risk
(HetOR=1.23 [1-1.51], HOmOR=1.73 [0.99-3.01], P=0.0383). Therare allele of
CASP5 rs518604 was associated with an increase in ovarian cancer risk; (HetOR=
1.39[1.06-1.81], HomOR=1.44 [1.05-1.97], P=0.0124), Table 3.19. This association

remained when analysis was restricted to serous only cases.
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Serous All subtypes Serous subtype
Gene tSNP MAF Controls  All cases P-
cases HetOR HomOR trend HetOR HomOR P-trend
rs2394655 0.04 2924 1751 827 1.01(0.80-1.27) 1.37(0.42-442) 0.7773 | 1.12(0.84-1.49)  1.03(0.21-5.04) 0.4297
rs7908957 0.13 2873 1719 817 0.92(0.79-1.07) 1.13(0.73-1.75) 05342 | 0.91(0.75-1.11)  0.91 (0.50-1.67) 0.3812
rs1053495 0.08 2704 1697 790 0.97(0.81-1.16)  0.72(0.35-1.51) 0.457 | 0.96(0.75-1.21)  0.88(0.35-2.18) 0.6293
rs2894111 0.28 2861 1770 835 0.99(0.87-1.13) 0.93(0.74-1.16)  0.5545 | 1.02(0.87-1.20)  0.86 (0.64-1.17) 0.5896
rs2394656 0.19 1703 913 506 0.96 (0.80-1.15)  0.85(0.55-1.34)  0.4114 | 0.93(0.75-1.17)  0.85(0.50-1.47) 0.3965
AIEM2 rs6480440 0.23 1140 422 556 1.01(0.79-1.29)  0.88(0.55-1.42) 0.7992 | 1.07(0.80-1.43)  0.75(0.40-1.39) 0.8126
rs2280201 0.12 1783 1313 261 1.05(0.88-1.25)  0.96 (0.53-1.71) 0.59 1.11(0.88-1.40)  0.97 (0.44-2.12) 0.5089
rsl0999147  0.08 2395 1285 600 1.25(1.03-1.51) 0.48(0.16-1.47)  0.2055 | 1.13(0.88-1.46)  0.79(0.23-2.75) 0.6396
rs3750772 0.05 2944 1743 831 1.02(0.83-1.24)  2.28(0.86-6.04) 0.54 1.12(0.88-1.44)  3.43(1.23-9.58) 0.1043
rs4295944 0.41 1784 1335 567 0.98(0.83-1.15)  1.09(0.88-1.34)  0.4913 | 0.95(0.77-1.18)  1.11 (0.84-1.46) 0.6042
rs2394644 0.12 1685 1324 561 1.05(0.88-1.26)  1.03(0.60-1.79)  0.5245 | 1.02(0.80-1.29)  1.11(0.55-2.25) 0.7103
rs10999152  0.17 2610 1618 760 1.14(0.99-1.32) 0.96(0.68-1.36)  0.2066 | 1.17(0.98-1.40) 1.01(0.65-1.57) 0.2171
rs9931702 0.44 1722 917 506 0.96 (0.80-1.16)  1.01(0.80-1.27) 0.9734 | 1.10(0.87-1.38)  1.12(0.85-1.50) 0.4039
AKTIP rs17801966  0.14 1469 828 450 1.06 (0.87-1.31)  0.74(0.38-1.46)  0.9282 | 1.14(0.89-1.46)  0.90 (0.40-2.00) 0.4718
rs7189819 0.32 2923 1745 825 0.93(0.82-1.06) 0.92(0.75-1.14) 0.279 | 0.99(0.84-1.17)  1.02(0.78-1.33) 0.867
rs3743772 0.06 1093 413 256 0.90(0.62-1.32) 2.02(0.32-12.59) 0.6778 | 1.12(0.73-1.72) 1.72(0.17-17.14)  0.6424
AXIN2 rs11868547  0.49 1717 919 509 0.93(0.76-1.13)  1.02(0.81-1.29) 0.8178 | 0.92(0.72-1.17)  0.99 (0.74-1.31) 0.9949
rs7591 0.37 2881 1779 838 1.09(0.96-1.24) 1.05(0.87-1.27) 0.4234 | 1.19(1.01-1.41) 1.11(0.87-1.41) 0.1463
rs4074947 0.2 2898 1775 840 1.16(1.02-1.32) 0.92(0.67-1.24) 0.2189 | 1.21(1.03-1.43) 0.76 (0.50-1.16) 0.323
rs7210356 0.11 2974 1777 838 1.01(0.87-1.17)  0.97(0.56-1.69) 0.8864 | 1.09(0.90-1.32) 1.08(0.54-2.14) 0.3518
rs11655966  0.26 1779 1301 552 0.92(0.79-1.07)  1.07(0.80-1.44) 0.9064 | 0.99(0.81-1.22) 1.10(0.74-1.63) 0.6218
rs4541111 0.49 1770 1297 554 1.09(0.91-1.30)  0.97 (0.78-1.19) 0.806 | 1.10(0.87-1.40)  1.03(0.78-1.36) 0.755
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rs4791171  0.28 2109 1185 539 | 1.08(0.92-1.25) 1.19(0.92-155) 0.1238 | 1.05(0.86-1.29) 1.23(0.88-1.73)  0.2499
rs11079571  0.15 1206 839 326 | 1.23(1.00-151) 1.73(0.99-3.01) 0.0383 | 1.22(0.92-1.63) 1.74(0.84-3.63)  0.1127
rs3023087 0.1 2910 1780 843 | 1.05(0.93-1.20) 1.26(0.951.68) 0.1545 | 1.05(0.89-1.24) 1.10(0.75-1.60)  0.4525
rs3023086  0.41 2935 1753 833 | 091(0.80-1.04) 1.07(0.90-1.27) 0.813 | 0.84(0.71-1.00) 1.02(0.81-1.27)  0.6828
r 518604 0.44 1105 438 270 | 1.39(1.06-1.81) 144(1.05-197) 00124 | 1.36(0.98-1.88) 1.45(0.99-2.11)  0.0313
rs523104 0.47 1199 824 320 | 1.03(0.83-1.29) 1.07(0.82-1.39) 0.7689 | 0.86(0.65-1.16)  0.80(0.55-1.15)  0.1294
rs3181328  0.09 1206 829 319 | 095(0.73-123) 1.16(0.50-272) 07779 | 0.93(0.65-1.33) 0.68(0.18-2.64)  0.7345
rsl7446518  0.12 1177 803 311 | 0.88(0.69-1.12) 1.28(0.54-3.02) 05052 | 0.87(0.63-1.22) 1.01(0.28-3.69)  0.5292
CASP5  rs9651713  0.11 2898 1730 819 | 0.99(0.85-1.15) 1.22(0.70-2.13) 0.836 | 0.96(0.78-1.17) 155(0.81-2.96)  0.8167
rs3181175  0.18 2379 1282 597 | 0.96(0.83-1.12) 1.23(0.83-1.82) 0.9331 | 0.93(0.76-1.13) 1.34(0.82-2.19)  0.9482
rs3181174  0.08 2962 1780 840 | 0.96(0.80-1.14) 1.21(0.55-2.65) 0.7967 | 1.09(0.88-1.36) 1.12(0.41-3.09)  0.4061
12282657  0.35 1478 852 462 | 1.08(0.90-1.30) 0.89(0.67-1.20) 0.7645 | 1.16(0.92-1.45) 1.11(0.78-1.56)  0.3615
rs507879 0.54 2839 1768 835 | 1.02(0.87-120) 1.00(0.84-1.19) 09144 | 1.09(0.89-1.34) 1.00(0.79-1.26)  0.8497
1796977 0.33 1166 437 269 | 1.07(0.84-1.35) 1.33(0.94-1.89) 0.1458 | 0.98(0.74-1.31) 1.25(0.83-1.90)  0.4593
rs793477 0.13 2646 1653 771 | 1.02(0.88-1.18) 0.88(0.53-1.43) 009373 | 1.11(0.92-1.35)  1.08(0.59-1.99)  0.3224
rs793446 0.4 2947 1773 838 | 1.05(0.92-1.20) 1.11(0.93-1.32) 0.3207 | 0.95(0.80-1.13) 1.07(0.86-1.34)  0.842
fpy  "S3921767 007 2859 1773 840 | 1.00(0.84-120) 0.69(0.29-1.61)  0.6908 | 0.90(0.71-1.15)  0.19(0.03-1.43)  0.1194
rs17338680  0.11 2989 1786 574 | 1.06(0.91-1.24) 0.77(0.46-1.28)  0.985 | 0.88(0.69-1.14)  0.98(0.44-2.20)  0.3051
rs0864437  0.22 2972 1786 843 | 0.98(0.86-1.12) 1.18(0.91-153) 0.6077 | 0.96(0.81-1.14)  147(1.08-201)  0.2249
(6788750  0.41 2532 1414 710 | 098(0.84-1.13) 0.96(0.79-1.17) 07028 | 1.07(0.88-1.29)  1.12(0.88-1.44)  0.3295
rs12494994  0.17 2347 1273 504 | 1.14(0.98-1.33) 0.88(0.59-1.33) 0.433 | 0.95(0.78-1.17) 0.52(0.27-0.99)  0.097
rs7239066  0.11 2366 1272 504 | 0.80(0.67-0.96) 1.05(0.57-1.95) 0.0645 | 0.99(0.79-1.23) 1.18(0.55-2.53)  0.7647
npppg | [S11082221 004 2937 1748 826 | 1.12(0.89-1.41) 1.13(0.31-407) 02974 | 1.17(0.88-157) 055(0.07-459)  0.3355
rsA4474794 037 2895 1764 829 | 0.94(0.82-1.07) 0.88(0.72-1.06) 0.2066 | 0.83(0.70-0.98) 0.80(0.63-1.03)  0.0323
rs9304261  0.24 888 346 215 | 1.07(0.82-1.40) 0.67(0.38-1.17) 05163 | 1.08(0.79-1.49) 0.37(0.16-0.88)  0.2176
RGC32  rsl0467472  0.13 2887 1769 839 | 0.99(0.86-1.15) 1.05(0.68-1.64) 0.9822 | 0.91(0.75-1.10)  0.74(0.39-1.41)  0.2126
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rs3783194 0.1 2723 1690 788 | 1.02(0.88-1.19) 1.03(0.57-1.89) 0.8873 | 0.89(0.72-1.09)  0.70(0.29-1.69)  0.1363
rs11618371 0.1 2959 1771 835 | 1.01(0.87-1.18) 1.31(0.74-2.32) 05158 | 1.03(0.85-1.26) 1.33(0.66-2.70)  0.4921
r9532824  0.08 2892 1782 841 | 096(0.81-1.15) 0.47(0.19-1.16) 03412 | 0.94(0.74-1.18)  0.46(0.14-1.54)  0.3245
rs995845 0.26 2365 1274 505 | 1.01(0.87-1.16) 1.09(0.82-1.45) 0.8121 | 0.89(0.74-1.09)  1.06(0.73-1.52)  0.4695
r9504551  0.15 2863 1766 833 | 1.01(0.88-1.16) 1.10(0.74-1.65) 0.611 | 1.09(0.91-1.29) 0.7 (0.56-1.65)  0.4095
rs975590 0.24 2940 1749 828 | 1.02(0.90-1.16) 0.89(0.68-1.17) 0.8348 | 1.03(0.87-1.21) 0.84(0.59-1.21)  0.7862
r9860614  0.11 2966 1777 839 | 1.05(0.90-122) 144(0.89-2.31) 02094 | 1.16(0.96-1.40) 1.03(0.52-2.02)  0.1425
rs13063604  0.23 1724 1266 537 | 1.14(0.97-1.34) 1.39(1.02-1.89) 0.0192 | 1.42(1.15-1.74) 1.63(1.10-242)  0.0002
ruvpLy 9732402 038 2382 1280 506 | 1.20(1.03-1.40) 1.06(0.85-1.31) 0207 | 1.35(1.10-164) 114(0.86-1.52)  0.0677
rs7650365  0.49 2672 1645 769 | 1.08(0.93-1.26) 0.86(0.72-1.03)  0.1081 | 0.97(0.80-1.17)  0.74(0.58-0.93)  0.009
rs4857836  0.27 2993 1787 845 | 1.05(0.93-1.19) 097 (0.76-1.23) 0.8219 | 1.11(0.95-1.31) 1.04(0.77-1.41)  0.3458
19821568  0.15 2011 1733 820 | 097(0.84-1.11) 0.93(0.63-1.37) 05613 | 0.99(0.82-1.18)  0.57(0.31-1.06)  0.2966
rs11762932  0.22 2965 1787 846 | 1.03(0.90-1.17) 1.06(0.80-1.40) 0.6327 | 1.03(0.88-1.22) 1.06(0.74-1.52)  0.6639
STAG3  rs2246713  0.49 1765 1295 549 | 097(0.81-1.15) 0.96(0.78-1.19)  0.6593 | 0.95(0.75-1.20)  0.87 (0.66-1.16)  0.2436
rsl637001  0.28 2967 1784 843 | 0.86(0.76-098) 0.92(0.73-1.16) 0.0692 | 0.84(0.71-0.99) 0.77(0.56-1.05)  0.0177

MAF — minor alele frequency; Het — heterozygous, Hom — homozygous, OR — odds ratio; Cl — confidence interval; § compared with common homozygous,
Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not

cross 1.
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The confidence intervals of both the heterozygous and homozygous odds ratios of
CASP5 rs518604 crossed 1, however the lower confidence intervals were close to 1
(HetOR=1.36 [0.98-1.88], HomOR=1.45 [0.99-2.11], P=0.0313; Table 3.19). The
AXIN2 rs11079571 and CASP5 rs518604 were only successfully genotyped for 839
cases and 1,206 controls, and 438 cases and 1,195 controls, respectively with the
IPLEX Gold platform. TagMan assays of the variants failed to produce callable
genotype clusters, therefore the associations could not be further investigated with
the remaining stage 1 and stage 2 samples. Neither AXIN2 nor CASP5 variants were
tagged by any other SNP with r2>0.8, therefore it was not possible to manufacture
Tagman assays of SNPsin LD. Dueto therelatively small numbers of samples
successfully genotyped for these variants and the borderline significance of the P-

values, there is apossibility that the associations are chance findings.

Therare alele of RUVBL1 rs13063604 was also associated with an increased risk of
ovarian cancer; HetOR=1.14 (0.97-1.34), and the HomOR=1.39 (1.02-1.89),
P=0.0192. This association became stronger when the analysis was restricted to the
serous histological subtype (P=0.0002). There was also evidence suggesting that the
rare allele of RUVBL1, rs7650365, was associated with a decreased risk of the serous

subtype (Table 3.20).
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Table 3.20: Genotype-specific risks of variants of RUVBL1 (P<0.05)

Gene tSNP MAF Controls | Cases Histology HetOR (95% CI)* | HomOR (95% CI)* | P-trend
1266 All 1.14 (0.97-1.34) 1.39(1.02-1.89) 0.0192

537 Serous 142 (1.15-1.74) 1.63(1.10-2.42) 0.0002

rs13063604 0.25 1724 207 | Endometrioid 0.74 (0.53-1.04) 1.29(0.73-2.31) 0.3904

143 Mucinous 0.95 (0.64-1.41) 1.39(0.69-2.83) 0.5473

124 Clear cell 1.22 (0.83-1.80) 1.07 (0.48-2.40) 0.4113

1645 All 1.08 (0.93-1.26) 0.86 (0.72-1.03) 0.1081
769 Serous 0.97 (0.80-1.17) 0.74 (0.58-0.93) 0.009

RUVBL1 | rs7650365 0.46 2672 256 | Endometrioid 1.12(0.83-1.53) 0.74 (0.50-1.09) 0.1777
175 Mucinous 1.04 (0.70-1.53) 1.25(0.81-1.93) 0.371

155 Clear cell 1.08 (0.73-1.60) 0.93(0.58-1.48) 0.7821

1733 All 0.97 (0.84-1.11) 0.93(0.63-1.37) 0.5613

820 Serous 0.99 (0.82-1.18) 0.57 (0.31-1.06) 0.2966

rs9821568 0.15 2911 269 | Endometrioid 1.14 (0.86-1.52) 2.09 (1.16-3.78) 0.0286

186 Mucinous 0.86 (0.60-1.23) 0.62 (0.19-2.00) 0.1981

161 Clear cell 0.68 (0.45-1.02) 0.85(0.30-2.38) 0.0967

MAF — minor alele frequency; Het — heterozygous, Hom — homozygous; OR — odds ratio; Cl — confidence interval; § compared with common
homozygous, Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically

significant or do not cross 1.
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Validation of RUVBL1 results

The two SNPs with the strongest associations with ovarian cancer risk (RUVBL1
rs13063604 and rs7650365) were genotyped in additiona stage 2 samples, which
included atotal of 2,636 cases and 6,164 controls. Stage 2 comprised of samples
from AUS, BAVARIA, DOVE, GEOCS, GER, HAW, HOPE, JAC, NCOCS, UKO-
P2 (UKOPS cases and controls, and SEARCH cases) and USC. The associations
with risk of the serous subtype were not validated in the stage 2 samples alone
(P>0.05; refer to Table 3.21). The association between increased risk of serous
ovarian cancer and the rare alele of rs13063604 HetOR=1.13 (1.00-1.27), HomOR=
1.22 (0.9-1.56), P=0.0191 remained statistically significant after combining stages 1
and 2 genotyping data. The rs13063604 variant tags nine other SNPs. Two of these,
rs1057220 and rs1057156, are located in the 3' untranslated region (3'UTR), and

they are predicted to be exonic splicing enhancers.

The association between the rare alele of rs7650365 and reduced risk of the serous
subtype was no longer statistically significant after stages 1 and 2 were combined

(HetOR=0.94 [0.86-1.04), HOmOR=0.92 [0.82-1.03), P=0.142); Table 3.21.

Therare alele of RBBP8 rs4474794 was found to be associated with adecreasein
risk of serous histological subtype when logistic regression analysis was restricted to
the subtype, HetOR=0.83 (0.70-0.98), HomOR=0.80 (0.63-1.03), P=0.0323;
Appendix IV-L. Thers4474794 tSNP tags 17 other variants with r>>0.8. Five of
these SNPs are conserved in mice, however, al of the SNPs are intronic, and there

are no known functions which could explain the association.
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Table 3.21: Genotype-specific risks of RUVBL1 rs13063604 and rs7650365 (by genotyping stage)

tSNP Study Controls Cases Histology HetOR* (95% CI) HomOR* (95% ClI) P-trend

Stage 1 1724 1266 1.14 (0.97-1.34) 1.39(1.02-1.89) 0.019

Stage 2 2639 1915 All 1.04 (0.92-1.18) 1.09 (0.85-1.41) 0.402

13063604 Stage1 & 2 4363 3181 1.08 (0.98-1.19) 1.19 (0.98-1.45) 0.033
Stage 1 1724 537 1.42 (1.15-1.74) 1.63(1.10-2.42) 0.0002

Stage 2 2639 1218 Serous 1.00 (0.86-1.16) 1.05(0.77-1.42) 0.83

Stage1 & 2 4363 1755 1.13(1.00-1.27) 1.22 (0.96-1.56) 0.019

Stage 1 2672 1645 1.08 (0.93-1.26) 0.86 (0.72-1.03) 0.11

Stage 2 5885 4437 All 0.97 (0.88-1.06) 0.97 (0.87-1.09) 0.624

7650365 Stage1 & 2 8778 6129 1.02(0.94-1.1) 0.96 (0.87-1.05) 0.404

Stage 1 2672 769 0.97 (0.80-1.17) 0.74 (0.58-0.93) 0.009

Stage 2 5885 2534 Serous 0.94 (0.84-1.05) 0.99 (0.87-1.13) 0.858

Stage1 & 2 8778 3303 0.94 (0.86-1.04) 0.92 (0.82-1.03) 0.142

Het — heterozygous; Hom — homozygous; OR - odds ratio; Cl — confidence interval; * compared with common homozygous; Emboldened tSNP and
histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.
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Figure 3.5: Forest plots of RUVBL1 rs7650365 (serous subtype)

The genotype- and haplotype-specific results of STAG3 are shown in Appendix 1V-Q
and V-R. Therare allele of rs1637001 was associated with a reduced risk of the
serous histological subtype (HetOR=0.84 (0.71-0.99), HomOR=0.77 (0.56-1.05),
P=0.0177). The heterozygous odd ratio for rs1637001 for al histological subtypes

correlated to adecrease in therisk of ovarian cancer, HetOR=0.86 (0.76-0.98),
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HomOR=0.92 (0.73-1.16), P=0.0692. However, the correlation was not statistically

significant.

Associations were aso found with the haplotypes of AXIN2, CASP5 and RUVBL1
and ovarian cancer susceptibility — see Table 3.22. The h1111 haplotype of AXIN2
block 2 was associated with an increased risk of ovarian cancer - OR=1.21 (1.03-
1.42), P=0.023. This association was aso found when analysis was restricted to the
serous subtype (OR=1.19 [1.01-1.39], P=0.037) — Appendix IV-F. Thers11079571
variant, which was associated with disease risk, was in the second position of the
hapl otypes of thisblock (AXIN2 block 2). The association between the rare allele of
rs11079571 and increased risk of ovarian cancer was consistent with the correlation
of the h1111 haplotype of AXIN2 block 2 and increased risk of ovarian cancer. No
other common haplotypes of AXIN2 block 2 contained the rare allele of rs11079571

(see Appendix 1V-F).

The h000 haplotype of CASPS block 1, which contained rs518604 in the first
position, was associated with areduced risk of ovarian cancer, OR=0.72 (0.56-0.94),
P=0.015. Conversely, the h100 haplotype of the same block was associated with an
increased risk of ovarian cancer of all subtypes, OR=1.13 (1.03-1.24), P=0.012;
Table 3.22. The associations were consistent with the effects of the rs518604 alleles.
When the global effects of CASP5 haplotype block 1 on ovarian cancer susceptibility
were investigated, a highly significant association was found, P=8.43x10°°.

Although no individual haplotype of RUVBL1 was found to be associated with the
risk of ovarian cancer, RUVBL1 haplotypes were globally associated with ovarian

cancer predisposition, P=0.0016.
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Table 3.22: MM CT-18 susceptibility - haplotype results (all subtypes)

Sf)’;i’hap"’type Haplotype  Freq (%) OR (95% Cl) P-value G'\?albﬂep'
h0000000 70 1.04 (0.9-1.2) 0.60
h0001011 7 1.22 (0.94-1.59) 0.13
AIFM2 block 1 0.93
h0001100 4 0.8 (0.54-1.17) 0.24
h1111110 4 1(0.71-1.42) 1.00
h00000 36 0.92 (0.83-1.02) 0.12
h00001 4 1.06 (0.83-1.35) 0.67
AIFM2 block 2 0.80
h00011 7 1.12 (0.92-1.36) 0.25
h00100 39 1.01 (0.91-1.11) 0.86
h0000 55 1.01 (0.88-1.16) 0.90
h1010 30 1(0.86-1.16) 1.00
AKTIP 0.37
h1100 8 0.97 (0.75-1.25) 0.80
h1101 6 1(0.75-1.33) 1.00
h000001 15 0.9 (0.77-1.04) 0.15
h010011 6 0.9(0.72-1.12) 0.36
h010111 11 1.05 (0.89-1.23) 0.58
AXIN2 block 1 h011001 10 1.15 (0.98-1.36) 0.08 0.19
h011010 4 0.96 (0.73-1.26) 0.75
h011011 6 1.08 (0.87-1.33) 0.49
h100000 45 1.03(0.93-1.13) 0.60
h0000 53 0.98 (0.87-1.1) 0.75
h0001 15 0.93 (0.79-1.11) 0.43
AXIN2 block 2 h1001 0.98 (0.77-1.26) 0.87 0.085
h1011 1.06 (0.86-1.3) 0.60
h1111 13 1.21 (1.03-1.42) 0.023
hoo1 10 0.9 (0.77-1.06) 0.22
CASP5block 1 h010 44 0.99 (0.9-1.09) 0.79 8.4x10°
h100 43 1.13 (1.03-1.24) 0.012
h000000 10 0.87 (0.71-1.07) 0.18
h000001 49 1.02 (0.9-1.14) 0.77
h000010 13 1.1 (0.93-1.3) 0.29
CASP5 hlock 2 0.25
h001110 7 0.97 (0.77-1.22) 0.79
h011010 10 1.15 (0.95-1.39) 0.16
h100001 5 1.01 (0.82-1.26) 0.90
h00000 46 0.95 (0.84-1.08) 0.45
FILIPLL block h00110 7 0.94 (0.74-1.2) 0.62
1 h01000 12 0.97 (0.79-1.19) 0.78 0.59
h10100 23 1.08 (0.93-1.24) 0.31
h10101 11 1.11 (0.91-1.35) 0.29
FILIP1L block  h0oO 19 0.94 (0.83-1.08) 0.38 0.76
2 hoo1 17 1.04 (0.92-1.17) 0.56
h010 41 0.98 (0.88-1.08) 0.64
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Sf)’;i’hap"’type Haplotype  Freq (%) OR (95% Cl) P-value G'\f’albﬂep'
h100 23 1.04 (0.93-1.16) 0.53
h0000 62 1.12 (0.98-1.27) 0.09
h0010 02 0.88(0.71-1.1) 0.27
RBBP8 0.64
h0011 23 0.92 (0.8-1.07) 0.27
h1010 7 0.83 (0.64-1.07) 0.15
h0000000 42 0.98 (0.89-1.08) 0.67
h0000011 5 0.93 (0.74-1.17) 0.54
h0000100 10 1.04 (0.89-1.21) 0.61
RGC32 h0001001 7 0.92 (0.75-1.12) 0.41 0.63
h0010011 8 1.1 (0.93-1.31) 0.28
h0100100 11 1.01 (0.87-1.18) 0.85
h1000000 8 1(0.84-1.2) 0.96
h000000 13 0.91 (0.77-1.07) 0.25
h000100 48 0.96 (0.86-1.07) 0.49
RUVBL1 h001011 15 0.98 (0.84-1.15) 0.83 0.0016
h011010 12 1.15 (0.97-1.36) 0.11
h111000 10 1.17 (0.99-1.4) 0.07
h0oO 51 1.06 (0.96-1.16) 0.26
STAG3 h0o11 27 0.94 (0.85-1.05) 0.29 0.098
h110 21 1.03 (0.92-1.16) 0.63

Freq — frequency; OR — odds ratio; Cl — confidence interval; SNP order in haplotypesis 5’ to 3' of the genes—
AIFM2 (block 1): rs2394655, rs7908957, rs1053495, rs2894111, rs2394656, rs6480440, rs2280201. AIFM2
(block 2): rs10999147, rs3750772, rs4295944, rs2394644, rs10999152. ATKIP: rs9931702, rs17801966,
rs7189819, rs3743772. AXIN2 (block 1): rs11868547, rs7591, rs4074947, rs7210356, rs11655966, rs4541111.
AXIN2 (block 2): rs4791171, rs11079571, rs3923087, rs3923086. CASP5 (block 1): rs518604, rs523104,
rs3181328. CASP5 (block 2): rs17446518, rs9651713, rs3181175, rs3181174, rs2282657, rs507879. FILIP1L
(block 1): rs796977, rs793477, rs793446, rs3921767, rs17338680. FILIP1L (block 2): rs9864437, rs6788750,
rs12494994. RBBP8: rs7239066, rs11082221, rsA474794, rs9304261. RGC32: rs10467472, rs3783194,
rs11618371, rs9532824, rs995845, rs9594551, rs975590. RUVBL1: rs9860614, rs13063604, rs3732402,
rs7650365, rs4857836, rs9821568. STAGS: rs11762932, rs2246713, rs1637001.

Associations between the MM CT-18 candidates and risk of the major

histological subtypes of ovarian cancer

As shown with the candidate oncogenes, statistically significant associations may be
found between candidate genes and the histological subtypes of ovarian cancer,
which may not be detected with the analysis of all samples. However, the results

should be treated with caution as the numbers of samples are further reduced. The
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following describes statistically significant associations with tables of the results of

all subtypes combined and individually.

Associations between AlFM?2 and ovarian cancer susceptibility

A haplotype of AIFM2 block 2 was associated with the risk of mucinous ovarian
cancer (Table 3.23). The h00100 of AIFM2 block 2 was associated with an
increased risk of the subtype, OR=1.26 (1.02-1.55), P=0.034. See Appendix IV-B

for the logistic regression results for all the common AIFM2 hapl otypes.

Table 3.23: Haplotype-specific results of AIFM2 (P<0.05)

Haé)llgéli/ pe Haplotype T([/Oe;* Histology OR (95% CI) P-value S l/cz):l)l?le
All 1.01(0.91-1.11) 0.856
AIFM2 Serous 1.02(0.91-1.14) 0.702
haplotype h00100 39 Endometrioid 0.96 (0.8-1.15) 0.637 0.7949
block 2 Mucinous | 1.26(1.02-155) | 0.034
Clear cell 0.91 (0.72-1.15) 0.437

SNP order in haplotypesis5’ to 3’ of the gene — haplotype block 2: rs10999147, rs3750772, rs4295944,
rs2394644, rs10999152.

Association between RGC32 and ovarian cancer susceptibility

The only association between risk of ovarian cancer and RGC32 was with acommon
variant with aminor allele frequency of 0.11. Therare allele of rs3783194 was
associated with a 1.5-fold increase in the risk of the clear cell histologica subtype —
HetOR=1.5 (1.04-2.17), HomOR=1.99 (0.59-6.7), P=0.0206; see Table 3.24.
Currently, it isnot known if this variant tags any other SNPs in the gene or the
regulatory regions up- or downstream of the gene. See Appendix 1V-M for the

results for the other common tSNPs of this gene.
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There was also evidence of an association between a haplotype of RGC32,
h0100100, and increased risk of clear cell ovarian cancer (OR=1.53 [1.11-2.11],
P=0.01), see Table 3.25. This haplotype comprised of the rare allele of RGC32
rs3783194, which was associated with an increase risk of clear cell ovarian cancer in
the second position, thus lending support to the association with the h0100100

haplotype. No other common haplotype contained the rare alele of rs3783109.

Associations between RBBP8 and ovarian cancer susceptibility

In addition to the association between the RBBP8 rs4474794 variant and a decrease
in risk of serous histological subtype, the hO000 haplotype of the gene was
associated with amarginal increase in the risk of the subtype — OR=1.13 (1.01-1.27),
P=0.032. These haplotype-specific associations were concordant with the tSNP
findings. Theresultsfor al tSNPs and haplotypes of RBBP8 are shown in

Appendices IV-K and IV-L, respectively.

Associations between AXIN2 and ovarian cancer susceptibility

Aswell asthe association between h1111, of AXIN2 haplotype block 2 and
increased risk of ovarian cancer in general - OR=1.21 (1.03-1.42), P=0.023. This
association was also found when analysis was restricted to the serous subtype
(OR=1.19[1.01-1.39], P=0.037) — see Table 3.26. Thers11079571 variant, which
was associated with disease risk, was in the second position of the haplotypes of this
block (AXIN2 block 2). The association between the rare alele of rs11079571 and
increased risk of ovarian cancer was consistent with the correlation of the h1111
hapl otype of AXIN2 block 2 and increased risk of ovarian cancer. Therare alele of

rs11079571 was not present in any other common haplotype (Appendix IV-F).
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Table 3.24: Genotype-specific risks of RGC32 (P<0.05)

Gene tSNP MAF | Controls | Cases Histology HetOR (95% CI)* | HomOR (95% CI)* | P-trend
1690 All 1.02 (0.88-1.19) 1.03 (0.57-1.89) 0.8873
788 Serous 0.89 (0.72-1.09) 0.70 (0.29-1.69) 0.1363
RGC32 | rs3783194 | 0.11 2723 264 | Endometrioid 1.13(0.83-1.54) 1.50 (0.51-4.36) 0.4304
184 Mucinous 1.09 (0.75-1.59) 1.08 (0.25-4.66) 0.7964
155 Clear cell 1.50 (1.04-2.17) 1.99 (0.59-6.70) 0.0206

MAF — minor alele frequency; Het — heterozygous, Hom — homozygous, OR — odds ratio; Cl — confidence interval; § compared with common
homozygous, Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically
significant or do not cross 1.

Table 3.25: Haplotype-specific results of RGC32 (P<0.05)

Gene Haplotype | Freq (%) Histology OR (95% CI) P-value IS-i/(zl)ﬁle
All 1.01(0.87-1.18) 0.851
Serous 0.89 (0.74-1.07) 0.212

RGC32 h0100100 10.8 Endometrioid 1.02 (0.76-1.36) 0.89 0.6294
Mucinous 1.01 (0.72-1.41) 0.962
Clear cell 1.53(1.11-2.11) 0.01

SNP order in haplotypesis 5’ to 3’ of the gene: rs10467472, rs3783194, rs11618371, rs9532824, rs995845, rs9594551, rs975590.
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Statistically significant associations were also found with 2 haplotypes of AXIN2
block 1, which had opposing effects on the risk of the serous histological subtype.
The h000001 haplotype was associated with areduced risk of the disease, OR=0.81
(0.68-0.97), P=0.018, (see Table 3.26). However, the h011001 haplotype of AXIN2
block 1 was associated with an increased risk of the serous subtype (OR=1.21 [1.01-
1.45], P=0.041). The results of the remaining haplotypes are shown in Appendix IV-

F.

Associations between FILIP1L and ovarian cancer susceptibility

Although there was no evidence suggesting that a common variant of FILIP1L was
associated with overal risk of ovarian cancer, statistically significant associations
were found when the analysis was restricted to the endometrioid and mucinous
histological subtypes. These associations were found with 3 variants of the gene,
rs793446, rs17338680 and rs12494994, of which therare aleles of all the variants
were associated with increased risk of the endometrioid histological subtype (see
Table 3.27 on page 181). The risks associated with carrying at least 1 of the rare
alleles of rs793446, rs17338680 or rs12494994 ranged from 1.36 (for the rs793446
tSNP) to 1.71 (for rs17338680) for the endometrioid histological subtype (Table
3.27). Thersl2494994 variant had the strongest association; HetOR=1.48 (1.08-
2.04), HomOR=2.16 (1.13-4.12), P=0.0024. The heterozygous genotype of
rs12494994 was also correlated with a 1.57-fold increase in the risk of the mucinous
histological subtype, however, the connection was not statistically significant
(P=0.2574). See Appendix IV-I for the genotype-specific results for al FILIP1L

variants.
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Slilgi/haplotype Haplotype | Freq (%) Histology OR (95% CI) P-value F(? L?SL
All 0.9 (0.77-1.04) 0.148
Serous 0.81 (0.68-0.97) 0.018
h000001 14.6 Endometrioid 0.95 (0.73-1.24) 0.7
Mucinous 1.08 (0.8-1.46) 0.632
AXIN2 haplotype Clear cell 0.97 (0.7-1.36) 0.868
block 1 All 1.15 (0.98-1.36) 0.082 0185
Serous 1.21 (1.01-1.45) 0.041
h011001 104 Endometrioid 1.16 (0.87-1.54) 0.312
Mucinous 1.22(0.87-1.7) 0.246
Clear cell 0.86 (0.57-1.29) 0.458
All 1.21 (1.03-1.42) 0.023
Serous 1.19(1.01-1.39) 0.037
e haplotype | 11914 128 | Endometricid |  1.08 (0.83-1.4) 0572 | 00847
Mucinous 1.13(0.83-1.53) 0.434
Clear cell 0.96 (0.68-1.36) 0.838

SNP order in haplotypesis 5’ to 3' of the genes —AXIN2 haplotype block 1: rs11868547, rs7591, rs4074947, rs7210356, rs11655966,

rs4541111. AXIN2 haplotype block 2: rs4791171, rs11079571, rs3923087, rs3923086.
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The correlation between rs793446 and rs17338680 (which are both in intron 4 of
the gene) is r’=0.173; rs793446 and rs12494994 is r*=0.407; and rs17338680 and
rs12494994 (intron 1) is r’=0.404. The rs793446 variant tags 28 other SNPs with
r2(10.8; rs17338680 tags 6 other SNPs and rs12494994 tags 11 other variants with
r2010.8. All of these SNPs are in the introns of the gene, and approximately 70% of

them are conserved in mice.

Associations were a so found between risk of endometrioid ovarian cancer and
haplotypes of FILIP1L, see Table 3.28 for the significant associations, and
Appendix IV-Jfor al results. FILIP1L comprises 2 haplotype blocks. The h10101
hapl otype of haplotype block 1 had the strongest association with disease risk, with
a1.56-fold increase in odds; OR=1.56 (1.22-2.01), P=5.01x10™. The haplotype,
which had a frequency of 10.7%, contained the rare alleles of rs793446 and
rs17338680 in the third and last positions of the haplotype, respectively. Therare
alleles of the variants were associated with an increased risk of endometrioid
ovarian cancer, thus, the haplotype result was supported by the individual common

tSNP findings.

There was al so evidence suggesting a statistically significant association between a
variant of FILIP1L haplotype block 2 and risk of the endometrioid subtype. The
h001 haplotype was associated with an increased risk of the subtype; OR=1.37
(1.1-1.69), P=0.004 (see Table 3.28). This association was also supported by the
individual SNP results - the rare allele of rs12494994, which was correlated to
increased risk of the endometrioid histological subtype which wasin the last

position of the haplotype.

180



Chapter 3: Results - susceptibility

Table 3.27: Genotype-specific risks of common FILIP1L variants (P<0.05)

Gene tSNP MAF Controls Cases Histology HetOR (95% Cl) | HomOR (95% CI) | P-trend
1773 All 1.05(0.92-1.20) 1.11 (0.93-1.32) 0.3207
838 Serous 0.95 (0.80-1.13) 1.07 (0.86-1.34) 0.842
rs793446 0.41 2947 274 Endometrioid 1.36 (1.02-1.81) 1.52 (1.05-2.20) 0.0262
194 Mucinous 1.14 (0.82-1.58) 0.93(0.58-1.48) 0.8885
164 Clear cell 1.05 (0.74-1.50) 1.11 (0.69-1.77) 0.6725
1786 All 1.06 (0.91-1.24) 0.77 (0.46-1.28) 0.985
574 Serous 0.88 (0.69-1.14) 0.98 (0.44-2.20) 0.3051
FILIPIL | rs17338680 | 0.11 2989 221 Endometrioid 1.71 (1.24-2.36) 0.79 (0.19-3.39) 0.0073
196 Mucinous 1.23(0.86-1.76) 0.35 (0.05-2.58) 0.7109
133 Clear cell 1.04 (0.67-1.63) 1.12 (0.26-4.81) 0.8406
1273 All 1.14(0.98-1.33) 0.88 (0.59-1.33) 0.433
594 Serous 0.95 (0.78-1.17) 0.52 (0.27-0.99) 0.097
rs12494994 | 0.18 2347 193 Endometrioid 1.48 (1.08-2.04) 2.16 (1.13-4.12) 0.0024
145 Mucinous 1.57 (1.10-2.25) 0.25 (0.03-1.83) 0.2574
113 Clear cell 1.20(0.79-1.82) 1.69 (0.71-4.03) 0.1986

MAF — minor allele frequency; Het — heterozygous, Hom — homozygous,; OR — odds ratio; Cl — confidence interval; § compared with common
homozygous; Emboldened tSNP and histology names, and P-val ues are statistically associated with susceptibility; emboldened OR are statistically
significant or do not cross 1.
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Table 3.28: Haplotype-specific risks of FILIP1L (P<0.05)

G%Ti?(ap Haplotype | Freq (%) Histology OR (95% CI) P-value Fgl/c:;l?le
All 1.11 (0.91-1.35) 0.29
FILIP1L Serous 0.94 (0.78-1.13) 0.514
haplotype h10101 10.7 Endometrioid 1.56 (1.22-2.01) 5.01x10“ | 0.5938
block 1 Mucinous 1.09 (0.78-1.51) 0.617
Clear cell 1.25 (0.89-1.75) 0.204
Al 1.04 (0.92-1.17) 0.562
FILIP1L Serous 0.88 (0.76-1.02) 0.092
haplotype h001 17.1 Endometrioid 1.37 (1.1-1.69) 0.004 0.7565
block 2 Mucinous 1.03 (0.79-1.36) 0.815
Clear cell 1.17 (0.88-1.56) 0.269

SNP order in haplotypesis5’ to 3' of the gene —FILIP1L (block 1): rs796977, rs793477, rs793446,
rs3921767, rs17338680. FILIP1L (block 2): rs9864437, rs6788750, rs12494994.

Table 3.29: Haplotype-specific risks of STAG3 (P<0.05)

Gene Haplotype | Freq (%) Histology OR (95% CI) P-value SL?SL
All 1.06 (0.96-1.16) 0.257
Serous 1.12 (1.01-1.25) 0.039
h00o 50.7 Endometrioid 1.06 (0.89-1.27) 0.523
Mucinous 0.97 (0.79-1.2) 0.805
STAG3 Clear cell 1(0.8-1.25) 0.996 0.0979
All 0.94 (0.85-1.05) 0.29
Serous 0.88(0.78-1) 0.046
ho11 26.8 Endometrioid 0.89 (0.73-1.09) 0.251
Mucinous 1.22 (0.97-1.53) 0.084
Clear cell 0.89 (0.69-1.16) 0.401

Freq — frequency; OR — odds ratio; Cl — confidence interval; SNP order in haplotypesis 5’ to 3’ of
the gene: rs11762932, rs2246713, rs1637001.

The STAG3 rs1637001 variant was in the last position of a haplotype block
comprising the 3 tSNPs genotyped. Associations were found between the serous
histological subtype and two haplotypes of STAG3, Table 3.29. The h000 haplotype
was associated with amarginal, 1.12-fold, increase in the risk of serous ovarian
cancer (OR=1.12[1.01-1.25], P=0.039). Conversely, the h0O11 haplotype was
associated with areduced risk of the serous subtype (0.88 [0.78-1], P=0.046). This
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association was also supported by the association between the rare alele of
rs1637001 tSNP (in the last position of the haplotype) and the decrease in risk of
serous ovarian cancer. Thers1637001 polymorphism tags 17 other variants with
r>>0.8. Three of these SNPs, rs1623264, rs1727134 and rs1727128, are located in
transcription factor binding sites. Several of the other polymorphisms may be

involved in splicing.

Associations between AKTIP and ovarian cancer susceptibility

There was evidence of an association between the AKTIP gene and ovarian cancer
susceptibility. The rare allele of rs718919 was associated with risk of the mucinous
and clear cell histological subtypes. The associated risks were: HetOR=0.87 (0.64-
1.19), HomOR=0.42 (0.21-0.84), P=0.0247 for the mucinous subtype; and
HetOR=0.62 (0.44-0.87), HomOR=0.78 (0.45-1.35), P=0.0412 for the clear cell
(Table 3.30). See Appendix I1V-C for the genotype-specific susceptibility results of
al the common variants of AKTIP. A haplotype of AKTIP, h1010, was aso
associated with a0.73- and 0.77-fold decrease in the risk of both the mucinous and
the clear cell subtypes, respectively (see Table 3.31). rs718919, therare alele of
which was associated with a reduced risk of mucinous and clear cell subtypes, wasin
the third position of the haplotype. These associations were concordant with each
other. An additional association was found with the h1101 haplotype of AKTIP and
the serous subtype. The h1101 haplotype was associated with increased risk of the
serous subtype (OR=1.29 [1.01-1.66], P=0.044). Although the correlations were not
statistically significant, with the exception of the mucinous subtype, the odds ratios
for all cases of ovarian cancer, the endometrioid and clear cell subtypes were greater
than 1 (see Table 3.31).
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Table 3.30: Genotype-specific risks of an AKTIP tSNP (P<0.05)

Gene tSNP MAF | Controls | Cases Histology HetOR (95% CI)* | HomOR (95% CI)* P-trend
1745 All 0.93 (0.82-1.06) 0.92 (0.75-1.14) 0.2796

825 Serous 0.99 (0.84-1.17) 1.02 (0.78-1.33) 0.867

AKTIP rs7189819 0.3 2923 271 | Endometrioid 0.95 (0.73-1.24) 1.06 (0.69-1.61) 0.9177
186 M ucinous 0.87 (0.64-1.19) 0.42 (0.21-0.84) 0.0247

163 Clear cell 0.62 (0.44-0.87) 0.78 (0.45-1.35) 0.0412

MAF — minor alele frequency; Het — heterozygous, Hom — homozygous; OR — odds ratio; Cl — confidence interval; § compared with common
homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically
significant or do not cross 1.

Table 3.31: Haplotype-specific risks for AKTIP (P<0.05)

Gene Haplotype | Freq (%) Histology OR (95% CI) P-value PG-i/(;tlele
All 1(0.86-1.16) 0.996
Serous 0.99 (0.88-1.11) 0.858
h1010 30.4 Endometrioid 0.97 (0.8-1.18) 0.766
Mucinous 0.73 (0.58-0.94) 0.013
Clear cell 0.77 (0.59-1) 0.047
AKTIP All 1(0.75-1.33) 0.999 0-3703
Serous 1.29 (1.01-1.66) 0.044
h1101 5.7 Endometrioid 1.02 (0.65-1.59) 0.927
Mucinous 0.94 (0.54-1.65) 0.835
Clear cell 1.37 (0.82-2.3) 0.227

SNP order in haplotypesis 5 to 3’ of the genes —ATKIP: rs9931702, rs17801966, rs7189819, rs3743772.
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3.4: Admixture Maximum Likelihood test results

A large number of statistical tests are involved in the analysis of genetic association
studies, however multiple testing corrections such as the Bonferoni correction are
too stringent and do not take into account the correlation between SNPs. It has been
suggested that the adjustment for “experiment-wise” type | error is more appropriate
method for testing the global null hypothesis of no association within an experiment.
These methods evaluate whether a greater than expected proportion of statistically
significant associations are detect within an experiment. The admixture maximum
likelihood (AML) test is areportedly robust method for testing the global null
hypothesis. The AML test ssimultaneously estimates the proportion of associated
SNPs and their effect size. The AML test was used to evaluate the SNP genotyping
datafrom 12 previous ovarian cancer case-control association studies for global
evidence of associations between 340 SNPs from 84 genes and 10 chromosomal
regions and the risk of the disease. The test was used to establish whether there was
astatistically significant difference in the proportion of associations found from
genetic susceptibility association studies of ovarian cancer and that which would

have been found by chance.

3.4.1: Samples and methods

Genotyping data of 340 SNPs from three popul ation-based case-control study series
were analysed with the admixture maximum likelihood test. The studies comprised
of up to 1,491 invasive epithelial ovarian cancer cases and 3,145 healthy controls
from the GEOCS, MALOVA and SEARCH sample sets. The vast mgjority (>250)
of the SNPs were tagging SNPs identified from 84 candidate genes from pathways,

such as the cell cycle control, mismatch repair, DNA repair, oncogene and
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differentially expressed genes with described functions from functional studies
(microcell-mediated chromosome 18 transfer [MMCT-18) group), which have been

implicated with ovarian cancer devel opment.

Candidate SNPs from 10 different regions on chromosomes 2, 3, 5, 8, 11, 12 and 17
were also analysed. These variants had originally been selected for validation from
the Ovarian Cancer Association Consortium (OCAC), Breast Cancer Association
Consortium (BCAC) or the breast cancer genome-wide association study due to
associations with breast or ovarian cancer. Associations between individual SNPs
and ovarian cancer risk with unconditional logistic regression, and the heterogeneity
and trend test. The admixture maximum likelihood test was used on groups of SNPs
to determine whether the proportion of associations found were greater than that

which would be expected.

All variants analysed were allocated into a group based on known or putative
function, or the research consortia from which the candidate SNP had come. There
were atotal of 7 groups— BCAC (16 SNPs), cell cycle control (101 tSNPs), DNA
repair (28 SNPs), mismatch repair (43 tSNPs), MMCT (consisting of differentially
expressed genes from functional tumour suppression experiments- 63 tSNPs),
OCAC (55 SNPs) and ovarian cancer oncogenes (34 tSNPs). The genotype

distribution for all SNPs analysed are shown in Appendix |1-B.

3.4.2: Loqisticregression results (unadjusted)

When the trend model was used to test for association, 22 (6.5%) of the 340 SNPs

were significantly associated with ovarian cancer risk at the 5% level, and 5 SNPs
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(1.5%) were significant at the 1% level. Of the 5 most significant SNPs with the
trend model, two variants were from the BCAC group (rs2107425 on chromosome
11p15.5 and rs3817198 of LSP1), another two were from the cell cycle group
(CDKN1B rs2066827 and CDK6 rs8) one SNP was from the OCAC group (ESR1

rs9322336).

Adjustments for population stratification by genomic control were made in order to
ensure that the associations found were due to the variants analysed, rather than
underlying structure of the population. Logistic regression analyses were also
stratified by sample sets to account for population stratification. Following
adjustments of genomic controls for population stratification, 18 (5.3%) of the 340
variants were now statistically significant at the 5% level. Thiswas areduction of 4
SNPs compared to the unadjusted findings. The same number of SNPs (5 [1.5%)])
were significant at the 1% level, after adjustments for population stratification (Table

3.32).

After analysis with the heterogeneity test, 17 (5%) of the SNPs were significant at
the 5% level, 6 SNPs (1.8%) were significant at the 1% level, and one at the 0.001%
significance level. After adjusting for population stratification, 15 of the 17 SNPs
significantly associated with ovarian cancer risk at the 5% level, remained
significant. One of the 6 SNPs, significant at the 1% level with the heterogeneity
test, was no longer significant, thus 5 (1.5%) SNPs remained significant at the 1%
level. The only SNP, which reached 0.001% level of significance, remained at the

same level after adjustments for population stratification.
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Both the heterogeneity and trend tests detected associ ations between the same 9
SNPs and risk of epithelial ovarian cancer. Although there was a slight attenuation
in the P-values after adjustments for population stratification, the significant
associations remained. The unadjusted and adjusted trend test results for each SNP
are shown in Appendix VI. Theresults of the trend test are illustrated in Figure 3.6
as aquantile-quantile (Q-Q) plot. Q-Q plots are probability plots used for comparing
2 probability distributions. In order for the probability distributions to be compared,

the quantiles of the distributions are plotted against each other.

The Q-Q plot in Figure 3.6 shows the ordered observed trend test statistics plotted
against the expected trend ¥ results given the rank. Theline of equivalenceisthe
straight line through the plot. Thislineisused as areference for no difference
between the observed and expected ¥ values, given the rank. Deviation from the
line of equivalence suggests differences between the observed and expected 3
values. In Figure 3.6, the plots of both the unadjusted and adjusted trend test results
suggested that a greater proportion of associations were found than expected. Inthe
Q-Q plot shown in Figure 3.6, the plot followed the line of equivalence for the first
240 SNPs, and then started to deviate. Thisindicates that a modest number of SNPs

were associated with ovarian cancer risk.
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Table 3.32: AML - SNPs with significant associations (trend test for association)

Gene HetOR? HomOR?* Unadjust | Adjust. P- | Unadjusted | Adjusted
Group | ocation SNP | MAF | Controls | Cases (95% CI) (95% CI) Phett | hett btrend | Petrend®

BCAC 11pl55 | rs2107425 | 032 | 1460 | 2463 | 0.71(062-082) | 083(0.70-L.10) | 1.28x10° | 2.17x10° | _ 0.0012 0.0019
OCAC ESRL | rs9322336 | 023 | 1453 | 2464 | 0.81(0.70-093) | 0.73(0521.02) | 0.005 0.006 0.0013 0.0021
BCAC [SP1 | rs3817198 | 03 | 1457 | 2435 | 116(L01-134) | 140(111-1.75) | 0.006 0.009 0.0016 0.0026
Clcycle | CDKNIB | rs2066827 | 026 | 1481 | 2484 | 0.88(0.77-101) | 0.68(051-090) | 0011 0.019 0.0035 0.0053
Cdlcyde | CDK6 = 021 | 1473 | 248l | 1.17(1.02-135) | 144(104199) | 0015 0.013 0.0039 0.0059
Mismaich | PMS2 | rs7797466 | 0.8 | 1305 | 1968 | 1.18(1.01-138) | 1.38(0.96-2.00) | 0.039 0.044 0.0108 0.0142
Cdicyde | CCNDL | re603965 | 044 | 1476 | 2464 | 1.06(0.91-123) | 1.28(106-155) | 0027 0.032 0.013 0.0178
MMCT-18 | RUVBLL | rsl3063604 | 022 | 564 785 | 1.23(0.98-156) | 154(1.00-239) | 0.0556 0.058 0.016 0.0181
OCAC PGR rs1042838 | 0.14 | 1424 | 2408 | 1.25(1.07-146) | 1.09(0.73-164) | 0019 0.023 0.0161 0.0215
Cdlcyde | CCND1 (7178 | 007 | 1480 | 2491 | 124(104149) | 124(0.50-304) | 0.063 0.072 0.021 0.0278
OCAC IL18 rs1834481 | 025 | 1449 | 2435 | 089(0.77-1.02) | 0.77(059-101) | 0074 0.083 0.0227 0.0295
Cdlcyde | CCNDL | re602652 | 046 | 1468 | 2493 | 113(0.97-1.32) | 1.24(103-149) | 0074 0.084 0.0235 0.0307
OCAC IGF2 | rsA320032 | 02 | 1473 | 2402 | 084(0.73-0.97) | 0.86(0.60-1.22) | 0.0529 0.061 0.0243 0.0314
MMCT-18 | CASP5 | rs518604 | 044 | 1041 | 2029 | 1.11(0.93-133) | 1.27(102-158) | 0.0987 0.072 0.032 0.0387
Celcyde | CCNDL | rs3212879 | 049 | 1472 | 2491 | 085(0.73-0.99) | 0.82(0.68-099) | 0.063 0.108 0.0321 0.0409
DNA XRCC2 | rs3218536 | 0.08 | 1337 | 1787 | 0.88(0.72-1.08) | 0.23(0.07-079) | 0014 0.017 0.0364 0.0439
Celcyde | CCNDL | rs3212891 | 046 | 1475 | 2476 | 0.86(0.74-1.00) | 0.83(0.69-1.00) | 0.082 0.002 0.0376 0.0472
Mismaich | PMSL r56563 | 0.2 | 1456 | 2446 | 250(0.996.33) | 2.15(0.84-548) | 0.0435 0.134 0.04 0.05

BCAC 8q2421 | rsl0808556 | 04 | 1462 | 2453 | 115(0.99-133) | 120(0.99-146) | 0.1071 0.119 0.0446 0.0552
Cdlcydle | CDKN2A | rs3731257 | 026 | 1480 | 2476 | 0.89(0.78-1.03) | 0.80(0.60-1.07) | 0.1345 0.148 0.0451 0.056
Celcyce | CCNEL | rs3218036 | 0.3L | 1476 | 248L | 1.07(0.93-1.23) | 1.27(L0L-159) | 0.1126 0.125 0.0458 0.0567
OCAC IGF2 | rsl003483 | 049 | 1450 | 2407 | 1.20(1.02-1.40) | 1.20(1.00-144) | 0.0611 0.07 0.0473 0.0581

* compared with common homozygous; HetOR — heterozygous odds ratio, HomOR — homozygous odds ratio; CI — confidence interval; * P-heterogeneity; ® Adjusted for
population stratification.
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Figure 3.6: Quantile-quantile plot of the univariate trend test results
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3.4.3: AML results (adjusted for population stratification)

The genomic control method for adjusting for cryptic population stratification was
used on the variants analysed. Genotyping data from breast cancer case-control
samples from the genome-wide association study (Easton et al. 2007; Hunter et al.
2007) were used to estimate the degree of over-dispersion of statistics, also known as
inflation test statistic (Pharoah et al. 2007). The results from the breast cancer were
used to estimate the level of stratification within Caucasian populations. A more
conservative inflation statistic of 10%, was used to adjust the P-trend for cryptic

popul ation stratification.

Eight of the 22 SNPs that were statistically significant at the 5% level with the trend
test belonged to the mitotic cell cycle control pathway group (Table 3.32). This
group consisted of 101 SNPs from 15 genes, which have been demonstrated to be
involved in the regulation of progression through the cell cycle. The most
significant tSNP in the cell cycle group was rs2066827 in the cyclin-dependent
kinase inhibitor 1B (CDKN1B) gene. The rare allele of this SNP was associated with
adecreasein therisk of ovarian cancer (HetOR=0.88 [0.77-1.01], HomOR=0.68
(0.51-0.9), adjusted (for population stratification) P-het=0.019, adjusted P-
trend=0.0059. The rs2066827 variant (the fourth most significant SNP with the
trend model) is amissense SNP located in exon 1 of CDKN1B. The common alele
encodes avaline amino acid, and the rare allele, which has a frequency of 26%,

glycine.

Five variants from the 55 SNPs in the OCAC group were significant at the 5% level

after adjustments for population stratification. The most significant SNP from the
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OCAC group, rs9322336, was from the oestrogen receptor gene (ESR1). This
variant was the second most significant of the SNPs analysed with the trend test, and
the third most significant with the heterogeneity test. Therare alele of this variant
was also associated with areduced risk of ovarian cancer — HetOR= 0.81 (0.70-

0.93), HOmOR=0.73 (0.52-1.02), adjusted P-trend=0.0021.

Three of the most significant SNPs were from the BCAC group, which comprised
the 16 variants which were identified from genome wide association studies to be
strongly associated with breast cancer risk. One of these variants, rs2107425, was
associated with adecrease in risk of ovarian cancer (hetOR=0.71[0.62-0.82],
HomOR=0.88 [0.70-1.10], adjusted P-trend=0.0019). rs2107425 islocated on
chromosome 11p15.5 in aregion with no known genes or open reading frame. This
variant had the strongest association with ovarian cancer risk, with both the trend
and heterogeneity models — and the p-value for the heterogeneity test reached alevel
of significance deemed to provide definitive evidence of association (P<1x10™) in
case-control association studies, however, not enough for genome-wide significance

(P<1x107).

Two variants from the functional candidate genes (of 63 SNPs) and the DNA
mismatch repair pathway (of 43) groups were also statistically significant. The most
significant SNP from the functional candidate group was the intronic rs13063604 in
the RUVBL1 gene on chromosome 3. RUVBL1 rs13063604 was associated in an
increased risk of ovarian cancer with the trend model (HetOR=1.23 (0.98-1.56),
HomOR=1.54 (1.00-2.39), adjusted P-het=0.058, P-trend=0.0181. Incidentaly an

association was also found with this SNP with 1,755 serous histological subtype
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cases and 4,363 controls from 7 different population based case-control series
including SEARCH (DOVE, GEOCS, HOPE, JAC, UKOPS and USC). A single
variant from XRCC2 gene of the DNA double strand break repair pathway group (28
SNPs), rs3218536, was also among the significant associations with the trend test,
with a correlation with a reduction in ovarian cancer risk (HetOR=0.88 [0.72-1.08],

HomOR=0.23 [0.07-0.79], adjusted P-het=0.017, adjusted P-trend=0.0439.

Of the 15 associations identified with the heterogeneity test at the 5% significance
level after adjustments for population stratification, 2 variants were from the BCAC
group, 7 were from the cell cycle control pathway, one from the DNA repair
pathway, two from the mismatch repair pathway, two from the MM CT-18 functional
group, two from the OCAC and one from the oncogene pathway (of 34 tSNPs).
Seven of the associations found with the heterogeneity test were not identified with

the trend test.

The AML method was used to test for association of the SNPs according to
functional group, biological pathway or genotyping group. There was evidence
suggesting that the breast cancer associated group of SNPs, identified by genome
wide association studies, was significantly associated with ovarian cancer risk (P-
trend = 0.0028; adjusted P-trend = 0.0059). The statistically significant findings
suggest that there were a greater number of variants observed to be associated with

ovarian cancer risk, than that would have been expected by chance.
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Table 3.33: AML experiment-wise test results for genotyping groups

LR P-trend of Reference with original single
Pathway / Genes/ No. most AML P- | AMLP- | "8 thoriginal Sing
Sy Lo . " NP analysis using logistic
Group regions SNPs significant het trend .
regression
SNP*
BCAC' 5 (5% 16 0.0012 0.0003 0.0028 | (Song et al. 2009a)
+ § (Palmieri et al. 2008; Pearce et
OCAC 36 (6°) 55 0.0014 0.863 0.806 al. 2008; Ramus et al. 2008b)
MMCT-18 9 63 0.016 0.609 0.468 (Notaridou et al. 2010)
Cell cycle (Dicioccio et al. 2004; Song et
control 15 101 0.0035 0274 0225 | 41 2006b; Gayther et al. 2007)
Mismatch repair 7 43 0.0106 0.706 0.702 | (Song et al. 2006a)
} (Auranen et al. 2005; Song et
DNA repair 7 28 0.0374 0.366 0.444 al. 2007)
Ovarian Cancer
Oncogenes 5 34 0.0671 0.524 0.528 (Quaye et al. 2009)
Total 84 (10) 340 0.051 0.068

*Based on GEOCS, MALOVA and SEARCH genotypes; * SNPs in regions with no known genes or
open reading frames are in parenthesis; T candidate genes identified from the Breast Cancer
Association Consortium (BCAC) and Ovarian Cancer Association Consortium (OCAC); 3 different
SNPs from 8g24.21 were genotyped in both BCAC and OCAC sets; LR — logistic regression; AML —
admixture maximum likelihood; het — heterogeneity.

There was no evidence that there were a significant proportion of variants from the
remaining groups (cell cycle control, DNA repair, mismatch repair, MMCT-18,
OCAC and ovarian cancer oncogenes) associated with ovarian cancer risk than that
which would have been expected by chance. When the genotyping data from all
groups were combined and analysed, the AML experiment-wise test for association
was not significant for either the heterogeneity test (P=0.051) or the trend test
(P=0.068). This suggests that there is a trend towards a proportion of the SNPs
evaluated being associated with disease, however thisis not statistically significant,
and the effect sizes were too small to detect for individual SNPs. Table 3.33 shows

the results of the AML experiment-wise tests summarised for the complete set of
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SNPs categorised according to functional group, biological pathway or genotyping

group.

3.5: Summary

The effects of 34 tSNPs of BRAF, ERBB2, KRAS, NMI and PIK3CA on
susceptibility of ovarian cancer were evaluated with 1,816 invasive epithelia ovarian
cancer cases and 3,000 unaffected controls. There was evidence of association
between risk of ovarian cancer and al the candidate genes. Three tSNPs of both
BRAF and KRAS were associated with the risk of the mucinous histological subtype.
The associations between the mucinous subtype and BRAF and KRAS also extended
to haplotypes of these oncogenes. These findings are of particular interest because
KRAS and, to alesser extent, BRAF mutations are predominantly found in mucinous
ovarian tumours, and these mutations are early events in the development of the
disease. Moremover, a haplotype of BRAF, h00100000, was associated with a
decrease in the risk all subtypes of ovarian cancer. This association remained when

the analysis was restricted to the serous subtype.

Common polymorphic variants of ERBB2 (non-synonymous coding SNP,
rs1801200) and PIK3CA (rs2865084) were marginally associated with risk of the
endometrioid subtype. There was aso evidence suggesting that two haplotypes of
ERBB2, h110 and h001, which had opposite aleles at every position, were
associated with increased risk of ovarian cancer (all subtypes). These associations

may be caused by an unknown polymorphism which tags both hapl otypes.
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Furthermore, the haplotypes of BRAF and ERBB2 were globally associated with

ovarian cancer susceptibility, (P=0.005 and P=0.034, respectively).

A statistically significant association was found between the rs11683487 variant of
NMI and ovarian cancer. This SNP was associated with serous and endometrioid
subtypes when the analysis was restricted to the histological subtypes. The finding
was not replicated with additional 1,097 cases and 1,712 controlsin stage 2.
However, when the genotyping data from both stages of the study were combined,
the association with all histological subtypes, and the mucinous subtype remained.
Two haplotypes of NMI were also associated with all subtypes combined. There

results were also found when analysis was restricted to the serous subtype.

The effects of 63 tSNPs and haplotypes of candidate genes (from differentially
expressed genes with described function from in vitro neoplastic suppression
studies) on the risk of ovarian cancer were analysed with 1,799 ovarian cancer cases
and 3,045 controls. There was evidence of association between ovarian cancer
susceptibility and all of the differentially expressed genes (AIFM2, AKTIP, AXINZ,
CASP5, FILIP1L, RBBP8, RGC32, RUVBL1 and STAG3). A common variant of
AXINZ2 (11079571), CASP5 (rs518604) and RUVBL1 (rs13063604) were associated
with the risk of ovarian cancer when it is considered as asingle disease. The
TagMan probes for the CASP5 and AXIN2 SNPs failed probe testing, therefore they

could not be validated with additional samples.

The association between the rare dlele of CASP5 rs518604 and increased risk of

ovarian cancer remained when analysis was restricted to the serous subtype. The
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CASP5 block 1 haplotypes, h100 and h00O, were also associated with the risk of
ovarian cancer (P=0.012 and P=0.015, respectively). h100 and h010 of CASP5

hapl otype block 1 were also associated with the risk of the serous subtype. The
haplotypes of CASP5 block 1 were globally, strongly, associated with the risk of

ovarian cancer (P=8.43x107).

RUVBL1 rs13063604 was not independently validated with the stage 2 samples
(4,590 cases and 6,031 controls) alone, however, the association remained
statistically significant when the genotyping data from stages 1 and 2 were combined
(P=0.033). rs13063604 and another tSNP of RUVBL 1, rs7650365, were associated
with risk of the serous subtype with stage 1 samples, P=0.002 and P=0.009,
respectively. Neither of these associations were independently validated with stage
2 samples and only the association between the rare alele of rs13063604 and
increased risk of the serous subtype remained when the data from the 2 genotyping
stages were combined (HetOR=1.13 [1-1.27], HomOR=1.22 [0.96-1.56], P=0.019).
Two haplotypes of RUVBL1 were also associated with the risk of the serous subtype,
and globally, the haplotypes of RUVBL1 were associated with ovarian cancer

susceptibility (P=0.0016).

Associations were also found between the risk of the serous histological subtype of
ovarian cancer and common avariant of RBBP8 and STAGS3, and haplotypes of
AKTIP, AXIN2, aswell as RBBP8 and STAG3. Interestingly, associations were
found between three tSNPs and two haplotypes of FILIP1L and the risk of
endometrioid ovarian cancer. The tSNPs and the SNPs they tag were intronic, and

some were conserved in mice. A common tagging variant of AKTIP was associated
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with risk of mucinous and clear cell histological subtypes. There was aso evidence
of association between a haplotype of AKTIP and risk of serous ovarian cancer.
Another haplotype of AKTIP was associated with reduced susceptibility to mucinous

and clear cdll disease.

Although many of the associations appear to be of great interest, it isimportant to
take into consideration that the results are based on relatively small samples,
particulary when the analyses were restricted to the histological subtypes. Many
statistical tests were performed in the analyses, however, there was no correction for
multiple testing, which may render many, if not, all associations statistically
significant. Nonetheless, the tagging approach of genetic associations attempts to

identify markers, rather than the causal genetic locus.

The admixture test (AML) was used to establish whether there was a statistically
significant difference in the proportion of associations found from genetic
susceptibility association studies of ovarian cancer and that which would have been
found by chance. A modest number of SNPs were associated with predisposition of
ovarian cancer. When the AML method was used to evaluate SNPs which were
grouped according to their proposed function, biological pathway or validation
study, only the BCAC group was statistically significant for an excess of positive
associations. The SNPs within this group were those which were highly associated
with risk of breast cancer. Three (19%) out of 16 tSNPsin the BCAC group were
significantly associated with risk of ovarian cancer. The experiment-wise test of the

340 SNPs analysed was not significant (P=0.068).
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Chapter 4: Results- Common germline
variantsin candidate ovarian cancer genes and
survival of patientswith invasive epithelial

ovarian cancer

4.1: Introduction

Hypothesis:

Common germline genetic variants in candidate genes associated with ovarian
cancer development can influence the clinical outcome (survival) of patients

diagnosed with invasive epithelial ovarian cancer.

(1) Toevaluatethe effect of tSNPs and hapl otypes from candidate oncogenes on al-
cause mortality of ovarian cancer patients.

(2) Toinvestigate the effect of tSNPs and haplotypesin a series of “functional”
candidates identified from in vitro studies on all-cause survival of ovarian cancer

patients.

Objectives
(1) To assessthe effects of common germline genetic variants and haplotypes of
candidate oncogenes and functional genes on clinical outcome of ovarian cancer

patients using univariate Cox regression survival anaysis.
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(2) To evaluate the effects of the common germline variants and haplotypesin
candidate genes on overall survival after restricting the analysis to the major
histological subtypes of ovarian cancer (serous, endometrioid, mucinous and clear
cell).

(3) To examinethe effects of other prognostic factors such as age at diagnosis,
tumour histological subtype, grade and stage on clinical outcome.

(4) Toinvestigate the effects of the common genetic variants and haplotypes of
candidate genes, after adjustments for confounding prognostic factors, on clinical

outcome (using multivariate Cox regression survival analysis).

The effects of overall survival for tSNPs and haplotypes of candidate oncogenes and
aseries of functional candidate genesidentified from in vitro modelling studiesin
patients with ovarian cancer over a 10 year period were investigated. The oncogenes
(BRAF, ERBB2, KRAS, NMI and PIK3CA) and functional candidates (AIFM2,
AKTIP, AXIN2, CASPS5, FILIP1L, RBBP8, RGC32, RUVBL1 and STAG3) were

selected because of their putative role in ovarian cancer devel opment.

Cox regression survival analysis was used to establish the effects of the genetic
variants and haplotypes on all-cause mortality in ovarian cancer patients. Cox
regression survival analysis was also used to eval uate the effects of clinical,
prognostic factors on patient survival in order to make appropriate adjustments for
these potentially confounding factors. Clinical factors which were found to be
significantly associated with all cause mortality were adjusted for all common

variants and haplotypes, in order to determine if true associations with the genetic
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factors existed. Survival analysis was performed on atotal of 2,021 invasive

epithelial ovarian cancer cases.

4.2: Survival analyses of variants and haplotypes of candidate

oncogenes

Thirty-four tSNPs identified in the candidate oncogenes (BRAF, ERBB2, KRAS, NMI
and PIK3CA) were genotyped in atotal of 1,572 invasive epithelial ovarian cancer
cases from 4 population-based series: GEOCS (327 cases), MALOVA (445 cases),
SEARCH (708 cases) and UKOPS (92 cases). Together, these cohortsincluded a
total of 662 deathsin 6,467 person-years at risk. Thetime at risk was calculated by
the summation of the time (years) from entry into the study until an individual died
or was censored from the study. The effects of the tSNPs on all-cause mortality
were investigated using Cox regression survival anaysis. All reported values are

based on likelihood ratio test for trend (1 degree of freedom).

4.2.1:Univariate survival analysis results of BRAF

There was evidence of a statistically significant association between a common
genetic variant of BRAF, rs6944385, and all-cause mortality of ovarian cancer
patients, with the univariate survival model. The univariate survival model
contained terms for the common variant, stratified by population set because there
were significant differencesin the surviva of patientsin the different data sets. The
rare alele of rs6944385 was associated with poor survival (per-rare alele hazard
ratio (HR) =1.19 (95% confidence interval 1.03-1.38, P=0.021). Therare alele of

the tSNIP resulted in a1.19-fold increase in mortality, compared with the common
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allele. Thissuggested that the addition of arare allele increases the hazard ratio by
1.19. Thusfor the additive model, heterozygotes have an increased hazard of 1.19,
and rare homozygotes have a 2.38-fold increase in hazard, compared with common
homozygotes. The hazard ratio measures the effect of the explanatory factor (allele)

on therisk (hazard) of death.
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Figure4.1: Kaplan-Meier survival estimates of BRAF rs6944385 (all cases)

Numbers following the keys are individual s till at risk after 10 years.

Figure 4.1 shows the plot of the Kaplan-Meier survival estimates of the different
genotypes of BRAF rs6944385 over a 10-year period. Kaplan-Meier survival
estimates were used to illustrate the survival function of ovarian cancer patients
grouped according to their genotype for a particular tSNP. The survivor curves are
step functions that decrease (step-down) at the time points when patients die (Everitt

and Palmer 2005). The figure clearly shows aworse survival associated with rare
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homozygotes of rs6944385 compared with common homozygotes and
heterozygotes. Half of the patients homozygous for the rare alele of rs6944385
survived for 2.5 years after diagnosis, which was approximately 1.5 years less than

the survival of the common homozygotes and heterozygotes.

The association observed with the BRAF rs6944385 variant and survival of all
histological subtypes combined was more significant, with increased hazard when
analysis was restricted to the clear cell histological subtype. The rare variant of
rs6944385 was associated with a 2.2-fold increase in mortality compared with the

common alele, HR=2.22 (1.18-4.17), P=0.014, see Table 4.1.

Table4.1: Univariate Cox regression results of BRAF rs6944385, by histology

Univariate
Gene tSNP MAF Histolo Cases
ISoloy HR (95% CI) | P-value
All 1758 1.19(1.03-1.38) 0.021
Serous 840 0.97 (0.79-1.2) 0.804

BRAF rs6944385 0.14 | Endometrioid | 268 1.31 (0.84-2.07) 0.235
Mucinous 187 0.83(0.4-1.73) 0.614
Clear cell 124 | 2.22(1.18-4.17) 0.014

HR - Hazard ratio; Cl - confidence interval; MAF- minor allele frequency; Emboldened histology
names are statistically associated with survival; emboldened HR are statistically significant.

Although associations may not be found with individual tSNPs, different
combinations of SNPs forming haplotypes may affect survival from ovarian cancer.
When the effects of the BRAF haplotypes on survival from ovarian cancer were
evaluated, none of the common haplotypes of BRAF were statistically associated
with survival from ovarian cancer. However, the 95% confidence intervals of all

histological subtypes of the h01100001 haplotype did not cross 1, HR=1.21 (1-1.46),
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P=0.055. This suggests that the haplotype may be marginaly correlated with

increased mortality of ovarian cancer.

4.2.2: Univariate survival analysisresults of KRAS

When Cox regression survival analysis was used to assess the effect of KRAS
variants on the survival from ovarian cancer, a statistically significant association
was found between a common tSNP, rs10842513, and all-cause mortality of serous
histological subtype cases. Therare allele of rs10842513 was associated with poor
survival (HR=1.38 (1.09-1.75), P=0.008), see Table 4.2. Although, this variant was
not statistically associated with increased mortality of patients with clear cell ovarian
cancer, the 95% confidence interval did not cross 1, which suggests amargina

correlation (Table 4.2).

Table 4.2: Univariate Cox regression results of common tSNPs of KRAS (P<0.05)

Univariate
Gene tSNP MAF Histolo Cases
ISoloy HR (95% Cl) | P-value
All 1770 1.18(0.98-1.42) 0.08
Serous 846 1.38 (1.09-1.75) 0.008

rs10842513 | 0.09 | Endometrioid | 271 1.19(0.67-2.1) 0.552
Mucinous 187 0.7 (0.29-1.69) 0.432

KRAC Clear cell 132 2.02 (1-4.1) 0.052
= All 1748 | 0.93(0.8-1.09) | 0.378
Serous 834 | 0.89(0.73-1.08) | 0.236

rs4623993 0.16 | Endometrioid | 242 | 0.83(0.51-1.36) | 0.463
Mucinous 187 1.79 (1.02-3.15) 0.044
Clear cell 136 | 0.93(0.46-1.89) | 0.835

HR - Hazard ratio; Cl - confidence interval; MAF- minor allele frequency; Emboldened histologies
are statistically associated with survival; emboldened HR are statistically significant or the Cl does
not cross 1.

Another variant of KRAS, rs4623993, was associ ated with survival of mucinous

cases. Therare alele of KRAS rs4623993 was associated with poor survival of
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individuals with mucinous ovarian cancer, HR=1.79 (1.02-3.15), P=0.044 (see Table

4.2).

The effect of both rs10842513 and rs4623993 on the mucinous subtype, although not

statistically significant for the previous tSNP, was the opposite of the other

histological subtypes (see Table 4.2). Thisdifference in the ratios was also found

with another tSNP of KRAS, rs4623993, which was significantly associated with the

increased risk of the mucinous subtype. These marked differences between

mucinous disease and the other subtypes may be aresult of putative involvement of

the KRAS gene in the devel opment of mucinous ovarian cancer.

Table 4.3: Univariate Cox regression results of KRAS haplotypes (P<0.05)

T . Univariate
Gene Haplotype Freq (%) Histology HR (95% CI) pvalue
All 1.27 (0.99-1.62) 0.056
Serous 1.69 (1.21-2.36) 0.002
h010000 5.9 Endometrioid 1.21 (0.59-2.48) 0.599
Mucinous 0.66 (0.17-2.55) 0.55
Clear cell 2.81(0.95-8.33) 0.062
All 1.02 (0.79-1.31) 0.902
KRAS Serous 0.87 (0.62-1.21) 0.411
haplotype h001100 3.7 Endometrioid 0.99 (0.44-2.18) 0.971
block 2 M ucinous 3.24 (1.55-6.74) 0.002
Clear cell 2.42 (0.6-9.66) 0.212
All 1.26 (0.87-1.82) 0.219
Serous 0.96 (0.61-1.53) 0.872
h000000 2.6 Endometrioid 2.47 (0.84-7.23) 0.099
Mucinous 6.59 (1.37-31.62) 0.018
Clear cell 1.53 (0.32-7.36) 0.593

1:'0'= common alleleand ‘1'=rare allele; HR - Hazard ratio; Cl - confidence interval; Emboldened
HR are statistically significant or the CI does not cross 1; Emboldened haplotypes are statistically

significant; SNP order in haplotypes (5’ to 3' of the genes) —-KRAS - block 2: rs12579073,
rs10842513, rs4623993, rs6487464, rs10842514, rs11047917.
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Statistically significant associations were found between 3 haplotypes of KRAS
block 2 and survival of patients with serous and mucinous histological subtypes of
ovarian cancers. The h010000 haplotype, which has a frequency of 5.9%, was
associated with poor survival of serous cases (HR=1.69 [1.21-2.36], P=0.002), see
Table 4.3. This association was supported by the tSNP results — the rare allele of
KRAS rs10842513, which was associated with poor survival of patients with serous

ovarian cancer, was in the second position of the KRAS hapl otype block 2.

The other 2 haplotypes of KRAS block 2, h001100 and hO00000, were also
associated with poor survival, however, of the mucinous histological subtypein
these instances, (see Table 4.3). These associations were concordant with the
univariate analysis results of KRAS rs4623993 (third position of the KRAS haplotype

block 2), which was associated with survival from mucinous disease.

4.2.3:Univariate survival analysisresults of PI K3CA

An association was found between atSNP and haplotype of PIK3CA when the
effects of the gene on survival were evaluated. Therare dlele of PIK3CA rs7651265
was associated with poor survival of clear cell ovarian cancer cases— HR=2.25
(1.06-4.79), P=0.035, see Table 4.4. The h11000000 haplotype of PIK3CA was also
associated with poor survival from the endometrioid subtype, HR=2.19 (1.1-4.37),

P=0.026 (Table 4.5).
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Table 4.4: Univariate Cox regression results of PIK3CA rs7651265 (by histology)

. Univariate
Gene tSNP MAF Histology Cases HR (95% CI) bvalue
All 1794 1.07 (0.9-1.26) 0.449
Serous 828 1.05 (0.85-1.29) 0.678
PIK3CA rs7651265 0.1 Endometrioid 267 0.97 (0.56-1.67) 0.913
Mucinous 189 1.66 (0.79-3.46) 0.179
Clear cell 135 2.25 (1.06-4.79) 0.035

HR: Hazard ratio; Cl: confidence interval; MAF- minor allele frequency; Emboldened histologies are
statistically associated with survival; emboldened HR are statistically significant.

Table 4.5: Univariate Cox regression results of a PIK3CA haplotype (by histology)

: Univariate
Gene Haplotypef | Freq (%) Histology HR (95% CI) P-value
All 1.1 (0.86-1.42) 0.444
Serous 1.06 (0.78-1.45) 0.701
PIK3CA | h11000000 4.9 Endometrioid 2.19(1.1-4.37) 0.026
Mucinous 0.76 (0.24-2.46) 0.651
Clear cell 0.38 (0.04-3.48) 0.3%4

t:'0'= common alleleand ‘1'=rare allele; HR - Hazard ratio; Cl - confidence interval; Emboldened
HR are statistically significant or the Cl does not cross 1; Emboldened histologies are statistically
significant; SNP order in haplotypesis 5’ to 3' of PIK3CA: rs2865084, rs7621329, rs1517586,
rs2699905, rs7641889, rs7651265, rs7640662, rs2677760.

4.2.3: Theinfluence of clinical prognostic factors on survival

Clinical factors such as age at diagnosis, tumour histological subtype, grade and
stage are known to influence survival from ovarian cancer. Therefore, these factors
are used clinically to predict a patient’s chances of survival. It ispossible that these
prognostic factors confound the results from the univariate analyses, either by

masking statistically significant associations, or creating false positive associations.
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Cox regression survival analysis was used to ascertain the effects of the prognostic
factors on the samples within the dataset. As expected, statistically significant
associations were found between survival from ovarian cancer and all the prognostic
factors (age at diagnosis, tumour histological subtype, grade and stage). Cox
regression survival modelling showed that survival from ovarian cancer decreased
with increasing age; those between aged between 50 and 59 years had a 1.67 fold
increase in al-cause mortality (HR=1.67 (1.01-2.77), P=0.047 compared with those
aged less than 40 years. Individualsin the greater than 60 years age group had the
worse survival, compared with the under 40 year olds (see Table 4.6).

Figure 4.2 shows the Kaplan-Meier survival curves for the prognostic factors.
Individual s with mucinous, endometrioid or clear cell histologica subtypes of
invasive epithelial ovarian cancer survived for longer than those with the serous

subtype (see Table 4.6).

Tumour grades 2 (moderately differentiated tumour) and 3 (poorly differentiated,
more malignant tumour) were also significantly associated with poor survival
(HR=1.47 (1.11-1.96), P=0.008; HR=1.6 (1.21-2.11), P=0.001, respectively).
Advanced stage tumours, which comprised of tumours that have spread to lymph
nodes or metastasi sed to distant locations, had the strongest effect on survival from
ovarian cancer (HR=4.08 (3.15-5.29), P=1.57x10%?) when compared with localised,
early stage tumours. The Cox regression survival analysis results for the clinical

factors are summarised in Table 4.6.

The samples anal ysed included both incident cases (patients recruited into their

respective studies before diagnosis of the ovarian cancer) and prevalent cases
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(sufferers recruited after diagnosis of disease). There was potentia survival bias
between incident and prevalent cases because prevalent cases are likely to have
received treatment before recruitment into the studies, and individuals with poor
chances of survival would have died before recruitment. It was thus expected that
incident cases would have poor survival compared with prevalent cases. Although
the Kaplan-Meier curves showed that incident cases had a slightly higher mortality
rate compared with prevalent cases, the difference in mortality was not statistically

significant (HR=1.04 [0.66-1.63], P=0.871).

Table 4.6: Results of univariate Cox regression survival anaysis of clinical

prognostic factors (oncogene dataset)

Prognostic . N
tactor No.cases | HR(95% Cl) | P-value &Jriiz:ﬂ ate &Jrl\gvyaﬁrate
Histological subtype
Serous 735 (47%) 1 40% 30%
Endometrioid 249 (16%) 0.4(0.3-052) | 2.56x10™" 70% 65%
M ucinous 170 (11%) 0.4(0.29-0.56) | 9.29x10°® 60% 63%
Clear cell 126 (6%) 0.4 (0.28-0.59) | 1.75x10° 65% 60%

Age at diagnosis (years)
<40 100 (6%) 1 75% 63%
40-49 306 (19%) 1.49 (0.88-2.52) 0.137 60% 48%
50-59 586 (37%) | 1.67(1.01-2.77) 0.047 50% 43%
>60 580 (37%) 2.26 (1.37-3.73) 0.002 38% 30%
Tumour grade*
1 260 (17%) 1 68% 60%
2 398 (25%) 1.47 (1.11-1.96) 0.008 52% 40%
3 540 (34%) 1.6 (1.21-2.11) 0.001 38% 30%
Tumour stage
Localised 531 (34%) 1 80% 68%
Advanced® 736 (47%) | 4.08(3.15-5.29) | 1.57x10%° 28% 18%

N=1,572; HR — hazard ratio; Cl — confidence interval; * Tumour grades (1= well differentiated — low
grade; 2= moderately differentiated; 3= poorly differentiated (high grade). 8 spread to regional lymph
nodes or distant metastases; emboldened prognostic factors are significantly associated with survival
from ovarian cancer.
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Figure 4.2: Kaplan-Meier survival curves

by (a) histological subtype; (b) age-group at diagnosis; (c) tumour grade; (d) tumour stage; numbers following the keys are individuals still at risk
after 10 years.
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4.2.4: Multivariate survival analysisresults of oncogene variants

The results of all variants were adjusted for the prognostic factors which were
significantly associated with survival from ovarian cancer (age at diagnosis > 50
years, mucinous, endometrioid and clear cell histological subtypes; tumour grades 2
and 3; and advanced stage disease). The statistical modelling of the survival data,
with adjustments for confounding (clinical prognostic) factorsis known as
multivariate analysis. The results of the univariate and multivariate survival analysis
for the common tagging polymorphisms and haplotypes of the candidate oncogenes

are tabulated in Appendices VII-A to VII-J.

There was no evidence of association between the common genetic variants or
haplotype of ERBB2 or NMI. The univariate and multivariate Cox regression
analysis results for ERBB2 and NMI are shown in Appendices V1I-C to VII-D, and
VII-G to VII-H, respectively. The associations found in the univariate survival
analysis of the PIK3CA variants or haplotypes were no longer statistically significant
after adjustments for prognostic factors. The surviva results of the tSNPs and

hapl otypes can be found in Appendix V1I-I1 and V11-J, respectively.

4.2.5: Multivariate survival analysisresults of BRAF oncogene

When multivariate Cox regression survival analysis was used to assess the effects of
the common variants of candidate oncogenes on survival from epithelia ovarian
cancer, the association between the rare alele of BRAF rs6944385 and all-cause
survival of al subtypes combined became stronger — adjusted (for prognostic

factors) per-rare dlele HR=1.25 (1.05-1.5), P=0.013. However, the association of
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the variant with the clear cell histological subtype was no longer significant (see

Table 4.7). The univariate and multivariate Cox regression survival results for all

the common variants and haplotypes of the BRAF oncogene are shown in Appendix

VII-A and VII-B, respectively.

Additional associations, which were not identified with the univariate analyses, were

found between all-cause survival and variants of BRAF. The rare allele of BRAF
rs1267622 was associated with poor survival of ovarian cancer patients (adjusted
HR=1.19 (1.03-1.38), P=0.02). Therare alele of BRAF rs13241719 and the AA
hapl otype of rs1267622:rs6944385 were associated with better survival of all
histological subtypes combined in the multivariate analyses (adjusted HR=0.79
(0.67-0.93), P=0.004; and adjusted HR=0.84 (0.72-0.97), P=0.018, respectively).
The rs13241719 variant was al so associated with the serous histological subtype

when the analysis was restricted to the individual subtypes (see Table 4.7).

The BRAF variants rs1267622, rs13241719 and rs6944385 are correlated. Ther?
between BRAF rs1267622 and rs13241719 is 0.116; rs1267622 and rs6944385 -
r*=0.339; and rs13241719 and rs6944385 - r°=0.039. A likelihood ratio test was
performed with and without terms for the three BRAF variants, adjusted for the
prognostic factors. This test was used to evaluate whether amodel with al three

variants was statistically significant, compared with a model without the variants.

212



Chapter 4: Results - survival

Table4.7: Univariate and multivariate Cox regression results of BRAF tSNPs, by histology

_ Univariate* Multivariate*® Diff HR
Gene tSNP MAF | Histology | Cases | 0 o505 1) | Pvalue | HR(95% CI) | Pvalue | (%)}
All 1751 | 1.12(099-127) | 0077 | 1.19(1.03-1.38) | 0.02 6
Serous 831 | 1.03(087-1.22) | 0727 12 (1-1.4) 0.134 17
11267622 0.23 | Endometrioid | 268 | 1.07(0.72-159) | 0733 | 11(0.71-171) | 0655 3
Mucinous | 187 | 1.08(0.64-1.82) | 0764 | 0.89(0.54-1.49) | 0.663 18
Clearcell | 123 | 127(07-23) | 0429 | 1(051-1.98) | 0997 21
All 1602 | 097(08511) | 0606 | 079(0.67-0.93 | 0.004 19
Serous 733 | 094(0.79-1.12) | 0.507 08(0.609 | 0006 15
113241719 031 | Endometrioid | 246 | 0.77(049-1.21) | 0258 | 0.79(0.48-1.29) | 0.339 3
Mucinous | 176 | 0.99(0.58-169) | 098 | 1.05(0.63-174) | 0.852 6
SRAF Clearcell | 135 | 1.12(059-215) | 0723 | 14(0.64-306) | 0.404 25
All 1758 | 119(1.03-138) | 0021 | 125(1.05-15) | 0.013 5
Serous 840 | 097(0.79-12) | 0.804 11(0913) | 0516 13
16044385 0.14 | Endometrioid | 268 | 1.31(0.84-207) | 0235 | 1.43(0.87-235) | 0.156 9
Mucinous | 187 | 083(04-173) | 0614 | 076(0.36-1.62) | 0.477 8
Clearcell | 124 | 222(1.18-417) | 0014 | 193(0.95-392) | 007 13
Al 1786 | 0.89(0.79-L01) | 0076 | 084(0.72-097) | 0.018 6
Serous 724 | 097(0.82-1.14) | 0.708 0.9 (0.7-1) 0.115 7
ggﬂggg; ap | 76 | Endometrioid | 246 | 09(061134) | 0611 | 087(057-134) | 0532 3
Mucinous | 169 | 0.94(056-158) | 082 | 1.18(0.7-1.98) | 0528 26
Clearcell | 126 | 0.79(0.44-143) | 0434 | 1(051-1.98) | 0999 27

* gratified by study; HR - Hazard ratio; Cl - confidence interval; MAF- minor allele frequency; T Haplotype frequency; § adjusted for prognostic factors (histology

[where appropriate], age, stage and grade); $: difference in HR after multivariate analysis — values> 10: prognostic factors were confounding. Emboldened tSNP

names are statistically associated with survival after adjustments; emboldened HR are statistically significant or the CI does not cross 1.
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Table 4.8: Univariate and multivariate Cox regression results of BRAF haplotypes (P<0.05)

Univariate

Multivariate®

Gene Haplotype | Freq (%) Histology HR (95% Cl) P-value | HR (95% CI) P.value DIE(]:/OI_)'R
All 0.95(0.81-1.1) | 0493 | 08(0.66-0.95) | 0.014 16
Serous 0.95(0.79-1.16) | 0.633 1.1 (0.9-1.4) 0.415 16
h10010000 18.8 Endometrioid 0.88 (0.54-1.42) 0.591 0.88(0.53-1.48) 0.629 0
Mucinous 0.63 (0.31-1.28) 0.204 | 0.62(0.32-1.23) 0.173 2
Clear cell 1.38 (0.61-3.08) 0.438 | 2.38(0.92-6.15) 0.074 72
All 1.1 (0.94-1.3) 0.238 1(0.83-1.21) 0.96 9
Serous 1.12(0.91-1.37) 0.296 0.8 (0.6-1) 0.037 29
BRAF h10010010 12.2 Endometrioid 0.74 (0.36-1.5) 0.401 0.74 (0.36-1.54) 0.425 0
Mucinous 1.5 (0.81-2.8) 0.199 | 1.91(0.96-3.78) | 0.065 27
Clear cell 0.79 (0.35-1.75) 0.557 0.62 (0.23-1.7) 0.351 22
All 1.21 (1-1.46) 0.055 | 1.43(1.14-18) | 0.002 18
Serous 1.1 (0.85-1.42) 0.483 0.9 (0.7-1.3) 0.636 18
h01100001 7.1 Endometrioid 1.3(0.71-2.4) 0.393 2.04 (1.05-3.99) 0.036 57
Mucinous 0.81(0.33-1.99) | 0.652 | 0.9(0.38-2.1) 0.804 11
Clear cdl 1.86 (0.84-4.13) 0.127 1.92 (0.74-4.96) 0.179 3

T:‘0'=common adleleand ‘' 1'= rare alele; §: adjusted for clinical factors; HR: Hazard ratio; Cl: confidence interval; Emboldened HR are stetistically significant or the Cl does not
cross 1; Emboldened haplotypes are statistically significant after adjustmentsfor clinical factors, SNP order in haplotypesis5’ to 3’ of the genes — BRAF: rs10487888, rs1733832,

rs1267622, rs13241719, rs17695623, rs17161747, rs17623382, rs6944385;
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The likelihood ratio test including all three tSNPs, adjusted for prognostic factors,
was statistically significant (P=0.0147), however, when forward stepwise regression
procedure was used, only rs13241719 was retained in the final model (P=0.009).
The forward stepwise regression procedure involved the modelling of the variants
(rs1267622, rs13241719 and rs6944385), one-by-one, and retaining the tSNP which
was statistically significant (rs13241719 in thisinstance). The prognostic factors
were included in the model because the association between rs1267622 and

rs13241719 were found with the multivariate survival anaysis.

BRAF rs1267622 tags rs4726020 with r* =1. According to Pupasuite, both SNPs are
intronic and the dbSNP database showed rs1267622 isin intron 3 of the oncogene,
and rs4726020 isin intron 1. rs13241719 (intron 2) is not known to tag any other
SNP within BRAF. rs8944385 (intron 1) tags rs9648716 (intron 1) with r’=1. None
of these SNPs are predicted to have functions that could explain their association

with survival from ovarian cancer.

The correlation between the h01100001 hapl otype of BRAF and all-cause mortality
of the combined subtypes of ovarian cancer cases became statistically significant
after adjustments for the prognostic factors, adjusted HR=1.43 (1.14-1.8), P=0.002,
(see Table 4.8). This haplotype was also associated with poor survival, when
analysis was restricted to the endometrioid histological subtype. The haplotype was
associated with a 2.04-fold increase in hazard of the endometrioid subtype — Table
4.8. These results were confounded by the clinical prognostic factors, by at |east

18%.
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Figure 4.3: tSNPs in BRAF haplotype block

Colour scheme: standard (D’/LOD) — white (D’ <1, LOD<2), shades of pink/red (D’<1, LOD>2), blue (D’ =1,
LOD<?2) and bright red (D’=1, LOD>2), numbers shown in squares (LD values) arebased on D'.

Two other, previously undetected, associations were found between hapl otypes of
BRAF and survival from ovarian cancer after adjustments for prognostic factors.
The h10010000 haplotype was associated with improved survival of all histological
subtypes (adjusted HR=0.8 [0.66-0.95], P=0.014; Table 4.8). Therewas aso
evidence suggesting that this haplotype was associated with improved survival of
serous cases, when the Cox regression survival analysis was restricted to the
histological subtype — Table 4.8. This association was supported by the multivariate
result of BRAF rs13241719, which was in the fourth position of the haplotype

(Figure 4.3).
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4.2.6: Multivariate survival analysis results of KRAS oncogene

An association was found between the rs10842513 variant of KRAS and poor

survival of ovarian cancer, after adjustments for the clinical prognostic factors (Table
4.9). A statistically significant association was a so found with this variant and the
serous histological subtype in the univariate analysis (see Table 4.9). Although the
association with the serous subtype was no longer statistically significant, the 95%

confidence interval did not cross 1.

The difference between the hazard ratios of the univariate and multivariate analyses
of the serous subtype for the rs10842513 variant were not significant (<10%),
therefore the hazard ratio was not confounded by the prognostic factors. The
rs10842513 SNP, which islocated in intron 2 of KRAS, is not known to tag another
SNP within the oncogene. Although the SNP is currently not predicted to have a

“function”, it is conserved in mice.

The h001100 haplotype of KRAS block 2 remained significantly associated with
reduced survival of sufferers with the mucinous subtype (adjusted HR=2.74 [1.27-
5.9], P=0.01). The h100010 haplotype of block 2 was also associated with poor
survival of mucinous disease — see Table 4.10. This association was found after

adjustments for the prognostic factors had been made.
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) Univariate Multivariate® Diff HR
Gene tSNP MAF | Histdlogy | Cases |\ 0 oe06cl) | P-value HR (95% Cl) | P-value | (%)
Al 1770 | 1.18(0.98-142) 0.08 125(1.01-155) | 0.039 6
Serous 846 | 1.38(1.09-175) | 0.008 13(1-16) 0.001 6
KRAS rs10842513 | 009 | Endometrioid | 271 | 1.19(0.67-2.1) 0.552 147 (0.79-274) | 0227 24
Mucinous 187 | 0.7(0.29-1.69) 0.432 0.74(0.20-187) | 0521 6
Clear cell 132 202 (1-4.1) 0.052 171(081-358) | 0.156 15

HR: Hazard ratio; Cl: confidence interval; MAF- minor allele frequency; § adjusted for prognostic factors (histology, age, stage and grade, where appropriate); emboldened HR are
statistically significant or the CI does not cross 1.

Table 4.10: Univariate and multivariate survival results of KRAS haplotype block 2 (P<0.05)

Fr . Univariate M ultivariate® Diff HR

Gene Haplotype' (%e? Histology HR (95% ClI) P-value HR (95% ClI) P-value (%)
All 0.96 (0.83-1.12) 0.625 0.95 (0.81-1.12) 0.556 1
Serous 0.9 (0.74-1.08) 0.255 0.9 (0.6-1.3) 0.479 0
h100010 107 | Endometrioid 0.86 (0.51-1.45) 0571 0.82 (0.47-1.43) 0.481 5

M ucinous 1.32(0.79-2.22) 0.288 1.79 (1.03-3.13) 0.04 36
Eai?(iype Clear cell 0.95 (0.47-1.91) 0.881 0.87 (0.39-1.93) 0.723 8
block 2 All 1.02 (0.79-1.31) 0.902 1.05 (0.79-1.41) 0.722 3
Serous 0.87 (0.62-1.21) 0.411 1.1(0.8-15) 0.631 26

h001100 37 | Endometrioid 0.99 (0.44-2.18) 0971 1.21 (0.52-2.82) 0.652 22

M ucinous 3.24 (1.55-6.74) 0.002 2.74 (1.27-5.9) 0.01 15

Clear cell 2.42 (0.6-9.66) 0.212 3.42 (0.65-18) 0.146 41

T:'0'=common alldeand ‘' 1'=rare dlele; §: adjusted for clinical factors, HR: Hazard ratio; Cl: confidence interval; Emboldened HR are stetistically significant or the CI does not

cross 1; SNP order in haplotypesis 5’ to 3' of the genes —-KRAS haplotype block 2: rs12579073, rs10842513, rs4623993, rs6487464, rs10842514, rs11047917.
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4.3: Survival analyses of variants and haplotypes of functional

candidates

Sixty-three tSNPs from nine differentially expressed genes (AIFM2, AKTIP, AXIN2,
CASP5, FILIP1L, RBBP8, RGC32, RUVBL1 and STAG3) selected from the
microcell-mediated transfer of chromosome 18 (MM CT-18) into two ovarian cancer
cell-lines were genotyped with the MALOV A (446 cases), SEARCH (847 cases) and
UKOPS (401 cases) population-based sample sets. There were 617 deathsin 5,885
person-years at risk. Cox regression survival analysis was used to ascertain the
effect of the tSNPs and hapl otypes of the functional candidates on the survival of

ovarian cancer patients.

4.3.1: Association between clinical prognostic factor s and survival for

“functional” candidate genes

The results from the survival analysis of tSNPs and haplotypes of candidate
oncogenes demonstrated that the adjustment for clinical prognostic factors was
critical in determining associations which were not confounded by prognostic
factors. Therefore, Cox regression survival analysis was used to assess the effects of
the prognostic factors (age at diagnosis, tumour histological subtype, grade and
stage) on survival from ovarian cancer of individuals from the MALOVA, SEARCH
and UK OPS population-based studies used in thisanalysis. The results of the effect
of the prognostic factors on survival from ovarian cancer are summarised in Table

4.11.
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Table4.11: Cox regression survival analysis results of clinical prognostic factors
(MMCT-18 dataset)

Prognostic factor | No.cases(%) | HR(95% CI) | P-value
Histological subtype
Serous 796 (47%) Reference
Mucinous 185 (11%) 1.15 (0.78-1.69) 0.49
Endometrioid 262 (16%) 0.79 (0.57-1.09) 0.148
Clear cell 153 (9%) 0.75 (0.44-1.26) 0.278
Age at diagnosis (years)
<40 72 (4%) Reference
40-49 270 (16%) 1.41 (0.66-3) 0.37
50-59 636 (38%) 1.79 (0.87-3.68) 0.115
>60 716 (42%) 2.44 (1.19-4.97) 0.014
Tumour grade*
1 250 (15%) Reference
2 400 (24%) 1.36 (1.01-1.82) 0.041
3 518 (31%) 1.38 (1.04-1.85) 0.028
Tumour stage’®
Localised 492 (29%) Reference
Advanced® 744 (44%) 3.99(3.01-502) | 4.04x107”

N=1,694; * 1= well differentiated — low grade, 2= moderately differentiated - medium grade, 3=
poorly differentiated (high grade); § spread to regional lymph nodes or distant metastases;
emboldened prognostic factors are significantly associated with survival from ovarian cancer.

Contrary to the findings with the samples analysed in the oncogene study, there were
no statistically significant associations between survival from ovarian cancer and
tumour histological subtypes (P>0.05). This may have been as aresult of the
absence of the GEOCS and additional samplesin the SEARCH and UKOPS sample
populations. Individualsin the > 60 years old age group had a significantly
increased mortality rate compared with those in the <40 years age group (HR=2.44
[1.19-4.97], P=0.014). There were statistically significant differencesin the
mortality of individuals with low grade tumours and those with intermediate and
high grade tumours (HR=1.36 [1.01-1.82], P=0.041; HR=1.38 [1.04-1.85], P=0.028,
respectively). In concordance with the samples in the oncogene study, advanced

stage disease had the biggest effect on survival from ovarian cancer, with an
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approximately 4-fold increase in mortality compared with localised, early stage

disease (HR=3.99 (3.01-5.02), P=4.04x10%).

4.3.2: Effect of “functional” candidate ovarian cancer genes on survival of

ovarian cancer patients

Univariate and multivariate Cox regression survival analysis results for all common
variants and haplotypes of this series of functional candidate genes (AIFM2, AKTIP,
AXIN2, CASP5, FILIP1L, RBBP8, RGC32, RUVBL1 and STAG3) aretabulated in

Appendix VI11-A to VIII-R.

There was no evidence of association between survival from ovarian cancer and the
common tSNPs or haplotypes of AKTIP, AXIN2 or STAG3. However, associations
were found between survival from clear cell, and endometrioid ovarian cancers and
the combined rare haplotypes of AKTIP and STAG3, respectively (Appendix VII1-D,

and VI11I-R, respectively).

Multivariate survival analysisresults of AIFM2

After adjustments for the prognostic factors, two variants of AIFM2 were
significantly associated with survival from histological subtypes of invasive
epithelia ovarian cancer. Therare alele of AIFM2 rs2394655 was associated with
increased mortality of patients with the mucinous subtype (adjusted per-rare allele
HR=3.05[1.03-8.98], P=0.043). Thisassociation was aso found with the univariate
survival analysis (see Table 4.12). Therare allele of AIFM2 rs2280201 was
associated with poor survival of the endometrioid subtype, adjusted HR=2.03 (1.13-

3.65), P=0.018.
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Associations were a so found between haplotypes of AIFM2 and survival of ovarian
cancer cases. The associations were found with both hapl otype block of AIFM2.
The h0001011 haplotype of AIFM2 block 1 was associated with increased mortality
of endometrioid patients after adjustments for prognostic factors (adjusted HR=2.76
[1.36-5.59], P=0.005). The variant of AIFM2, rs2280201, was in the last position of
haplotype block 1. Therare alele of this variant was associated with poor survival of
endometrioid cases, and thus supports the findings of the haplotype analysis. The
h01011 haplotype of AIFM2 block 2 was also associated with poor survival of

endometrioid cases, adjusted HR=5.31 (2.04-13.8), P=0.001, see Table 4.13.

There was evidence suggesting that the h1111110 haplotype of AIFM2 block 1 was
associated with increased mortality of mucinous patients (adjusted HR=3.02 (1.02-
8.91), P=0.045; Table 4.13). This association was supported by the single variant
results. Therare alele of rs2394655, which was associated with poor survival, was
the first position of the haplotype. The rs2394655 variant is not known to tag
another SNP. The variant, which is conserved in mice, islocated in the 3’

untranglated region of the gene, and it is predicted to be an exonic splicing enhancer.

Furthermore, the hO0O001 haplotype of AIFM2 block 2 was associated with poor

survival of those with clear cell disease, adjusted HR=2.29 (1.23-4.28), P=0.009; see

Table 4.13.
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Table 4.12: Univariate and multivariate survival results of AIFM2 tSNPs (P<0.05)

Gene {SNP MAE Histology Caspe Univariate Multivariate® Diff HR
HR (95% CI) | P-value | HR (95% Cl) | P-value (%)
All 1751 1.04 (0.78-1.39) 0.788 1(0.72-1.4) 0.986 4
Serous 827 0.97 (0.68-1.39) 0.878 | 0.91(0.61-1.36) | 0.652 6
rs2394655 | 0.04 | Endometrioid | 269 0.22 (0.03-1.56) 0129 | 0.32(0.04-2.35) | 0.262 45
M ucinous 189 | 4.88(1.96-12.15) | 0.001 | 3.05(1.03-8.98) | 0.043 38
AEM2 Clear cell 150 1.08 (0.55-2.11) 0.824 1.27 (0.6-2.73) 0.532 18
All 1313 0.93 (0.77-1.11) 0392 | 0.95(0.77-1.17) | 0.617 2
Serous 556 0.81 (0.63-1.03) 0.08 0.87(0.66-1.13) | 0.296 7
rs2280201 | 0.12 | Endometrioid | 216 1.44 (0.84-2.45) 0.182 | 2.03(1.13-365) | 0.018 41
Mucinous 146 0.93 (0.49-1.78) 0.833 | 2.02(0.96-4.24) | 0.065 117
Clear cell 150 1.01 (0.71-1.45) 0.94 0.86 (0.56-1.33) | 0.496 15

HR: Hazard ratio; Cl: confidenceinterval; MAF- minor allele frequency; § adjusted for prognostic factors (histology, age, stage and grade, where appropriate);
Emboldened histological subtypes - variants are statistically associated with survival after adjustments; emboldened HR are statistically significant or the Cl
does not cross 1.
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: _ Univariate Multivariate® Diff HR
Gene Haplotype' | Freq (%) Histology HR (95% CI) | P-value HR (95% Cl) Pvalue | (%)
All 0.90(0.71-1.13) | 0.348 1(0.77-1.3) 0.98 1
Serous 0.80(0.60-1.08) | 0.149 0.86 (0.62-1.19) 0.352 7
h0001011 7 Endometrioid 1.51(0.81-2.8) 0.191 2.76 (1.36-5.59) 0.005 83
Mucinous 0.88(0.37-212) | 0.776 1.98 (0.69-5.7) 0.204 125
’h*' FI'V'tZ Clear cell 0.87 (0.52-1.47) | 0.602 0.86 (0.48-1.56) 0.626 1
oo e Al 102(0.76-138) | 0879 099 (0.7-1.41) 0957 3
Serous 0.91(0.62-1.32) | 0612 0.82 (0.53-1.27) 0.379 10
h1111110 4 Endometrioid | 0.34(0.07-1.71) | 0.191 0.5 (0.1-2.58) 0.408 47
M ucinous 4.87(1.9512.17) | 0.001 3.02 (1.02-8.91) 0.045 38
Clear cell 1.15 (0.58-2.27) 0.69 1.57 (0.71-3.48) 0.27 37
All 107 (0.79-1.45) | 0.651 1.21 (0.86-1.71) 0.279 13
Serous 118(0.79-1.75) | 0414 1.37 (0.89-2.11) 0.155 16
h00001 4 Endometrioid | 0.27 (0.05-1.34) 0.11 0.33 (0.07-1.51) 0.153 22
Mucinous 0.47(0.11-1.97) | 0.304 1.31 (0.29-5.91) 0.725 179
’h*' FI'V'tZ Clear cell 1.77 (1-3.12) 0.05 2.29 (1.23-4.28) 0.009 29
e Al 093(064-135 | 0702 | 116(077-1.74) | 0476 25
Serous 0.73(045-1.17) | 0.188 1.04 (0.63-1.73) 0.879 42
h01011 2 Endometrioid | 2.74(1.07-7.04) | 0.036 5.31 (2.04-13.9) 0.001 94
Mucinous - - - - -
Clear cell 1(0.43-2.36) 0.992 0.62 (0.22-1.73) 0.36 38

t:‘0'=common aleleand ‘1’'=rare alele; 8: adjusted for clinical factors; SNP order in haplotypes, 5 to 3', haplotype block 1: rs2394655, rs7908957,

rs1053495, rs2894111, rs2394656, rs6480440, rs2280201; haplotype block 2: rs10999147, rs3750772, rs4295944, rs2394644, rs10999152.
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Multivariate survival analysisresults of CASP5

An association between the rare allele of CASP5 rs2282657 and reduced mortality of
clear cell patients became stronger after adjustments in the multivariate analysis,
adjusted HR=0.68 (0.48-0.96), P=0.029, see Table 4.14. The CASP5 rs2282657
variant, an intronic SNP, tags 2 other intronic SNPs, al of which are conserved in

mice.

The h000011 haplotype of CASPS5 block 2 remained associated with reduced
mortality of clear cell patients after adjustments for prognostic factors, adjusted
HR=0.57 (0.34-0.97), P=0.037; see Table 4.15. This association is concordant with
the presence of the rare allele of CASP5 rs2282657, in the fifth position of the

hapl otype block, which was associated with improved survival of clear cell cases.

The combined rare haplotypes of CASP5 block 1 were also associated with poor
survival of al histological subtypes (P=8.85x10), and the serous and clear cell
subtypes when the multivariate analysis was restricted to the subtypes (see Appendix
VI11I-H). Despite the strength of the association with al histological subtypes, the
combined rare haplotypes have afrequency of 4%, and it is not possible to
definitively ascertain the haplotype responsible for the association. However, if the
causative haplotype was found, only avery small number of cases are likely to carry

the haplotype.
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Gene | tSNP MAF | Histology Cases Univariate Multivariate® Diff HR (%)
HR (95% CI) | P-value | HR(95% CI) | P-value
Al 852 | 094(0.83-106) | 0329 | 094(081-109) | 0442 0
Serous 462 110(0.95-1.28) | 0216 | 112(0.93-134) | 0247 2
CASP5 | rs2282657 | 035 | Endometrioid | 128 | 0.82(0.551.22) | 0327 | 078(05-1.2) 0.254 5
Mucinous 80 0.75(0.47-119) | 0224 | 092(057-148) | 0.735 23
Clear cell 73 0.76(057-1) | 0049 | 068(0.48096) | 0.029 1

HR: Hazard ratio; Cl: confidence interval; MAF- minor alele frequency; 8: adjusted for clinical factors; emboldened histology names are
statistically associated with survival; emboldened HR are statistically significant.

Table 4.15: Univaraite and multivariate survival results of CASP5 haplotype (P<0.05)

Haplotype _ Univariate Multivariate® Diff HR
block | Haplotype' | Freq (%) Histology HR (95% CI) | P-value HR (95% Cl) P-value (%)
All 1.02(0.87-120) | 0.821 1.01 (0.83-1.23) 0.916 1
CASPS Serous 1.11(0.91-1.35) | 0.298 1.08 (0.86-1.36) 0.493 3
(haplotype | h000O11 13 Endometrioid 1.05(0.63-1.77) | 0.847 1.17 (0.66-2.07) 0.583 11
block 2) Mucinous 1.69 (0.92-3.1) 0.089 1.64 (0.85-3.15) 0.139 3
Clear cell 0.62 (0.4-0.97) 0.034 0.57 (0.34-0.97) 0.037 8

Freq — frequency; HR — hazard ratio; Cl — confidence interval; 1: ‘0'= common allele and ‘1’ = rare allele; 8: adjusted for clinical factors; SNP order in

haplotypes, 5’ to 3', CASP5 haplotype block 2: rs17446518, rs9651713, rs3181175, rs3181174, rs2282657, rs507879.
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Multivariate survival analysisresults of RGC32

There was also evidence of an association between poor survival from the serous
histologica subtype and the rare allele of RGC32 rs3783194 (adjusted HR=1.44
(1.12-1.86), P=0.005); Table4.16. This SNPislocated inintron 2 of the gene, and
to date, it isnot known if it tags another variant. The rare allele of another genetic
variant of RGC32, rs995845, was al so associated with poor survival of endometrioid
patients after using the multivariate Cox regression survival anaysis (adjusted

HR=1.8 (1.03-3.14), P=0.039); see Appendix V111-M.

Despite the associations found between the common genetic variants of RGC32 and
survival from ovarian cancer, no statistically significant associations were found
between common haplotypes of the gene, and surviva from the disease. The results

of the haplotype-specific effects are given in Appendix VII1-N.

Multivariate survival analysisresults of FILIP1L

When multivariate Cox regression survival analysis was used to determine the
effects of common tSNPs from FILIP1L on survival of ovarian cancer patients,
statistically significant associations were found with two variants. Therare alele of
FILIP1L rs3921767 was associated with poor survival of ovarian cancer patients
regardless of the histology of the tumour, adjusted (for prognostic factors) per-rare

dlele HR=1.39 (1.07-1.81), P=0.014 - Table 4.17.
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Table 4.16: Univariate and multivariate survival results of RGC32 tSNPs (P<0.05)
_ Univariate Multivariate® Diff HR

Gene tSNP MAF | Histology | Cases | |10 o506 cl) | Pvalue | HR(95% Cl) | Pvalue | (%)
All 1690 0.95 (0.79-1.14) 0.567 1.11 (0.9-1.36) 0.342 17

Serous 788 1.11 (0.88-1.41) 0.359 1.44 (1.12-1.86) 0.005 30

rs3783194 | 0.11 | Endometrioid | 264 1.09 (0.65-1.84) 0.742 1.12 (0.61-2.05) 0.713 3

Mucinous 184 0.63 (0.29-1.35) 0.232 0.64 (0.24-1.73) 0.38 2

RGCa2 Clear cell 155 0.81 (0.55-1.19) 0.282 0.76 (0.5-1.16) 0.202 6
All 1274 0.96 (0.85-1.08) 0.488 1.13 (0.93-1.38) 0.218 18

Serous 595 1.03 (0.88-1.21) 0.682 1.25 (0.97-1.61) 0.082 21

rs995845 0.2 | Endometrioid | 193 1.55 (0.93-2.6) 0.093 1.8 (1.03-3.14) 0.039 16

Mucinous 146 1.09 (0.58-2.03) 0.797 0.75 (0.36-1.54) 0.43 31

Clear cell 112 0.94 (0.66-1.34) 0.716 1.04 (0.69-1.56) 0.851 11

HR: Hazard ratio; Cl: confidence interval; MAF- minor alele frequency; 8 adjusted for prognostic factors (histology, age, stage and grade, where
appropriate); Emboldened histological subtypes - variants are statistically associated with survival after adjustments; emboldened HR are
dtatistically significant or the Cl does not cross 1.
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Conversdly, therare allele of FILIP1L rs9864437 was associated with better surviva
of mucinous cases aone (adjusted HR=0.46 (0.23-0.91), P=0.027), see Table 4.17.
An additional association was found between the rare allele of another tSNP of
FILIP1L, rs793446, and reduced mortality of mucinous cases, adjusted HR=0.57
(0.33-0.99), P=0.046. See Appendix VIII-1 and VI1I-Jfor the univariate and
multivariate Cox regression analysis results for all common variants and hapl otypes,

respectively, of FILIPLL.

Analysis of the effects of the haplotypes of FILIP1L on survival from ovarian cancer
also showed statistically significant associations. A total of 4 haplotypes of FILIP1L
were associated with survival from ovarian cancer, 2 from haplotype block 1, and the
other 2 from block 2. The h00110 haplotype of FILIP1L block 1 was associated
with reduced mortality, of al histological subtypes, after adjustments for prognostic
factors, adjusted HR=1.36 (1.04-1.77), P=0.024 (Table 4.18). The association with
h00110 haplotype of FILIP1L block 1 was supported by the effect of the rare allele

of the rs3921767 variant, which was in the fourth position of the haplotype.

The remaining 3 FILIP1L haplotypes were al associated with survival of patients
with the mucinous subtype. One of these haplotypes was from block 1 of the gene,
and the other 2 were from haplotype block 2. The h10100 haplotype of FILIP1L
block 1, which had a frequency of 21%, was associated with reduced mortality
(adjusted HR=0.44 (0.21-0.9), P=0.024) — sece Table 4.18 for the Cox regression
survival analysis results for the combined and individual subtypes for this haplotype.

This association was also in concordance with the single variant results. Therare
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allele of rs793446, which was correlated with reduced mortality, wasin the third

position of FILIP1L haplotype block 1.

Asshown in Table 4.18, the 2 haplotypes of FILIP1L block 2, hO0OO0 and h100, had
opposing effects on survival from the mucinous subtype. The hO00 haplotype was
associated with poor surviva of mucinous cases (adjusted HR=1.96 [1.15-3.33],
P=0.013). Conversely, h100 of the same haplotype block was associated with
reduced mortality (adjusted HR=0.46 [0.23-0.91], P=0.026). These associations
were a so supported by the single variant results (FILIP1L rs9864437 was in the first

position of the block 2 haplotypes).

Multivariate survival analysisresults of RBBP8

There was evidence suggesting that the rare alleles of two tSNPs of RBBPS,
rs4474794 and rs9304261, were associated with better survival of ovarian cancer
(adjusted HR=0.86 (0.74-0.99), P=0.034; adjusted HR=0.83 (0.7-0.99), P=0.038),
respectively - Table4.19. The Kaplan-Meier surviva curves for these two variants

are shown in Figure 4.4.

The association between the RBBP8 tSNPs and survival from ovarian cancer was
also identified in the univariate analysis. RBBP8 rs4474794 and rs9304261 are
correlated with r°=0.56. RBBPS rs4474794 was retained in the final model after the
forward stepwise regression (P=0.035). An interaction between rs4474794 and
rs9304261 was statistically significant (adjusted HR=0.95 (0.9-0.99), P=0.036), and

the likelihood ratio test of this interaction was a so significant (P=0.031).
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Table4.17: Univariate and multivariate survival results of FILIP1L tSNPs (P<0.05)

_ Univariate Multivariate® Diff HR
Gene tSNP MAF | No. cases Histology
HR (95% CI) P-value HR (95% CI) P-value (%)
1773 All 0.96 (0.85-1.07) 0.461 1.04 (0.9-1.19) 0.628 8
838 Serous 1.02 (0.88-1.18) 0.816 1.08 (0.91-1.28) 0.399 6
rs793446 | 0.41 274 Endometrioid | 1.08 (0.74-1.59) 0.69 1.15 (0.77-1.71) 0.501 6
194 M ucinous 0.65 (0.41-1.03) 0.065 0.57 (0.33-0.99) 0.046 12
164 Clear cell 0.97 (0.76-1.25) 0.83 0.99 (0.74-1.32) 0.932 2
1773 All 1.03 (0.83-1.29) 0.786 1.39 (1.07-1.81) 0.014 35
840 Serous 0.98 (0.71-1.34) 0.895 1.28 (0.89-1.84) 0.186 31
FILIPIL | rs3921767 | 0.07 276 Endometrioid 0.99 (0.5-1.93) 0.967 1.23 (0.59-2.57) 0.576 24
191 M uci nous 1.03 (0.45-2.34) 0.949 1.09 (0.44-2.73) 0.849 6
166 Clear cell 1.29 (0.88-1.89) 0.196 1.59 (0.99-2.58) 0.057 23
1786 All 0.96 (0.84-1.09) 0.515 0.93 (0.8-1.09) 0.366 3
843 Serous 1.03 (0.88-1.20) 0.708 1(0.84-1.2) 0.964 3
rs9864437 | 0.22 278 Endometrioid | 1.07 (0.69-1.68) 0.752 0.97 (0.6-1.57) 0.892 9
195 M ucinous 0.45 (0.25-0.82) 0.009 0.46 (0.23-0.91) 0.027 2
165 Clear cell 0.89 (0.66-1.2) 0.455 0.87 (0.63-1.2) 0.396 2

HR: Hazard ratio; Cl: confidenceinterval; MAF- minor allele frequency; § adjusted for prognostic factors (histology, age, stage and grade, where appropriate);
Emboldened histological subtypes - variants are statistically associated with survival after adjustments; emboldened HR are statistically significant or the Cl does not
cross 1.
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Table 4.18: Univariate and multivariate survival results of FILIP1L haplotype block 2 (P<0.05)

" _ Univariate Multivariate® Diff HR
Gene Haplotype | Freq (%) Histology HR (95% CI) | P-value HR (95% Cl) P-value (%)
All 0.96 (0.84-1.0) 0.52 0.94 (0.8-1.1) 0.424 2
Serous 1.03(0.89-121) | 0.667 0.94 (0.67-1.31) 0.697 9
h10100 21 Endometrioid 112(0.71-1.78) | 0618 1(0.61-1.63) 0.998 11
M ucinous 0.42(0.22-0.78) | 0.006 0.44 (0.21-0.9) 0.024 5
Fr: '-'lF’%'- Clear cell 0.88(0.651.19) | 0.419 0.88 (0.64-1.22) 0.447 0
S nre Al 102(081-127) | 0871 | 136(104-177) | 0.024 3
Serous 0.95(0.69-1.30) | 0.742 1.22 (0.85-1.76) 0.283 28
h00110 7 Endometrioid 1(05-2) 0.996 1.22 (0.58-2.55) 0.604 22
Mucinous 101(044-231) | 0977 1.08 (0.43-2.69) 0.877 7
Clear cell 1.29(0.88-1.89) | 0.197 1.61 (0.99-2.6) 0.053 25
All 0.96 (0.84-1.09) | 0.506 0.94 (0.8-1.09) 0.42 2
Serous 1.03(0.89-121) | 0.668 0.92 (0.77-1.1) 0371 11
h100 22 Endometrioid 1.08(0.69-1.69) | 0.727 0.97 (0.6-1.57) 0.902 10
Mucinous 0.45(0.25:0.82) | 0.009 0.46 (0.23-0.91) 0.026 2
Fh' L'Ipl'- Clear cell 0.88(0.65-1.18) | 0.385 0.87 (0.63-1.21) 0.407 1
oy Al 110(094128) | 0223 | 111(092-133) | 0292 1
Serous 107 (0.87-1.31) | 0506 0.64 (0.26-1.55) 0.321 40
h00O 19 Endometrioid 0.87(0.53-1.44) | 0.594 0.98 (0.59-1.64) 0.946 13
M ucinous 172(109-272) | 0019 1.96 (1.15-3.33) 0.013 14
Clear cell 113(0.82-158) | 0.456 1.09 (0.74-1.6) 0.664 4

t:‘0'=common aleleand ‘1’ = rare allele; 8: adjusted for clinical factors, SNP order in haplotypes, 5 to 3', FILIP1L -block 1: rs796977, rs793477,
rs793446, r<3921767, rs17338680. FILIP1L - block 2: rs9864437, rs6788750, rs12494994.
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Figure 4.4: Kaplan-Meier survival estimates of RBBPS (a) rs4474794; (b) rs9304261
(all subtypes combined)

Numbers following the keys are individual s till at risk after 10 years.
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Table 4.19 Univariate and multivariate survival results of RBBP8 tSNPs (P<0.05)

. Univariate Multivariate® Diff HR
Gene | tSNP MAF | Histology | Cases | |10 oo ¢y | Pvalue| HR(95% Cl) | Pvalue | (%)
Al 1764 | 085(0.750.95) | 0007 | 086(0.74-0.99) | 0034 1
Serous 829 | 088(0.75-102) | 0098 | 0.85(0.71-101) | 0.065 3
rs4474794 | 036 | Endometrioid | 271 | 08(053-1.19) | 0265 | 0.86(056-131) | 0.479 7
Mucinous | 193 | 067(042-1.05 | 0079 | 0.83(0.51-1.36) | 0.465 24
S Clearcell | 165 | 091(0.71-1.18) | 0484 | 098(0.73-1.32) | 0.899 8
Al 346 | 083(0.71-095 | 0009 | 083(0.7-0.99) | 0.038 0
Serous 215 | 087(0.72-105 | 0143 | 0.82(0.66-1.02) | 0.073 6
19304261 | 022 | Endometrioid | 44 | 087(056-135 | 0536 | 099(062-16) | 0982 14
Mucinous | 33 | 061(0.35105) | 0074 | 0.81(0.44-149) | 0.497 33
Clear cell 21 | 084(062113) | 0242 | 086(061-122) | 0401 2

HR: Hazard ratio; Cl: confidence interval; MAF- minor allele frequency; § adjusted for prognostic factors (histology, age, stage and grade,

where appropriate); Emboldened histological subtypes - variants are statistically associated with survival after adjustments; emboldened HR are
statistically significant or the Cl does not cross 1.
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Table 4.20: Univariate and multivariate survival results of RBBP8 haplotypes (P<0.05)
= . Univariate Multivariate® Diff HR
Gene Haplotype' (%e;q Histology HR (95% CI) P-value HR (95% CI) P-value (%)
All 1.16 (1.03-1.31) 0.015 1.17 (1.01-1.34) 0.032 1
Serous 1.12 (0.97-1.30) 0.134 0.02 (0-27735) 0.589 98
h0000 62 Endometrioid 1.26 (0.85-1.86) 0.257 1.15 (0.76-1.75) 0.511 9
Mucinous 1.57 (1-2.47) 0.05 1.22 (0.75-2) 0.422 22
Clear cell 1.06 (0.83-1.35) 0.659 1(0.75-1.32) 0.98 6
All 0.81 (0.71-0.94) 0.005 0.82 (0.69-0.98) 0.029 1
Serous 0.84 (0.70-1.02) 0.079 0.99 (0.53-1.85) 0.976 18
RBBPS hoo11 23 Endometrioid 0.83(0.53-1.3) 0.422 0.94 (0.58-1.52) 0.789 13
Mucinous 0.64 (0.37-1.08) 0.096 0.86 (0.48-1.53) 0.614 34
Clear cell 0.85 (0.64-1.13) 0.261 0.87 (0.63-1.22) 0.429 2
All 0.60 (0.39-0.93) 0.022 0.75 (0.45-1.25) 0.275 25
Serous 0.75 (0.41-1.36) 0.347 1.2 (1.01-1.42) 0.041 60
h0010 3 Endometrioid 0.35 (0.08-1.56) 0.169 0.54 (0.12-2.46) 0.429 54
Mucinous 0.56 (0.13-2.31) 0.419 1.03 (0.15-7.23) 0.976 84
Clear cell 0.7 (0.31-1.58) 0.388 0.78 (0.28-2.18) 0.637 11

T:‘0'=common aleleand ‘ 1'= rare alele; Freq — frequency; HR — hazard ratio; Cl — confidence interval; 8: adjusted for clinical factors; SNP order

in haplotypes, 5" to 3', RBBP8: rs7239066, rs11082221, rs4474794, rs9304261.
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Asshown in Table 4.19, the univariate Cox regression survival analysis also
detected the associations between survival and the tSNPs of RBBP8 (rs4474794 and
rs9304261). Aswell as being associated with better survival from ovarian cancer
overdl, therare allele of rs4474794 was also significantly associated with a
decreased risk of serous ovarian cancer. The rs4474794 variant and the 17 SNPs it

tags were intronic, with no predicted functions.

Two haplotypes of RBBP8, h0000 and h0011, had opposing effects on survival of
the patients. The h0000 haplotype was associated with poor survival (adjusted
HR=1.17 (1.01-1.34), P=0.032). However, the h0011 haplotype of RBBP8 was
associated with improved survival from the disease, adjusted HR=0.82 (0.69-0.98),
P=0.029. These associations were also identified with the univariate analyses, and
were supported by the tSNP results (see Table 4.20). The variants of RBBPS,
rs4474794 and rs9304261, which were shown to affect survival from ovarian cancer,

werein the third and fourth positions, respectively, of the haplotypes.

The association between the h0000 haplotype of RBBP8 and poor survival of all
ovarian cancer patients was also found when multivariate analysis was restricted to
serous only samples (adjusted for prognostic factors HR=1.2 (1.01-1.42), P=0.041).
Although, the association between reduced mortality and the h0011 haplotype of
RBBP8 was attenuated after restriction to the serous subtype, the confidence interval

did not cross 1 (adjusted HR=0.81 (0.65-1), P=0.054); Table 4.20.
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Chapter 4: Results - survival

. Univariate Multivariate® -
Gene tSNP MAF | Histology | Cases |0 os06Cl) | Pvalue | HR(95% Cl) | P-value DIE;:_)'R
Al 1787 | 098(086L12) | 0758 | 081(067-098 | 003 17
Serous 845 | 101(086-119) | 0879 | 0.75(0.59-0.95) | 0.018 26
RUVBLL |rs4857836 | 0.2 | Endometrioid | 278 | 112(0.67-1.88) | 066 | 092(052-161) | 0762 18
Mucinous | 195 | 08(042-155) | 0513 | 09(0421.95) | 0797 13
Clear cell 165 | 097(0.68138) | 0863 | 084(0.55128) | 0.406 13

HR: Hazard ratio; Cl: confidence interval; MAF- minor alele frequency; 8: adjusted for clinical factors; emboldened histology names are statistically
associated with survival; emboldened HR are statistically significant.

237



Chapter 4: Results - survival

However, rs9304261, which is downstream of the gene, is currently known to tag 14
SNPswith r*>0.8, half of these are conserved in mice. One of these SNPs,
rs930910, is upstream of the gene in atranscription factor binding site. Another of

the tagged SNPs, rs1902921, has a predicted triplex-forming sequence.

4.3.3:Multivariate survival analysisresults of RUVBL1

When multivariate Cox regression survival analysis was used to determine the
effects of common tSNPs and haplotypes from the RUVBL 1 gene, statistically
significant associations were found between survival and atSNP and 2 hapl otypes
and survival from ovarian cancer. Therare allele of RUVBL1 rs4857836 was
associated with reduced mortality of all cases, adjusted HR=0.81 (0.67-0.98),
P=0.03. The size of the effect of the variant and the significance increased when the
analysis was restricted to the serous only histological cases (see Table 4.21). The
rs4857836 variant was not significantly associated with survival from the other
major histological subtypes of ovarian cancer when the analysis was restricted (to the
subtypes). However, similarly to the serous and all subtypes, the hazard ratios for
the individual subtypes (endometrioid, mucinous and clear cell) werelessthan 1 (see

Table 4.21).

4.4 Summary

Cox regression survival analysis of amodel with termsfor all of the prognostic
factors showed that although all of the factors significantly affected survival from
ovarian cancer, there were of varying effect sizes. Advanced tumour stage had the
strongest effect on survival, with afour times increased hazard ratio compared with

localised early stage disease.
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Multivariate survival analysis with terms for prognostic factors suggested that the
results of univariate analyses (with genotypes as the only explanatory variable) may
have been masked by the unaccounted clinical factors. When multivariate Cox
regression survival analysis was used to evaluate the affect of tSNPs and haplotypes
of candidate oncogenes on the survival of 1,572 invasive epithelial ovarian cancer
cases, associations were found between BRAF and KRAS and clinical outcome of
invasive epithelial ovarian cancer patients. Three common tagging variants of BRAF
(rs1267622, rs13241719 and rs6944385), and the AA haplotype of rs1267622 and
rs6944385 influenced survival of all cases. When the analysis was restricted to the
histological subtypes, an association was found between the survival of serous cases
and the rs13241719 polymorphism. Associations were also found between

hapl otypes of BRAF (h10010000 and h01100001) and survival of al cases. The
h01100001 haplotype was also associated with poor survival of endometrioid
patients. Furthermore, an additional haplotype of BRAF, h10010010, was associated
with improved survival of serous cases. The rare allele of KRAS rs10842513 and
two haplotypes of the oncogene were associated with poor survival of al ovarian

cancer cases.

Multivariate Cox regression survival analysis was also used to evaluate the affects of
candidate genes selected from in vitro tumour suppression studies on the clinical
outcome of ~1,700 ovarian cancer patients. Associations were identified between a
polymorphism (rs2280201) and 2 haplotypes (h0001011 of haplotype block 1 and
h01011 of haplotype block 2) of AIFM2 and survival of endometrioid cases,

P=0.018, P=0.005 and P=0.001, respectively. This gene was also associated with the
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survival of those with mucinous and clear cell ovarian cancer. Moreover, therare
alee of avariant, and haplotypes of CASP5 were associated with increased survival

of patients of clear cell ovarian cancer.

FILIP1L, RUVBL1 and RBBPS influenced the clinical of individuals with epithelia
ovarian cancer. A common variant and haplotype of FILIP1L were associated with
the survival of all cases of ovarian cancer combined. Two tSNPs and haplotypes of
FILIP1L were associated with the survival of mucinous aswell. Therare allele of
RUVBL1 rs4857836 was associated with longer survival of all hstological subtypes
of the disease. This association became stronger when the analysis was restricted to
the serous subtype. The rare alleles of RBBP8 rs4474794 and rs9304261 were
marginally associated with improved survival of all subtypes (P=0.034 and P=0.038,
respectively). Two haplotypes of RBBP8 were also associated with the clinical
outcome of all cases. Furthermore, another hapltoyep of RBBP8 was associated with

poor survival of patients with the serous subtype.
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Chapter 5: Results
Evaluating whole genome amplification
methods and SNP multiplex genotyping

platforms

5.1: Introduction

Aims:
(1) To evauate the ease of use and quality of whole genome amplification methods.
(2) To evaluate the performance of non-amplified and whole amplified DNA on

multiplex SNP genotyping platforms.

Objectives:

(1) To assessthe call rates and concordance of non-amplified, genomic DNA and
whole genome amplified DNA.

(2) To evauate the performance of multiplex SNP genotyping platforms with
genomic and whole genome amplified DNA.

(3) To examinethe SNP pass rates, call rates and concordance between genomic and

amplified DNA.

5.2: Whole genome amplification

Whole genome amplification methods are used to increase the amount of DNA
available for research, and some types of diagnoses (ie preimplantation diagnostics).
A whole genome amplification method which produces good quality amplified
DNA, that generates good call rates and consistent, accurate genotypes could be used

instead of the limited, non-amplified genomic DNA. In order to evaluate the
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magnitude of DNA amplification, quality of genotype calls, and concordance
between genotypes of the whole genome amplified samples and non-amplified
genomic samples, 95 samples were amplified with GenomePlex™, GenomiPhi, PEP
and RepliG™. PEPisarandom 15-mer method of PCR-based DNA amplification.
This method and GenomePlex uses the Taq polymerase enzyme for extension.
GenomiPhi uses the Phi29 (©29) DNA polymerase, and REPLI-g uses a modified
®29 enzyme. GenomePlex is a PCR-based method, which generates alibrary from
the template DNA and subsequently amplifies the library. PEP amplification has
been used to amplify GEOCS and SEARCH study samples for severa years and all
Tagman assays with samples from those two studies were performed with PEP-
amplified samples. Although 100ng of starting DNA was used for GenomePlex,
GenomiPhi and RepliG amplification, 20ng, the recommended amount, was used for
PEP. Thefocus of the research was primarily on the GenomePlex, GenomiPhi and

RepliGTM methods.

5.2.1: Comparison of the ease of use of whole genome amplification methods

In terms of ease of the amplification procedure, GenomiPhi was the ssimplest. The
protocol involved adding the amplification mix and enzyme to the DNA and two
incubation steps. The PEP protocol was aso very easy to perform, with only a PCR
reaction following the addition of the reaction mixture to the template DNA. The
GenomePlex method was the most time consuming of the four amplification
methods during the preparation steps (Table 5.1). There were three separate stages
involving addition of reagents followed by incubation steps. This contrasted with
only 1 stage each for GenomiPhi, PEP and REPLI-g. PEP was the only protocol

without a separate denaturing DNA step. Overal, GenomePlex required the least
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amount of time to perform the whole procedure. There was an insufficient amount

of the Library preparation enzyme in the GenomePlex amplification kit, therefore
five samples could not be successfully amplified with the method. In total 90
samples were amplified with the GenomePlex method. It is possible that some of the
enzyme may have evaporated during the pipetting into the sample mixture, because a

master-mix was not made with the enzyme and only 1ul wasto be aliquotted into the

samples.

Table 5.1: Comparison of whole genome amplification methods

GenomePlex GenomiPhi PEP REPLI-g

Pattern Thermal | sothermal Thermal | sothermal
Ease of Least easy Easiest Moderate Moderate
performance
Time required 6 hours 17 hours 13 hours 17 hours
Template DNA
concentration used 100ng 100ng 100ng 100ng
;?\igghfled DNA 9ug 159 1.6u9 189ug
Fold increase 90 150 80 1894

The REPLI-g-amplified samples were the most difficult to pipette after
amplification, before the DNA of each sample was quantified. Thiswas because
some samples were very viscous. As aconsequence, a 1in 10 dilution was needed

prior to DNA quantification.

5.2.2: Quantities of whole genome amplified products

PICO-green was used to evaluate the amount of DNA produced by each whole
genome amplification method. Asshown in Table 5.2, the REPLI-g method
produced the greatest increase in amplified DNA, with an average yield of

approximately 190ug. This approximated to 1890-fold increase overall, in the
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guantity of DNA with this method. However, there was also avery largerangein
the quantities of DNA produced, from 53ug to 579ug total yield with a standard
deviation of 110. The standard deviations for the total yield for the other methods
were lessthan 4. Thefold increasesin DNA quantities after GenomePlex and PEP
amplification were relatively similar (90 and 80, respectively). The average tota
yield produced for GenomiPhi-amplified samples was 15ug, which was a 150-fold

increase in the amount of DNA.

Table 5.2: Average fold increase in DNA gquantities after WGA

GenomePlex GenomiPhi PEP REPLI-g
Template DNA
concentration 100ng 100ng 20ng 100ng
used
Gg‘glmed DNA 9ug 15ug 1.6ug 189ug
Fold increase 90 150 80 1894
Standard 22 35 1.9 100.7
deviation

The yields of GenomiPhi and REPLI-g exceeded that which was expected for the
method. This may have been due to the increased amount of input template DNA
than suggested by the protocol (10ng). 100ng of template DNA was used in order to
reduce the likelihood of allele dropout. Approximately double the expected amount
of amplified DNA was generated by the GenomiPhi method, and more than 4 times

by REPLI-g.

5.3: Comparison of SNP multiplex genotyping platfor ms

There were advantages and disadvantages for the procedures of all of the SNP
multiplex genotyping platforms tested (iPLEX, OpenArray and SNPlex). This
makes it difficult to say which platform was easiest to use. One of the biggest
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advantages that OpenArray had over SNPlex and iPLEX was that any combination
of SNPs could be included in apanel. The panels of SNPs for each iPLEX and
SNPlex reaction needed to the designed to ensure reactions could not occur between
the reaction products and the allele/SNP masses, so that they could be differentiated
from each other. The ease of use of the SNP multiplexing platforms are summarised

in Tableb.3.

5.3.1:OpenArray

Overadl, the OpenArray platform was the most straight-forward to use after the
transfer of the samples on to the TagMan OpenArray plates. However, the transfer
of the samples onto the plate was labour intensive and could not be automated with
robotics. This process, thus had an increased chance of operator error. Before the
transfer of the samples, each 384-well sample plate was divided into eight sections,
asillustrated in Figure 2.2, and only one section, comprised of 48 samples, could be
transferred at any onetime. Two different plate guides, (onefor plate areas 1, 3, 6
and 8, and the other for plate areas 2, 4, 5 and 7) were needed for transferring the
samples from the sample plate on to the TagMan OpenArray plate. Furthermore,
only 96 samples could fit onto an OpenArray plate, therefore, five plates were
required for genotyping the GenomePlex, GenomiPhi, PEP and REPLI-g products,

and the corresponding genomic DNA.

There is no easy way of tracking the sample plates or sections after the samples have
been transferred onto the OpenArray plates — the manua suggested writing the
barcodes on the plates before transferring the samples. This created another area

where operator error could occur. The serial number of the OpenArray plate also
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had to be manually entered into the software before performing the imaging run.

Again, there was potential for operator error when entering the OpenArray plate

serial number.

Subarray A1

Sample plate 1 Sample plate 2

AT
i

v N
‘.‘ Sample 1 n Sample 49

) N
! ﬁIIlllIIlllI
\ IENEEEEEEEEEE
Y SIslS[SIS[SIsls|S]s]w[w]
b | Illllll.lll*
Sample 48 Sample 98

Load 1 Load 2

OpenArray plate Subarray D12

Figure 5.1: Thetransfer of sections of sample plates to an OpenArray plate

Each OpenArray sample plate section contains 48 wells, and each OpenArray plate can hold 96
samples when the 32-plex option is used. Normally the 4 sections of a sample plate are transferred to

an OpenArray plate.

The OpenArray SNP Genotyping analysis software was reasonably easy to use.

Sample well positions were included in the sample information files which were

needed for the plate “ set-up” files prior to imaging. However, the OpenArray SNP

Genotyping Analysis software neither displayed, nor outputted the well positions of

samples, which made it difficult to ascertain areas of the sample plates which failed

genotyping.
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Table5.3: Ease of use of SNP multiplex genotyping platforms

iPLEX OpenArray SNPlex
Company Sequenom Applied Biosystems Applied Biosystems
Multiplex level tested 27 32 48
Panel design SNPs rgl;t elwork n Any SNP combination SNPs rgl;t elwork n
DNA required (ng) 10 125 50-100
DNA per SNP (ng) 0.34 391 1.04-2.08
Tota no. samples/plate 384 96 384
Extensive post-PCR Extensive sample Extensive post-PCR
Type of procedure processing preparation processing
SNP/allele detection MALDI-TOF Fluorescence Mass and fluorescence
Experiment time 2 days 2 days 3 days
Ease of procedure Easiest Least easy Moderately easy
Ease of analysis Easiest Moderately easy Least easy
S'\('gpg’,f‘lf)ime 24 (100%)° 32 (100%) 29 (60%)

* Overall rate for non-amplified genomic DNA only. ° Three SNPs with insufficient extend primers
failed.

Applied Biosystems recommended manually calling the genotypes on OpenArray.
The advantage of using the OpenArray genotyping software was that it allowed the
importing and analysis of multiple OpenArray plates in the same “genotyping
project”. This compensated for having to manually call the genotypes, and also
allowed the analysis of multiple plates, provided there was minimal plate-to-plate
variation in genotyping quality. The OCAC quality control guidelines required that
at least 95 ovarian cancer samples were placed on each 384-well plate in order to
eliminate any possible case/control genotyping bias. However, the sample
information file, and the fact that only 96 samples could be genotyped on a 32-plex
format, which would make it impossible to conform to the guidelines for genotyping
studies. Adjustments to incorporate the OCAC guidelines would involve re-
organisation of al sample plates layouts and the corresponding templates used for

quality control purposes.
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Figure 5.2: OpenArray cluster (auto-call)

Dots: Blue — homozygotes for FAM allele; green — heterozygotes; red — homozygotes for VIC alele;
black — undetermined genotype; purple circle — sample could not be given a user call without another
V1C homozygote becoming “uncalled”, however a user call (to undetermined) could be made for the
genotype circled in yellow.

Despite the manual calling, there was a considerable amount of automation in the
calling when “ cluster centre” and exclusion bars were used. There were instances
when some samples could not be called with the cluster centre and exclusion bars,
without alogical reason (as demonstrated in Figure 5.2). The “Draw” function of the
OpenArray genotyping analysis software was supposedly available for modifying the
genotype cluster shapes. However, the genotype calling from the Draw function

could not be exported, which rendered the function useless.

5.3.2: SNPlex
The SNPlex genotyping platform was afairly standard procedure. Although the

procedure was carried out manually, the vast mgjority of the steps could be
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automated with liquid handling robotics. However, there was arisk of

contamination, and/or operator error with the extensive post-PCR process.

Manual calls could not be made per se, with the GeneM apper software. The
clustering parameters could be modified in order to make the callings more, or less
stringent. The quality of the experiments could be evaluated by checking the allelic
ladders, and the software had an internal quality control that failed assays with call
rates less than 80%, therefore it was not possible to find the exact call rates, or

genotypes of poor performing assays.

5.3.2:iIPLEX

The iPLEX genotyping platform was the preferred SNP multiplex genotyping
platform. The platform performed the least level of multiplexing level compared
with SNPlex and OpenArray, however al steps of the protocol were highly
automatable, and relatively ssimple to perform. One of the few problems with the
IPLEX procedure was the use of a dimple plate for transferring Clean Resin into the
diluted extend products. There was a chance that |ess than 6mg of Clean resin was
dispensed into each well of the dimple plate, as the method used is not particularly
accurate. There was also arisk that the sample and dimple plates did not completely
align when the resin was transferred to the sample plate, so small amounts of resin

may not have entered the wells of the sample plate.

TheiPLEX genotype analysis software, TyperAnalyzer, was very user-friendly and
relatively easy to use. It was possible to find an approximate call rate for each SNP

prior to data output, and colour coding of the “traffic light” plot indicates the overall
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performance of each sample. Although auto-calling function of the software was
fairly accurate, user (manual) calls could also be made. The software gave a
“Status’ for each genotype, either " conservative’, "moderate”, “aggressive”’, “low
probability”, “bad spectrum”, “user” or “No-aleles’. User-cals could be made for

clear and distinct genotype clusters, like that shown in Figure 5.3.

Perfect clustering Possible user cals

Figure 5.3: Examples of iPLEX clustering

Green triangle — homozygotes of high mass allele; yellow squares — heterozygote; blue triangle —
homozygote of low mass allele; red dots— uncalled genotypes; (a) auto-call did not call the sample
because the spectra was noisy, however, it was clear that the genotype was homozygous for the high
mass allele; (b) samples were not auto-called because the allele peak heights were not equal, but the
peaks were high enough to call them heterozygous.

The spectrum of each reaction could be viewed to determine the reason behind the
auto-caller not calling some samples, and whether the genotype could be manually
caled. Examples of spectraof genotypes giving conservative, aggressive and user
calls statuses are shown in Figure 5.4. Genotypes with conservative or moderate call
status were considered accurate, and those with bad spectra or no-alleles were
considered as failed assays. However the software automatically assigned genotypes

for those conservatively, moderately or aggressively called.
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Aggressive calling
1510487888

Conservative calling
510487888

User calling
1510842514

6600
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Figure 5.4: Examples of iPLEX genotype call statuses

Blue arrow — allele peaks; red arrow — unextended primer peak (UEP); the allele peak of the user
calling cluster was not auto-call because it was low and the UEP was very high — suggesting a high
proportion of the extend primers had not been incorporated in the reaction.

IPLEX was the only multiplexing platform on which some non-template negative
test controls (NTCs) failled. Failed NTCswere found in four assays with the
genomic DNA and GenomePlex, PEP and REPLI-g. Most of the failed NTCswere
with rs11551174, which had a high call rate, and al the NTCs were homozygous for
the G allele. Thefailed NTCs may have been caused by dimer pairs forming in the
IPLEX reaction, which were the same mass as the GG genotype of rs11551174.
Failed NTCs appears to be an artefact of the platform, and are not necessarily an
indication of DNA contamination, due to concordant duplicates. However failed

NTCsareastill amajor concern.

5.4: Concordance of WGA products with genomic DNA on Tagman

The WGA-amplified DNA and their corresponding genomic DNA were genotyped

with four TagMan assays in order to compare the clustering, call rates and
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concordance. The average call rate for the genomic DNA was 97%. Samples
amplified with PEP had the highest call rates, averaging 100% for the 4 TagMan
SNPs genotyped. GenomePlex also had excellent call rates, which averaged 98%.
The call rates of GenomiPhi were not as good as GenomePlex, but they were all
greater than 90% (averaging 93%). Although REPLI-g amplification produced the
greatest yield of amplified DNA, it had the poorest call rate on the Tagman

genotyping platform.

The highest call rate for the REPLI-g-amplified DNA genotyped on TagMan was
87%, and the average call rate for the assays combined was 82%, which is below the
level accepted by the Ovarian Cancer Association Consortium (OCAC). Refer to
Appendix IX-A for the individua call rates and concordance of the WGA samples
compared with non-amplified genomic DNA genotyped on the TagMan platform.
REPLI-g amplified DNA aso produced the worst clusters, as shown in Figure 5.5,

which explains the poor call rates.

No discordances were found between the genotypes of genomic DNA and
GenomePlex, GenomiPhi and PEP-amplified DNA on TagMan. It should be taken
into consideration that only a small number of assays were tested. However, the
SNPs genotyped on TagMan had high minor allele frequencies (MAFsS). A total of
four discordances between the genotype of genomic DNA samples and their
corresponding REPL I-g-amplified DNA were found on TagMan (for rs602652,
rs3217869 and rs10487888). However, the concordance levels were >98% for two
of the polymorphisms, therefore the genotyping results for these (rs602652 and

rs3217869) were acceptable under quality control (QC). The genomic DNA was
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homozygous for the rare allele of rs602652; however, the corresponding REPLI-g
amplified DNA was homozygous for the common allele of the SNP. This
discordance, is known as a“miscall” and cannot be explained by unequal

amplification of the alleles.

Genomic DNA REPL I-g-amplified DNA
Allelic Discrimination Plot Allelic Discrimination Plot
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Figure 5.5: Clustering of genomic and corresponding REPL I-g-amplified samples

with rs602652

Clusters: blue — common homozygous; green — heterozygous; red — rare homozygous; black x — failed
reactions; black square — non-template control.

Miscall discordances consist of the genotype of the genomic DNA being
homozygous for an alele of a SNP, and the corresponding WGA DNA being
homozygous for the other allele, or heterozygous for the same SNP as demonstrated
in Figure 5.6. The other type of discordance is known as “allele-drop”, which

involves the loss of an alele in the WGA DNA (when the genomic DNA is

253



Chapter 5: WGA & SNP multiplexing

heterozygous), suggesting unequal amplification of an allele at a heterozygous locus

(see Figure 5.6). Thistype of discordance was found with rs10487888.

Allele dropout at C/T locus Miscall at A/G locus
gDNA genotype CT AA
WGA-DNA cC TT AG GG
genotype

Figure 5.6: Types of discordances

The clustering of REPLI-g amplified DNA suggested that there was unequal
amplification of the aleles. Ninety-five other samples were amplified with REPLI-
g, and sequenced in order to investigate unequal amplification of the alleles further.
BRCAL sequencing data was aready available for the matching genomic DNA of
these samples. Therefore, the sequences of the genomic and REPLI-g amplified
DNAsfor BRCAL regions 316705 in exon 11, and 316700 in exon 13 of the Variant

SegR kit, which contained SNPs rs16941 and rs1060915, respectively.
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Sample 1 Sample 2 Sample 3
A ‘/\/\‘AZ\/\‘D[\ Genomic DNA
Fragment 316705 JJ&M A XA AV D) Y
rs16941 l l 1

{\ (\ H A REPLI-g DNA
YV \ '\ 18\ N \_/@ N

| ' I| |"|I
\ 1 I
Fragment 316700 \ o Genomic DNA
(rs1060915) JU A A (1A
WRAARA AR A WARAT AN
o i L
M| || ( & o I REPLI-g DNA
\ | I{ f | ,-‘.II N “\ \‘ f\ /l J | I N
Equal amplification Unequal amplification Unegual amplification
of alleles of alleles of alleles

Figure 5.7: Unegual amplification of REPLI-g amplified DNA
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Figure 5.7 shows electropherograms of gDNA and corresponding sequences for
REPLI-g amplified DNA with equal and unequal amplification of alleles. The green,
blue, black and red peaks of the electropherograms correspond to bases A, C, G and
T, respectively. Overlapping peaks are heterozygous genotypes. The SNPsarein
LD (r*=1) and have aminor allele frequency of 0.35. There was 97% concordance
between the genotypes of genomic and REPLI-g DNA for the SNPs. There were 44
heterozygous individuals for these SNPs and 3 of them (6.8%) showed unequal

amplification of the linked alleles of the polymorphisms.

5.5: The performance of genomic and amplified DNA on SNP

multiplex genotyping platforms

The next aim of the study was to investigate the performance of the whole genome
amplified products on SNP multiplex genotyping platforms. In order to execute this
aim, the WGA DNA and their matching genomic DNA were genotyped on iPLEX,
SNPIex and OpenArray. The resultant call rates and concordances were eval uated.

Assays which failed were excluded from all, but the SNP pass rate cal culation.

5.5.1:Call rates

The 95 non-amplified genomic DNA samples and their corresponding GenomePlex,
GenomiPhi, PEP and REPLI-g-amplified DNA were genotyped on the iPLEX
genotyping platform with a 27-plex panel. The performances of the genomic and
WGA DNA on the platform were assessed by calculating the SNP pass rate (the
number of SNPs from the panel which produced callable genotype clusters), and the

per SNP assay call rates (the number of samples successfully assigned a genotype).
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From the 27-plex panel, three assays (rs6944385, rs10842514 and rs10252135) with
insufficient amounts of extend primers, consistently failed for all the WGA products
and the genomic DNA. The auto-calls from the iPLEX TyperAnayzer software
were evaluated. The call rates per assay/SNP are shown in Appendix 1X-B. Refer to

Table 5.4 for the summary of the call rates from iPLEX genotyping.

Overdll, the GenomePlex, GenomiPhi and RepliG genotypes had call rates >95% for
more assays (23 tSNPs each) than the genomic DNA (17 tSNPs). PEP-amplified
DNA had the poorest call rates with only 10 assays with call rates greater than 90%
and an average of call rate of 89%, see Table 5.4. The average call rates for the

genomic and GenomePlex, GenomiPhi and RepliG-amplified samples were >95%.

Table5.4: iPLEX call rates by DNA amplification method

Call rate (%) Genomic GenomePlex® GenomiPhi PEP REPLI-g
<80 1 0 0 9 0
80-89 1 1 1 5 1
90-94 5 0 0 2 0
>95 17 23 23 8 23
Mean 97% 99% 99% 81%* 99%

The 3 assays which failed for all amplification methods and gDNA were not included in the analysis;. 8§ n=90,
there were 95 samples for all other methods.

5.5.2:Concordancerates from iPL EX genotyping

The fidelity of the amplification methods were assessed with the iPLEX platform by

comparing the genotypes of genomic DNA with the matching WGA DNA.

GenomiPhi results had the lowest level of discordance. There were only 2

discordances in the 1,872 genotypes called in both the GenomiPhi-amplified DNA

and their corresponding genomic DNA. This averaged to a concordance rate of
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99.9%. The greatest level of discordance was found between PEP-amplified DNA

and their corresponding genomic DNA (1.62%).

Table5.5: Overall discordance per WGA method on iPLEX platform

GenomePlex GenomiPhi PEP REPLI-g
Total genotypes 1872 1998 1423 1972
Total discordant 5 2 23 20
No. discord SNPs 4 2 7 13
Discordance (%) 0.3 0.1 1.6 1

Asshown in Table 5.5, when the overall discordance per WGA method is
considered, none of the methods resulted in discordance greater than or equal to 2%.
Therefore al the WGA methods would have passed the OCAC quality control

criteriafor the concordance between duplicates.

When the discordances per assay were considered, only the genotypes of GenomiPhi
DNA were acceptable in terms of discordance rates (<2%) for the 24 SNPs. The
discordance rates of the SNPs genotyped on iPLEX are shown in Appendix 1X-C.
Of the 19 SNPs successfully genotyped with PEP-amplified DNA, 4 assays were
discordant for > 2% of the samples. The highest discordance rate was 19% for
rs3771886 for the PEP DNA, however the call rate was very poor (32%). The
second highest level of discordance (13%) for the PEP samples was for the for the
rs10487888 SNP, which had acall rate of 85% (see Appendix 1X-C). Discordances
were not restricted to SNPs with poor call rates, refer to Appendices IX-B and I1X-C.
The call rates of the genomic and PEP DNAs for rs1801200 was 98%, however, 2%
of the genotypes were discordant. Furthermore, 8 of the 13 SNPs with discordances

were REPLI-g DNA with cal rates >95%. The greatest number of SNPs with
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discordances was found with the REPLI-g-amplified DNA (13 out of 22 SNPs
[~60%]). Of these, 7 SNPs were discordant for >2% of genotypes (see Appendix
IX-C). Moreover, only one assay (rs17623382) had a call rate <90% (REPLI-g vs
genomic DNA). Discordances were found between genomic DNA GenomePlex for
four of the SNPs. However, only one (rs11551174) was discordant for >2% of the
genotypes (see Appendix 1X-C). Of the 4 assays genotyped with GenomeP| ex-
amplified DNA, there was one, with call rate >90%, with >2% discordance.
GenomiPhi-amplified DNA were the only one which did not have discordances >2%

for any of the assays; see Appendix IX-C.

All of the discordances found with GenomePlex DNA were allele dropouts except
one of the rs11551174 discordances, where the genomic DNA was homozygous for
the“G” alele and the amplified sample was heterozygous for the SNP. The PEP
DNA failed for thisassay. The other WGA DNA genotypes (GenomiPhi and
REPLI-g) were also heterozygous for the SNP, which suggests that the genomic
DNA wasincorrect. The genomic DNA was discordant for all WGA DNA for
another SNP, rs17623382, which also indicates that the genomic DNA was incorrect.
When the genotypes of these two SNPs for the particular sample are excluded, there
are no longer discordances with GenomiPhi DNA on the iPLEX platform. The vast
majority of the discordances with PEP and REPLI-g DNA were allele dropouts,

suggesting unequal amplification of the alleles (refer to Table5.6).

259



Chapter 5: WGA & SNP multiplexing

Table5.6: Types of discordances found with iPLEX (by WGA method)

SNP

GenomePlex
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Dropout — Genotype of genomic DNA is heterozygous. Miscall — genotype of genomic DNA is homozygote for an alele. * Genomic DNA appeared to be incorrect; Total
discordance in parenthesis are the totals when the incorrect genomic results are excluded.
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5.5.3: Assays with discordancesin mor e than one amplification method

At least one DNA sample amplified with GenomePlex and REPLI-g was also
discordant for the assays with discordances in the GenomiPhi-amplified DNA.
There was also at |east one discordant REPL I-g-amplified DNA sample with each

assay that had a discordant genotype for the GenomePlex-amplified DNA.

The discordances found with GenomePLEX-amplified samples on the iPLEX
genotyping platform occurred in different samples — each sample was only
discordant for 1 SNP. rs11551174 was the only SNP with discordance in more than
1 sample. No sample was discordant in more than 1 WGA method. However, three
and four samples amplified with PEP and REPL I-g, respectively, were discordant for
2 or more assays. This suggests that there may have been either a problem with the
amplification of these samples with the WGA method, or with the genotyping of the

individual samples.

5.5.4:The performance of gDNA and WGA-DNA on SNPlex

The automatically assigned genotypes of the genomic and WGA-DNA from the
SNPlex platform were analysed with the GeneM apper software. No assays were
successfully genotyped with the PEP-amplified DNA on the platform. However, it
isworth noting that the GeneM apper software automatically fails samples which fail
for >80 of the SNPs, and aso if the per assay call rate is below 80%. Therefore, it
was not possible to find the exact call rates of the assays which failed the internal
quality control criteria. The REPLI-g DNA had the highest SNP pass rate (73%) and
aside from PEP DNA samples, GenomiPhi had the lowest SNP pass rate; see Table

5.7. Twenty-nine SNPs were successfully genotyped with genomic DNA, and there
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was an average genotype call rate of 97% for these SNPs. In comparison, the
GenomiPhi DNA, which performed badly on SNPlex, had the lowest average call
rate of 85%. The SNP pass and call rates are summarised in Table 5.7; the
individual SNP call rates for the genomic and WGA DNA from the SNPlex

genotyping are tabulated in Appendix 1X-D.

All but 1 of the SNPs which passed the GeneMapper internal QC had SNP genotype
call rates >95% for the genomic DNA. GenomePlex was the only amplification
method with SNPs with call rates >95 on SNPlex. However, this comprised only 2

out of the 13 SNPs which passed genotyping on SNPlex (see Table 5.7).

Table5.7: SNPlex assay pass rates (by WGA method)

| Genomic ‘ Genomeplex | GenomiPhi ‘ PEP ‘ REPLI-g
SNP passrates

DNA conc (ng/iL) 50 100 100 100 100
No. SNPs passed 29 13 9 0 35

% SNPs passed 60.4 271 18.8 0.0 729

No. of calls 2647 1147 722 0 3010

Call rates*

<80% 19 39 35 48 13
80-89% 0 0 9 0 3
90-94% 1 11 0 0 32
>95% 28 2 0 0 0

M ean 97% 94% 85% Fail 91%

gDNA — genomic DNA; conc — concentration; the call rates for all assays genotyped with PEP amplified DNA
were less than 80%; * based on SNPs with >80% call rate (pass).

5.5.5:Concor dance between gDNA and WGA-DNA on SNPIlex

When the concordance between genomic DNA and the WGA-DNA genotyped on
SNPIex was evaluated, there was evidence of discordances between the genomic

DNA and the corresponding amplified DNA for al the WGA methods. Overall,
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DNA amplified with GenomePlex appeared to have the greatest proportion of
discordant genotypes, when the autocall genotypes from the SNPlex platform were
analysed. There were 217 discordance samples from those with genotypes for both
genomic DNA and the amplified DNA out of 699 genotypes. This accounted for
31% of the genotypes. This contrasted sharply with the discordances found with the

GenomiPhi and REPLI-g-amplified DNA 0.7% and 3.6%, respectively.

Upon inspection of the genotype clusters of the assays for the genomic DNA and
WGA-DNA, it became apparent that some assays which were deemed as good
quality, were indeed failed assays. rs751340, rs2286216, rs927221 and rs1713423
failed to produce callable clusters for GenomePlex-amplified DNA. The clusters of
rs751340, rs2286216 and rs1713423 for all the samples are shown in Figure 5.8.
However, the GeneMapper software assigned genotypes to the samples, resulting in
approximately athird of GenomePlex-amplified DNA samples (61%) being
discordant for these variants alone (see Appendix IX-E). Figure 5.8 shows some of

these clusters with poor quality and miscalled clustering.

When the failed assays were excluded, the overall concordance rates were 98%, 99%
and 96% for GenomePlex, GenomiPhi and REPLI-g, respectively. See Appendix

I X-E for the discordance rates for each SNP. Of the assays which passed for both
gDNA and WGA-DNA, >98% concordance was observed for 2 assays out of 8
genotyped in both genomic and GenomePlex, 8 of 9 assays with GenomiPhi, and 3

of the 25 assays with REPLI-g-amplified DNA (see Appendix IX-E).

263



Chapter 5: WGA & SNP multiplexing

All five discordances of the GenomiPhi amplified DNA were allele dropouts
(heterozygous for genomic DNA, homozygous for the WGA-DNA). Of the 7
discordances found between the GenomePlex-amplified DNA and genomic DNA,
only 2 were allele dropouts (see Appendix 1X-E), and the 4 of the remaining
discordances were miscalls of the same SNP (rs1419755). Refer to Appendix IX-F
for the types of discordances for the successfully genotyped SNPs. Only 25 (33%)
of the REPLI-g discordances were alele dropouts (see Appendix 1X-F), the
remaining discordances were miscalls. However, some of these may be attributable

to inadequate genotype calling of the GeneM apper software.

A sample amplified with GenomePlex was discordant for 2 assays on the SNPlex
platform. Although, there were 76 discordances with REPLI1-g DNA on SNPlex,
these occurred with 10 samples. The discordances did not correlate with
amplification yield. Of the 10 REPLI-g-amplified samples with discordances, only 2
samples were discordance for asingle assay. The other 8 REPLI-g-amplified
samples were discordant for at least 3 assays each. Thus, these 8 samples were
discordant in 74 instances. There were 4 instances when the same discordances
were found with GenomiPhi and REPLI-g DNA and on each occasion, the
discordance was an allele dropout. Thereisapossibility that the same alleles were
preferentially amplified with both GenomiPhi and REPL1-g methods at the 4 |oci,
however, due to the poor quality genotypes from the SNPlex platform, it is more

likely that either the genomic or WGA genotypes were incorrect.
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Figure 5.8: Discrepant auto-calling

of SNPlex platform

(a-d) Clusterstop left to right: GenomiPhi,
PEP, and REPLI-g; bottom L to R:
GenomePlex and genomic DNA.

(a) rs751340

(b) rs2286216

(c) rs1861606

(d) rs1713423

Clusters: blue — homozygous for dlele 1;
green — heterozygous; red — homozygous
for allele 2; black square — non-template
test control; black “x” — failed genotyping.
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5.5.6: The performance of gPDNA and WGA-DNA on OpenArray

The samples amplified with GenomePlex, GenomiPhi, PEP and REPLI-g, and their
corresponding genomic DNA were genotyped with a 32-assay panel on the Open
array multiplex genotyping platform. The samples wereinitially prepared manually.
The genotyping was performed with Applied Biosystems' staff. The technical
representative for the platform recommended manually calling the genotypes on the

TagMan OpenArray™ SNP Genotyping Analysis Software.

Ason SNPlex, the PEP-amplified DNA failed to produce callable clusters on the
OpenArray platform. Refer to Appendix 1X-G for the call rates for each assay for
the genomic, and GenomePlex, GenomiPhi and REPLI-g. There were callable
clustersfor all the assays with the genomic DNA, however, 10, 4 and 3 SNPsfailed
for GenomePlex, GenomiPhi and REPLI-g amplified DNA, respectively. Asshown
in Table 5.8, al but one of the SNPs had call rates >90% for the genomic DNA, with
an average call rate of 97%. However, none of the SNPs genotyped with amplified

DNA resulted in average call rates >90% (see Table 5.8).

Table5.8: OpenArray call rates*

Call rate (%) Genomic GenomePlex GenomiPhi REPLI-g
<80 0 10 5 10
80-89 1 14 13 22
90-94 2 7 14 0
> 95 29 1 0 0
Average 97% 88% 89% 82%

N=93 *based on manually called SNPs)

When the overall concordance rates between genomic DNA, and their corresponding

whole genome amplified DNA were assessed, again, samples amplified with REPLI-
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g had the lowest concordance (92.7%). The overall concordance for GenomePlex
and GenomiPhi was 97.1% for 1,693 and 2,270 genotypes, respectively. Therefore,
none of the overall concordance rates for the amplification methods met the OCAC

criteria of >98%; (see Appendix 1X-H for the discordance rate for each assay).

Only 5 SNPs out of the 21 successfully genotyped OpenArray SNPs had
concordance rates >98 for the GeomePlex amplified DNA. Again, DNA amplified
with GenomiPhi were concordance for >98% of genotypes, for the highest
proportion of SNPs (12/29 variants). Aswith iPLEX and SNPlex, REPLI-g
amplified DNA resulted in the highest proportion of SNPs with discordance rates
>2%. Of the 29 polymorphisms successfully genotyped with REPLI-g DNA, only 2

assays had acceptable concordance rates (see Appendix 1X-H).

As observed with iPLEX and SNPIlex, there were both allele dropouts and miscall
discordances between the genomic DNA and the matching amplified DNA on the
OpenArray platform; refer to Appendix 1X-1 for the number of each type of
discordance per SNP. However, for all of the WGA methods, the majority of
discordances were miscalls, which suggests there was a serious problem with using
DNA amplified with PEP, GenomePlex, GenomiPhi or REPLI-g WGA on this
platform. The total numbers of allele dropouts and miscalls for the WGA products

which were successfully genotyped on OpenArray are shown below:

GenomePlex GenomiPhi REPLI-g
Dropout Miscall Dropout Miscall Dropout Miscall
12 38 15 51 72 85

There were several occasions (18) when the genomic DNA was homozygous for an

allele, and the corresponding genotypes of the WGA DNA samples heterozygous for
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all WGA methods. This occurred with 15 different assays, and 9 different samples,

and suggests that some, if not al, of the genomic genotypes may be incorrect.

5.5.7: Reproducibility of the OpenArray genotyping data

Twelve duplicates of the WGA DNA and their corresponding genomic DNA were
genotyped on OpenArray and compared with each other in order to ascertain
reproducibility of genotyping data from the OpenArray platform. No discordances
were found between the GenomePlex-amplified duplicates; but this method had the
lowest SNP pass rate (59%). The concordance rates between the duplicates (by
WGA method) are tabulated in Appendix 1X-J. When all genotypes were
considered, acceptable levels of discordance (<2%) were found with the genomic,

GenomePlex and GenomiPhi DNA; see Table 5.9.

Table 5.9: Reproducihility of genotypes from OpenArray platform

Genomic GenomePlex GenomiPhi REPLI-g
No. SNPs 29 19 27 26
No. genotypes 316 206 299 253
Average call rate 90.8% 90.4% 95.8% 81.1%
Discordance 5 (1.6%) 0 (0%) 2 (0.7%) 20 (7.9%)

The discordances in the duplicated genomic DNA were with 5 different SNPs. Due
to the small numbers of duplicates assessed, each discordant pair will reduce the
concordance rate by at least 8%. Again, REPLI-g had the greatest amount of
discordances with 20 discordances out of 253 genotypes (8%, see Table 5.9). These
REPLI-g discordances occurred in 14 SNPs, therefore the duplicates were

concordant for only 12 SNPs.
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5.5.8:Comparison of rs10487888 genotypes from iPL EX and OpenArray

One of the assays genotyped on OpenArray, rs10487888, was also genotyped with

IPLEX Gold with genomic DNA. Comparisons of the genotyping results of the

gDNA and WGA samples were made.

There was 100% concordance between genomic DNA genotyped on iPLEX Gold

and GenomePlex and GenomiPhi DNA genotyped on OpenArray. However, 2

discordances were found between the genomic DNA which was genotyped on both

platforms and 4 with REPLI-g (Table 5.10). All but 1 of the discordances found

were alele dropouts in the OpenArray genotypes.

Table 5.10: Comparison of iPLEX Gold with OpenArray genotypes for rs10487888

Genomic GenomePlex GenomiPhi REPLI-g
No. samples called 89 83 Q0 89
Call rate 95.7% 90.2% 97.8% 96.7%
No. discordant 2 0 0 4
Concordance 97.8% 100 100 95.5%

Applied Biosystems recommended manually calling the genotypes, however thisis

time consuming, particularly as the number of SNPs and samples increases.

Although auto-calling is able to correctly assign genotypes, based on clustering in

some instances, there were al'so gross miscallings in others (see Figure 5.9).

Of the auto-called genomic DNA assays, 10 (31%) of the SNPs with callable clusters

were incorrectly called. Two assays with poor clustering were auto-called when they

should not have been. The systematic miscalling also occurred with WGA samples.
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Correct auto-calling

e

rs28665122 rs12722489
R 3 s‘@
rs2066845 rs1050152

Figure 5.9: Examples of auto-calling with OpenArray Genotype Analysis software

Dots: Red — homozygous for VIC allele; green — heterozygous; blue — homozygous for FAM allele;
black — uncalled; black dot with circle — non-template test control.
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A meeting was conducted with Applied Biosytems staff to discuss the results from
the OpenArray platform. During the meeting it became apparent that, as with the
test runs on SNPlex, the OpenArray platform was still in its developmental stages.
Although the company claims to have genotyped a great number of SNPs (>100) on
the platform, only 20 samples were used in each experiment. The use of such small
numbers of samples makesit difficult to gauge the quality of clusters, and also to
assess reproducibility. Applied Biosystems suggested genotyping some of the SNPs

with the same genomic samples on the TagMan platform.

During the meeting it aso became clear that the technical staff did not have faith in
the SNPlex platform. The poor performance of the samples on the SNPlex and
OpenArray platforms with SNPs which had been validated and optimised by Applied
Biosystems, and the lack of explanation for the inadequate auto-calling, as well as
low genotyping pass rates, makes OpenArray (and SNPlex) unsuitable for high-

throughput genotyping with the research samples used.

5.6: Direct comparison of the multiplexing methods

Asshown in Table5.11, iPLEX genotypes produced the best average call rates and
the fewest discordances of the SNP multiplex genotyping platforms. Aside from the
genotypes from iPLEX, the REPLI-g amplified DNA aways produced the most
discordances, possibly due to over-amplification of the DNA, see Table 5.12. The
OpenArray genotyping system was the worst performing platform in terms of
genotyping call rate and discordances. On OpenArray, only GenomePlex DNA had
an average call rate >90. None of the WGA methods had average concordances

>98%. Moreover, most of the miscall discordances were identified on OpenArray,
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and SNPlex platforms (see Table 5.12). When the criteria of 90% call rate and <2%
discordance are taken into consideration, only 1 SNP, each for the GenomePl ex-
amplified DNA would fulfil both call rate and discordance on the SNPIex and
OpenArray platforms, despite the relatively high numbers of SNPs genotyped (see
Table 5.13). However, the criteriawere fulfilled for 20 and 21 SNPs for

GenomePlex and GenomiPhi-amplified DNA, respectively.

Table5.11: Average call rate and discordances for each method

gDNA GenomePlex GenomiPhi PEP REPLI-g
(n=95) (n=90) (n=95) (n=95) (n=95)
Call . Call . Call . Call .
Call rate rate Dis rate Dis rate Dis rate Dis
Tagman o7 o7 0 %4 0 o7 0 82 1
(n=5)
iPLEX
(=22) 97 99 0 99 0 81 2 99 1
SNPlex . .
(n=29) 96 94 2 84 1 Fail Fail a0 4
Open
Array 95 91 3 87 3 Fail Fail 80 7
(n=32)

Dis— discordance; call rates and discordances (%); Bold pass call <90% and discordance >2%.

Table 5.12: Types of discordances identified with each WGA method and platform

GenomePlex GenomiPhi PEP REPLI-g
(n=90) (n=95) (n=95) (n=95)
SNN?:;S Drop Miss- Drop Miss- Drop Miss- Drop | Miss-
out cal out cal out cal out cal
passed
TagMan 5 0 0 0 0 0 0 1 3
IPLEX 24 4 1 1 1 19 4 14 4
SNPlex 29 2 5 5 0 Fail Fail 25 51
Open 32 12 38 15 51 Fail Fail 72 85
Array

Number of assays passed for genomic DNA samples
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Table 5.13: Number of SNPs with call rates >90% and discordances <2% for each

method

gDNA GenomePlex GenomiPhi PEP REPLI-g

(n=95)* (n=90) (n=95) (n=95) (n=95)
Tagman
(n=5) 5 5 5 5 0
iplex
(=22) 21 20 21 9 14
SNPlex :
(n=29) 29 1 0 Fail 0
Open Array .
(n=32) 22 1 0 Fail 0
* call ratesonly

5.7: Genotyping on iPLEX gold system

TheiPLEX Gold platform, which is an upgraded version of iPLEX, is highly
automated and accurately advertises high through-put genotyping. The only major
difference between iPLEX and iPLEX Gold isthe number of SNPs which can be
genotyped in asingle reaction, up to 29 and up to 40, respectively. This upgrade was
achieved by increasing the mass range in which aleles/SNPs can be detected by the
mass spectrometer. The work flow isthe same as that of iPLEX - straightforward

and simple to follow.

The automated genotype calling of iPLEX and iPLEX Gold was correct for the
majority of genotypes, however an error was found with SNP rs3783197 (see Figure
5.10). The TyperAnalyzer software had obviously called the genotypes based on the
peaks of the mass spectra, however, the plot clearly shows that thereisan increase in
the high mass molecules, resulting in a shift of the blue cluster (common
homozygous). A similar shift was observed for rs6788750, however the shift was

not as pronounced as it was for rs3783197.
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rs6788750

Figure 5.10: Shiftin clusters on iPLEX clusters

The concordance between genomic and WGA amplified DNA on the iPLEX
platform, was overall, acceptable for all WGA methods. Comparison of genotypes
of the 95 samples from iPLEX and TagMan were also concordant for rs17623382
and rs3771886. Acceptable concordance and call rates were found for MALOVA
and SEARCH DNA with the iPLEX method with the variants from the candidate

oncogenes.

However, there were instances where the NTCsfailed QC. These genotypes may
have been caused by primer dimersin the reactions, or as aresult of poor desalting
during the cleaning step. Thisisof great concern because it suggests that a genotype
could be attained for alow concentration DNA sample, which would, otherwise,
have failed. There was no correlation between failed NTCs and the assigned
genotypes. The failed NTCs occurred with some, not all SNPs, which suggests the

locus of the SNP may aso affect whether an NTC fails.
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There were also instances on both iPLEX and iPLEX Gold, when common SNPs,
with minor allele frequencies >0.05, appeared to be monomorphic. OniPLEX Gold,
the rs2271695, which has aMAF=5.8% in Caucasian population, only had one
cluster. Thersl7695623 polymorphism, MAF=0.125, also appeared to be
monomorphic, according to the platform. A TagMan assay of this SNP produced 3
clusters. A possible explanation for this may be that there was insufficient
differences between the masses of the extend primers for the alleles of the

polymorphism. Poor de-salting may also explain the lack of mass separation.

Despite the common SNPs, which are classed as monomorphic on the iPLEX
platform, and the failed NTCs, acceptable call rates and concordances were found
with the vast mgjority of SNPs. The quality of the genotyping with iPLEX Gold was
not as good asiPLEX. Theintensity of the allele peaks were not as high as those
from the iPLEX reactions, and there were worrying levels of discordances and poor
call rates were found with tSNPs from the MM CT-18 candidate genes with iPLEX

Gold. However, these may have been due to a sub-optimal run.

In spite of acceptable call rates, discordance rates greater than 2% were observed
between duplicate genomic DNA samples on theiPLEX Gold platform for two
tSNPs, rs523104 and rs7650365. TagMan assays of these SNPs were manufactured,
and used to genotype MALOVA, SERACH and UKOPS population series. When
the genotypes from iPLEX Gold and TagMan were compared, discordance rates of
6.1% (241/3,924 calls) for rs523104, and 5.8% (256/4,417 cals) for rs7650365 were
found. The genotypes from TagMan were reproducible, however, do to high costs,

the iPLEX experiments could not be repeated. It islikely that the high proportion of
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“aggressive caling” caused by poor cluster quality may have been responsible for
some of the discordances identified with the iPLEX Gold genotypes for the two

SNPs.

Genotyping datafor some of the SNPs genotyped on iPLEX Gold was also available
from the lllumina Infinium 610K array. The Infinium 610K array platform was used
to genotype the SNPs analysed for the ovarian cancer genome-wide association
studies (Song et al. 2009a) Comparisons were made between genotyping from
IPLEX Gold, TagMan and Infinium SNPs for the MM CT-18 candidate SNPs, where

possible.

Genotype data was available for rs523104 and rs7650365 was available from the
Infinium platform, aswell iPLEX Gold and TagMan. The genotypes were
compared. Of the samples genotyped on all three platforms, the discordance rates

are summarised below:

. Discordances
Comparison
rs523104 rs7650365
Infinium vsiPLEX Gold 58/1092 (5.3%) 88/1231 (7.1%)
Infinium vs TagMan 24/1275 (1.9%) 15/1262 (1.9%)
iPLEX Gold vs TagMan 64/1063 (6%0) 75/1169 (6%)

There were discordances between the genotypes from iPLEX, Infinium and TagMan.
However, the lowest discordance rates were between genotypes from Infinium and
TagMan for both rs523104 and rs7650365. Despite these discordances between
Infinium and TagMan, the rates were just under 2% for both SNPs. Although the
call rate for UKOPS samples with rs7650365 on iPLEX Gold was 94%, and there
were no discordances between the 47 successfully genotyped pairs of duplicate

genomic DNA, discordance rates of >2% were found when the genotypes of
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Infinium and iPLEX Gold, and Infinium and Tagman were compared, see Table

5.15.

The distributions of the genotypes are shown in Table 5.14 and Table 5.15, for
rs523104 and rs7650365, respectively. The discordances of rs523104 are
predominantly in UKOPS samples, and rs7650365 in SEARCH samples.
Interestingly, 22 (55%) of the discordances between genotypes from iPLEX Gold
and Infinium were common homozygotes according to the Infinium genotypes of
SEARCH samples, and heterozygous by iPLEX Gold. A similar distribution was
found between the rs523104 genotypes by iPLEX Gold and TagMan, with 59% of
the discordances being heterozygous for the later platform and common homozygous

for the Tagman platform; Table 5.14.

Disproportional distributions of the discordances were also found between genotypes
of rs7650365 from different genotyping platforms. 97% of the discordances
consisted of rare homozygotes from iPLEX and heterozygotes from the Infinium or

Tagman platforms.

Additional discordances were found when data from iPLEX Gold and Infinium, for
other variants were compared. The discordances ranged from 0 to 2.4%, when
SEARCH and UKOPS genotypes were combined, see Table 5.16. Appendix IX-K
shows the discordance rates for SEARCH and UKOPS, separately for the SNPs
listed in Table 5.16. It can be seenin Appendix IX-K that most of the discordances
were with UKOPS DNA samples. Furthermore, discordances (3% of 1334

genotypes) were aso found between TagMan and Infinium genotypes for rs2894111.
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Table 5.14: Distribution of discordances of rs523104 (Infinium vsiPLEX Gold vs

Tagman
Call SEARCH UKOPS
Infinium iPLEX No. Discord (%)* No. Discord (%)*

GG cG 22 (55%) 11 (27.5%)
GG CC 1 (2.5%) 2 (5%)
CG GG 1 (2.5%) 8 (20%)
cG CcC 15 (37.5%) 10 (25%)
CcC GG 0 (0%) 2 (5%)
CcC CG 1(2.5%) 7 (17.5%)

Total 40/638 (6.3%) 40/454 (8.8%)

Infinium TagMan

GG CG 1 (16.7%) 4 (22.2%)
GG CcC 0 (0%) 3 (16.7%)
CG GG 1 (16.7%) 3 (16.7%)
CG CC 3(50%) 4 (22.2%)
CcC GG 0 (0%) 3 (16.7%)
CcC CG 1 (16.7%) 1 (5.6%)

Total 6/813 (0.74%) 18/462 (3.9%)

iPLEX TagMan

GG CG 1(2.9%) 5 (16.7%)
GG CC 0 (0%) 1(3.3%)
CG GG 20 (58.8%) 7 (23.3%)
CG CC 0 (0%) 9 (30%)
CcC GG 1(2.9%) 1(3.3%)
CcC CG 12 (35.3%) 7 (23.3%)

Total 34/620 (5.5%) 30/443 (9.3%)

Discord: * % of discordances; iPLEX- iPLEX Gold
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Table 5.15: Distribution of discordances of rs7650365 (Infinium vsiPLEX Gold vs

Tagman
Call SEARCH UKOPS
Infinium iPLEX No. Discord (%)* No. Discord (%)*

AA AG 2 (2.8%) 2 (11.8%)
AA GG 0 (0%) 3 (17.7%)
AG AA 0 (0%) 6 (35.3%)
AG GG 69 (97.2%) 3 (22.2%)
GG AA 0 (0%) 2 (17.7%)
GG AG 0 (0%) 1 (5.9%)

Total 71/765 (9.23%) 17/466 (3.6%)

Infinium TagMan

AA AG 1(33.3%) 1(8.3%)
AA GG 0 (0%) 3 (25%)
AG AA 1(33.3%) 4 (33.3%)
AG GG 1(33.3%) 1(8.3%)
GG AA 0 (0%) 2 (16.7%)
GG AG 0 (0%) 1(8.3%)

Total 3/810 (0.37%) 12/452 (2.7%)

iPLEX TagMan

AA AG 0 (0%) 2 (33.3%)
AA GG 0 (0%) 0 (0%)
AG AA 2 (2.9%) 2 (33.3%)
AG GG 0 (0%) 0 (0%)
GG AA 0 (0%) 0 (0%)
GG AG 67 (97.1%) 2 (33.3%)

Total 69/742 (9.3%) 6/427 (1.4%)

Discord: *% of discordances; iPLEX- iPLEX Gold

The quality of theiPLEX Gold genotyping was investigated further by comparing
the genomic DNA genotypes of BRCA1 rs799917 from sequencing of 467 samples
and the corresponding iPLEX Gold results. Of the 442 samples successfully
genotyped with sequencing and iPLEX Gold, there were 3 discordances (0.68%).
The fact that some NTCs were automatically assigned genotypes with high
confidence on the iPLEX and iPLEX gold platforms was of particular concern

because samples which may have otherwise failed genotyping may appear to have
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been successfully genotyped. The randomness of the genotypes of the failed NTCs

also suggests that these artefacts of the platform may be locus or mass dependent.

Table 5.16: Discordances between iPLEX Gold and Infinium

SNP Total no. of _ No. of Discordance

genotypes discordances %
rs6788750 962 19 2.0
rs7650365 1263 16 1.3
rs2280201 1292 7 0.5
rs2394644 1302 8 0.6
rs3181175 834 4 0.5
rs3783194 1321 10 0.8
rs3923086 1291 23 1.8
rs793477 1285 21 1.6
rs12494994 829 1 0.1
rs9860614 1321 15 11
rs10999147 1322 6 0.5
rs3181328 1284 8 0.6
rs2282657 1321 15 1.1
rs7189819 1286 31 2.4
rs4541111 1274 20 1.6
rs4791171 828 1 0.1

A possible explanation of the discordances with the iPLEX Gold genotyping
platform could be due to inadequate desalting of the extend products (single base
extension products). No two allelesfor an iPLEX assay are within 15Daltons (Da)
of each other. Theinadequate desalting of samples can cause the formation of
sodium and potassium adducts, which are 22Da and 38Da, respectively. The
presence of adducts in the nano-dispensed single extension products may make
accurate heterozygote allele discrimination, particularly for A/C (24Da) and C/G
(40Da) SNPs, difficult. Adducts usualy have smaller peak areas than allele peaks.
However, it islikely that some of the peaks of the adducts were assigned genotypes

because of low peaks of the sample genotypes. Evaluation of the SEARCH
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genotyping plates showed that desalting of the single base extensions were

suboptimal.

The comparison of TagMan vsiPLEX Gold vs Infinium genotyping platforms
showed that there may be discordances in genotypes from different genotyping
platforms of the same samples and assays. These discordances were sometimes
observed even when the genotyping data passed quality control criteria. This
worrying issue should be taken into consideration when different genotyping
platforms are used for astudy. The OCAC minimise the problem by ensuring that
the same CEPH samples are genotyped for the same SNP(s) at all the genotyping

centres and the genotype results are compared with each other and the results from

HapMap.

5.8: Summary

Ninety-five DNA samples were amplified with GenomePlex, GenomiPhi, PEP and
REPLI-g. The resulting amplified products were genotyped on TagMan, and SNP
multiplex genotyping platforms (iPLEX, OpenArray and SNPlex). The DNA
amplification procedures were simple for al of the methods. Of the WGA methods,
REPLI-g produced the greatest amount of amplified DNA. TheiPLEX was the most
automatable and straight-forward SNP multiplex genotyping platform, compared
with OpenArray and SNPlex. TheiPLEX platform also produced the most
concordant results when comparisons were made between the genotypes of the

amplified DNA and their corresponding genomic DNA.
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Although there was ~1,800 fold increase of the amount of DNA with the REPLI-g
method, the products also resulted in the highest rates of discordances on iPLEX,
SNPlex and OpenArray multiplex SNP genotyping platforms, as well as on TagMan.
It is possible that unequal and over- amplification of the DNA was responsible for
some, if not al of these discordances. Despite excellent genotype call rates and
concordance on TagMan, PEP-amplified DNA performed badly on all of the
multiplex genotyping platforms tested. GenomePlex and GenomiPhi —amplified
DNA gave the best results, in terms of SNP pass rates, genotype call rates and
concordance with non-amplified DNA. Disproportionate amounts of miscall
discordances were found with OpenArray and SNPlex platforms. These
discordances cannot be explained by unequal amplification of the DNA aone, and
they suggest problems with the multiplexing platforms. GenomePlex and
GenomiPhi genotyped on iPLEX was the best combination of WGA method and

SNP multiplex platform identified with the evaluations.

282



Chapter 6: Discussion & conclusions

Chapter 6: Discussion and conclusions

Although ovarian cancer isrelatively rare, globaly, it is the seventh most common
cause of cancer death amongst women, with ~125,000 deaths a year worldwide.
This is because the disease is usually diagnosed in the advanced stages, when the
chances of survival are drastically reduced. Despite the poor survival rate, the
aetiology of ovarian cancer is still poorly understood and the known genetic causes
are responsible for approximately 10% of all cases. Several moderate predisposition
genes, and multiple low risk (low penetrance) genes may account for some of the
remaining cases which are not explained by the known susceptibility genes. The

work presented in this thesis aimed to investigate this hypothesis.

This thesis reports the results from investigations of candidate genes which may
affect ovarian cancer susceptibility with a case-control association study design; and
the influence of these candidate genes on survival of ovarian cancer patients with
multivariate Cox regression survival analysis. The performance of possible solutions
to theissues of limited amounts of DNA from study participants and the increasing
numbers of SNPs genotyped for association studies, respectively, were also

investigated.

The effect of oncogene common ger mline SNP variants and haplotypes on

ovarian cancer susceptibility

The activation of proto-oncogenes through somatic mutation is a common feature of

cancer. These mutations may result in un-regulated proliferation of cells, leading to
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a neoplastic phenotype (Rhim 1988; Croce 2008). The activation of different
oncogenes have been demonstrated to cause the devel opment of different types of
cancer. For example, mutationsin the MYC gene are linked to the development of

chondrosarcoma and osteosarcoma (Castresana et al. 1992; Ladanyi et al. 1993).

Oncogenes, such as BRAF, ERBB2, KRAS and PIK3CA, among others are crucia in
the development of malignancies, and have been shown to be mutated in ovarian
cancer (Shayesteh et al. 1999; Hellstrom et al. 2001; Gemignani et al. 2003; Sieben

et al. 2004).

The ateration of the oncogenes in ovarian cancer leads to the question of whether
germline common polymorphisms or combinations of aleles (haplotypes) of these
oncogenes may predispose some women to devel oping ovarian cancer and/or affect a
sufferer’s chances of survival. In order to attempt to answer this question, thirty-four
tagging SNPs (tSNPs) from BRAF, ERBB2, KRAS, NMI and PIK3CA were
genotyped in five different population-based case-control series. Logistic regression
was used to eval uate associations between the tSNPs and haplotypes of the candidate

oncogenes and the risk of developing ovarian cancer, or survival from the disease.

When all cases were combined, and ovarian cancer was treated as a single disease,
there was evidence of association between atSNP of NMI, rs11683487, and risk of
ovarian cancer. Therare aléele of the polymorphism, which hasaminor alele
frequency (MAF) of 0.46, was associated with areduced risk of the disease. Even
though the association between NMI rs11683487 and risk of ovarian cancer was not

validated with an additional 1,097 cases and 1,712 unaffected controls, the
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association was marginally significant when the datafrom stages 1 and 2 of
genotyping were combined to increase the statistical power of the study (P-
dominant=0.0419). The association remained when analysis was restricted to the serous
and mucinous histological subtypes of ovarian cancer. The rs11683487 variant tags
8 other SNPs with r2>0.8. One of these, rs1048135, is a non-synonymous coding
SNP. Therare, G, allele of rs1048135 codes for aleucine instead of serine. The

PMut (http://mmb2.pcb.ub.es:8080/PMut/ ) (Ferrer-Costa et al. 2005) and SIFT

(http://sift.jevi.org/ ) (Ng and Henikoff 2001) programmes classified the rare variant

of this SNP as having “pathological significance’, and “damaging”, respectively.

Another bioinformatics programme, PupaSuite (http://pupasuite.bioinfo.cipf.es/)

(Conde et al. 2006; Reumers et al. 2008), also suggested that the rare allele of
rs1048135 may disrupt the binding of exonic splicing enhancers. This disruption
may result in alternative splicing of the gene. PupaSuite also predicted that the
r<11683487 variant and another of the tagged polymorphisms, rs11730, may
influence the regulation of transcription and translation, and that rs11730 may affect

exon splicing.

The NMI gene, which was erroneously chosen as a candidate due to its interaction
with MYC, may be important in ovarian cancer development. NMI interacts with the
NMYC, MYC, MAX and FOS oncogenes and has been shown to form a complex with
MYC and BRCAL (Li, H. et al. 2002). Thiscomplex has been demonstrated to
inhibit the MY C-induced human telomerase reverse transcriptase gene (hnTERT)
promoter activity in breast cancer (Li, H. et al. 2002). The formation of this NMI-
MY C-BRCA1 complex suggests that NMI may be involved in breast and ovarian

cancers.
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Ovarian cancer isavery heterogeneous disease and it has been suggested that the
different histological subtypes arein fact different diseases of the ovary and should
be treated as such. Thereis evidence in support of this suggestion: certain genetic
alterations are found predominantly in particular histological subtypes of ovarian
cancer (Christie and Oehler 2006). Of note is the high proportion of KRAS
mutations in mucinous ovarian tumours (Cuatrecasas et al. 1997; Gemignani et al.
2003). Thereisalso acorrelation between germline mutations of BRCAL and
BRCAZ2 with the susceptibility of the serous histology of ovarian cancer (Lakhani et

al. 2004).

The numbers of ovarian cancer cases of the 4 major histological subtypes,
particularly that of endometrioid, mucinous and clear cell subtypes were small and
there was insufficient statistical power to accurately detect associations. However,
due to the compelling evidence for the heterogeneity of ovarian cancer, and the
associations of some genes with specific histological subtypes, it was worth
evaluating the effect of the candidate oncogenes on the risk of the 4 major
histological subtypes of ovarian cancer. Theidentification of potential associations
could be validated by consortia, such as the Ovarian Cancer Association Consortium

(OCAC).

Although there was no evidence of association between the polymorphisms of BRAF
and predisposition to ovarian cancer when all cases were considered, statistically
significant associations were detected when the analysis was restricted to the

mucinous histological subtype. Three tSNPs of BRAF (rs10487888, rs1267622 and
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rs1769623) were associated with susceptibility of the mucinous subtype (P-trend <
0.05). These tSNPs were intronic polymorphisms, which tagged other intronic
variants. To date, these associated SNPs and the SNPs they tag are not known (or
predicted) to be functional. When PupaSuite PupaSNP
(http://pupasuite.bioinfo.cipf.es/) was used to evaluate the predicted functions of
these SNPs, the sequences of a BRAF variant, rs9640168, which correlated with
rs10487888 (r*=0.934), suggested that it was located in putative triplex forming
sequences. Triple helices are long sequences containing only purines or only
pyrimidinesin agiven strand that have the potential to form additional hydrogen
bonds with functional groups of the major groove of aDNA double helix, resulting
in atriple helical structure. Triple helices may cause replication blocking,
subsequently leading to DNA recombination and mutation (Guntaka et al. 2003;

Patel et al. 2004). Many of the other polymorphisms are conserved in mice.

There was evidence of an association between a haplotype, h10010000, of BRAF and
reduced risk of clear cell ovarian cancer. Furthermore BRAF haplotypes were

globally associated with predisposition to ovarian cancer (P=0.005).

Associations were also identified between KRAS and predisposition to the mucinous
histological subtype of ovarian cancer. rs6487464 and rs10842514 of KRAS were
associated with susceptibility of the mucinous subtype (P-trend < 0.05). Although
the associations were found with alimited number of samples, they are of particular
interest because KRAS mutations are found in 34% of mucinous ovarian adenomas
and carcinomas (COSMIC, http://www.sanger.ac.uk/genetics/ CGP/cosmic/), and the

mutations have been shown to be early events in ovarian cancer devel opment.
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Haplotypes (h000010 and h00000) KRAS block 2 were associated with susceptibility
of mucinous ovarian cancer. These haplotypes comprised of the SNPs which were

associated with risk.

BRAF and KRAS are components of the mitogen-activated protein kinase (MAPK)
pathway. The MAPK pathway transmits signals for processes such as cell
proliferation and cell survival from the cytoplasm to the nucleus (Hingorani et al.
2003). The pathway is activated by growth stimulating signals (Pohl et al. 2005),
and mutations in BRAF or KRAS |ead to the continuous activation of the MAPK.
The activation of the MAPK pathway activates downstream cellular targets,
including both cellular and nuclear proteins (Pohl et al. 2005). It has been
demonstrated that the inhibition of the mitogen/extracellular signal-reguated kinase
(MEK) pathway, a downstream effector of the MAPK pathway in cell lines with
BRAF or KRAS mutations, results in the suppression of cell growth and promotion of
apoptosis (Hingorani et al. 2003). It is conceivable then, that afunctional germline
variant in either of these genes could influence a multitude of downstream targets

that may affect the biological and clinical characteristics of ovarian cancers.

Therare dlele of avariant of ERBB2, rs1801200, with MAF=0.22, was associ ated
with increased risk of endometrioid ovarian cancer. Another group has published an
associ ation between the rare allele of rs1801200 and an increased risk of
endometrioid ovarian cancer (Pinto et al. 2005). Thisindependent validation of the
result found with thiswork is of great importance and it would be of interest to
establish if the amalgamation of the data would increase the statistical significance of

the association. This polymorphism, aso known as 1655V, is a hon-synonymous
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coding, and therare alele, “G”, codes for valine, instead of isoleucine. The amino
acid change was predicted to be tolerated with a score of 0.75 by SIFT
(http://sift.jevi.org/www/SIFT_seq _submit2.html). rs1801200 is also conserved in
mice and is predicted to enhance exonic splicing. The coding variant islocated in
the region of the gene which isinvolved in the dimerisation and activation of the
ERBB2 receptor. Fleishman’'s group demonstrated that the rare allele of the variant
destabilises the active dimmer formation (Fleishman et al. 2002). The rs1801200
polymorphism has also been associated with the risk of breast cancer (Montgomery
et al. 2005; Rutter et al. 2003). However other studies have not been able to

replicate this result (Benusiglio et al. 2005).

Two haplotypes of ERBB2, h110 and h001, were associated with increased risk of
ovarian cancer. The fact that the haplotypes contain the opposite allele at each SNP
loci is surprising. There was nothing from HapM ap genotyping data to suggest that
these putative susceptibility haplotypes shared an untagged common variant,
however, it isfeasible that an unknown or rare polymorphism tags both haplotypes.
There was evidence suggesting that the global test of haplotype effect was also

significant for the ERBB2 gene (P-4i0na=0.034).

ERBB2 isinvolved in cell proliferation and cell differentiation (Wu, Y. et al. 2004),
and is over-expressed in approximately 40% of ovarian tumours (Hogdall et al.
2003). This suggests that the over-expression of ERBB2 |eads to tumour growth
advantage (Hellstrom et al. 2001). Although the association identified with the risk
of ovarian cancer and this gene was marginal, and corrections for multiple testing

would render the association insignificant, it islikely that the amplification of the
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geneis more important in predicting disease risk, rather than a SNP, which would
not indicate the amplification of the gene. Although no statistically significant
associ ations were found between ERBB2 and survival from ovarian cancer with this
project, over-expression of the oncogene has been correlated with poor survival of
MALOVA samplesin another study (Hogdall et al. 2003). An association has aso
been previously published between the rare alele of the polymorphism which was
associated with increased risk of endometrioid ovarian cancer, rs1801200, and poor
survival of cases (Pinto et al. 2005). However, this association was not replicated

with this study.

A borderline association was also found between the rare allele of PIK3CA
rs2865084 and decreased risk of endometrioid ovarian cancer. This SNP is upstream
of the gene, and is predicted to generate a new transcription factor binding site. A
new transcription binding site has the potential of affecting the transcription of the

gene.

The effect of “functional” common ger mline SNP variants and haplotypes on

ovarian cancer susceptibility

Although there has been some success in the identification of ovarian cancer
predisposition variants through the candidate pathway/candidate gene approach, it is
clear that other ways of identifying genes which affect ovarian cancer susceptibility
and survival are needed. To this effect, afunctiona approach (micro-cell mediated
chromosome transfer) was used to identify differentially expressed genes, which
may be involved in the development of ovarian neoplasm, from an in vitro model of

ovarian cancer suppression. Nine candidate genes with described functions were
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selected from differential expression data of the parental ovarian cancer cell lines
and their corresponding hybrid clones (which had incorporated normal human
chromosome 18). The associations between 63 tSNPs from nine candidate
differentially expressed “functiona” genes (AIFM2, AKTIP, AXIN2, CASP5,
FILIP1L, RBBP8, RGC32, RUVBL1 and STAG3) and susceptibility of invasive

epithelia ovarian cancer were evaluated.

An association was found between the rare alele of avariant of CASP5, rs518604,
and predisposition to ovarian cancer. This association became stronger when the
analysis was restricted to the serous histologica subtype. However, the results could
not be validated with additional samples because TagMan assays for this SNP and
those it tags, could not be successfully manufactured. Associations were also found
between the risk of ovarian cancer and haplotypes of CASP5. The associations with
the CASP5 haplotypes were supported by the individual SNP finding. The global
test for association of haplotype effect on ovarian cancer predisposition was highly
significant for CASP5 (8.43x10°). Thiswas the only association which reached the
level of significance suggested for case-control genetic association studies (P<107)
(Thomas et al. 2005). The involvement of CASP5 in apoptosis and inflammation
makes it a plausible ovarian cancer susceptibility gene, despite the small numbers of

samples analysed.

Therare alele of RUVBL1 rs13063604 tSNP correlated with an increased risk of al
histological subtypes of ovarian cancer. This association became stronger when
analysis was restricted to the serous subtype (P=0.002). Therare allele of another

RUVBL1 SNP, rs7650365, had the opposite effect on serous ovarian cancer
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(P=0.009). Up to additional 2,636 cases and 6,164 controls were genotyped with
assays of rs13063604 and rs7650365, for a second genotyping stage of the study, to
ascertain if the significant finding was reproducible. The associations were not
validated with the stage 2 samples alone, however when the data from the two stages
were combined, the association between rs13063604 and ovarian cancer remained.
This polymorphism tags 9 other variants with r>>0.8. Two of them, rs1057220 and
rs1057156, which are tagged with r’=1, are located in the 3' untranslated region of
the gene and they are predicted to be exonic splicing enhancers. Globally, RUVBL1

hapl otypes aso had a significant effect on the risk of ovarian cancer (P=0.0016).

RUVBL1 (also known as pontin), was down-regulated in the reverted hybrids of both
cancer cell lines, and thus up-regulated in the parental neoplastic ovarian cancer cell
lines. Although, to date, there are few publications reporting the over-expression of
RUVBL1 in malignancies, data from the Oncomine database
(http://www.oncomine.org) shows over-expression of the gene in breast, colon,
bladder, liver and other malignancies (Dehan et al. 2007; Lauscher et al. 2007,
Rousseau et al. 2007; Huber et al. 2008; Haurie et al. 2009). If the associations from
thisresearch are true, then they could be attributed to its interactions with other
genes which are implicated in cancer. RUVBL1 interacts with the transcriptional
activation domain of MY C and also -catenin (Bauer et al. 1998; Wood et al. 2000).
RUVBLL1 is necessary for Tip60 activity, which isinvolved in DNA damage repair
(Jhaet al. 2008). Venteicher and colleagues demonstrated that RUVBL 1 interacts
with the human telomerase reverse transcriptase (WTERT) and isinvolved in the
assembly and function of the telomerase complex; and the abrogation of RUVBL1

expression has been shown to induce premature senescence (Venteicher et al. 2008).
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Furthermore, RUVBL1 is a component of the NuA4 histone acetyltransferase
complex, which may activate the transcription of cell growth, DNA repair and

apoptosis genes (Jha et al. 2008).

Therare aleles of three FILIP1L polymorphisms, rs793446, rs17338680 and
rs12494994, were associated with increased risk of the endometrioid histological
subtype. However, no functions were identified for these SNPs or those they tag,

other than the conservation of many of the SNP sequencesin mice.

FILIPL1, whichislocated on chromosome 3g12.1, was up-regulated in the hybrids
of TOV112D, and thus down-regulated in the malignant parental cell line. The
FILIP1L gene has aso been reported to be down-regulated in ovarian cancer by
another group (Mok et al. 1994), which support the results from the gene expression
data of the MMCT-18 TOV 112D hybrid clones. The FILIP1L geneisaso
conserved in yeast, and although little is known about the gene, it has been shown to
be implicated in avariety of cellular functions (Hwang and Murray 1997). It has
been shown that although FILIP1L was present in normal ovarian surface epithelial
cells, it was predominantly absent from the cell linestested (Mok et al. 1994). The
geneis part of asubunit, Doclp/ApclO, which isinvolved in substrate recognition
by anaphase-promoting co-activator complexes (Passmore et al. 2003). Tandle's
group showed that FILIP1L may beinvolved in mediating some of the effects of the
pro-inflammatory cytokine endothelial monocyte activating polypeptide-11 (Tandle
et al. 2005). Thereis aso evidence suggesting that the FILIP1L protein is down-
regulated in human prostate cancer cell lines and it may be involved in the regulation

of senescence (Schwarze et al. 2002).
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In 2009, the results from the ovarian cancer genome wide association study (GWAS)
were published by the Ovarian Cancer Association Consortium. Virtualy all of the
UKOPS and SEARCH cases used in these projects were also analysed in the GWAS,
along the cases from 5 other UK-based ovarian cancer studies, totalling 1,890 cases
and 2,353 controls. 14 tSNPs genotyped in the oncogene study were also analysed

in the GWAS, however, none of them were associated with ovarian cancer risk at the

genome-wide significance level (P< 5x107).

Despite the lack of association of the candidate oncogenes at the genome-wide
significance level, some similarities were identified between the results of the
GWAS and candidate gene studies. Of these, NMI rs11683487, which was
nominally associated with ovarian cancer risk, had relatively similar odds ratio and
P-valuesin the 2 approaches (candidate gene result: HetOR = 0.80 (0.69-0.93)
HomOR= 0.87 (0.71-1.02), P= 0.0379; GWAS per rare allele: OR=0.86, P=0.027).
However, thisisindicative of no association for this variant when both experiments

are taken into consideration.

From the MM CT-18 study, no similarities were identified between the results of the
nominally significant associations from this project and those from the first stage
GWAS datawhen al histological subtypes were analysed. However, when the
analysis was restricted to the serous histological subtype, similarities were found
with CASP5 rs518604 (candidate gene result: HetOR= 1.36 (0.98-1.88), HOmOR=
1.45 (0.99-2.11), P=0.0313; GWAS per rare dllele: OR=1.12, P=0.047) and

rs523104 (candidate gene result: HetOR= 0.86 (0.65-1.16), HomOR= 0.80 (0.55-
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1.15), P=0.1294; GWAS per rare dlele OR=1.12, P=0.044), and FILIP1L
rs12494994 (candidate gene result: HetOR= 0.95 (0.78-1.17, HomOR = 0.52 (0.27-
0.99), P=0.097; GWAS per rare dlele OR=0.84, P=0.02). CASP5 rs518604 is
currently being investigated further with additional samples. Although FILIP1L
rs12494994 was not associated with the serous ovarian cancer susceptibility in the
candidate gene approach, the homozygous odds ratio did not cross 1. Incidentally,
therare allele of FILIP1L rs12494994 was associated with an increased risk of the

endometrioid histological subtype (P=0.0024) with the candidate gene data.

The ovarian cancer GWAS was a 3-staged experimental design which further
investigated the most statistically significant associations from the previous stage,
using samples from the UK, Australia, USA, Denmark, Poland, Germany and
Canada. Itislikely that the discrepanciesin the associations identified with the
candidate gene approach and GWAS could be due to the samples used; SEARCH
and UKOPS are the only studies common to both approaches. Although none of the
SNPs analysed in this project reached genome-wide significance, only alimited
number of the SNPs evaluated with the candidate gene approach were aso analysed
with the GWAS. However, the results from both the candidate gene and GWAS
suggest that there is strong no evidence for association between the tSNPs anal ysed
in this project and the risk of ovarian cancer. The 12 strongest associations from the
GWAS, with P<10®, were al located on chromosome 9p22.2 (Song et al. 2009).
Eight of these SNPswere in BCN2, a DNA-binding zinc finger protein, and the
remaining SNPs were within 45kb upstream of the gene. BCN2 would not have been
an obvious candidate for an ovarian cancer association study because there is very

little evidence to suggest its involvement in the development of the disease.
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However, this finding strongly suggests that the germline common variants of genes
which have been demonstrated to be important in the initiation and development of

cancer may not be useful in predicting an individual’ s disease risk.

rs3814113, the strongest associated SNP from the ovarian cancer GWAS, was 44kb
from BCN2, the nearest gene, with per rare allele OR of 0.79 (0.75-0.84),
P=2.47x10"". Theidentification of strongly associated SNPs in so-called gene-
deserts have also been observed in the GWAS for other diseases, which suggests
genes already implicated in the development of disease may not necessarily be the
best predictors of disease risk. However, it is possible that rare SNPs and/or copy
number variants may also be associated with disease risk. Ovarian cancer isa
complex heterogeneous disease which arises through various genetic and genetic
factors. Therefore interactions between genes and the environment should,

ultimately, be considered when evaluating awoman’s risk of the disease.

Global evaluation of associations with admixture maximum likelihood method

Numerous statistically significant associations have been identified between
candidate genes and ovarian cancer risk and survival over the past decade; however,
itisnot known if an excess of significant associations were identified compared to
the proportion which would be expected by chance (Goodman et al. 2001; Song et
al. 2006; Gayther et al. 2007; Harley et al. 2008; Kelemen et al. 2008; Ramus et al.
2008). The admixture maximum likelihood (AML) approach was used to evaluate
the overall evidence of excess of positive associations with SNP genotyping data for

340 SNPsin 94 candidate genes or chromosomal regions. The polymorphisms were
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genotyped in approximately 1,500 cases and 3,100 unaffected controls from three

popul ation-based ovarian cancer case-control series.

Twenty-two out of the 340 SNPs analysed with the AML test were significantly
associated (P-trend<0.05) with ovarian cancer risk. This number was reduced to 18
polymorphisms when the results were adjusted for population stratification. The 3
most significant SNPs had adjusted (for population stratification) P-values <0.003.
These SNPs were rs2107425 (adjusted P=0.0019) from chromosome 11p15.5,
rs9322336 (adjusted P=0.0021) from the oestrogen receptor (ESR1) gene and

rs3817198 (adjusted P=0.0026) from the lymphocyte-specific protein 1 (LSP1) gene.

The most strongly associated SNP was from the BCAC group of SNPswhichis
located on chromosome 11p15.5, in aregion which does not contain genes or open
reading frames. The 11p15.5 region, despite the lack of genes, loss of heterogeneity
of thislocus has been observed, and it is said to contain tumour suppressive
properties malignancies and is associates with breast, lung, bladder and stomach
cancers (Viel et al. 1992; Gudmundsson et al. 1995; Shaw and Knowles 1995; Baffa
et al. 1996; Bepler et al. 1998; Karnik et al. 1998; Xu et al. 2001). rs2107425 was
chosen as a candidate SNP due to its strong association with breast cancer
susceptibility. This association was identified from the breast cancer genome-wide
association study (Easton et al. 2007). This SNP tags another, rs2251375, with r’=1,
which islocated in aregion that is conserved in mice. ESR1 rs9322336, which isin
the second intron of the gene, is not known to tag any other common SNP. The
ESR1 gene encodes a ligand activated transcription factor, which is able to bind

hormones and DNA. The geneis associated with ovarian and breast cancers (Imura
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et al. 2006; Dunning et al. 2009). The third most significant SNP from the analysis,
rs3817198 of the LSP1 gene, was also identified from the breast cancer association
genome-wide association study and chosen because of its strong association with the

risk of breast cancer (Easton et al. 2007).

It islikely that the associations would no longer be statistically significant after
adjustments for multiple corrections. It may be more appropriate to assess the
experiment-wise significance of either subsets of polymorphisms investigated, or the
totality of all SNPsanalysed. The AML test was used to this effect on subsets of

SNPs based on their function, or their genotyping group.

There was no evidence for an overall association between common genetic variation
in the 94 candidate genes or regions and risk of ovarian cancer, when the genotyping
data was analysed with AML, P-trend=0.068. There was evidence of a statistically
significant association between tSNPs identified from the breast cancer genome-
wide association study and evidence of an excess of positive associations over the

proportion expected by chance from this group of 16 common variants (P=0.0028).

Although the AML did not identify an excess of statistically significant associations,
the associations found should not be disregarded. The associations are very modest,
and should be treated with caution, however, there is evidence that the SNPs (or the
chromosomal regionsin which they are located) are associated with the risk of other

cancers.
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Effects of ger mline variants and haplotypes of candidate oncogenes on survival

of ovarian cancer cases

Comparisons between the univariate and multivariate results of al the tSNPs and
haplotypes demonstrated the importance of performing the multivariate anaysis with
adjustments for prognostic factors such as age at diagnosis, tumour histology, grade
and stage for all genetic variants being investigated. Prognostic factors that had a
statistically significant affect on survival can mask the influences of the SNPs, which
canresult intypes| and Il statistical errors. This was demonstrated with the tSNP of
RUVBL1, rs4857836. Therare allele of the common variant was not significantly
associated with survival with the univariate Cox regression analysis (per-rare dlele
hazard ratio [HR]=0.98 [0.86-1.12], P=0.758), however there was evidence of
association between the rare alele of rs4857836 and better survival after adjustments
for the prognostic factors (adjusted HR=0.8 [0.67-0.98], P=0.003). Conversdly, the
opposite was also observed, where the results of the univariate analysis was
significant (KRAS haplotype block 2 h010000, HR=1.69 (1.21-2.36), P=0.002); but
the association was no longer significant after adjustments for prognostic factors
(adjusted HR=0.9 (0.6-1.13), P=0.523). There were 17% and 47% differences
between the hazard ratios of the univariate and multivariate analysis results for

rs4857836 and haplotype h010000, respectively, which is substantial.

These findings suggest, although associations may be identified with the univatiate
Cox regression analysis, correction for prognostic factorsis required for all the
variants analysed in order to ascertain more accurate associations between the
genetic variants and survival from the disease. Numerous publications, including

work from thisthesis, have reported survival analysis resultsin ovarian and other
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malignancies with adjustments for prognostic factors of only the variants found to be
associated with survival from the univariate analysis (Mann et al. 2008; Quaye et al.
2008; Koessler et al. 2009; Quaye et al. 2009; Udler et al. 2009). However, itis
likely that some associations were overlooked by not conducting multivariate Cox

regression survival analysis of all the polymorphisms analysed.

The multivariate survival analysis of the oncogene variants showed that associations
between BRAF polymorphisms and ovarian cancer were not restricted to
predisposition to ovarian cancer. Correlations were also found between hapl otypes
and tSNPs of BRAF and all-cause survival of patients with ovarian cancer. Contrary
to the susceptibility results, the associations were observed when all ovarian cancer
cases were combined. Although the rare allele of BRAF rs1267622, was associated
with areduced risk of mucinous subtype, it was also associated with poor survival of
all ovarian cancer cases combined. These associations suggest that athough the
common variant may influence the risk of only the mucinous subtype, the tSNP may
also be useful for predicting the survival of ovarian cancer patients, regardless of the
ovarian tumour histological subtype. There was also evidence of an association
between BRAF h10010000 and better survival of all cases combined (P=0.014).
This haplotype was a so associated with areduction in the rest risk of clear cell

ovarian cancer.

Although no statistically significant associations were found between ERBB2 and
survival from ovarian cancer with this project, over-expression of the oncogene has
been correlated with poor survival of MALOV A samplesin another study (Hogdall

et al. 2003). An association has also been previousy published between the rare
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allele of the polymorphism which was associated with increased risk of endometrioid
ovarian cancer, rs1801200, and poor survival of cases (Pinto et al. 2005). However,
this association was not replicated in this study. Subtle differencesin the genetics or
lifestyle of the Portuguese population used in the Pinto study and the research
presented in thisthesis may explain the lack of validation of Pinto’s group’s study.
Alternatively, the result from the Pinto paper may have been afalse positive; there
were atotal of 129 ovarian cancer patientsincluded in the Pinto study in comparison

with 1,766 cases genotyped for rs1801200 in this study.

Effects of ger mline variants and haplotypes of “ functional” candidates on

survival of ovarian cancer cases

When the effects of the MM CT-18 common genetic variants on survival of ovarian
cancer patients were eval uated, associations were identified with various candidate
genes which correlated with suppression of the tumourigenic phenotype. Of note,
the rare alleles of two tSNPs of RBBPS, rs4474794 and rs9304261, were associ ated
with better survival of al ovarian cancer patients after adjustments for prognostic
factors. Incidentally, the rare allele of rs4474794 was also associated with reduced
risk of serous ovarian cancer. Haplotypes of RBBP8 were also associated with the

risk of ovarian cancer.

The RBBP8 protein, which is also known as CtBP-interacting protein (CtIP), has
been shown to interact with the retinoblastoma protein and the BRCA protein C-
terminal region domains of the BRCAL gene and a variety of other proteins which are
involved in the regulation of the cell cycle and transcription (Fusco et al. 1998;

Meloni et al. 1999; Li, S. et al. 2000; Zheng et al. 2000). Chen et al have suggested
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that a complex containing RBBP8, BRCA1 and MRN is cell-cycle dependent and is
involved in the activation of homol ogous recombination double strand DNA repair
in the S and G, phases of the cell cycle (Sartori et al. 2007; Chen et al. 2008). There
Is aso evidence suggesting that the RBBPS protein is resistant to DNA double strand
break-inducing agents (Sartori et al. 2007). Furthermore, the expression of RBBP8
has been shown to be elevated in the majority of oestrogen receptor alpha (ER)
positive breast cancer cell lines. However, this gene was down-regulated in the
TOV112D cell line. Nonetheless, the over-expression of the gene is associated with
patient response to neoadjuvant endocrine therapy (Wu, M. et al. 2007). Moreover,
it was been demonstrated that tamoxifen resistance in breast cancer cellsis conferred

through the silencing of the RBBP8 gene (Wu, M. et al. 2007).

rs793446 and two other polymorphisms (rs3921767 and rs9864437) of FILIP1L
were also associated with ovarian cancer survival. However, the rs793446 and
rs9864437 were associated with survival from mucinous ovarian cancer. There was
no striking functional evidence to explain the observed associations between ovarian
cancer susceptibility and survival. However the fact that many of the sequences of
the tagged SNPs were conserved in mice suggests that the region containing the gene
may be functionally important. Furthermore, it has been demonstrated that when the
FILIP1L proteinisover-expressed in endothelial cells, thereisan increasein
apoptosis and inhibition of cell proliferation and migration (Au et al. 2002; Passmore

et al. 2003).

Another polymorphism of RUVBL1, rs4857836, which tags 2 other SNPs

(rs4857837 and rs7641133), was associ ated with survival from ovarian cancer;
302



Chapter 6: Discussion & conclusions

adjusted (for prognostic factors) HR=0.81 (0.67-0.98), P=0.03. This association
became stronger when the analysis was restricted to the serous subtype, adjusted

HR= 0.75 (0.59-0.95), P=0.018.

There was a 5-fold and 7-fold increase in the expression of FILIP1L, and RBBPS,
respectively, in TOV112D**® hybrid cell lines, compared to parental cancer cell
lines. This suggested that the genes behave like tumour suppressor genes. There
was an average 25-fold decrease in the expression of RUVBL1 in both TOV21G*®
and TOV112D**® hybrid cell lines compared with parental cancer cell lines,
suggesting the gene behaves like an oncogene. Although the gene expression
changes for FILIP1L, RBBP8 and RUVBL1 are likely to be attributed, either directly
or indirectly, to the transfer of chromosome 18 into the hybrid cell lines, RBBP8 was
the only one located on the transferred chromosome. Fluorescencein situ
hybridization analysis showed that RBBP8 was on the 10Mb fragment of human
chromosome 18 that was transferred into the TOV 112D cells, rather than the whole
chromosome. The gene expression data has shown that the RBBP8 gene had the

greatest fold increase in expression compared to the other genesin the transferred

region (Quaye et al. 2009).

Therare alele of another variant of CASP5, rs2282657, was associated with better
survival of clear cell ovarian cancer patients. The sequence of the SNP indicates that
it islocated within a splice site of the gene. CASP5 was up-regulated in the hybrid
clones showing suppressed (reverted) neoplastic phenotype, therefore, it was down-
regulated in the parental ovarian cancer cell line (TOV21G). CASP5isinvolved in

apoptosis and inflammation signaling (Eckhart et al. 2006), the protein isa
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component of the NALP1 inflammasome, and it is involved in the maturation and
secretion of interleukin-1p following simulation by lipopolysaccharide, when it is
part of this complex (Martinon et al. 2002).The expression of CASP5 isalso
regulated by interferon-y (Lin et al. 2000). Mutationsin this gene have been
observed in leukaemia, lymphoma and colon cancer (Takeuchi et al. 2003). CASP5
isalso of interest because it forms a complex with MYC and MAX oncogenes and has
been demonstrated to cleave MAX, which isimportant for cell growth,
differentiation and apoptosis (Krippner-Heidenreich et al. 2001). CASP5 dso
appears to be atarget gene in the microsatellite mutator pathway for cancer (Offman

et al. 2005).

Whole genome DNA amplification and multiplex SNP genotyping platfor ms

The final topic of this thesis was whole genome amplification and SNP multiplex
genotyping platforms. The concentration of DNA available for research from each
patient islimited. Therelative rarity and devastating effects of ovarian cancer makes
it difficult to recruit ovarian cancer patients for studies. Whole genome
amplification (WGA) is a method through which DNA concentrations can be
increased. The use of WGA amplified DNA has the potential of increasing the
numbers of samples available for research because more DNA from cumulatively
increasing numbers of study participants would substantially increase the statistical

power of genetic association studies.

The number of common genetic pol ymorphisms within the human genome and the
numbers of these SNPs from candidate genes, which need to be evaluated, make the

single SNP reactions labourious and unappealing. Thisis especialy so because of
304



Chapter 6: Discussion & conclusions

the availability of SNP multiplex genotyping platforms. Four WGA methods,
GenomePlex, GenomiPhi, PEP and REPL I-g were used to amplify 95 samples; and
the performance of the WGA products and their performance was evaluated with

three SNP multiplex genotyping platforms, iPLEX, SNPIex and OpenArray.

REPLI-g generated the greatest amount of amplified material and PEP, the lowest
fold increase in amplified DNA. PEP-amplified DNA performed poorly on all of the
SNP multiplex genotyping platforms evaluated. REPLI-g DNA were the only
products with average call rates <90% on TagMan genotyping platform. The call

rates for the genomic DNA were generally higher than those of the amplified DNA.

Of the SNP multiplex genotyping platforms tested, iPLEX generated the best quality
genotyping results. However, there are issues with failed non-template negative test
controls, which seems to be an artefact of the platform. This could result in asample
with low concentration apparently yielding an incorrect genotype. A small
proportion of common SNPs genotyped on iPLEX appear to be monomorphic
despite MAF>0.05. The reason behind thisis still unclear. It ispossible that

contaminating salt adducts prevent the discrimination of genotypes of the SNP.

Discordances were found between genomic DNA and matching amplified products
from al of the WGA methods. However, fewer discordances were identified with
the GenomePlex and GenomiPhi amplified DNA. GenomePlex and GenomiPhi
appeared to provide the best balance between quantity of amplified DNA and

performance on SNP multiplexing platforms.
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Other studies have reported similar findings of lower call rates of amplified DNA
and discordances between WGA DNA and genomic DNA (Tranah et al. 2003;
Bergen et al. 2005; Berthier-Schaad et al. 2007; Moore et al. 2007; Cunningham et

al. 2008; Xing et al. 2008).

Although discordances between genotypes of the amplified DNA and non-amplified
genomic DNA were observed with every WGA method on al of the SNP multiplex
genotyping platforms, the vast mgority were found with REPLI-g-amplified DNA.
When PEP-amplified DNA is not considered, genotypes of the WGA DNA from the
IPLEX platform were the most concordant with those of the corresponding non-
amplified genomic DNA. None of the amplification products had an average
discordance rates >2% on the iPLEX platform, however the average discordance
rates ranged from 1% (for GenomiPhi-DNA on SNPlex) to 7% (REPLI-g on
OpenArray) for the other 2 multiplex platformsinvestigated. These results, like
many reported in the literature, are misleading because they are not indicative of the
discordances for each polymorphism genotyped. Cunningham’s group reported a
>99% average concordance rate between WGA and their corresponding genomic
DNA when they were genotyped on the Illumina GoldenGate BeadArray platform,
however, only 1 (0.9%) of the 116 pairs of WGA and genomic DNA was

concordant for all the 1,536 SNPs successfully genotyped (Cunningham et al. 2008).

Although the majority of discordances, both allele dropout and miscall were found
between REPLI-g amplified DNA and genomic DNA, other researchers have not
found this. Xing et al. report “excellent” (overall 98.7%) concordance between

genomic and matching REPLI-g DNA based on genotyping data from the
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Affymetrix 250K array platform, however, the genotypes are of 4 individuas, which
iIstoo small anumber to accurately ascertain the performance of WGA DNA (Xing
et al. 2008). Another study reported 100% concordance between genomic DNA and
the corresponding DNA amplified with DOP-PCR, ligation-mediated PCR and a
strand displacement amplification method, for the 10 SNPs genotyped, however,

again, only 4 samples were analysed (Lee et al. 2008).

Talseth-Pamer et al. have demonstrated gains and losses of GenomePlex and
GenomiPhi amplified DNA with array comparative genomic hybridisation,
compared with genomic DNA. They also report that the discordances appear to be
random and are not reproducible (Talseth-Pamer et al. 2008). The results from the
OpenArray platform, which was the only genotyping platform where the
reproducibility of the genotyping was assessed, also suggested that thereis alack
reproducibility of the genotyping results in both genomic and amplified DNA on the

platform.

Limitations

The studies within this project had differing statistical powers to detect associations.
Where all ovarian cancer cases were anal ysed, there was 97% power at the 5%
significance level to detect a co-dominant allele with aminor allele frequency of 0.3
that confers an odds ratio of 1.2, and 96% power to detect adominant alele with a
minor allele frequency of 0.1 that confers an odds ratio of 1.3. However, statistical
power depends on the sample size, the minor alele frequency, the risks conferred,

and the genetic model. Therefore, the statistical power to detect associations when
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analysis was restricted to the histological subtypes of ovarian cancer was greatly

reduced.

It is possible that some associations were missed because some tSNPs from the
candidate genes could not genotyped such as BRAF (1 tSNP not genotyped), KRAS
(2 tSNPs), PIK3CA (3 tSNPs), AIFM2 (1tSNP), AXIN2 (2 tSNPs), RGC32 (1 tSNP)

and RUVBL1 (1 tSNP).

The findings reported should be treated with caution because they could be chance
findings. The results have not been adjusted for multiple testing, which may
diminish the vast magority of the associations found. Unfortunately, associations
between germline genetic variants and other clinical features of disease, such as
disease recurrence, and response and resistance of chemotherapy could not be
assessed in this project. Thisis because the data for the collections are
epidemiological, rather than clinical. Therefore thereis no accessto the clinical

information, other than the ones mentioned.

Genomic controls from a breast cancer study were used to estimate the inflation of
the test statistic used to adjust for cryptic population stratification. It is possible that
the stratification observed in the breast cancer study was not atrue reflection of that
from the samples analysed with the admixture maximum likelihood test. Although,
avery conservative inflation test of 10% was used to adjust the results, it is
nonetheless, possible that the value is an over-estimation, or under-estimation for the
ovarian cancer studies. Thetest statistics from the ovarian cancer GWAS showed

that there were marginal increases in the estimated inflation factor (A1000=1.026) with
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the stage 1 samples which were exclusively Caucasian Britons and A1000=1.005 with
the European, Australian and North American non-Hispanic Caucasians (Song et al.
2009b). Thereforethe 1.1 inflation factor used to adjust for cryptic population

stratifications in this thesis was likely to be a gross over-estimation.

It isaso believed that the use of prevalent samplesin the survival analysis may be a
weakness of the study. However, Cox regression survival anaysis of the follow-up
data showed that, although the prevalent samples appeared to have better survival
than incident cases, the difference was not statistically significant (P>0.05). Left
truncation of the data was also used in the analysis, which controlled for any bias of
the hazard ratio estimates which may have arisen. Although, as aresult of smaller
events (deaths) occurring with prevalent samples, the exclusion of prevalent samples
would reduce the overall sample size and number of events. Therefore the inclusion
of prevalent samples increases the statistical power to detect associations. The
inclusion of prevalent samples may aso be considered as aform of adjustment, as
they may generate more conservative associations. Azzato et al. (2009) have also
reported that they did not find significant bias in the hazard ratios of incident and
prevalent cases of breast cancer when survival analysis, with left truncation, was

conducted on data on clinical stage, histopathological grade and oestrogen receptor.

The analysis of data based on all-cause mortality, rather than mortality from ovarian
cancer is another limitation of this study. It islikely that some of the affect
participants die or will die from causes other than ovarian cancer. However, this

issue it not of great importance as the vast mgjority of the cases, will sadly die from
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ovarian cancer. The small number of patients who die from other causes should be

too small to greatly affect the results.

The numbers of histological subtypes of epithelial ovarian cancer, which include
serous, endometrioid, mucinous and clear cell, are limited, as was the power to
detect association with a reasonable degree of confidence. However, the results from
the susceptibility and survival analyses re-affirms the heterogeneity of ovarian
cancer aetiology. The results were in concordance with mutational analyses, which
have found that mutations of some genes are restricted to particular histological
subtypes of ovarian cancer. Thisis particularly true when the susceptibility and
survival results for candidate genes such as BRAF, KRAS and FILIP1L are

considered. These results need to be validated with additional samples.

The results from these studies provide proof of principle for the theory that SNPs
may influence predisposition and the survival outcome of ovarian cancer. Ultimately
highly significant SNPs with strong effects may be used clinically to predict a
woman's risk of ovarian cancer, or survival from the disease. However, the vast
majority of associations identified by these studies have been limited to marginal
significance, which are considerably less than the P-value suggested for candidate

gene association studies (P=10").

The additional limitations of this study and others of ovarian cancer susceptibility are
the fact that the sizes of the effects have generally been <2, which suggest that the
findings from these studies are unlikely to be translated and implemented to the

clinical setting. None-the-less, the genes which have been selected for the
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association studies have been plausible candidates and the results have enriched

ovarian cancer genetic research.

Moreover, although SNP genotyping data from the HapMap Project isinvaluable to
SNP and haplotype association studies, the research is ongoing and is not immune
from error. HapMap data from Release 20 for the BRAF oncogene suggested that
one of the tSNPs genotyped, rs1267622, tagged rs7384384 with r2=1. However,
recent data rel eases from HapMap no longer include rs7384384, and doSNP gives

the error message:

“This snp_id was merged into rs4726020
refSNP cluster id(rs): rs7384384 isan invalid snp_id value.

Note that rs# is not contiguous due to user withdraws and merging of clusters.”

This message suggests that both rs numbers were assigned to the same SNP. The
policy in these instances is to keep the lower rs number and “retire” the higher
number. There have aso been afew occasions when HapMap has announced errors

with itsdata. For example:

“2008-02-21: Incorrect position for merged SNPs in rel #23

The position of ~24,500 SNPs was inadvertently entered incorrectly in
HapMap release #23 bulk files (genotypes and frequencies). A complete list
of affected SNPs can be found here. Errors are being corrected and new
genotypes and frequency files will be made available shortly under HapM ap
release #23a.”

and
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“2007-12-12: Assembly errorsin rel#22 phased files

Files with errors have been removed from public view and will be replaced
with correct files. Nonetheless, the files continue to be under scrutiny. An
official announcement will be made when these files are officially approved
for general use.”

These announcements highlight the importance of regularly visiting the HapMap
website for such updates, and also conducting validation studies in order to confirm

the associations identified.

A new release of HapMap SNP genotying data, Release 21, became available after
the compl etion of the genotyping of the samples with the oncogene probes. The
oncogenes selected for the study were re-tagged with the more up-to-date datato
establish the efficiency of the tagging based on the tSNPs successfully genotyped.
Asshown in Appendix Y, athough there was data available for more SNPs (“All
SNPs’ in the appendix table) for al of the genes, with the exception of ERBB2
(which had atagging efficiency reduced, from 100% to 80% with the new data) the
tagging efficiency of the tSNP from the other genes remained unchanged. Moreover,

the overall tagging efficiency of all the genes combined stayed at 94%.

Futurework

The advent of genome-wide association studies has led to the usefulness of the
candidate gene approach of genetic association studies being questioned. Thisis
likely to be dueto the limited success of the approach. These questions are of
particular importance since some of the most significant associations found from the

breast and ovarian cancer genome-wide association studies were located at regions
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without genes or open reading frames. To date, the only possible explanation for the
associations may be that of long-range regulation. Fine-mapping is a techniquein
which the SNPs tagged by the significant tSNP and other neighbouring SNPs are
genotyped in order to elucidate the individual SNP responsible for the association. It
is expected that the P-value and effect (odds ratio) would be greatest at the “causal”
polymorphism. Similar results can also be obtained through sequencing the

region(s) significantly associated with ovarian cancer susceptibility or survival.

It isfeasible that the fine-mapping technique could be used to find “causa” SNPs
from the positive associations found from these and other studies. However, all the
results need to be corrected for multiple testing and validated before such astep is
taken. The validation of some of the findings could increase the power to detect
associations. It would be of great interest to run the AML method on all genotyping
data, restricted by histological subtype, to evaluate the overall evidence of positive

associations over the proportion expected by chance.

There were insufficient numbers of samples for investigating gene-gene or gene-
environment interactions. However, it would be of great interest to conduct these
analyses as the SNPs are unlikely to cause ovarian cancer without interacting with
other factors. Therefore these tests should be considered in the future. Stronger,
more significant associations may be found if the analyses of these interactions were

performed.
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Conclusions

In conclusion, 34 tSNPs of four oncogenes (BRAF, ERBB2, KRAS and PIK3CA) and
a putative oncogene (NMl), and 63 tSNPS from 9 differentially expressed genes
(AIFM2, AKTIP, AXIN2, CASP5, FILIP1L, RBBP8, RGC32, RUVBL1 and STAG3)
from in vitro neoplastic suppression experiments were genotyped in invasive ovarian
cancer case-control series. Associations were identified between polymorphisms and
hapl otypes of NMI, CASP5, and RUVBL1 and disease risk when ovarian cancer is
considered as asingle disease. Additional associations were found with many of the
other genes when analysis was restricted to the histological subtypes of ovarian
cancer. Of note, associations were found between mucinous ovarian cancer
susceptibility and survival and haplotypes and variants of BRAF and KRAS; and risk

of endometrioid disease and variants of FILIP1L.

Associations were also identified between RBBP8, RUVBL1 and FILIP1L and
clinical outcome of ovarian cancer patients. Additional associations were found
when the survival anayses were restricted to the magjor histological subtypes of
ovarian cancer. Although the results should be treated with caution, they should be
further investigated. The identification of strongly associated polymorphisms
candidate genes could used for targeted screening of individuals at high risk of
ovarian cancer, the prediction of response to therapy or prognosis, and/or more

effective treatment.

The genotyping of GenomePlex and GenomiPhi amplified DNA on the iPLEX

system was the best combination of WGA method and SNP multiplex genotyping
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platform. However, these results should be confirmed with replication of the

investigations.
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Appendix |: MMCT-18 master-list

Appendices

21G pval | 112D pval | 21G FC* | 112D FC* Gene No. No
List Gene Cytoband hybrid hybrid hybrid hybrid Size (bp) Criteria tSNI5< Function
rank rank rank rank P) | onpst s
TOX high mobility group box family
Downin member 2. Granulosa cell HM G box
hybrids C200rf100 20q13.12 1 4 153,449 | 167 60 | Proten. F?“ta“l"eeg?‘”sﬁ“ ptional
TOV112D activator involved in the
hypothal amo-pituitary-gonadal
system.
Downin Family with sequence similarity 19
hybrids FAM19A5 22013.32 2 8 269,793 216 83 (chemokine (C-C motif)-like),
TOV112D member A5. Unknown function.
Platelet-derived growth factor
receptor-like. Mutations in gene, or
Downin deletion of achromosomal segment
hybrids PDGFRL 8p22-p21.3 3 91 65917 | 124 56 C‘.’”rt]""' n ”g‘f.r“shge”e' v ated
TOV112D with sporadic hepatocel lular

carcinomas, colorectal cancers, and
non-small cell lung cancers. May
function as tumour suppressor.
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21G pval | 112D pval | 21G FC* | 112D FC* Gene No. NoO
List Gene Cytoband hybrid hybrid hybrid hybrid Size (bp) Criteria tSNI5< Function
rank rank rank rank Pl onpst s
Downin 14024.2-
hybrids DIO2 012 y 3 4 1 14,656 13 5 Deiodinase, iodothyronine, typel.
TOV112D ges
Believed to regulate cell cycle
Downin progression. Induced by p53in
. response to DNA damage, or by
hybrids RGC32 13g14.11 5 80 13,323 17 8 .
sublytic levels of complement
TOV112D . )
system proteins that result in
activation of the cell cycle.
Adenomatosis polyposis coli down-
Downin regulated 1. May play arolein
hybrids APCDD1 18p11.22 6 14 34,154 42 13 colorectal tumorigenesis. May be a
TOV112D developmental target gene of the
Wnit/B-catenin pathway
Downin SLIT and NTRK-like family,
hybrids SLITRK6 139311 7 55 6,561 5 4 mgg‘bef 6. SIL ITRKs are ?Xpre‘sedd
TOV112D predominantly in neural tissues an
have neurite-modulating activity.
Downin Nat+/K+ transporting ATPase
hybrids TCBA1 6021 8 19 1,021,734 | 1093 279 | interacting 2. T-cell lymphoma
TOV112D breakpoint associated target 1.
Downin . .
hybrids CXXC4 4q22-24 9 11 26,485 5 g | CXXCfinger 4. May bein the Wt
TOV112D receptor signalling pathway.
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21G pval | 112D pval | 21G FC* | 112D FC* Gene No. NoO
List Gene Cytoband hybrid hybrid hybrid hybrid Size (bp) Criteria tSNI5< Function
rank rank rank rank SNPs® s
Downin
hybrids CLEC11A 19913.3 10 13 2,376 None Unknown function.
TOV112D
Membrane metall o-endopeptidase.
Gene encodes a common acute
lymphocytic leukemia antigen that is
: an important cell surface marker in
Down in the diagnosis of human acute
hybrids MME 3025.1-g25.2 15 9 104,033 83 35 lvmohocvtic leukemia (ALLY. Thi
TOV112D ymphocytic leu emia( _). is
protein is present on leukemic cells
of pre-B phenotype, which represent
85% of cases of ALL. Also found on
variety of normal tissues.
Engrailed homeobox 1. Homeobox-
containing genes are believed to be
involved in controlling development.
Downin The human engrailed homologs 1
hybrids EN1 2013-g21 17 2 5,993 1 1 and 2 encode homeodomain-
TOV112D containing proteins and have been
implicated in the control of pattern
formation during development of the
central nervous system.
Downin
hybrids C2lorfo4 21g21.3 19 7 9,572 14 9 Uncharacterized protein
TOV112D
Downin X 21.33- Armadillo repeat containing, X-
hybrids ARMCX2 22'2 22 5 4,609 2 2 linked 2. Arm protein lost in
TOV112D Gee epithelial cancers. Gene encodes a
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List

Gene

Cytoband

21G pval
hybrid
rank

112D pval
hybrid
rank

21G FC*
hybrid
rank

112D FC*
hybrid
rank

Gene
Size (bp)

No.
Criteria
SNPs®

No.
tSNPs

Function

member of the ALEX family of
proteins and may play arolein
tumour suppression. The encoded
protein contains a potential N-
terminal transmembrane domain and
asingle Armadillo (arm) repeat.
Other proteins containing the arm
repeat are involved in development,
maintenance of tissue integrity, and
tumorigenesis.

Downin
hybrids
TOV112D

CRABP1

15q24

28

7,878

Cellular retinoic acid binding protein
1. Cellular retinoic acid-binding
protein is assumed to play an
important role in retinoic acid-
mediated differentiation and
proliferation processes.

Downin
hybrids
TOV112D

MAB21L1

13g13

38

2,511

Mab-21-like 1 (C. elegans). This
gene issimilar to the MAB-21 céll
fate-determining gene found in C.
elegans. May be involved in eye and
cerebellum development, and it has
been proposed that expansion of a
trinucleotide repeat region in the 5'
UTR may play arolein avariety of
psychiatric disorders.

Downin
hybrids
TOV112D

CSN\3

4g21.1

46

10

8,838

20

Casein kappa.

334




Appendices

21G pval | 112D pval | 21G FC* | 112D FC* Gene No. NoO
List Gene Cytoband hybrid hybrid hybrid hybrid Size (bp) Criteria tSNI5< Function
rank rank rank rank Pl onpst s
Upin Ankyrin-repeat and fibronectin type
hybrids ANKFN1 17923.2 1 7 329,171 261 51 [11 domain containing 1. Unknown
TOV112D function.
. Cadherin 12. Gene encodes an
Up n integral membrane protein that
hybrids CDH12 5p14-p13 2 13 1,102,756 792 133 ’ )
mediates cal cium-dependent cell-cell
TOV112D .
adhesion.
Upin
hybrids CXCL14 5031 3 10 8,594 11 6 Chemokine (C-X-C motif) ligand 14.
TOV112D
Upin Lix1 homolog (mouse). Limb
hybrids LIX1 5q15 4 2 51,002 36 7 exoression 1 Unknowr; function
TOV112D pression =
Upin
hybrids C18orf34 18g12.1 5 5 Hypothetical protein
TOV112D
Thisgeneisreported to be
Upin specifically expressed in prostate,
hybrids PRAC 17921 6 6 801 1 1 rectum and distal colon. Sequence
TOV112D analysis suggests that it may play a
regulatory role in the nucleus.
Upin Filament A interacting protein 1-
hybrids FILIP1L (DOC1) 3g12.1 7 9 281,369 135 8 like. GPBP-interacting protein 90;
TOV112D down-regulated in ovarian cancer 1.
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21G pval | 112D pval | 21G FC* | 112D FC* Gene No. NoO
List Gene Cytoband hybrid hybrid hybrid hybrid Size (bp) Criteria tSNI5< Function
rank rank rank rank Pl onpst s
Upin Notin Guanine nucleotide binding protein
hybrids GNAT3 7921.11 8 18 53,255 haom aloha transducina 3 '
TOV112D apmap P 9o
. Olfactomedin 3. Expressed in brain
Upin and retina; may be a candidate gene
hybrids OLFM3 1p22 9 16 194,456 250 69 . ; . :
for disorders involving the anterior
TOV112D .
segment of the eye and the retina.
Upin Family with sequence similarity 130,
hybrids TAIP-2 2924.3 10 29 211,055 86 21 member A2. TGF betainduced
TOV112D apotosis protein.
NEL-like 2 (chicken). Neural
epidermal growth factor-like 2.
Upin Gene encodes a cytoplasmic protein
. 12g13.11- that contains epidermal growth
hybrids NELL2 q13.12 13 4 368,073 319 49 factor (EGF) -like repeats, The
TOV112D o i
encoded heterotrimeric protein may
beinvolved in cell growth regulation
and differentiation.
Axin 2 (conductin, axil). Inhibitor B-
catenin in the Wnt signalling
Upin pathway. In region of frequent loss
hybrids AXIN2 17G23-q24 19 8 33,084 14 12 | ©f hetg{ozygos vy “ brheaSt cancer,
TOV112D neuroblastoma, and other tumors.

Mutationsin this gene have been
associated with colorectal cancer
with defective mismatch repair.
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21G pval

112D pval

21G FC*

112D FC*

No.

List Gene Cytoband | hybrid | hybrid | hybrid | hybrid Sifee?be | | criteria oo Function
rank rank rank rank Pl onpst s
Upin
hybrids PSVIAL 11914.3 22 1 66,834 17 4 Growth-inhibiting protein 26.
TOV112D
Stathmin-like 2. May play arolein
Upin neuronal differentiation, and in
hybrids STMN2 8021.13 24 3 54,996 86 24 modul ating membrane interaction
TOV112D with the cytoskeleton during neurite
outgrowth
Up i_n Specifically androgen-regulated
hybrid Clorfl16 1g32.1 1 28 14,226 5 5 . K funci
TOV21G protein. Unknown function
Breast cancer associated gene 3;
Upin koyt binding protein 1; koyt binding
hybrid Cliorfl7 11p15.3 2 120 8,925 10 4 protein 2; koyt binding protein 3;
TOV21G protein kinase A-interacting protein
1
Upin Stromal antigen 3. Encoded protein
hybrid STAG3 7q22.1 3 31 43,764 28 3 | Isacomponent of the cohesion
complex during chromosome
TOV21G .
segregation.
Upin
hybrid RLN1 9p24.1 4 50 4,904 8 3 Relaxin 1. Unknown function.
TOV21G
V-set domain containing T cell
Upin activation inhibitor 1. Expressed on
hybrid VTCN1 1p13.1 5 35 67,347 54 22 the surface of antigen-presenting
TOV21G cellsand interact with ligandson T

lymphocytes.

337




Appendices

21G pval | 112D pval | 21G FC* | 112D FC* Gene No. NoO
List Gene Cytoband hybrid hybrid hybrid hybrid Size (bp) Criteria tSNI5< Function
rank rank rank rank SNPs® s
Caspase 5. Sequential activation of
caspases plays a central rolein the
execution-phase of cell apoptosis.
Overexpression of the active form of
this enzyme induces apoptosisin
Upin 11022.2- fibroblasts. Max, a central
hybrid CASP5 29 3 6 40 14,729 17 9 component of the Myc/Max/Mad
TOV21G Qe transcription regulation network
important for cell growth,
differentiation, and apoptosis, is
cleaved by this protein. Target gene
in the microsatellite mutator pathway
for cancer.
Upin Gene encodes an autophosphorylated
hybrid STK17A 7pl2-pl4 7 103 42,996 34 11 nuclear protein which actsas a
TOV21G positive regulator of apoptosis.
Upin H_yppthetical _protei n. Putati_ve DNA
hybrid CXorf6 Xq28 8 86 68,729 87 35 | Dinding protein, expressed in skeletal
TOV21G muscle, b_raJ n, heart. May_be
involved in gonadal function.
Coagulation factor 11 (thrombin).
Involved in first step of the
Upin coagulation cascade which
hybrid F2 11pl11-gq12 9 12 20,300 13 4 ultimately results in the stemming of
TOV21G blood loss. Also playsarolein

maintaining vascular integrity during
development and postnatal life.
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21G pval | 112D pval | 21G FC* | 112D FC* Gene No. NoO
List Gene Cytoband hybrid hybrid hybrid hybrid Size (bp) Criteria tSNI5< Function
rank rank rank rank Pl onpst s
Upin
hybrid C100rf33 10g24.2 10 61 31,619 88 9 Oxidoreductase activity.
TOV21G
Upin Annexin A13. May play arolein the
hybrid ANXA13 8024.13 16 5 56,613 98 40 regulation of cellular growth and in
TOV21G signal transduction pathways.
Upin Phosphotyrosine interaction domain
hybrid FLJ20701 2036.3 25 2 247,291 339 85 containing 1. Increases proliferation
TOV21G of preadipocytes.
Upin Solute carrier family 17 (sodium
hybrid S.Cc17A2 6p21.3 28 8 17,857 24 7 | Phosphate), member 2. May be
involved in actively transporting
TOV21G .
phosphate into cells.
Upin Myeloproliferative leukemia virus
hybrid MPL 1p34 31 9 16,660 3 1 | Greogene. Encodes atransmenmbrane
TOV21G omain. Important in megakaryocyte
and platelet formation.
Upin
hybrid WDR78 1p31.2 51 7 112,002 77 23 Unknown function
TOV21G
PRDM14 mRNA isoverexpressed in
about 2/3 of breast cancers,
Upin moreover, immunochistochemical
hybrid PRDM14 8p21-p12 65 6 19,542 16 14 analysis showed that expression of
TOV21G PRDM 14 protein is aso up-

regulated. Regulation of
transcription.
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21G pval | 112D pval | 21G FC* | 112D FC* Gene No. NoO
List Gene Cytoband hybrid hybrid hybrid hybrid Size (bp) Criteria tSNI5< Function
rank rank rank rank Pl onpst s
. Prepronociceptin. Protein in part of
Upin the neuropeptide signalling pathway
hybrid PNOC 8p21 70 10 26,219 49 12 beinvolved aI '
TOV21G May be involved in neuron
differentiation and devel opment.
Upin . . .
hybrid LOC400942 2p25.1 84 3 HNOtn:” ;'ﬁ’:f[’it:f'caj protein. Unknown
TOV21G apmap '
Upin Notin Hypothetical protein. Unknown
hybrid C140rf110 14g32.33 114 4 4,163 Hapm function '
TOV21G apmep '
Upin Hypothetical protein. Unknown
hybrid LOC283677 15024.1 120 1 116,832 32 9 function '
TOV21G '
Downin L .
hybrid HIF1A 14q21-q24 1 12 52,737 16 6 ;'g’a%‘;’é':"“”gr‘]‘?ggamr L
TOV21G P '
Downin Importin 7. RAN binding protein 7.
hybrid IPO7 11p15.4 2 330 60,871 20 g | Theimportin-o/f complex and the
GTPase Ran mediate nuclear import
TOV21G .
of proteins.
Downin . .
hybrid KIAA0B95 7p14.1 3 48 65,863 E{Eﬁg‘f‘c""' protein. Unknown
TOV21G '
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21G pval | 112D pval | 21G FC* | 112D FC* Gene No. NoO
List Gene Cytoband hybrid hybrid hybrid hybrid Size (bp) Criteria tSNI5< Function
rank rank rank rank Pl onpst s
Hermansky-Pudlak syndrome 6. This
Downin intronless gene encodes a protein
hybrid HPS6 10q24.32 4 183 2,648 2 2 g.‘at may play arol ein Qrﬁa”d le
TOV21G iogenesis associated wit
melanosomes, platelet dense
granules, and lysosomes.
F-box and WD repeat domain
Downin containing 5. The F-box proteins
hvbrid FBXWS 9034.3 5 o8 4286 1 1 congtitute one of the four subunits of
TOyV21G G- ' ubiquitin protein ligase complex,
which function in phosphorylation-
dependent ubiquitination.
Apolipoprotein B mRNA editing
Downin 22013.1- enzyme, catalytic polypeptide-like
hybrid APOBEC3C (13 2 6 3 18,110 6 3 3C. May be RNA editing enzymes
TOV21G 9. and have rolesin growth or cell
cycle contral.
Breast cancer anti-estrogen
resistance 1. Docking protein which
Downin plays a central coordinating role for
hybrid BCARL 16q22-g23 7 64 22575 17 7 | Sgndling related to cell adhesion.
TOV21G Impllcgted in |nduct|on_of cell
migration. Overexpression confers
antiestrogen resi stance on breast
cancer cells.
Downin Cytidine 5'-triphosphate synthetase
hybrid CTPS2 Xp22 8 182 124937 | 31 19 | % Gancer cellsthat exhibit increased
TOV21G cell proliferation also exhibit an

increased activity of this encoded
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21G pval | 112D pval | 21G FC* | 112D FC* Gene No. NoO
List Gene Cytoband hybrid hybrid hybrid hybrid Size (bp) Criteria tSNI5< Function
rank rank rank rank Pl onpst s
protein.
Downin . .
hybrid LOC130951 2p13.1 9 286 ngt:r?“caj protein. Unknown
TOV21G
. N-myristoyltransferase 1. Adds a
DOWU n myristoyl group to the N-terminal
hybrid NMT1 17921.31 10 34 47,704 41 10 . : .
glycineresidue of certain cellular
TOV21G . :
and vira proteins
Downin
hybrid DDIT4 10pter-g26.12 13 10 2,120 1 1 DNA-damage-inducible transcript 4.
TOV21G
Sequestosome 1. Paget disease of
Downin bone 3. May beinvolved in cell
hybrid SQSTM1 5035 44 9 17,181 15 10 differentiation, apoptosis, immune
TOV21G response and regulation of K(+)
channels.
Downin PDZK1 interacting protein 1.
hybrid PDzK1IP1 1p33 77 6 7,455 1 1 Epithelial protein up-regulated in
TOV21G carcinoma.
Encodes an a-tubulin, a major
Downin component of microtubules.
hybrid TUBA1 2035 106 1 4,205 4 1 Microtubules of the eukaryotic
TOV21G cytoskeleton perform essential and

diverse 