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Abstract

Diffuse optical tomography (DOT) retrieves the spatially distributed optical characteristics of a medium

from external measurements. Recovering these parameters of interest involves solving a non-linear and

severely ill-posed inverse problem. In this thesis we propose methods towards the regularization of

DOT via the introduction of spatially unregistered,a priori information from alternative high resolution

anatomical modalities, using the information theory concepts of joint entropy (JE) and mutual informa-

tion (MI). Such functionals evaluate the similarity between the reconstructed optical image and the prior

image, while bypassing the multi-modality barrier manifested as the incommensurate relation between

the gray value representations of corresponding anatomical features in the modalities involved. By intro-

ducing structurala priori information in the image reconstruction process, we aim to improve the spatial

resolution and quantitative accuracy of the solution.

A further condition for the accurate incorporation ofa priori information is the establishment of

correct alignment between the prior image and the probed anatomy in a common coordinate system.

However, limited information regarding the probed anatomyis known prior to the reconstruction process.

In this work we explore the potentiality of spatially registering the prior image simultaneously with the

solution of the reconstruction process.

We provide a thorough explanation of the theory from an imaging perspective, accompanied by

preliminary results obtained by numerical simulations as well as experimental data. In addition we

compare the performance of MI and JE. Finally, we propose a method for fast joint entropy evaluation

and optimization, which we later employ for the informationtheoretic regularization of DOT. The main

areas involved in this thesis are: inverse problems, image reconstruction & regularization, diffuse optical

tomography and medical image registration.
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FOV field of view.

i.i.d. independent and identically distributed.
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IT information theory.

JE joint entropy.

JPDF joint probability density function.

KDE kernel density estimation.

L-BFGS limited memory BFGS.

LS least squares.

MEM maximum entropy method.

MI mutual information.

MISE mean integrated square error.

ML maximum likelihood.

MRI magnetic resonance imaging.

NCC normalized cross correlation.

NIR near infrared.

NMI normalized mutual information.

PDF probability density function.

PET positron emission tomography.

PMDF photon measurement density function.

RBC Robin boundary condition.

ROI region of interest.

RTE radiative transfer equation.

RV random variable.

SPECT single photon emission computed tomography.

SRR simultaneous reconstruction/registration.

SSD sum of squared differences.

SVD singular value decomposition.

TD time domain.

TPS thin plate spline.
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TPSF temporal point spread function.

TSVD truncated singular value decomposition.

TV total variation.

UI ultrasound imaging.
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Chapter 1

Prologue

1.1 Introduction

Diffuse optical tomography (DOT) [Arridge, 1999; Boas et al., 2001; Gibson et al., 2005a] is a non-

invasive, functional medical imaging modality that utilizes the translucency of tissue to light at near

infrared (NIR) wavelengths. The imaging process involves the trans-illumination of the probed anatomy

from multiple source sites and the subsequent measurement of the light exiting the anatomy at detector

sites. Sources and detectors are exclusively located on thesurface of the anatomy. By probing with

NIR light, DOT aims to retrieve quantitatively and spatially accurate estimates of the physical proper-

ties which govern the propagation of light inside the probedanatomy. In optical imaging, the optical

properties of interest are usually expressed in terms of light absorption and scattering or in terms of ab-

sorption and diffusion. These quantities have direct physiological relevance. Regarding the former, the

main absorber of NIR light in tissue is haemoglobin - the principal oxygen carrier in blood. The retrieval

of accurate estimates of the absorption distribution in tissue can be interpreted in terms of medical im-

portance such as blood volume, blood flow and blood oxygen saturation in multi-spectral studies. The

properties of light scattering differ among the various tissue types, hence its spatial distribution can be

regarded as an indicator of the underlying anatomical structure [Boas et al., 2001]. In addition, scattering

changes have been related with functional responses, such as underlying neural activity [Gratton et al.,

1997]. It is evident that the physiological information relatedwith the optical properties of tissue can

have high medical significance. Potential applications of optical imaging include screening for breast

cancer as tumours are optically visible due to the increasedvascularization; tumour malignancy classifi-

cation from the relative levels of oxy- and deoxy- haemoglobin - denoted asHbO2 andHHb respectively

- which can be retrieved by multi-spectral optical imaging [Boas et al., 2001]; neonatal brain imaging for

the detection of haemorghages and brain oxygenation levels; muscle haemodynamics and more [Gibson

et al., 2005a].

Figure1.1showcases two selected DOT clinical imaging studies in order to familiarize the reader

with the resolution levels of the modality. The presented cases regard a neonatal brain haemorrhage

[Hebden et al., 2002] and a breast imaging study for cancer screening [Yates et al., 2005]. Corresponding

intra-subject images obtained from alternative high-resolution modalities - used to validate the DOT

results in the aforementioned studies - are also presented for visual comparison.
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(a) (b)

(c) (d)

Figure 1.1: Presentation of selected DOT clinical studies to illustrating the type of contrast and resolution found

in practice. Subfig. 1.1a Ultrasound scan of infant brain revealing a large haemorrhage in the left ventricle.

Subfig. 1.1b DOT 3D scan of the same infant acquired at 780mm NIR wavelength. The absorption image

is solely presented.Subfig. 1.1c MRI scan (difference image between post- and pre- contrast agent image

application) revealing a tumour in the right breastSubfig.1.1dCorresponding DOT images of the right and left

breast respectively. Only the absorption images are presented.

The low resolution of DOT would be immediately apparent to any reader accustomed with alter-

native high resolution modalities, such as magnetic resonance imaging (MRI)/functional magnetic reso-

nance imaging (fMRI) and X-ray computed tomography (CT) or even compared to the lower resolution

positron emission tomography (PET), single photon emission computed tomography (SPECT) and ul-

trasound imaging (UI). Although the low resolution is a weakness of DOT compared to other modalities,

nevertheless there are clear motives justifying the ongoing effort for its improvement as DOT presents a

number of advantages compared to its alternatives, in termsof the medical significance of the retrieved

information as well as the practicalities of the imaging process. Regarding the former, DOT’s sensitivity

to bothHbO2 andHHb is unique, with the exception of psychoacoustic imaging [Xu and Wang, 2006]

which compared to DOT has superior spatial resolution but very small penetration depth. The modality

has very fast temporal resolution(< 1s) (decreasing with the thickness of the probed medium) which

enables continuous monitoring of the physiological processes. We already mentioned that in addition to

the sensitivity ofHbO2, HHb, blood flow and volume, DOT is also sensitive to neural activation as it af-

fects the scattering of light. In the practical setting, DOTis relatively inexpensive modality(< £300K)

compared to the costs of MRI/fMRI and PET(> £1m) or even SPECT and CT(£300K−£1m) [Cor-

reia, 2010]. In addition, the instrumentation is highly portable, similar to UI, which enables continuous
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monitoring of a patient at bedside and does not require the immobilisation of the patient - dictated by

MRI/fMRI, PET or SPECT - as the NIR probe is attached directlyto the skin of the anatomy. Breast

imaging with DOT does not require the compression of the breast, compared to what is required by X-ray

mammography. Finally, its operation does not entail any safety risks for the patient as, compared to CT,

PET and SPECT, NIR light has no ionising effects. In additionand contrary to fMRI, DOT imaging does

not require the application of contrast agents, which theirsuitability for neonatal studies is still under

investigation. The potential benefits of DOT imaging in medicine are too many to be ignored. The ongo-

ing research towards the improvement of modality - in terms of the quantitative and spatial resolution as

well as the consistency of the retrieval of accurate results- aims to render DOT a significant technology

on its own or in conjunction with established imaging technologies. More detailed comparison between

DOT and additional modalities can be found in [Boas et al., 2001; Correia, 2010].

1.2 Problem statement, aims and contributions
Problem statement and aimsDiffuse optical tomography recovers the optical properties of the probed

anatomy by utilizing the measured light exiting its surface. These properties are represented in the form

of images, hence the computation scheme resulting in these images is termedimage reconstructionand

the actual recovered properties assolution. It is essential that the solution is spatially and quantitatively

accurate, in the sense that it reflects thetrue and unknown solution, that is the true optical properties of

the probed anatomy. From a mathematical perspective, the recovery of the solution is formulated as a

non-linear inverse problem, as the quantities of interest are not directly accessible for measurement due

to the non-invasive nature of DOT. Unfortunately the inverse problem is severely ill-posed, a condition

which compromises the consistent retrieval of accurate solutions.

The aim of this work is to improve the accuracy of the obtainedreconstructions by utilizinga priori

information regarding the true solution. This informationis incorporated into the inverse problem via

a process known asregularization, which effectively attempts to alleviate the negative effects of ill-

posedness. The nature of prior information considered in this work regards thestructureof the true

solution or in other terms, thespatialdistribution of the true optical parameters. It should be emphasized

that the prior information is strictly limited to structure. In simpler terms, we have prior knowledge

on structural features that should appear in the optical reconstruction, for example tumours or distinct

anatomical classes, however we have no information regarding the optical quantities which correspond

to these features.

Potential sources of such structurala priori information are medical images of the same anatomy,

obtained from high-resolution imaging modalities. We refer to these images asreferenceor prior images.

These secondary modalities consistently recover highly accurate spatial and quantitative estimates of the

physical quantities which govern their operation - for example the magnetic properties of tissue targeted

by MRI. Given that both DOT and the secondary modality probe the same anatomy, they should return -

to some extent -structurallysimilar images. However, the actual values which populate corresponding

anatomical areas in the optical and secondary image, areincommensuratelyrelated, due the very different

physical nature between of the optical and secondary quantities.
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Figure 1.2: Aim 1: Introduction of structural information in DOT from high-resolution images withincom-

mensurategray values

Figure1.2schematically showcases the task at hand. The prior image accurately reflects the struc-

ture of the true solution. In effect, the prior provides explicit information regarding the features which

should appear in the reconstruction and also to ‘where’ these features should appear. In accordance to the

point noted earlier, the values which populate the true solution and the prior image are incommensurately

related. The principal problem which this thesis seeks to solve, is to isolate the structural information in

the prior image from the actual values populating it and thenutilize it for improving the optical solution.

Ideally, the method should be able to retrieve the same solution regardless of the choice of values in

the prior image. The values in the prior should have minimal biasing effect on the reconstructed optical

values.

One should notice that we emphasized that it is the prior which dictates ‘where’ features should

appear. The prior is superimposed onto the solution - while the latter undergoes reconstruction - and it

enforces its structure. The process can be vaguely related to ‘carbon copying’. In the previous discussion

we implicitly assumed that the features between the prior and the true solution were accurately spatially

aligned or co-registered. However, in the real world this condition is not always guaranteed. If the

probed anatomy is subjected to a spatial deformation between the data acquisition processes of the two

modalities or if the modalities image the anatomy from a different angle or distance, then the prior image

- although correct in its content (one-to-one feature correspondence with the true solution) - cannot

be trusted in terms of ‘where’ its features should appear. A deformed tumour due to compression in

Mammography of the breast would be the same tumour imaged by DOT. However because the latter

images the breast without compression, the size and location between the two tumour representations

would differ, rendering the prior information inaccurate.

Figure 1.3 showcases this problematic case. The prior image has the correct content, but it is

translated, rotated, scaled and locally deformed. By blindly enforcing its mis-registered structure to
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Figure 1.3: Aim 2: Introduction of structural information in DOT from high-resolution,unregisteredimages

with incommensurategray values

DOT, the obtained reconstruction is evidently biased. Thisgives rise to the secondary aim of this work,

that is the incorporation of unregistered prior information in DOT, while minimizing the bias due to

spatial mis-alignment.

The notions of image structure or structural information are extensively used throughout this thesis.

Natural images, such as the ones depicting anatomy, are structured. In this context structure is manifested

as strong dependencies in the values populating spatially proximal pixels [Wang et al., 2004]. In contrast,

a grainy - for example white noise - is considered unstructured. However, a widely accepted definition of

structure has been proven too elusive to find. This does not come as a surprise as according toNielsen and

Lillholm [2006] ‘image structure is a collection of operationally defined image features’. Operationally

defined features can be edges, corners or even local texture patterns. As the set of these features varies

according to the task-in-hand, image structure can be perceived differently in different applications. One

definition which approaches the perception of structure in this work, is given byWang et al.[2004]. They

define structural information as features in the image whichare invariant to changes in global intensity

(luminance) and contrast among regions. Such features can for example be thepresenceedges formed

between regions. We emphasize presence, as when contrast between regions changes, the magnitude of

the gradients usually employed to identify edges, changes as well. The structure of an anatomy depicted

in the image should be invariant to the actual gray values populating the pixels. In a more general note,

image structure should be invariant to anybijectivetransformation of the images’ gray values.

In this work, structure is not modeled explicitly. We do not explicitly identify operationally defined

structural features. We are not interested in the individual structure of the considered images. We are

interested in assessing the structuralsimilarity between two images. Information theoretic functionals

which are exhibit a level of invariance to bijective transformations of the pixel values of one image and

thus they can assess structural similarity without the needof explicitly defining structure or the features



1.2 Problem statement, aims and contributions 31

which comprise it.

Contributions We approach the first task by proposing aninformation theoreticregularization scheme

for DOT. Information theoretic functionals such as joint entropy (JE) and mutual information (MI) en-

able the measurement of structural similarity between multi-modal images, due to their inherent capacity

of by-passing the multi-modality barrier of the incommensurate relation between their values. During the

reconstruction process, these functionals penalize all potential solutions which are not structurally simi-

lar to the prior image, effectively enforcing the structureof the latter on the obtained solution. The same

functionals, due to their structural similarity evaluation capacity, can distinguish two spatially aligned im-

ages from two unregistered ones. We propose a simultaneous reconstruction/registration (SRR) scheme

which treats the spatial location/shape of the prior as an unknown quantity, which we attempt to recover

simultaneously with the optical solution.

In addition, we characterize the ability of the functionalsto incorporate registered structural infor-

mation from reference images withincorrect content- for example prior with missing or extra features.

Finally, we propose an extension to an already available scheme which enables the efficient manip-

ulation of the marginal entropy of a single image, to the caseof the JE and ultimately MI between two

images. The scheme is crucial for achieving information theoretic regularization in tractable run-times.

In addition, we characterize two possible formulations andimplementations of entropy, regarding their

accuracy and speed.

The next point is of importance. In the introductory sectionof this chapter, we outlined the ad-

vantages of DOT compared to alternative high resolution modalities. In our list we included cost and

portability. If the robustness of DOT imaging could only be guaranteed in the case of multi-modal si-

multaneous imaging in conjunction with a high resolution modality such as MRI or CT, the low cost and

the portability of DOT is irrelevant. The ultimate aim in multi-modal DOT imaging would be to use a

single intra-subject image from a high resolution modalityas prior for all subsequent DOT studies, given

that the prior information does not compromise the new information obtained by each DOT scan. Such

scheme can only work if we can compensate for deformations ofthe probed anatomy, which can take

place between the acquisition of the high-resolution imageand the subsequent DOT studies. This capa-

bility would re-establish the viability of the high resolution prior image to provide information for the

individual follow-up DOT studies. In the most ideal case, one could use aprobabilistic high-resolution

atlasas axref for DOT studies, completely removing the need for a high-resolution scan prior to DOT

imaging. Again, compensating for mis-registration between the atlas and the anatomy probed by DOT

would be an essential requirement. This work contributes towards this ultimate aim.

The information theoretic regularization of DOT and the efficient computation scheme has been

already published [Arridge et al., 2008b; Panagiotou et al., 2009a,b]. Parts of this work have also con-

tributed to publications in other modalities (PET/SPECT) [Kazantsev et al., 2010; Pedemonte et al.,

2010a; Somayajula et al., 2010] as well as one undergoing completion [Pedemonte et al., 2010b]. We

aim to publish the SRR scheme for DOT in the near future.
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1.3 Structure of the thesis
The structure of this document is as follows. The next part iscomprised of three chapters and introduces

the relevant theory. The discussion is self-contained withemphasis on providing intuition via the use of

examples which were produced specifically for this work, unless stated otherwise.

• Chapter2 introduces the general concepts of inverse problem theory.These include the formal

definition of the quantities, spaces and operators involvedin an inverse problem, its forward coun-

terpart, the problematic condition of ill-posedness and the approaches which can alleviate it - with

emphasis on regularization. The discussion addresses bothlinear and non-linear inverse problems.

In addition we briefly introduce non-linear optimization which is later employed in this work.

• Chapter3 focuses on DOT. Firstly, the discussion introduces the fundamental physical concepts

on which the operation of the modality is based. The forward problem of DOT is presented and

involves the physical models of light propagation in tissueas well as approaches towards their

implementation. The discussion proceeds by formulating the inverse problem of image recon-

struction as an objective function minimization task. Finally, the chapter concludes by presenting

selected literature, specifically focused on regularization methods proposed for DOT with empha-

sis on multi-modality.

• Chapter4 introducesinformation theory, within which the two core concepts of this work - entropy

and MI, are defined. The chapter starts by a brief introduction to probability theory and random

variables which are completely fundamental to informationtheory. Entropy and MI are formally

introduced, along with a discussion from an imaging perspective, on their inherent multi-modal

image similarity evaluation capacity. Finally, we discussthe differences between the discrete and

continuous formulation of the aforementioned concepts.

• Chapter5 concludes the theoretical section by introducing medical image registration. The dis-

cussion is focused on the three major algorithmic parts comprising every registration algorithm,

specificallyspatial transformationswith a reference to interpolation,similarity measuresand reg-

istration specificoptimizationapproaches. Regarding the first, we touch the concepts of linear

and non-linear transformations. In the discussion regarding similarity measures, we revisit the

information theoretic concepts of chapter4, to comment on their capacity on measuring image

dissimilarity due to spatial misalignment and not simply due to differences between the informa-

tion depicted in two spatially aligned images. The discussion regarding optimization only refers

to registration specific approaches often employed to improve convergence.

The third part encompasses the contribution of this work andintroduces the proposed methods and the

obtained results.

• In chapter6 we present the efficient joint entropy evaluation and derivative computation scheme.

In addition, the chapter evaluates the accuracy of two entropic formulations by comparing them

against gold standards. Computational complexity estimates and run-time performance charts are

explicitly provided.
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• In chapter7 we present the information theoretic regularisation of DOTvia the incorporation of

spatially registered, high resolution images with incommensurate values. An intuitive discussion

regarding the regularizing capacity of JE and MI is provided. The chapter presents results obtained

from specifically designed numerical simulations - both 2D and 3D - as well as an experimental

study.

• Finally, in Chapter8 we present the extension of information theoretic regularization of DOT in

order to enable the incorporation of unregistered priors. The proposed SRR scheme compensates

for potential global and also local (non-rigid) mis-registration between the optical solution and the

prior images. Preliminary results on 2D simulations are presented as indicators of the validity of

the method. The discussion re-examines the capacity of information theoretic functionals to be

used for the combined purpose of regularizing DOT and driving a registration scheme.

Finally, the thesis concludes in Chapter9, which summarizes the findings of this work and also it

suggests potential future extensions towards the improvement on the current performance of the method.
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Chapter 2

Inverse Problems

2.1 Introduction

This chapter introduces the theory ofinverse problems, refers to the specific challenges surrounding them

and outlines a sample of the basic approaches towards their solution. Inferring information regarding

unobservable parameters of interest from secondary measurable quantities, by utilizing some known

relation between the two, is the definition of an inverse problem. Considering the following example,

inverse problems are not exclusively a science matter.

Selecting fruits from the market involves thequalitativesolution of an inverse problem. One is

firstly drawn to a fruit by its appearance. Obviously, one is mostly if not utterly interested in consuming

its interior, however not all markets are gracious enough toallow the customer to try the product before

paying. In the latter case, the information of interest is definitely unobservable. The consumer though,

not willing to compromise the quality of the meal, attempts to infer information regarding the condition

in the interior of the fruit, by making numerous external ’measurements’, such as assessing its smell,

texture, weight, plumpness or even echo to knocks on its boundary. Understandably, the customer relates

the outcome of these ‘measurements’ to the unobservable interior state of the probed fruit, based on past

experience. For example, the reader might be familiar with the fact that by thumping a ripe watermelon,

the produced effect is a dull hollow sound. In the market one is required to invert this process and

assess the watermelon by the produced sound. The process simply involves thumping the fruit and if

the produced soundmatchesthat of a ripe one (recalled by past experience), the purchase is finalized -

always conditioned to fair pricing.

Considering the fact that most readers have tried bad fruits, this constitutes an initial indicator that

the retrieval of an accurate solution of an inverse problem is in many cases a non-trivial task. To the

surprise of the author, the inverse problem in the non-invasive quantitativeassessment of the interior

quality of watermelons has already been studied [Diezma-Iglesias et al., 2004].

In a more general note, assume a physical system under study.Tarantola[2004] divided the study

of such a system in three parts:

1. Theparametrization of the system, which regards the discovery of a minimal set of model param-

eters - denoted asx; which can completely characterize the system
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2. theforward modeling, which regards the discovery of the physical laws enabling,for given values

of the model parametersx ∈ X, predictions on values of some secondary observable quantities

y ∈ Y. The physical relation betweenx andy is realized in the form of an operatorF enabling

the uni-directional mapping

F : X 7→ Y (2.1)

3. and theinverse problem, which regards the inference of specific values of the model parameters

x given that the secondary quantitiesy have been observed. Ultimately, the inverse problem is

expressed as finding the mapping fromY to X
F−1 : Y 7→ X (2.2)

The reason inverse problems arise - or equivalently the needto inferx indirectly fromy, is solely

due to the inaccessibility of the former to be subjected to direct measurement. This can be either due

to physical limitations or because the time instance at which x characterized the system, has already

elapsed.

Retrieving a quantitatively accurate estimate ofx can prove to be a challenging task. The are nu-

merous causes which can potentially compromise the effort including i) the insufficient amount of useful

datay being available, either due to high levels of noise contamination or due to the limited number of

data acquisition events, ii) the complexity of the physicalprocess itself, iii) the inherent sensitivity of

some forward operators to the numerical manipulation applied to them during their inversion. Regard-

ing the latter, this sensitivity can be a product of the discretisation process employed to approximate

a naturally continuous problem [Hansen, 1998; Vogel, 2002]. These factors contribute to a condition

known asill-posedness, which is introduced in Sec.2.3and explicitly describes the characteristics of a

problematic inverse problem.

Alleviating the effects of ill-posedness requires specialized treatment and the employment of ad-

vanced numerical methods. Methods specifically designed totreat ill-posedness are commonly referred

to asregularization methods.

The discussion continues in Section2.2 where the spaces involved in the inverse problem are for-

mally defined. Section2.3 outlines the Hadamard postulates of ill-posedness, central in inverse theory.

The discussion continues in Sec.2.4by describing the linear inverse problem. Although the maintopic

of this Thesis involves a non-linear inverse problem, the analysis of the linear case provides detailed

intuition by explicitly revealing the manifestation of ill-posedness and the actual effect of the various

methods employed to address it. Section2.5generalizes on the linear case and formulates the non-linear

inverse problem. Finally, Section2.6 describes a sample of iterative objective function optimization

methods which can be utilized by both the linear and non-linear inverse problems.

It should be noted that preceding sections are based on the deterministic setting, defined with point-

based solution estimators. For a statistical approach to the inverse problem, the reader is redirected to

the excellent texts [Kaipio and Somersalo, 2005; Kolehmainen, 2001; Tarantola, 2004].
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2.2 Parameter and data space

Considering the definition of a physical system of the previous section, letx = {x
1
, x

2
, . . . , xN }T be

its parametrization withx ∈ X. Focusing on the inverse problem,X is then referred to as theparameter

spaceor solution space. Similarly let y = {y
1
, y

2
, . . . , yM }T denote the observable quantities where

y ∈ Y andY is known as thedata space. Let X ⊂ RN , Y ⊂ RM . The top indexx(k) is used to

distinguish between different vectorsx, populated by different values xi, i = 1 . . . , N .

Both vector spacesX andY are considered to be metric spaces. These are spaces where the distances

between points lying in the space - for examplexi, xj ∈ X - can be measured using some distance

functionD(xi, xj) ∈ R+, ∀i, j, for which it holds 1)D(xi, xj) ≥ 0 with the equality holding only

whenxi = xj 2) D(xi, xj) = D(xj , xi) and 3)D(xi, xj) ≤ D(xi, xk) + D(xk, xj). In practice,X
andY are typicallyN andM dimensional Hilbert spacesH or Banach spacesB. A Hilbert spaceH is

a vector space where the embedded norm used to measure the distances between points is expressed in

terms of the inner product. Let vectorsu, v ∈ RN each comprised by ui, vi, i = 1 . . .N . ThenRN is a

Hilbert space under the Euclidean inner product〈u, v〉2 = uTv =
∑n

i=1 uivi and the induced norm is

the Euclidean norm‖u‖2 =
√

〈u, u〉2 =
√
∑n

i=1 u2
i [Vogel, 2002]. Banach spaces are more general as

the embedded norm does not have to be strictly defined in termsof the inner product. Banach spaces are

a generalization of Hilbert spaces.

2.3 Ill-posedness

Hadamard[1902] outlined the following three postulates which are considered as prerequisites in order

a system to be well-behaved [Hansen, 1998; Vogel, 2002]:

(i) Existence of the solution: For eachy ∈ Y there exists a solutionx for whichF(x) = y

(ii) Uniqueness of the solution: The solutionx is unique

(iii) Continuity: Small changes iny should not result in arbitrarily large perturbations inx. Hence,

assumingF(x1) = y1 andF(x2) = y2, thenx1 → x2 whenevery1 → y2

When all three postulates are met, the problem is classified as well-posed. In any other case the prob-

lem is ill-posed. The forward problem in this work is well-posed as it meets all the above postulates.

The inverse problem however is very often ill-posed due to the numerous factors, some of them briefly

outlined in Sec.2.1. It should be mentioned that in the strict sense, a finite dimensional inverse prob-

lem cannot beill-posedwith respect to the third postulate (continuity), as the ratio ‖∆x‖ / ‖∆y‖ stays

always bounded, hence no “arbitrarily” large perturbations occur [Hansen, 1998; Kaipio and Somersalo,

2005; Kolehmainen, 2001]. However unless the discretisation is very coarse,‖∆x‖ / ‖∆y‖ - although

bounded, can be significantly large. Therefore the discreteinverse problem will be far too sensitive to

errors iny during numerical manipulation and effectively ill posed. These problems are often referred to

asdiscrete ill-posed inverse problems[Hansen, 1998].
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2.4 Linear case

This section is based on a collection of excellent sources, the most prominent ones being [Golub and

Van Loan, 1996; Hansen, 1998; Kaipio and Somersalo, 2005; Kolehmainen, 2001; Strang, 1988; Vogel,

2002] and Section 2.6 in [Press et al., 1992b]. Let F ∈ RM×N be a linear operator formed as aM ×N
matrix. Specifically for the linear case, the forward mapping of Eq.2.1 is realized for specific values of

x as

Fx = y. (2.3)

Important definitions regarding operators such asF include therangeand thenull space. The range

R(F ) of F is defined as

R(F) = {y ∈ Y|y = Fx, ∀x ∈ X} , R(F) ⊆ Y (2.4)

and the null space Null(F )

Null(F) = {x ∈ X|Fx = 0} , Null(F) ⊆ X. (2.5)

Another crucial concept is therank r of F . It is the number of linearly independent rows and

columns inF , with r < min(N,M) [Strang, 1988]. Thenullity is defined as the number of the linearly

dependent rows inF and equals the dimensionality of the null space ordim(Null(F)) = M − r. This

is based on therank and nullity theoremwhererank + nullity = M [Farenick, 2000; Strang, 1988]. We

also define theleft-null spaceNull(FT) and therow-spaceR(FT). For these spaces it holds that

R(F) =Null(FT)⊥ (2.6)

R(FT) =Null(F)⊥ (2.7)

where⊥ denotes theorthogonal complement.

2.4.1 Singular Value Decomposition

The singular value decomposition (SVD) is a powerful factorization method providing insight regarding

potential problems during the attempt to solveFx = y with respect tox. In addition it enables the

computation ofF−1 if that exists or in any other case it can provide the best compromise solution.

Under SVD,F is represented as the product of three matrices:

F = UΣV T =
N
∑

i=1

uiλiv
T
i (2.8)

whereΣ ∈ RM×N is the diagonal matrix
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Σ =





Σr 0r×(N−r)

0(M−r)×r 0(M−r)×(N−r)



 ∈ RM×N , (2.9)

whereΣr = diag(λ1, λ2, . . . , λr) andλ1 > λ2 > · · · > λr > 0. The diagonal entriesλi are known

as thesingular values. Rankr equals the number of non-zero entries in the diagonal ofΣ. U ∈ RM×M

andV ∈ RN×N are matrices defined asU = (u1, u2, . . . , uM ) andV = (v1, v2, . . . , vN ). The column

vectorsui ∈ RM andvj ∈ RN are known as theleft andright singular vectorsand satisfy

uT
i uj = δij , vT

i vj = δij (2.10)

Fvi = λiui , FTui = λivi (2.11)

whereδij denotes the Kronecker delta defined as:

δij ≡







0, ∀i 6= j

1, ∀i = j
(2.12)

The condition number of the matrixF is defined as the ratio between the largest and smallest singular

value:

cond(F) =
λ1

λr
(2.13)

and it is an indicator of the sensitivity ofF to numerical manipulation.

A squareF is an essential condition in order for an inverseF−1 to exist which would satisfy both

solution existence & uniqueness. In most inverse problemsF is rectangular withM 6= N , hence there is

an immediate breach of the first two postulates of well-posedness (see Sec.2.3). More specifically in the

under-determinedcase(N > M) there are infinite solutions(Null(F) 6= {∅}), with {∅} denoting the

empty set. In theover-determinedcase(N < M) there will be no solution - except for some very “thin”

subset of potentialy, specifically if the latter is expressed as a linear combination of the columns ofF
[Strang, 1988]. Finally, even whenM = N , the problem can have infinite solutions ifr < min(M,N).

The conditionM 6= N can be easily identified by the size ofF . Rankr < min(M,N) can be evaluated

by SVD. In all cases, the adherence of the inverse problem to the first two postulates have to be restored

and SVD can provide the next best compromise solution. SVD can also identify the reasons for breaches

of the third postulate. These identified cases are classifiedin three distinct categories:

(i) The problem is rank-deficient withr < min(N,M).

(ii) Assume the case of maximum possible rankr = min(M,N). LetΣr be comprised by two distinct

sets{λ1, λ2, . . . , λk} and{λk+1, λk+2, . . . , λr}, where the entries in the latter tend to zero. Then

the problem is known to benumericallyrank deficient with numerical rankk, asr − k rows and

columns arealmostlinearly dependent. Ther − k equations form the numerical nullspace ofF .
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(iii) The singular values inΣr decay gradually to almost zero without the existence of a distinct gap as

in (ii). This is the case of discrete ill-posed problems with ill-determined rank.

The following sections outline the most popular methods to approach the problematic cases outlined

above and also provide an intuitive interpretation.

2.4.2 Linear least squares

The method of least squares (LS) is used to restore solution existence by attempting to find the best

compromise solution̂x
LS

to the true solutionx⋆ when the latter is unreachable or inseparable from a set

of possibly infinite solutions.

2.4.2.1 Mostly one solution

The systemFx = y hasat mostone solution whenr = N ≤ M (full column rank), as there are no

linearly dependent columns hence Null(F) = {∅}. In the practical setting however, the measured datay

would unavoidably be contaminated with some form of random noise, which can render it unreachable

by F or equivalentlyy /∈ R(F). In that case Eq.2.3 does not have an exact solution. Hence there is

a breach of the Hadamard postulate of well-posedness regarding solution existence. However, the need

to find a “practical” solution estimatêx to the given problem still exists. The effort in this cases focuses

on the retrieval of thebest compromise solution estimatex̂LS ∈ R(F), where the modeled dataF x̂LS

is maximally proximal to the true measurementsy. This proximity is assessed by asimilarity measure

D(x̂) also known asdata discrepancy functionalor data fit term. In the case of LS, the data fit term is

expressed by the squared Hilbert norm (see Section2.2). Consider the following term

D(x) = ‖LW (y −Fx)‖2 . (2.14)

Under the assumption that individual observationy ∈ Y are uncorrelated, thenLW is a diagonal

matrix which can be used to assign different weights to individual measurements, when the latter are not

trusted equally. Essentially, whenLW = I thenx̂ minimizes the average error in allM equations and

Eq. 2.14is the standard LS. If the diagonal elements inLW vary, then the weighted average distance of

F x̂
LS

from y might be closer to some individual measurementsy ∈ Y than others. ForLW 6= I, Eq.

2.14is known as theweighted least squaresfunctional.

The retrieval of a solution estimatêx
LS

satisfying Eq.2.14can be formulated as a problem of error

minimisation

x̂LS = arg min
x

[

E(x) = ‖LW (y −Fx)‖2
]

. (2.15)

In that casêx
LS

should lie in the bottom of some multidimensional basin in the solution space,

therefore satisfying the condition∂E(x̂
LS

)/∂x = 0. Therefore, Eq.2.15 is expanded and the corre-

sponding derivatives are set to zero
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∂E(x̂
LS

)/∂x =0 (2.16)

∂

∂x

[

(y −F x̂
LS

)TW (y −F x̂
LS

)
]

=0 (2.17)

FTW (y −F x̂
LS

) =0 (2.18)

whereW = LT
WLW . Eq. 2.18 is known as thenormal equations. The normal equations have a

geometrical interpretation. Letǫ = (y − F x̂
LS

). As ǫ sets Eq. 2.18 to 0, thenǫ ∈ Null(FT).

Considering Eq.2.6, thenǫ ⊥ R(F) which is the shortest distance between the noisy datay /∈ R(F)

and the rangeR(F) of reachable data.

Figure2.1schematically shows the action ofF and the involved spaces in the discussed case. We

have assumedW = I. Least squares computes anx̂
LS

mapped byF to the orthogonal projection ofy in

R(F). The distanceǫ ⊥ R(F) is minimal. Because all columns inF are linearly independent (r = N ),

it holds Null(F) = ∅. In addition ifr < M , then Null(FT) 6= ∅.

Figure 2.1: Action of a linear forward operator with full column rankr = N ≤ M and data not being inside

the range of the forward operator ory /∈ R(F). In this case a solution does not exist as nox ∈ X maps - via

the application ofF to y. Least squares establish solution existence (first Hadamard postulate) by retrieving

the best compromise solution̂xLS . The retrieved̂x maps toyLS ∈ R(F) which is minimally distant from the

measuredy /∈ R(F).

Whenr = N ≤M then(FTWF) is square, symmetricandinvertible. After some rearrangement

Eq. 2.18returns the LS solution estimate

x̂
LS

= (FTWF)−1FTWy, (2.19)

whereF† = (FTWF)−1FTW is the weightedMoore-Penrosepseudo-inverse originally defined for

W = I [Moore, 1920; Penrose, 1955]. The linear system of Eq.2.18 can be solved by a choice
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of methods such LU or QR decompositions [Golub and Van Loan, 1996; Press et al., 1992b] or by

more advanced iterative methods with reduced memory requirements such as thegeneralized minimum

residual method(GMRES) [Saad and Schultz, 1986] or the linear conjugate gradients (CG) method

[Shewchuk, 1994].

2.4.2.2 Infinite solutions

Let againFx = y, but with r < N leading to Null(F) 6= {∅}. The problem falls in the first of the

cases outlined in Section2.4.1of rank deficiency due to linearly dependent columns. The LS solution

x̂
LS

still exists, but is now not unique. This constitutes a breach of the Hadamard postulate of well-

posedness regarding solution uniqueness. In fact, there are infinite x̂
LS

that map toy
LS

. To restore the

second Hadamard condition, SVD can be employed. From all solutions x̂
LS

minimizing ‖Fx− y‖2,

SVD singles out as a unique solutionx̂SV D , the one which has shortest length‖x̂‖. This is expressed as

x̂
SV D

= arg min
x

{

E(x) = ‖Ξ(x)‖
∣

∣

∣

∣

Ξ(x) = ‖LW (Fx− y)‖2
}

. (2.20)

Figure2.2graphically shows the action ofF for this case. Asr < N then Null(F) 6= ∅. Any x ∈ X can

now be split into two componentsxr ∈ R(FT) andxn ∈ Null(F), which are orthogonal to each other.

Effectively,‖x‖2 = ‖xr‖2 + ‖xn‖2. Everyy ∈ Y comes from a uniquexr [Strang, 1988]. The infinite

solutionsx̂
LS

are comprised by thatxr and the infinitexn. In the schematic, the componentxr of the

solutions that map toyLS is denoted aŝxSV D and is in fact the SVD solution. The infinite solutions form

the linex̂
LS

parallel to Null(F) passing from̂x
SV D

. From all solutions that project tox
LS

, x̂
SV D

is the

shortest one as‖x̂
SV D
‖ < ‖x̂

LS
‖ ∀x̂

LS
. In effect,x̂

SV D
is singled out by zeroing the null component

‖x̂n‖ = 0.

Whenr < N then∄(FTF)−1 [Strang, 1988]. The LS pseudo-inverseF† is hence not defined and

x̂
SV D

or x̂
SV D

cannot be obtained by Eq.2.19. Fortunately ashortest lengthLS solution vector can be

computed using the SVD pseudo-inverseF†1 given by

F† = V Σ+UT (2.21)

whereΣ+ is aN ×M matrix formed by replacing all non-zero entries in the diagonal of theΣ by their

reciprocal or

Σ+ =





Σ−1
r 0r×(M−r)

0(N−r)×r 0(N−r)×(M−r)



 . (2.22)

Considering Eq.2.8, the solution estimate using the SVD pseudo inverse is givenby [Strang, 1988]

1the same notation is adopted for both LS and SVD pseudo-inverses
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Figure 2.2: Action of a linear rank-deficient forward operator withr < N and data not being inside the range

of the forward operatory /∈ R(F). In this case Null(F) 6= ∅. The infinite set of solutionŝxLS are comprised

by thex̂SV D part and the infinite null componentsxn ∈ Null(F). The SVD establishes solution uniqueness

by singling out a solution estimatêxSV D from the infinite x̂LS , by setting the null component to zero via

x̂SV D = arg min
x̂

LS

{ ‖x̂LS‖}

x̂
SV D

= F†y (2.23)

=

N
∑

i=1

uT
i y

λi
vi (2.24)

The above minimizes‖Fx− y‖2 only for ther linearly independent equations. For the rest nothing can

be done as they have a form

U(M−r)×NΣ(M−r)×N

(

V(M−r)×N

)T · x̂
SV D

= y(M−r)×1 (2.25)

0(M−r)×N · x̂SV D
= y(M−r)×1 (2.26)

due to the 0 population in theΣ sub-matrixΣ(M−r)×N . Any of the infinite LS solutionŝx
LS

satisfies

theM − r equations. To summarize, the SVD solutionx̂
SV D

is the unique, shortest length LS solution.

2.4.2.3 Numerically rank deficient system

From the previous sections it is evident that solution existence and uniqueness can be restored. The in-

verse problem can still violate the third Hadamard postulate of continuity. This is the case of the second

and third categories outlined in Section2.4.1. Regarding the case(ii), a subsetλ(r−k) of the singu-

lar values tend to zero with a clear gap from the remainingλk. The almostr − k linearly dependent

columns/rows can cause numerical instability during the computation ofx̂
SV D

. Considering Eq.2.24,

asλi becomes increasingly small it amplifies potential errorsy (for example due to noise contamination)

which can significantly affect̂x
SV D

[Hansen, 1990b, 1998]. Problems characterized by this gap in the
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singular values can be numerically treated by thetruncatedSVD or truncated singular value decompo-

sition (TSVD) [Hansen, 1987, 1990b, 1998; Varah, 1979]. The method simply replaces the problematic

smallλi with 0. Effectively it removes the almost linearly dependent parts of the linear system. In prac-

tice a thresholdτ is involved to separateλ(r−k) from λk. The TSVD solution can then be expressed by

the standard SVD solution (Eq.2.28) multiplied by afilter functionwτ (λ2) [Vogel, 2002]

wτ (λ2) =











1, λ2 > τ

0, λ2 ≤ τ
(2.27)

Then the TSVD solution is given by

x̂
T SV D

=
N
∑

λi

wτ (λ2
i )
uT

i y

λi
vi. (2.28)

By setting the cluster of smallλ to 0, TSVD removes measured data. However, the removed data

does not contain useful information but on the contrary would have rendered the system numerically

unstable. TSVD effectively is an effort towards the numerical treatment of a problematic linear system

and to re-establish the problem’s adherence to the Hadamardpostulates of well-posedness. In this sense,

TSVD improves all three Hadamard’s postulates as a best compromise solution in the LS sense always

exists, it is unique as SVD chooses the one with minimum length and it is stable by zeroing the error

generatingλ(r−k). As TSVD restores well-posedness it is considered to be a regularization method

[Hansen, 1992b]. Alternative methods exist to filter the smallλ, such as the Tikhonov regularization

introduced Sec.2.4.3.

2.4.2.4 Discrete ill-posed problems with ill-determined rank

Regarding case(iii) of Section2.4.1where the singular values gradually approach zero, regularization

is again required as similar to the previous section small singular values result in instability. One of the

problems in this category is that it is now not obvious where to truncateΣ (this is the matrix containing

λ) prior to inversion. Using a low thresholdα in TSVD, might not remove enoughλi → 0 to adequately

improve the stability of the linear system. In contrast, a highα would stabilize the system but could also

remove essential, information rich data measurements. Approaches towards the numerical treatment of

this kind of problems include TSVD, although this time the choice of thresholdα should preferably be

based on a more elaborate strategy.

Regarding the TSVD case, it has been suggested that a reasonable indexi to apply the truncation in

the diagonal ofΣ would be the one where thediscrete Picard conditioncease to be satisfied. This was

firstly understood by [Varah, 1979] and discussed in further detail in [Hansen, 1990a,b]. Considering Eq.

2.28, the discrete Picard condition states that in order for the system to be numerically stable then the rate

of decay of
∣

∣uT
i y
∣

∣ should be in average faster thanλi. In any other caseλi → 0 would significantly affect

the solution. Alternative popular regularization methodsinclude the Tikhonov regularization [Phillips,

1962; Tikhonov, 1963], the maximum entropy method[Burch et al., 1983; Cover and Thomas, 1991;
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Jaynes, 1982] and many more. The method of Tikhonov regularization will be used as an example in

order to discuss the effect of regularization in both the linear and non-linear setting.

2.4.3 Generalized Tikhonov regularization

Let an objective function be comprised by a data discrepancymeasure such as the LS in Eq.2.15.

Generalized Tikhonov regularization [Vogel, 2002] is applied by introducing a penalty termΨ(x) to the

objective function according to

x̂TK = arg min
x

[

E(x) = ‖LW (Fx− y)‖2 + τΨ(x)
]

. (2.29)

The termΨ(x) is a scalar function. It effectively imposes soft constraints to x̂, by variably penal-

izing candidate solutionsx, depending on how much they deviate from the solutions satisfying Ψ(x).

More specifically, the solution of Eq.2.29is related to the solution of the following constrained problem

[Björck, 1996]

arg min
x

[

‖LW (Fx− y)‖2
]

, subject toΨ(x) < τ, τ ∈ R+ (2.30)

The actual form ofΨ(x) is usually problem specific. The scalarτ ∈ R+ in Eq. 2.29 is known

as theregularization parameterand weights the penalization imposed byΨ(x). The selection ofτ is

of high-importance and is a field of research on its own. Smallvalues forτ lead to reduced regular-

ization, therefore the obtained solution estimates can be expected to be noisy and incorrect due to the

untreated ill-posedness conditions. In contrast, highτ can lead to the over-regularization of the problem

whereΨ(x) dominates the solution, rendering the measured datay insignificant. A sample of schemes

facilitating elaborate approaches towards the selection of τ include the L-curve, the generalized cross

validation and the discrepancy principle. For a detailed discussion the reader is referred to Chapter 7 in

[Vogel, 2002], [Hansen, 1998] and the references within.

Ordinary Tikhonov regularization [Kolehmainen, 2001; Vogel, 2002] refers to a particular type of

Ψ(x) - specifically quadratic functionals. These are widely adopted regularizing schemes for many

inverse problems. The generic form for these penalties is expressed as

Ψ(x) =
∥

∥

∥L(x− x̂(0))
∥

∥

∥

2

(2.31)

whereL ∈ RM×N is a regularization operator and̂x(0) is the initial estimate ofx⋆. The specifics ofL

distinguish between the Tikhonov regularization methods.L = I results in the zeroth-order Tikhonov

(TK0) regularization scheme. When the diagonal entries inL differ, the scheme corresponds to weighted

least squares where variable penalty weights the individual entries x inx. L can also be a differential

operator of various orders. The first order differential operator results in the popular first-order Tikhonov

(TK1) regularization, which penalizes for non-smooth solutions. We then expandE(x) of Eq. 2.29,

with the termΨ(x) being given by Eq.2.31, derive its partial derivatives and set them to0, in a manner
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similar to the derivation of Eq.2.18. Then, after a rearrangement of the terms, one obtains the augmented

normal equations [Kolehmainen, 2001]

(FTWF + τLTL)x = FTWy + τLTLx̂(0). (2.32)

whereW = LT
WLW . Revealing some of the effects of the regularization is possible by expressing Eq.

2.29with Ψ(x) of Eq. 2.31in a stacked form [Hansen, 1998; Kolehmainen, 2001; Varah, 1979]

E(x) =

∥

∥

∥

∥

∥

∥





FLW

τ1/2L



 x−





LW y

τ1/2Lx̂(0)





∥

∥

∥

∥

∥

∥

2

(2.33)

Using this notation the contribution of the regularizationfunction towards the alleviation of ill-

posedness becomes apparent. Given thatF has linearly independent columns, then the augmentedF of

Eq. 2.15is now a full column rank resulting in a unique solution [Björck, 1996].

By settingL = I andx̂(0) = 0 one obtains the standard TK0 regularization scheme

x̂TK0
= arg min

x

[

E(x) = ‖LW (Fx− y)‖2 + τ ‖x‖2
]

. (2.34)

with corresponding normal equations

(FTWF + τI)x̂TK0
= FTWy. (2.35)

After rearranging Eq.2.35 to x̂TK0
= (FTWF + τI)−1FTWy, it can be expanded using the SVD

expression of Eq.2.8. In addition, by considering Eqs.2.10and2.11[Vogel, 2002], it results in

x̂ =

N
∑

i=1

λi(u
T
i y)

λ2
i + τ

vi (2.36)

By considering the SVD pseudo-inverse solution (Eq.2.24), then Eq.2.36reveals that the TK0 regular-

ization effectively acts as a filter for small singular values. Similar to the TSVD notation (Eq.2.27), the

TK0 filter function is given:

wτ (λ2) =
λ2

λ2 + τ
(2.37)

It should be noted that all objective functions expressed inthe linear case can also be solved using

iterative minimisation schemes. We describe some prominent optimization methods in the context of the

non-linear inverse problem in Sec.2.6. For the case ofL = ∇, one obtains the TK1. It penalizes for

non-smooth features - specifically the gradients inx. Its SVD filter analogue can be derived in a manner

similar to TK0.
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2.5 Non-linear case
The classification of an inverse problem as non-linear mainly refers to the nature of the forward operator

which now describes a more complex relationship betweenx andy. The non-linear realization of the

forward mapping of Eq.2.1for specific valuesx is expressed as

y = F(x). (2.38)

Assuming Gaussian noise contamination ofy [Arridge, 1999; Viola, 1995], the LS data fit term can be

employed as an objective function

E(x) = ‖y −F(x)‖2 + τΨ(x) (2.39)

It should be noted that in the non-linear case, an inverse or pseudo-inverse operatorF−1 is not realized.

The final solution̂x is obtained by an iterative minimization ofE(x) expressed as

x̂ = arg min
x

[

E(x) = ‖y −F(x)‖2 + τΨ(x)
]

. (2.40)

The above minimizes the discrepancy between the modeled data and the measured data subject

to the soft constraints imposed byΨ(x). By itself, the LS functional guarantees solution existence by

obtaining the best compromise solution, however this solution might not be unique and the continuity

betweenx andF(x) might not be guaranteed (2nd and 3rd Hadamard postulates of well-posedness).

Although, the explicit action ofΨ(x) cannot be demonstrated in a manner similar to the linear case, its

purpose is to help meet the last two of the Hadamard postulates. Ψ(x) can either be a least squares based

functional, similar to the ones described in the linear caseor it can have alternative forms. For example

see the diffuse optical tomography (DOT) relevant regularization functionals introduced in Sec.3.6.

2.6 optimization

2.6.1 Non-gradient based optimization

Approaches towards the minimisation of Eq.2.40can be classified as those which utilize the gradient

of E(x) and those which do not. An example of a non-gradient optimization scheme is based on evolu-

tion strategies, for example differential evolution [Storn and Price, 1997]. These are population based,

stochastic global function minimisers, which track the simultaneous evolution - or equivalently improve-

ment - of multiple initial estimates. The fitness of each evolved estimate is constantly tracked and the

fitter survive. These methods have better chances in identifying global optima than their gradient based

analogues, which update a single parametrization, due to the large number of initialization states. For

example, the method of differential evolution - termed as a global optimization method - the suggested

number of simultaneously tracked estimates is10N with N being the number of unknowns [Storn and

Price, 1997]. Consequently, in order for such schemes to be computationally tractable, they require fast

evaluations ofE(x) in order to maintain a low overall computational cost.
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Another non-gradient based method is the downhill simplex method byNelder and Mead[1965].

According toPress et al.[1992b], ‘a simplex is the geometrical figure consisting, inN dimensions,

of N + 1 points (or vertices) and all their interconnecting line segments, polygonal faces, etc. In two

dimensions, a simplex is a triangle.’ The method is initialized by defining an initial simplex. This is

done by choosing itsN + 1 points. The method now proceeds by evaluating the objectivefunction at all

N + 1 points of the simplex. Once the evaluation has taken place, the method continues by identifying

the point with the highest objective function value and moves it to the opposite face - via a reflection

through the centroid of the remainingN points. If the new point corresponds to an improved estimate,

the simplex is additionally stretched across the directionof the initial reflection. If the objective function

does not return a lower at the new point, the simplex is contracted. These moves allow the simplex to

move throughout the multi-dimensional solution space, as well as change its shape, in order to move

towards the minimum and eventually bracket it. The latter takes place when the whole simplex moves to

some basin of attraction and starts contracting until its points reach the bottom of the basin. The method

terminates when all the simplex points are in close proximity, according to some threshold criteria. The

final estimate is a function of all the simplex points, for example the the simplex’s centroid.

2.6.2 Gradient based optimization: First order methods

Optimization methods can utilize gradient information of various orders, provided that the objective

function is sufficiently smooth and differentiable up to therequired order. They proceed in an iterative

fashion, where an initial solution estimatex(0) is sequentially improved until some convergence criteria

are satisfied.

2.6.2.1 Gradient descent

The elementary optimization method utilizing the gradientof E(x) is the steepest descent method [Press

et al., 1992b; Shewchuk, 1994]. Given some solution estimatex(k), then next updatex(k+1) is obtained

by taking a step of sizeλ across a line passing fromx(k) and pointing to the direction whereE(x(k))

decreases most rapidly. This direction is given by the negative gradient of Eq.2.50,

d(k) =− ∂E(x(k))/∂x (2.41)

= −2

(

∑

i

(

yi −Fi(x
(k))

)

)

J (k) (2.42)

whereJ (k) = ∂F(x(k))/∂x is theJacobian. The solution update is then expressed as

x(k+1) = x(k) + λ(k)d(k) (2.43)

where stepλ(k) denotes the length traversed overd(k) and can be computed by a line-search approach

(see2.6.4). Starting fromx(k) and assuming that the minimisation acrossd(k) is accurate, then the

improved solutionx(k+1) must reside on a new minimum with respect toλ. Hence∂E(x(k+1))/∂λ = 0.

This implies that if the minimum is not global and an another direction d(k+1) of decrease exists at

x(k+1), it should have a zero directional component acrossx(k). This can only happen ifd(k+1) ⊥ d(k).
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Briefly, in every iteration gradient descent searches for the next update at a direction orthogonal to

the descent direction of the previous iteration. Consequently, throughout the entire minimisation process

the method can revisit many times at the same direction. Thiscan lead to slow convergence rates. Figure

2.3graphically shows search directions obtained by the methodof gradient descent.

Figure 2.3: Successive descent directions produced by the gradient descent method. Courtesy of Jonathan

Shewchuk. Source [Shewchuk, 1994].

2.6.2.2 Conjugate gradients

Conjugate gradients [Nocedal and Wright, 1999; Press et al., 1992b; Shewchuk, 1994] is an alternative

optimization method which also utilizes first order derivative information. In Section2.6.2.1it was

shown that gradient descent exhibits slow convergence as itcan re-visit previously searched directions.

Ideally one would seek to visit each direction only once. Consider again the solution space of Figure

2.3 and the first descent direction starting fromx(0). Ideally, the size of the step across the depicted

direction should be larger so the next orthogonal directionwould lead directly to solution in the middle

of the basin.

Unfortunately, the computation of such step requires the solution to be knowna priori, in which

there would be no reason to search for it in the first place [Shewchuk, 1994]. Conjugate gradients was

motivated by the fundamental concept that descent directions should not be revisited more than once.

It achieves this effect by enforcing directions to beA-orthogonal orconjugate, rather than orthogonal.

In the linear case,A corresponds to the linear forward operatorF . TheA-orthogonality between two

vectorsd(j), d(k) is satisfied when

(

d(j)
)T

Ad(k) = 0 (2.44)

The geometrical meaning ofA-orthogonality is the following. Any twoA-orthogonal vectors in

the solution space ofE(x), would be orthogonal in the transformed solution space transformed byA.

By ensuring such condition among descent directions, the method leads to convergence in a number of

iterations equivalent to the dimensionality of the solution space [Shewchuk, 1994].
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Figure2.4shows the successive improvement of the solution using the CG method. In a 2D space,

the solution is obtained in two successive improvements - one for each direction. The depicted vectors

areA-orthogonal

Figure 2.4: Successive descent directions produced by the CG method. Courtesy of Jonathan Shewchuk.

Source [Shewchuk, 1994].

In the non-linear case first order CG method, the operatorA is not explicitly required . The succes-

sive solution updates are produced according tox(k+1) = x(k) + λ(k)d(k). The CG update direction for

the first iteration is set to the negative gradient

d(0) = g(0). (2.45)

The updates at subsequent iterations need to establish conjugacy with all the previous directions.

Conveniently, one does not need to explicitly store all previous directions in memory to achieve this

condition. An elaborate update scheme can ensure conjugacyof a new search direction with all the pre-

vious ones, by using information solely from the last visited direction. The new directions are computed

according to

d(k) = −g(k) + β(k)d(k−1). (2.46)

Proposed schemes for computing the termβ(k) include the Fletcher-Reeves update [Fletcher and Reeves,

1964]

β(k) =

(

g(k)
)T

·
(

g(k) − g(k−1)
)

(

g(k−1)
)T

· g(k−1)

(2.47)
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and the Polak-Ribière update [Polak and Ribière, 1969].

β(k) =

(

g(k)
)T

· g(k)

(

(

g(k−1)
)T

· g(k−1)

) . (2.48)

It should be noted that the condition of conjugacy among the produced updates is degraded through

out the minimisation process. To deal with this problematicbehavior, the algorithm requires restarts

which involve setting the update direction to the negative gradientd(k) = −∂E(x(k))/∂x. These restarts

can either be repeated every fixed number of iterations or whenever an explicit test of the level of con-

jugacy fails. Details about restarting and testing conjugacy can be found in [Shewchuk, 1994]. The first

order CG minimisation method with fixed restarts is described in Algorithm2.1.

As a final note, there is second order CG method where the analogue of the operatorA of the linear

CG, is explicitly formed as∂2F(x)/∂x - known as theHessian. As the Hessian changes throughout the

minimisation this results in loss of conjugacy between successive update directions and the restarting

mechanism need to be applied. Details of the second order CG can be found in in [Shewchuk, 1994].

2.6.3 Gradient based optimization: Second order methods

Under the condition thatE(x) is twice differentiable, then at each iterationk, E(x(k)) can be expanded

in the vicinity ofx(k) by utilizing the Taylor series expansion [Kastanis, 2007]

E(x) =

∞
∑

n=0

1

n!

∂nE(x(k))

∂xn
(x− x(k))n. (2.49)

Consider the second order approximation, obtained by settingn = 2 and given by

Ẽ(x) = E(x(k)) +

(

∂E(x(k))

∂x
+

1

2

(

x− x(k)
)T ∂2E(x(k))

∂x2

)

(x− x(k)) (2.50)

By definition, the minimizerx(k+1) of Eq. 2.50is a stationary point with zero gradient

∂Ẽ(x(k+1))

∂x
=
∂E(x(k))

∂x
+
(

x(k+1) − x(k)
)T ∂2E(x(k))

∂x2
= 0 (2.51)

Under the assumption that the inverse of the Hessian
(

∂2E(x(k))/∂x2
)−1

exists, Eq. 2.51 after re-

arranging leads to

x(k+1) = x(k) −
(

∂2E(x(k))

∂x2

)−1

× ∂E(x(k))

∂x
(2.52)

The gradient of the objective function used in Eq.2.52is given by

∂E(x(k))

∂x
= −2

(

∑

i

(

yi −Fi(x
(k))

)

)

∂F(x(k))

∂x
+ τ

∂Ψ(x(k))

∂x
(2.53)
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Set thresholds:ǫglobal, ǫiter, iterMax > 01

Set initial line-search step length:λ(0) > 02

Set iteration counter:k ← 03

Set number of iterations before restart:Nk4

Compute:E(x(0))5

Compute gradient:g(0) = ∂E(x(0))/∂x(0)6

Define: E(x(−1)) = −∞7

while E(x(k)) ≥ ǫglobal &&
(

E(x(k))− E(x(k−1))
)

≥ ǫiter && k ≤ iterMax do8

if k == 0
∣

∣

∣

∣ Nk iterations elapsed since last restartthen9

p(0) = −g(0)10

else11

β(k) =12






















(

(

g(k)
)T

·
(

g(k) − g(k−1)
)

)/(

(

g(k−1)
)T

· g(k−1)

)

Fletcher-Reeves OR
(

(

g(k)
)T

· g(k)

)/(

(

g(k−1)
)T

g(k−1)

)

Polak-Ribière update

p(k) = −g(k) + β(k)p(k−1)13

end14

Perform line search forx(k) and compute step-size:λ(k)15

Parameter update:x(k+1) = x(k) + λ(k)p(k).16

Increment counter:k ← k + 117

end18

Algorithm 2.1 : The non-linear Conjugate Gradients algorithm.

The Hessian term∂2E(x(k))/∂x2 is given by

∂2E(x(k))

∂x2
= −2

(

∑

i

(

yi −Fi(x
(k))

)

)

∂2F(x(k))

∂x2
+ 2

{

J (k)
}T

J (k) + τ
∂2Ψ(x(k))

∂x2

(2.54)

By settingS(k) =
∑

i

(

yi −Fi(x
(k))

)

J (k), the Newton-Raphson update is then expressed as

x(k+1) =x(k) + λ(k)

(

S(k) +
{

J (k)
}T

J (k) + τ
∂2Ψ(x(k))

∂x2

)−1

× (2.55)

(

S(k) − τ ∂Ψ(x(k))

∂x

)

(2.56)

The termS(k) is computationally costly to compute and can also lead to loss of the positive-definiteness

of the Hessian [Press et al., 1992b; Schweiger et al., 2005]. By ignoring this term this leads to the

dampedGauss-Newton update [Nocedal and Wright, 1999; Schweiger et al., 2005]
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x(k+1) =x(k) + λ(k)

(

{

J (k)
}T

J (k) + τ
∂2Ψ(x(k))

∂x2

)−1

× (2.57)

(

S(k) − τ ∂Ψ(x(k))

∂x

)

(2.58)

Another alternative is to replaceS(k) with c(k)I, wherec(k) > 0 is a control parameter andI the identity

matrix. This leads to the Levenberg-Marquardt update [Levenberg, 1944; Marquardt, 1963]

x(k+1) =x(k) +

(

{

J (k)
}T

J (k) + τ
∂2Ψ(x(k))

∂x2
+ c(k)I

)−1

× (2.59)

(

S(k) − τ ∂Ψ(x(k))

∂x

)

(2.60)

Notice thatλ(k) is not included in this update. The magnitude of the update iscontrolled byc(k). The

Levenberg-Marquardt belongs to a category of methods knownastrust-regionmethods. Forc(k) >> 0

the method behaves as gradient descent whereas forc(k) = 0 it behaves as the Gauss-Newton scheme.

There is another category of methods, termedquasi-Newtonmethods which do not require the

explicit computation of the Hessian matrix. These methods successively build approximations of the

Hessian matrix or its inverse [Press et al., 1992b] using the gradient of the objective function. Effectively

they utilize first-order derivative information however - close to the minimum - these methods enjoy the

quadratic convergence rates of the Newton method. One such method is known as Broyden-Fletcher-

Goldfarb-Shanno (BFGS). A limited memory version known as limited memory BFGS (L-BFGS), is

used for the optimization of problems with large number of variables, where the approximation of the

Hessian is never realized in full, hence there is no need to store it. This method is employed for non-rigid

registration in Chapter8.

2.6.4 Line search

A line search describes a minimisation across a line. The term usually refers to a scheme employed by

gradient based optimization schemes in order to estimate the length ofλ(k) which needs to be traversed

in the update direction at every iteration. The estimated step is the minimizer [Nocedal and Wright,

1999]

λ(k) = arg min
λ>0

[

Ξ(λ) = E(x(k)) + λd(k)
]

. (2.61)

There are various approaches which produce estimates ofλ(k). One attempt to find the exact min-

imizer of the above function, however this can prove to be an expensive process given that it has to be

repeated at every iteration. Many approaches compromise onthe accuracy of the step length and employ

aninexactline search which retrieves an approximation of the exact minimizerλ(k). For a review of this

methods the reader is directed to [Bazaraa et al., 1993; Nocedal and Wright, 1999; Press et al., 1992b].

One such method which is employed for the purposes of this work is described here which uti-

lizes aninverse quadratic interpolation1 [Press et al., 1992b]. It uses multiple evaluations of the global
1it is called inverse because ultimately it retrieves the abscissa and not the ordinate [Press et al., 1992b]
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objectiveE(x(k)) for differentλ sizes, but no gradient information.

Briefly, let E(x(k)) be the error at iterationk. Having computed the update directiond(k) for k, the

stepλ is set to some initial value and the potential updatexλ = x(k) +λd(k) for the givenλ is computed.

If Ξ(λ) < E(x(k)) in Eq. 2.61, the method doubles the step and re-evaluates the objective. At all times,

the method stores in memory the threemore recentsuccessive step estimatesλα < λm < λβ as well

as their corresponding objective errorsΞ(λα), Ξ(λm) andΞ(λβ). The process keeps on producing new

λβ = 2λβ and updatingλα, λm to be its immediate predecessors until an increase in the error occurs or

Ξ(λβ) > Ξ(λm). The method assumes that the solution space forms a quadratic basin of attraction in

the neighbourhood of the true step. It thus uses an inverse quadratic interpolation by fitting a quadratic

Q(λ) = c1λ
2 + c2λ + c3 to the threeλα, λm andλβ . These produces three equations from whichc1,

c2 andc3 are computed. The minimum of the quadratic, corresponding to the final step estimate is then

λ(k) = − c2

2c1
. The quadratic interpolation is graphically shown in Figure2.5.

A similar process takes place if the error corresponding to the initialization step is higher than

the initial error. In that case, the steps are not doubled buthalved. The full algorithm is described in

Algorithm 2.2.

Figure 2.5: Inverse quadratic interpolation computed on successive line searchλ estimates. The final estimate

λ(k) is located at the minimum of the quadratic curve fitted on theλα, λβ estimates bracketing the minimum,

in the interimλm.

2.7 Summary
We have presented a brief introduction to the basic conceptsin inverse problem theory. Specifically,

we have outlined the three Hadamard postulates, whose breach constitutes a case of ill-posedness man-

ifestation in an inverse problem. The case of the linear inverse problem was described as it explicitly

reveals the effects of ill-posedness. In addition, we introduced the concept of regularization which oper-

ates toward the alleviation of these problematic characteristics which plague an inverse problem and its

effects can be explicitly observed in the linear case. We have also formulated the case for the non-linear

inverse problem and the generalized Tikhonov regularisation scheme. The non-linear inverse problem

is ultimately formulated as an optimization problem. A sample of optimization schemes was briefly

discussed.
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Set threshold:ǫsearch > 01

Set initial step sizes:λα ← 0, λβ ← λ(k−1), whereλ(k−1) is the step used in iteration2

k − 1. If k = 1 thenλβ ← 1

Compute objective function updates:Eα = E(x(k) + λαd
(k)) andEβ = E(x(k) + λβd

(k))3

Bracket the minimum:if Eβ > Eα then4

Set: λm ← λβ/2 and computeEm = E(x(k) + λmd
(k)5

while (Em − Eα) > ǫsearch do6

λm ← λm/2, λβ ← λβ/2, computeEm7

end8

else9

Set: λm ← λβ , λβ ← 2λβ and computeEm10

while (Em − Eβ) > ǫsearch do11

λα ← λm, λm ← λβ , λβ ← 2λβ , computeEm12

end13

end14

Obtainλ(k) via quadratic interpolation ofλα, λm, λβ :15

α←
(

Eα−Eβ

λα−λβ
− Eα−Em

λα−λm

)

(λβ − λm)
−1

16

c2 =
Eα−Eβ

λα−λβ
− c1(λα + λβ)17

λ(k) = −c2/(2c1)18

Algorithm 2.2 : Pseudo code for inexact line-search based on inverse quadratic interpolation.



Chapter 3

Diffuse optical tomography

3.1 Introduction

Imaging with diffuse optical tomography (DOT) is a notoriously non-trivial problem. There are chal-

lenges in all aspects of its operation namely data acquisition, forward modelling and the solution of the

underlying inverse problem which is severely ill-posed.

The structure of this chapter is as follows; Section3.2 briefly introduces the fundamental optical

quantities of interest. Section3.3 touches the imaging schemes. The forward problem in DOT is dis-

cussed in Section3.4. It refers to the radiative transfer equation (RTE) as a model of light propagation,

provides physical insight and outlines the derivation of the diffusion approximation (DA) to the RTE

which is used in DOT. Approaches towards the solution of the DA are also outlined, with emphasis

given in the description of the finite element method (FEM), which is the method employed in this work.

The formulation of the inverse problem in DOT and approachestowards its solution are outlined in Sec-

tion 3.5. The discussion continuous in Sec.3.6 which discusses various regularization schemes which

have been utilized in DOT, with emphasis on multi-modality applications. Section3.7discusses the va-

lidity of using anatomical images as priors in functional medical imaging modalities. Having introduced

the physics of DOT imaging and the inverse problem, the chapter finally concludes with Sec.3.8where

we explicitly discuss the sources of ill-posedness in DOT aswell as noise and resolution issues.

3.2 Fundamental optical quantities

As light traverses through a turbid medium, its propagationis affected by a number of physical events

rising from the interaction of light with the anatomical structure. Two of these events are light absorption

µa and scatteringµs. Before the introduction of these concepts consider the definition of radiance.

3.2.1 Radiance

The radianceI(r, ŝ, t) is a fundamental quantity in optics. It is defined in units of power, per area, per

unit solid angle orWm−2sr−1. Consider Fig.3.1. Radiance is defined so that the amount of radiant

power dP , of some specified frequency interval{ν, ν + dν}, transported by photons passing through an

elementary area da defined by its normal unit vector̂sn, at time instancet, towards a direction̂s and
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confined to an element of solid angle dŝ is given by [Ishimaru, 1978]

dP = I(r, ŝ, t)cosϑ dν da dŝ (3.1)

Figure 3.1: Radiance of light is reduced during its traversal of a non-scattering but homogeneously absorbing

medium

3.2.2 Absorption

Absorption occurs when the interaction between matter and the incident electromagnetic radiation is such

that this leads to partial or complete conversion of the latter to thermal energy [Bohren and Huffman,

1983; Hecht and Zajac, 2002].

Let an absorbing compound be dissolved in a non-scattering medium, resulting in a homogeneous

solution. Given collimated radiation through such a medium, then the reduction dI in radiance (or

intensity)I as light travels an infinitesimal distance dl - see Fig.3.2 - depends on a material constant

called theabsorption coefficientµa (unitsmm−1)

dI = −µaIdl (3.2)

Figure 3.2: Radiance of light is reduced during its traversal of a non-scattering but homogeneously absorbing

medium

Figure3.2 graphically illustrates this effect. Given incident radianceI0, the radiance after some

distancel can be computed by rearranging Eq.3.2and integrating overl results in
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I = I0e
−µal (3.3)

Eq. 3.3 reveals an exponential attenuation ofI with respect to the traversed distance. From a

physical point of view, the reciprocal1/µa (mm) corresponds to themean free paththat a photon can

travel without being subjected to an absorption event [Schmidt, 1999].

3.2.3 Scattering

Scattering occurs when the interaction between matter and the incident electromagnetic radiation is such

that it leads to a change in the direction of propagation of the latter. DOT considers elastic scattering

which dictates that the energy of the incident radiation - aswell as its wavelength - is preserved resulting

only in a change of direction [Hecht and Zajac, 2002].

Similar to the case of absorption, assume a non-absorbing medium of lengthl which is trans-

illuminated by incident light of intensityI0. The relation between input and output intensitiesI0 andI

depends on thescattering coefficientµs (mm−1):

I = I0e
−µsl (3.4)

Figure3.3graphically illustrates this effect. The reciprocal1/µs (mm−1)is the mean free path which a

photon can travel without being subjected to a scattering event.

Figure 3.3: Radiance of light is reduced during its traversal of a non-absorbing but homogeneously scattering

medium

The notions of directionality and angles are fundamental inthe description of scattering phenomena. The

normalizedphase functionΘ(ŝ, ŝ ′) is interpreted as the probability of a photon initially traveling at ŝ

being scattered into a direction̂s ′, hence it holds1

∫

4π

Θ(ŝ ′, ŝ)dŝ = 1. (3.5)

Assuming that the scattering is axially symmetric relativeto the initial direction of propagation, then

Θ(ŝ ′, ŝ) only depends on the scattering angleϑ between̂s ′, ŝ. Effectively,ϑ is the polar angle consider-

ing a spherical coordinate system, for which it holdsu = cos(ϑ) = ŝ ′ · ŝ, with the latter denoting thedot

1see Sec.4.2 for an introduction to probabilities
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product. The dependence of the phase function toϑ can be explicitly denoted byΘ(ŝ ′, ŝ) = Θ(ŝ ′ · ŝ).
The scattering characteristic of the medium is described bythe mean cosine of the scattering angle de-

fined as

Θ̄ =

∫ 1

−1

uΘ(u)du. (3.6)

whereΘ̄ = 0 corresponds to a uniform angular distribution of the scattering angle (isotropic medium),

Θ̄ > 0 corresponds to forward scattering(ϑ < 90◦) and Θ̄ < 0 to backward scattering(ϑ >

90◦)[Schweiger, 1994].

3.2.4 Index of refraction

The refractive indexr1 of a mediumΩ1 describes the reduction in the speedcΩ1
that light propagates

within it, with respect to the speedc of propagation in a vacuum.

r1 =
c

cΩ1

(3.7)

3.3 Imaging schemes
DOT is a non-invasive modality, thus the imaging process probes the medium from a configuration

of sources/detector fibres placed on its surface. The end tips of the fibres are attached directly to the

surface of the anatomy, for example see [Hebden et al., 2004; Hillman et al., 2001] or via a fluid-

coupled patient interface, for example [Enfield et al., 2007]. The spatial arrangement and the number

of sources/detectors on the surface both play a pivotal rolein the spatial and quantitative accuracy of

the reconstructed images[Pogue et al., 1999a]. Figure3.4 graphically illustrates a test medium with its

spatial domain denoted byΩ and its surface with∂Ω.

Figure 3.4: The imaging process in DOT involves non-invasive imaging bya configuration of sources/detectors

placed on the surface∂Ω of the probed domainΩ.

Irrespective of the geometry, imaging with DOT can be classified to three distinct schemes,(i)

continuous wave (CW)(ii) time domain (TD) and(iii) frequency domain. CW systems involve the
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trans-illumination of the medium by a source emitting lightof constant intensity. By measuring the

exiting light, the level of attenuation of the incident light is obtained. In the TD case, the medium is

irradiated by ultra short picoseconds pulses of light. The photons comprising each pulse follow different

paths across the medium and exit the medium at different times. Photon counting detectors record for

a short interval the individual photons exiting the medium and measure their flight times relative to a

reference pulse [Hillman et al., 2000; Schmidt et al., 2000]. This results in a build up of a histogram of

photon flight times for each source-detector pair, known as the temporal point spread function (TPSF)

extending over several nano-seconds [Delpy et al., 1988]. UCL has developed a time resolved optical

tomography system known as MONSTIR, employing 32 source fibers and 32 detector optodes [Hebden

et al., 1999; Schmidt et al., 2000]. Finally frequency domain systems involve amplitude modulated

sources, usually in the order of few hundred MHz. Measurements of the reduction in amplitude and the

phase shift are obtained at the detector locations [Gibson et al., 2005a]. For more information about

recent developments in imaging systems please seeGibson et al.[2005a] and the references within.

Figure3.5graphically illustrates the input/output of the three imaging schemes.
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Figure 3.5: Graphical illustration of imaging schemes in optical tomography. CW systems measure the dif-

ference between incident/measurable light intensity. Frequency domain systems measure the phase shift and

amplitude reduction as a response to light of modulated amplitude. Finally TD systems emit pico-second pulses

and build a TPSF. Each part of the TPSF corresponds to the probability of photons arriving at a specific time.

3.4 Forward problem in DOT
Chapter2 defined the forward problem as a mapping from the spaceX of the parametersx describing

the physical system of interest, to the spaceY of the measurable quantitiesy. Let Ω ⊂ Rn be a sim-

ply connected domain denoting the medium to be probed with DOT, with ∂Ω explicitly denoting its

boundary andr ∈ Ω arbitrary spatial locations. In the context of optical tomography,X consists of

two independentspaces orX =
{

Ξ(a)(Ω),Ξ(b)(Ω)
}

. The parameters of interest are then expressed as

a pair of continuous scalar functions
(

a(r), b(r)
)

∈ X. The physical quantity represented bya(r) and
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b(r) depends on the employed forward modelF which models the propagation of light. In the case of

this model being the RTE, the two quantities are
(

µa(r), µs(r)
)

denoting the light absorption and scat-

tering, whereas in the case of the simpler DA employed byDOT , µs(r) is replaced with the diffusion

coefficientκ(r) introduced in Sec.3.4.2.

The forward problem regards the modelling of the imaging process by computational means. It

commences by simulating the trans-illumination of the medium fromNq given sourcesq(m),m ∈ ∂Ω.

Light entersΩ, interacts with
(

a, b
)

- where the latter are assigned with known values - and propagates

according to the physical laws dictated by the forward model. The portion of the incident radiation which

is not converted to thermal energy due to absorption events exits the medium. A simulated measurement

process captures the exiting light atNw detectorsw(m), from which the measurable quantitiesy are

derived. Effectively, the forward problem solves the equation

ys(m) = Fs(a(r), b(r)) (3.8)

wheres denotes the index of some specific source.

3.4.1 Radiative Transfer Equation

The RTE is a physical model which describes the transport of energy in random media comprised by

particles which can absorb, emit and scatter radiation [Chandrasekhar, 1950; Ishimaru, 1978]. It does

not model any phenomena described by the wave nature of lightsuch as interference or diffraction

and it requires a selection of wavelengths that are smaller than the objects under study [Gibson et al.,

2005a; Ishimaru, 1978]. The standard derivation assumes that the refractive index is constant within the

medium, although modifications allowing the latter to spatially vary have been proposed, for example

see [Ferwerda, 1999; Martí-López et al., 2003]. The RTE is widely considered as an adequate model for

light propagation within the tissue [Arridge, 1999].

Let Ω ⊆ R3 be the domain of the medium, a position vectorr ∈ Ω and time variablet. Considering

the flow of light atr, then the equation of transfer is expressed as

(

1

c

∂

∂t
+ ŝ · ∇+ µa(r) + µs(r)

)

I(r, ŝ, t)

= µs(r)

∫

4π

Θ(ŝ ′, ŝ)I(r, ŝ ′, t)dŝ ′ + q(r, ŝ, t) (3.9)

whereI(r, ŝ, t) is theradianceat positionr, towards a direction defined by the unit vectorŝ and at time

t; Θ(ŝ ′, ŝ) is the normalized scattering phase function;q(r, ŝ, t) denotes a source term located atr and

emitting radiation in direction̂s; ·∇ is the divergence operator;c is the speed of light propagation in the

medium and finallyµa andµs are the absorption and scattering coefficients. [Boas, 1996].

The RTE can be interpreted as an energy conservation equation. Consider an elementary volume

centered atr such as the one depicted in Fig.3.6. For time instancet, the term
(

µa(r) +µs(r)
)

I(r, ŝ, t)

in the LHS of the RTE describes the loss of energy inŝ, due to absorption and scattering events taking

place inr. The RHS of the RTE corresponds to the gain in energy inŝ ′. The first term denotes the
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portion of light scattered in̂s ′, from the total light incident inr from all ŝ. The second term describes

gains from emission within the elementary volume inr, if the latter encloses a source term.

Figure 3.6: Light incident on an elementary volume. Part of the incidentlight can be absorbed and part of the

light can be scattered. In the case that the volume encloses asource, emission can also occur

Finally, three quantities of interest derived fromI include

photon density : Φ(r, t) =

∫

4π

I(r, ŝ, t)dŝ (3.10)

photon current : J(r, t) =

∫

4π

ŝI(r, ŝ, t)dŝ (3.11)

exitance : Γ(r, t) =

∫

4π

ŝI(r, ŝ, t) · ŝndŝ (3.12)

wherephoton density(or fluence rate) is the total radiant energy in course of transit at some unitvolume

in r due to the radiation from all angles. In contrastphoton current(or net flux) defines the rate of flow

of radiant energy across an elementary volume [Chandrasekhar, 1950]. Exitancedescribes the energy

transfer per unit time, through a unit area defined by its normal ŝn, integrated over the solid angle

[Kolehmainen, 2001].

Analytical solutions to RTE are non-trivial to derive, except for very simple geometries. In the

case of complex geometries, numerical methods have to be employed which require the discretisation

of the involved quantities. One can easily see that due to their angular dependence,I, q andΘ are

effectively spherical functionsmapping spherical coordinates(ϑ, φ) to some scalar value. A natural

way to represent functions of this type, is via a spherical harmonics basis expansion. This enables their

approximation as a linear combination of a finite number of basis functions and coefficients.
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I(r, ŝ, t) =

∞
∑

l=0

l
∑

m=−l

(

2l+ 1

4π

)1/2

Il,m(r, t) Yl,m(ŝ) (3.13)

q(r, ŝ, t) =

∞
∑

l=0

l
∑

m=−l

(

2l+ 1

4π

)1/2

ql,m(r, t) Yl,m(ŝ) (3.14)

Θ(ŝ ′, ŝ) =
∞
∑

l=0

l
∑

m=−l

(

2l+ 1

4π

)1/2

Θl Pl(cosθ)

=

∞
∑

l

l
∑

m=−l

Θl Y
∗
l,m(ŝ ′)Yl,m(ŝ) (3.15)

whereYl,m are the spherical harmonic basis functions;Il,m, ql,m andΘl are the basis coefficients and

Y ∗ denotes the complex conjugate. The approximations of the RTE using spherical harmonic expansion

of the three quantities are known asPN approximations and are obtained by assuming thatIl,m = 0 for

all l > N [Arridge, 1999]. Apparently the accuracy of the approximation increases with l.

Due to difficulties in computing numerical solutions for theRTE in complex geometries and for

arbitrary parameter distributions, most of the current approaches in optical imaging using the DA to

model the light propagation inside a diffusive medium, giving rise to DOT.

3.4.2 Diffusion approximation to the Radiative Transfer Equation

The DA is an approximation of the RTE. In diffusion theory, the radiance (or diffuse radiance in this

case) is assumed to encounter many particles and undergo a high number of scattering events. This

results in analmostuniform phase functionΘ(ŝ ′, ŝ). However a slight directionality in the propagation

should still exist, otherwise for a completely uniform phase function, the net diffuse flux would be zero

[Ishimaru, 1978]. Derivations of the DA can be found in [Arridge, 1999; Ishimaru, 1978]. Briefly,

consider the spherical harmonic expansion of the previous section. The DA is a special case of theP1

approximation of theRTE [Tarvainen et al., 2008]. TheP1 approximation of the RTE is obtained by

setting the termsIl,m(r, t), ql,m(r, t) andΘl in Eqs.3.13-3.15to zero, for all|l| > 1. After some lengthy

computations and assuming thatΘ0 = 1 [Arridge, 1999], we arrive at the approximations [Ishimaru,

1978; Kolehmainen, 2001; Schweiger, 1994]

I(r, ŝ, t) ≈ 1

4π
Φ(r, t) +

3

4π
ŝ · J(r, t) and (3.16)

q(r, ŝ, t) ≈ 1

4π
q0(r, t) +

3

4π
ŝ · q1(r, t), (3.17)

whereΦ(r, t), J(r, t) denote the diffuse photon density and diffuse photon current and are given by

Eqs. 3.10-3.11; q0 andq1 are the isotropic and anisotropic components of the source term expressed

respectively as

q0(r, t) =

∫

4π

q(r, t, ŝ)dŝ (3.18)

and
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q1(r, t) =

∫

4π

ŝ · q(r, t, ŝ)dŝ. (3.19)

Inserting Eqs.3.16and3.17in the RTE (Eq.3.9) one arrives at the pair of equations

(

1

c

∂

∂t
+ µa(r)

)

Φ(r, t) +∇ · J(r, t) = q0(r, t) and (3.20)
(

1

c

∂

∂t
+ µa(r) + µ′

s(r)

)

J(r, t) +
1

3
∇I(r, t) = q1(r, t). (3.21)

whereΦ(r, t) andµ′
s(r) = (1 − Θ1)µs is thereduced scattering coefficientandΘ1 = Θ̄ is the mean

scattering phase function defined in Eq.3.6.

As mentioned in the start of the section, DA is a special case of theP1 approximation which led to

the pair of Equations3.20and3.21. It is special as it should satisfy the conditions [Arridge, 1999]

q1(r, t) = 0,
∂J(r, t)

∂t
= 0. (3.22)

The first condition states that the anisotropic component ofthe source termq(r, t) is not considered.

The second condition implies that the photon current does not change, which is clearly erroneous in the

time dependent case as it would require the light propagation to be instantaneous within the medium.

The condition however can be justified by specifying thatµa ≪ µ′
s inside the medium. [Arridge, 1999;

Hillman, 2002]. Then Eq.3.21is simplified into Fick’s Law [Arridge, 1999]

J(r, t) = −κ(r)∇Φ(r, t) (3.23)

where

k(r) =
1

3
(

µa(r) + µ′
s(r)

) (3.24)

is thediffusion coefficient. The DA in the time domain is obtained by inserting Eq.3.23 in Eq. 3.20

leading to

−∇ ·
(

κ(r)∇Φ(r, t)
)

+ µa(r)Φ(r, t) +
1

c

∂Φ(r, t)

∂t
= q0(r, t), r ∈ Ω. (3.25)

The frequency domain case is obtained via the Fourier Transform of Eq.3.25giving rise to

−∇ · (κ(r)∇Φ̈(r, ω)) + µa(r)Φ̈(r, ω) +
iω

c
Φ̈(r, ω) = q̈0(r, ω), r ∈ Ω. (3.26)

whereΦ̈ denotes the complex photon density andq̈0 is a source atr from which an amplitude modulated

input signal of frequencyν = ω/2π is introduced [Schweiger and Arridge, 1997] and expressed using

complex notation for amplitude and phase. Figure3.7shows the complex photon density fields obtained

from the trans-illumination of the circularΩ, from an amplitude modulated source (100MHz), populated

by the depicted optical distribution of
(

µa(r), µ′
s(r)

)

.
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Figure 3.7: Visualization of the photon density fields (amplitude and phase) for the frequency domain case,

for a given optical parameter distribution.(a)-(b): µa/µ′

s distributions. The optical values for background|

perturbation are:µa = 0.025 | 0.07 mm−1 andµs = 2 | 4 mm−1. Sources and detectors are shown with green

and red colours respectively.(c)-(d): For all r ∈ Ω the fields represent thelog-amplitude and phase difference

with respect to the incident radiation.

3.4.2.1 Validity of the Diffusion Approximation

The approximation of the RTE by the DA requires thatµa ≪ µs and the light propagation to be only

weakly anisotropic [Groenhuis et al., 1983; Schweiger et al., 1995]. The diffuse light propagation should

be slightly anisotropic otherwise the photon current wouldbe zero and there would be no net light

propagation [Ishimaru, 1978]. Conditionµa ≪ µs holds for many anatomical regions of interest, for

example breast or the brain. The presence of non-scatteringregions, namely the CSF layer around the

brain and in the ventricles does not allow the DA to accurately model the propagation of light [Dehghani

et al., 1999]. The ability of DA to image media with non-scattering regions has been evaluated by a

number of groups.Okada and Delpy[2003] investigated the effects of thickness of the CSF regions

on the accuracy of the reconstructed images whereasGibson et al.[2005b] commented on the extent

that different reconstruction techniques cope with the problematic non-scattering regions. A number

of methods have been proposed to cope with this specific issuesuch as the radiosity-diffusion hybrid

model [Firbank et al., 1996] or the hybrid model ofTarvainen et al.[2008] which utilizes the RTE in

those regions for which DA does not hold and the latter is usedeverywhere else. Simpler schemes



3.4 Forward problem in DOT 67

include the proposal ofKoyama et al.[2005] which showed that by assigning a value ofµ′
s = 0.3mm−1

to a priori identified low-scattering regions in the probed medium, enables an adequate modelling of

light propagation by the DA. Similar findings were recently published byOki et al. [2009]. Another

problem regards the unsuitability of DA to model light propagation in the vicinity of the light sources

as propagation is highly anisotropic.Tarvainen et al.[2005b] proposed a hybrid model, employing RTE

near the source locations and DA everywhere else.

3.4.2.2 Boundary conditions

The boundary conditions in the RTE are obtained by noting that no photons at the boundary travel

inwards except from source terms, whereŝ is the normal to∂Ω at m. [Arridge, 1999; Ishimaru, 1978;

Schweiger et al., 1995]

I(m, ŝ, t) = 0, for ŝ · ŝn < 0, (3.27)

The diffusion equation cannot satisfy this condition exactly due to the simple angular distribution as-

sumed for the diffuse radiation [Ishimaru, 1978]. Instead, there are a number of boundary conditions

which can be adopted. One is the Dirichlet boundary condition (DBC) which physically is equivalent to

a perfect absorbing medium surrounding the domainΩ and is expressed as

Φ(m, t) = 0, ∀m ∈ ∂Ω. (3.28)

A more realistic alternative in physical terms is imposed bythe Robin boundary condition (RBC),

which models the effects of a non-scattering medium surrounding Ω [Schweiger et al., 1995] and is

expressed as

Φ(m, t) + 2κ(m)ŝn · ∇Φ(m, t)
from Eq.3.23

= Φ(m, t) + 2ŝn · J(m, t) = 0. (3.29)

If one needs to model the case of refractive index discrepancy within Ω and the surrounding

medium, one can employ a modified RBC [Schweiger et al., 1995]

Φ(m, t) + 2Λŝn · J(m, t) = 0 (3.30)

whereΛ = (1+R)/(1−R) and whereR is the internal reflection of uniformly diffuse radiation [Groen-

huis et al., 1983; Schweiger et al., 1995]. Suggested values forRwere computed in [Egan and Hilgeman,

1979] Alternative formulas forΛ have been proposed, for example see [Aronson, 1993; Keijzer et al.,

1988].

3.4.2.3 Source conditions

Two possible type of sources include the pencil-beam collimated source (CS) and the diffuse source

(DS) [Arridge, 1999; Schweiger et al., 1995]. The first cannot be modelled exactly by the DA. Instead,

its effects can be approximated by an isotropic point source
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q0(r, t) = δ(r − rs)Q(t), r ∈ Ω (3.31)

whereQ is the source strength [Schweiger and Arridge, 1997] and rs is situated at a depth of one

scattering length1/µ′
s below m ∈ ∂Ω where light is truly incident. The diffuse source scheme is

expected to produce accurate results at distances greater than one mean free path length fromrs but not

closer. In contrast, DS sources can naturally be modelled under the DA as an inward directed photon

current distributed across a boundary segment∂Ωs ⊂ ∂Ω [Schweiger et al., 1995]. This requires the

modification of the DBC condition (see Eq.3.28) to

Φ(m, t) = 0, ∀m ∈ {∂Ω \ ∂Ωs} (3.32)

κ(m)ŝn · ∇Φ(m, t) = −Γs(m, t)w(m), ∀m ∈ ∂Ωs (3.33)

whereΓs(m, t) is the source flux along the boundary section∂Ωs andw ∈ [0, 1] is a function weighting

the flux according to each distance fromm [Schweiger, 1994]. The negation ofΓs explicitly shows

that flux is directed inwards toΩ [Kolehmainen, 2001]. Similarly, implementing the DS under the RBC,

results in the modification of Eq.3.29along∂Ωs resulting to [Kolehmainen, 2001]

Φ(m, t) + 2κ(m)Λŝn · ∇Φ(m, t) =











−4Γs(m, t)w(m) m ∈ ∂Ωs

0 m ∈ {∂Ω \ ∂Ωs}
(3.34)

.

3.4.2.4 Measurable quantities

The quantity physically measured on the boundary - or equivalently the one modelled by the forward

problem - is the diffuse outgoing radiation or exitance (Eq.3.12). It is given by

Γ̈(m, ω) = Γ̈(m, ω = 0) +A(m)ei[ωt+φ(m)] (3.35)

whereΓ̈(DC)(m, ω)Γ̈(m, ω = 0) is the DC component and̈Γ(AC)(m, ω) = A(m)ei[ωt+φ(m)] is the

AC. It can also be re-written as theNeumanndata

Γ̈(AC)(m, ω) = −cκ(m)ŝn · ∇Φ̈(m, ω) (3.36)

The measurement types in the frequency domain case are thephase shiftφ between source and

measurement signal [Schweiger and Arridge, 1997]

y
φ
(m) = argΓ̈(AC)(m, ω) = tan−1

Im
[

Γ̈(AC)(m, ω)
]

Re
[

Γ̈(AC)(m, ω)
] (3.37)
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and the modulation depthmA, defined as amplitude of the measured signal normalized by the DC com-

ponent

y
A
(m, ω) =

mod
(

Γ̈(AC)(m, ω)
)

Γ̈(m, ω = 0)
=

∣

∣

∣Γ̈(AC)(m, ω)
∣

∣

∣

Γ̈(m, ω = 0)
(3.38)

In the TD case, the TPSF corresponds to the temporally dependent diffuse exitanceΓ(t). It can

be interpreted as the distribution of the arrival times of the detected photons. Figure3.8 shows a cir-

cular domainΩ with knownµa andµ′
s distributions which is irradiated from a single sourceQ. The

corresponding TPSFs built at four different detectors sites are shown and as expected, vary for differ-

ent source-detector pairs [Delpy et al., 1988]. Commonly, one derives more practical data types which

usually integrate out the temporal dependency and reduce the measurement to a single scalar value

[Schweiger, 1994]. Example measurement types include [Arridge, 1999; Kolehmainen, 2001]

yE[Γ(t)] =
1

E[Γ(t)]

∫ ∞

0

Γ(t)dt normalized integrated intensity (3.39)

y〈tn〉 = 〈tn〉 =
1

E[Γ(t)]

∫ ∞

−∞
tnΓ(t)dt nth temporal moment, (3.40)

ycn
=

1

E[Γ(t)]

∫ ∞

−∞
(t− 〈tn〉)Γ(t)dt nth central moment (3.41)

whereE[Γ(t)] =
∫∞
0

Γ(t)dt. For further discussion about data types see [Arridge, 1999; Arridge and

Schweiger, 1993b; Hebden et al., 1998; Pineda et al., 2006].

3.4.3 Finite element method

The FEM is a general technique for the numerical solution of differential and integral equations which

appear in science and engineering [Johnson, 1987]. Some of its principal characteristics are that it

supports domains of arbitrary shape and quite arbitrary boundary conditions, it is robust and it has solid

mathematical foundation [Ciarlet and Lions, 1991]. The existing literature covering FEM is vast and the

reader can easily find extensive and dedicated reviews regarding general FEM, for example see [Johnson,

1987; Zienkiewicz and Taylor, 2000]. In the field of biomedical optics, FEM was introduced for the

purpose of solving the DA in complex geometries in the early 1990s [Arridge et al., 1993; Schweiger,

1994; Schweiger et al., 1993, 1992, 1995] and since then it has been adopted by numerous research

groups for the same purpose. For the purpose of modelling theDA in this work, we have employed the

implementation in the TOAST1 software package developed by Schweiger and Arridge at UCL.

In this case FEM is based onmethod of weighted residuals[Segerlind, 1984; Zienkiewicz and

Taylor, 2000] to construct an integral formulation of the differential equation to be solved. Consider the

frequency-domain formulation of DA described by Eq.3.26. The FEM method for the time domain

is based on a similar derivation [Schweiger and Arridge, 1997]. Suppose thaẗΦ⋆ is the solution to Eq.

3.26, therefore satisfying

1TOAST stands for Time-resolved Optical and Scattering Tomography. As of today, additional information and downloads can

be found athttp://web4.cs.ucl.ac.uk/research/vis/toast/intro.html.

http://web4.cs.ucl.ac.uk/research/vis/toast/intro.html
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tained from each detector for irradiation fromQ in the noise free TD case.

{

iω

c
−∇ · κ(r)∇ + µa(r)

}

Φ̈⋆(r, ω)− q̈0(r, ω) = 0, ∀r ∈ Ω. (3.42)

Φ̈⋆ is continuous overΩ. We seek a solution estimatëΦ(r, ω) → Φ̈⋆(r, ω). In order to render the

problem manipulable by a computer, the problem under consideration must be completely defined by a

finite number of unknowns. One way to achieve this is by approximatingΦ̈ with a finite basis represen-

tation, where it is expressed by linear combination of a finite number of basis functionsΞ(r) and basis

coefficientΦ̈b ∈ RN
Ξ or

Φ̈h(r, ω) =

NΞ
∑

i=1

Φ̈b
i(ω)Ξi(r) (3.43)

Ω is now divided into a finite numberNe of non-overlapping elementse, forming an unstructured mesh

which completely coversΩ soΩ = ∪Ne

j=1ej. Elements are joined atNN node locationsN defined at

the vertices of the elements. The elements are usually of simple shape such as triangles in the 2D case

or tetrahedra in 3D, however higher order shapes can be used.An example 2D mesh is shown in Fig.

3.9. Given this configuration, a simple approximation of the true solution can be obtained by adopting

piecewise linearΞ. The basis functions used to approximate the solution are known as shape functions
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Figure 3.9: An unstructured mesh produced by the

triangulation of a circular domainΩ. It consists of

1021 nodes and1920 elements

Figure 3.10: Linear shape functionΞi centered on

nodeNi

in the FEM, due to the shape of their support area. The supportof Ξj , is finite and extends to all alle

containingNj (see Fig.3.10).

Given arbitrary functionW satisfying the same boundary condition asΦ̈ [Arridge et al., 1993], then

the method of weighted residuals requires that

∫

Ω

W(r)

[{

iω

c
−∇ · κ(r)∇ + µa(r)

}

Φ̈h(r, ω)− q̈0(r, ω)

]

dΩ = 0. (3.44)

Integrating Eq.3.44by parts using the Green’s first identity [Zienkiewicz and Taylor, 2000]

∫

Ω

a∇ · (b∇c)dΩ = −
∫

Ω

∇a(b∇c)dΩ +

∮

∂Ω

a(b∇c)d(∂Ω) (3.45)

results in

∫

Ω

[

κ(r)∇W(r) · ∇Φ̈h(r, ω) + µa(r)W(r)Φ̈h(r, ω) +
iω

c
W(r)Φ̈h(r, ω)

]

dΩ =

∫

Ω

W(r)q̈0(r, ω)dΩ +

∮

∂Ω

−Γ(m, ω)W(m, ω)d(∂Ω) (3.46)

Eq. 3.46is theweak formof Eq. 3.44as it is comprised by lower order derivatives ofΦ̈h, at the price of

requiring the first derivative ofW . In effect the weak form is more realistic than the original formulation

which implied excessive ’smoothness’ ofΦ̈h by incorporating its second derivatives [Zienkiewicz and

Taylor, 1987]. Regarding exact form ofW , there are a number of possible alternatives [Zienkiewicz

and Taylor, 2000]. A very common choice is the same shape functionΞ used for the approximation

in Eq. 3.43. This is known as theGalerkin formulation. Eq.3.46can be re-written in a matrix form

([Schweiger, 1994]) as
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(

K(κ) + C(µa) +
iω

c
M

)

Φ̈
b

= Q + β (3.47)

where

Kij =

∫

Ω

κ(r)∇Ξj(r) · Ξi(r)dΩ, Qj(t) =

∫

Ω

Ξj(r)q̈0(r, ω)dΩ

Cij =

∫

Ω

µa(r)Ξj(r)Ξi(r)dΩ, βj(t) =

∮

∂Ω

−Ξj(m)Γ(m, ω)d(∂Ω)

M ij =

∫

Ω

Ξj(r)Ξi(r)dΩ, Φ̈
b

=
[

Φ̈b
1(ω), Φ̈b

2(ω), . . . , Φ̈b
NΞ

(ω)
]T

. (3.48)

The time domain analogue of Eq.3.47can prove more complex to solve due to its dependency

on the time variablet. Methods for modelling time dependency under the FEM setting are discussed in

[Arridge et al., 1993; Schweiger, 1994]. For the implementation of the boundary and source conditions

in FEM see [Schweiger et al., 1995].

3.4.3.1 Forward model and FEM

The complex photon density nodal coefficientsΦ̈
b

s rising from illumination ofΩ from sources, with

s = 1 . . . , S and for specific scalar functionsµa(r), κ(r), are retrieved by solving Eq.3.47

Φ̈
b

=

(

K(κ) + C(µa) +
iω

c
M

)−1

(Q + β) (3.49)

The continuous photon densitÿΦh
s across the domain is retrieved by Eq.3.43. This gives rise to

the outgoing measurement distributions ys(m, ω) corresponding to the Neumann data (Eq.3.36). The

forward mapping fromµa, κ to ys(m, ω) for a specific sources is denoted as

ys(m, ω) = Fs(µa, κ;ω). (3.50)

Following the notation ofArridge [1999]; Schweiger et al.[2005], a measurement modelM is

defined to sample the outgoing distributions in the boundaryatM detector sites indexed byd

ys,d(ω) =Md [ys(m, ω)] =

∫

∂Ω

wd(m)ys(m, ω) (3.51)

wherewd(m) represents the finite aperture of detectord. It should be noted thatM ≤ D whereD is

the number of the full set of detector sites. The reason for this distinction is that in the inverse problem

it is possible to use a subset of the detectors for each activated source. For example, one can deactivate

detectors too close in proximity with an activated source asthe detected signal corresponds to superficial

photon paths.

Effectively this concludes the forward operatorF definition mappingµa, κ ∈ X to ys,d ∈ Y for all

source/effective detector combinations, denoted by
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y(ω) =



















[

y
1,1

(ω), y
1,2

(ω) . . . y
1,D

(ω)
]T

[

y
2,1

(ω), y
2,2

(ω) . . . y
2,D

(ω)
]T

...
[

y
S,1

(ω), y
S,2

(ω) . . . y
S,D

(ω)
]T



















= F(µa, κ;ω) =

















Md [F1(µa, κ;ω)]

Md [F2(µa, κ;ω)]
...

Md [FS(µa, κ;ω)]

















(3.52)

It should be noted thaty ∈ RM×S (vectorized form) and each complex measurement ys,d consists

of the amplitude and phase part (see Section3.4.2.4).

3.4.4 Alternative approaches

3.4.4.1 Analytical methods

Analytic solutions to the diffusion equation3.26can be obtained by applying the appropriate Green’s

operator [Arridge, 1999].

Φ̈(r, ω) =G̈(r, ω) [q̈0] (3.53)

=

∫

Ω

G(Φ̈)(r, r′, ω)q̈0(r
′, ω)dnr. (3.54)

In the case that the source term̈q0 (its time-domain representation) is aδ-function the solution

becomes, from the convolution of Eq.3.54, just the Green’s function itself. The pulsed sources used

in optical imaging can be considered a sufficient approximation to aδ-function [Arridge and Hebden,

1997]. The exact form of Green’s functionsG(Φ̈) for simple geometries (spheres, slabs and cylinders)

with homogeneous optical distributions can be found in specialized literature, for example see [Arridge

et al., 1992].

3.4.4.2 Monte Carlo methods

Monte Carlo methods have evolved to be the “gold standard” technique for modelling of light in tissue

[Binzoni et al., 2008]. Introductory texts specifically for the field of biomedical optics include [Flock

et al., 1989; Jacques and Wang, 1995; Prahl et al., 1989; Wilson and Adam, 1983]. In brief, the rules

which govern photon propagation insideΩ with knownµa(r), µ′
s(r), are perceived as random variables

(RVs). Such rules represent the mean free path between absorption and scattering events and the scat-

tering angle in the case of the latter. The RVs are accompanied by well defined probability density

functions (PDFs) derived from the givenµa(r), µs(r). The propagation path of individual photons is

modelled by repeatedly instantiating the RVs to compute thenext position of the photon. The instantia-

tion of RVs is accomplished by employing random number generators which produce samples from the

PDFs. The disadvantage of these methods is the increased computational complexity rising especially

for complexµa(r), µ′
s(r). Accuracy depends on sufficient statistics and the latter requires the tracking

of a high number of individual photons, where each individual path is characterized by multiple RVs

instantiations. Rendering the task computationally tractable is crucial and has driven dedicated stud-

ies such as [Alerstam et al., 2008], which introduces a parallel processing approach utilizing modern
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multi-core GPUs. Monte Carlo methods are mainly used for forward modelling when DA does not hold

[Boas et al., 2002; Okada and Delpy, 2003] or for validating newly proposed models due to their “gold

standard” status, for example [Heino et al., 2003; Schweiger et al., 1995; Sikora et al., 2004].

3.5 Inverse problem
The inverse problem in DOT seeks to recover continuous scalar functionsµa(r), κ(r) which resemble the

true optical parameter distributionsµ⋆
a(r), κ⋆(r) within Ω, given measured datay and known incoming

radiation from sourcesq on∂Ω.

The continuous representation of the strictly positive scalar functionsµa(r) andκ(r) cannot be

handled by computers. Following the paradigm ofSchweiger and Arridge[2003]. the solution can be

expressed as an expansion of a finite set of basis functionsb(i)(r), i = 1 → N/2 defined inΩ, along

with a set of basis coefficientsµai
, κi ∈ RN/2 1. Given the coefficients, the continuous solution can be

defined anywhere via

µa(r) ≈ µa
b(r) =

N/2
∑

i=1

µai
b(i)(r), and (3.55)

κ(r) ≈ κb(r) =

N/2
∑

i=1

κ
i
b(i)(r) (3.56)

wherexb(r) 6= x(r) due to the approximation nature of the basis representation. The basis used to rep-

resent the reconstructed images will be referred to assolution basisas the number of coefficients define

the dimensionality of the problem. Schweiger & Arridge [Schweiger and Arridge, 2003] investigate the

effects of different basis representations in the reconstruction. The same paper provides information of

how to switch between different basis representations. This inter-basis mapping is used for example in

TOAST, to map from the solution basis to the nodal basis used in FEM forward solver. The problem

now reduces to the retrieval of the finite basis coefficients denoted by

µa =
[

µa1
, µa2

, . . . , µaN/2

]T

(3.57)

κ =
[

κ
1
, κ

2
, . . . , κ

N/2

]T
(3.58)

To simplify the notation, both unknown quantities are combined under a common variable name,

giving rise to

x+ :=





µa

κ



 , x+ ∈ RN . (3.59)

The termx+
⋆ denotes the true unknown solution comprised byµ⋆

a andκ⋆. The aim is to find the

optical parameter estimatêx+ which best fit the experimentally measured datay. In the deterministic

paradigm this is expressed as
1Note that the absence of the positional vectorr differentiates the basis coefficientsµa, κ from the continuous scalar functions

defined earlier
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x̂+ = arg min
x+

[E(x+) = D(y,F(x+)) + τΨ(x+)] (3.60)

whereD(y,F(x+)) measures the discrepancy between measured data and modelled data andΨ(x+)

is the regularization function weighted byτ (see Chapter2). Regularization is crucial as it alleviates

ill-posedness and increases the chances that the retrievedx̂+ matchesx⋆. The most common choice for

D(y,F(x+)) is the squaredL2 norm‖y −F(x+)‖2, valid when the noise in the data follows a Gaussian

distribution [Arridge, 1999; Arridge and Schotland, 2009; Viola, 1995]. Indeed, photon detection can

be modelled by Poisson statistics. With a sufficiently largenumber of detected photons, the Poisson

statistics can be approximated by a Gaussian distribution,with a variance proportional to the magnitude

of the measurements [Arridge and Schotland, 2009; Guven et al., 2005; Oh et al., 2002; Ye et al., 2001].

3.5.1 Linear case

One needs to differentiate between the linear and non-linear case in DOT. The linear case which can be

referred to as difference diffuse optical tomography (DDOT) uses the difference between two acquired

data sets oryδ = y − y(0) and attempts to recover the difference in the correspondingoptical properties

xδ
+ = x+ − x+

(0). Linearisation ofF in the vicinity ofx+
(0) is given by the Taylor series

y = y(0) + F ′(x+
(0))(x+ − x+

(0)) + F ′′(x+
(0))(x+ − x+

(0))2 + . . . (3.61)

whereF ′ andF ′′ are the first and second orderFréchetderivatives [Arridge, 1999; Schweiger et al.,

2005]. Retaining only the first order terms in Eq.3.61then the problem is expressed as

yδ = Jxδ
+. (3.62)

whereJ ∈ R2M×N is a discrete approximation of theF ′ matrix known as theJacobianor sensitivity

matrix. In practice, the DOT inverse problem can be assumed to be linear when initial estimatex+
(0) is

close tox+
⋆ and the measured datay are close to the simulated measurementsy(0) = F(x+

(0)). This is

typically the case in difference imaging where measurements are taken before and after a small change

in the optical properties [Gibson et al., 2005a]. Solving Eq. 3.62 in conjunction with some adopted

regularization technique, can be approached by direct or iterative methods such as the ones discussed in

Chapter2. DDOT example studies include [Everdell et al., 2004; Gaudette et al., 2000; Gibson et al.,

2005b].

3.5.2 Non-linear case

The non-linear case simply seeks to solve Eq.3.60when the assumptions about linear dependence be-

tween data and optical parameters do not hold. Numerical non-linear optimization techniques such as

the ones introduced in Section2.6 can be used. Most studies in DOT employ gradient based schemes,

although non-gradient methods have been also proposed. ForexampleHielscher et al.[2000] employed

an evolution strategy for reconstructing the optical parameters of homogeneous targets. The method
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however becomes non-tractable as the number of unknowns increases as it requires multiple evaluations

of the costly forward operator. The most common first derivative method is the non-linear conjugate

gradients, for example see [Arridge and Schweiger, 1998; Hielscher et al., 1999; Klose and Hielscher,

2002; Panagiotou et al., 2009b; Roy and Sevick-Muraca, 2001] with most studies employing aPolak -

Ribièreupdate scheme. Methods utilizing the second derivative areusually characterized by faster con-

vergence rates, given that the basin of attraction at the minimum can be approximated by a quadratic.

However, they also require more memory in order to explicitly store the Hessian matrix. Schweiger &

Arridge [Schweiger et al., 2005] applied a Gauss-Newton scheme and investigatedLevenberg-Marquardt

anddamped Gauss-Newtonschemes for restoring global convergence (see Sec.2.6.3). They also pro-

posed the use of a generalized minimal residual (GMRES) Krylov method. The Hessian is sequentially

accessed via matrix-vector products and never explicitly realized in full, hence the need of storage is

converted to additional but manageable computational costfor the extra product computations.Klose

and Hielscher[2003] investigated the performance of the Quasi-Newton methodsand compared them

with the GN approach whereasRoy and Sevick-Muraca[1999] proposed the use of truncated Newton

methods.

3.5.3 Jacobian computation

Arridge [1999] classifies the available methods for computingJ in three categories:(i) semi-analytic

(ii) Monte-Carlo and(iii) numerical partial differential equation methods. This work makes use of(iii) ,

specifically the FEM based implementation found in TOAST. This is based on the concept of photon

measurement density functions (PMDFs) introduced in its analytic form byArridge [1995] and with a

detailed analysis of the FEM based analogue discussed byArridge and Schweiger[1995a].

For anys th source andd th detector the forward and adjoint photon density fieldsΦ̈s(Ω, ω) and

Φ̈‡
d(r, ω) are computed. The PMDFs are then defined for any source/detector pair as

¨̺µa

s,d = − Φ̈sΦ̈
‡
d

ys,d

, ¨̺κ
s,d = −∇Φ̈s · ∇Φ̈‡

d

ys,d

(3.63)

Figure3.11 graphically shows the concepts of the PMDFs and their relation to the forward and

adjoint fields for two absorption distributions. Effectively, the PMDFs depict the sensitivity of the data

to perturbations at anyµa, κ. The vectors in Eq.3.63are mapped into the solution basis and are then

split into real and imaginary parts to construct the rows of the JacobianJ ∈ R2M×N .

J =





∂y(A)/∂µa, ∂y(A)/∂κ

∂y(φ)/∂µa, ∂y(φ)/∂κ



 (3.64)

=





J
(A,µa)
s,d = Re

[

¨̺µa

s,d

]

, J
(A,κ)
s,d = Re

[

¨̺κ
s,d

]

J
(φ,µa)
s,d = Im

[

¨̺µa

s,d

]

, J
(φ,κ)
s,d = Im

[

¨̺κ
s,d

]



 . (3.65)

3.5.4 Solution scaling and positivity

Obtaining a solution estimatêx+ by solving Eq. 3.60 requires essential transformations in order to

improve the chances of the optimization algorithm to retrieving an accuratêx+ and ensuring its positivity.
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Figure 3.11: TOAST generated PMDFs using FEM. For simplicity, only absorption images are included and

only the amplitudeA part of the PMDFs.3.11a-3.11bTwo µa distributions which differ regarding the location

of the sourceQ. 3.11c-3.11d forward (or direct) and adjoint fields corresponding tolog
“

Re
h

Φ̈
i ”

. The

perturbation can be seen in all fields.3.11e-3.11f PMDFs corresponding tolog
“

Re
h

¨̺µa
s,d

i ”

. Two additional

PMDFs are included where the perturbation in each case was removed, for comparison reasons. Each of the

twoPMDFs (1st and3rd) corresponds to a row inJ .

3.5.4.1 Parameter normalization

Optical imaging differs from most modalities as it simultaneously reconstructs not one, but two physical

quantitiesµa andκ. The range of values of each quantity differs as they represent different physical

quantities withκ > µa. In an iterative optimization scheme unless the parameter update for eachκ and

µa is proportional to the range of the optimized quantities, one of the quantities can potentially dom-
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inate the optimization process. Such problematic behaviorcan be treated by rendering both quantities

dimensionless, effectively normalizing their individualcontributions during the search for the optimum.

Schweiger and Arridge[1999a] proposed the normalization of each of the two parts ofx+ with the mean

value of the distributions used for initialization, givingrise toµ̌a = µa/µ̄a andκ̌ = κ/κ̄ or by making

use of the combined notatioňx+ = x+/x̄+. This can also be achieved by optimizing thelog(x+), a

choice which we also employ for the reasons described below.

3.5.4.2 Positivity of solution

The solution estimatêx+ in Eq. 3.60must be strictly positive. Unconstrained optimization canlead to

negative optical quantities which is physically impossible. Approaches which can address this problem

and can be inspired by other modalities such as positron emission tomography (PET), include the general

theory of constrained optimization [Nocedal and Wright, 1999; Press et al., 1992a], augmentation of the

objective functional to include penalties for negative solutions (same principle as generalized Tikhonov

regularization) [Mumcuoglu et al., 1994], modifications of the line search process such as the bent-line

search [Kaufman, 1987; Mumcuoglu and Leahy, 1994] and active sets [Kaufman, 1993]. PET solutions

however are not required to be strictly positive but only non-negative. This enables DOT to adopt simpler

approach described in [Schweiger and Arridge, 1999a; Schweiger et al., 2005]. The parameter vector

is logarithmically transformed during the optimization ofEq. 3.60giving rise tox = log(x+). When

an estimatêx is reached, a strictly positive solution is obtained via exponentiation. Combining the

parameter normalization described earlier, the full parameter transformations are given by

x = S(x̌+) = log(x+/x̄+) (3.66)

x+ = S−1(x) = exp(x)x̄+ (3.67)

The optimization is now performed with respect to logarithmically and normalized vector of optical

parametersx. By adopting anL2 data discrepancy functional, the updated objective function of Eq.3.60

becomes:

x̂ = arg min
x



E(x) =

∥

∥

∥

∥

∥

ý −F
(

S−1(x)
)

c1

∥

∥

∥

∥

∥

2

+ τΨ(x)



 (3.68)

The normalizing constantc1 is usually employed in an iterative optimization scheme to set the

initial error to a value of 2, regardless of the consideredý [Arridge, 1999]. This enables a consistent

choice of the regularizing weightτ , whose value now only reflects the percentage of the regularization

required for the provided data set. The actual form ofc1 is

c1 =
[

(

ý −F(S−1(µa
(0))
)

,
(

ý −F(S−1(κ(0)))
)

]T

(3.69)

whereµa
(0), κ(0) denote the estimates at initialization. Theµa, κ parts inc1 normalize the corresponding

parts of
(

ý − F(S−1(x)
)

in E(x). The final solution estimate obtained by Eq.3.68, which adheres
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to the positivity condition, is obtained bŷx+ = S−1(x̂). As it was already noted, the logarithmic

transformation has the additional effect of rendering theµa andκ components inx dimensionless, which

further helps in the parameter normalization.

3.5.4.3 Data scaling

Data y is subjected to transformation

ý =





ý
A

ý
φ



 =





creRe

cimIm









log
(

y
A
(m, ω)

)

y
φ
(m)



 (3.70)

The logarithmic transformation of the amplitude part of thedata is widely used in DOT. The mea-

sured signal is exponentially attenuated as the source/detector separation increases. Consequently, dis-

tant source/detector pairs are heavily penalized comparedto the the ones in closer proximity. It is there-

fore natural to apply the logarithmic scaling as it reduces the impact of this erroneous effect. Con-

stantscre, cim effectively normalize thelog-amplitude and phase which have completely different ranges

[Schweiger et al., 2005]. SeeSchweiger and Arridge[1999a] for a similar discussion regarding the

time-resolved case.

3.6 Regularization and multi-modality imaging

Due to the severe ill-posedness of DOT, the choice of the regularization functionalΨ(x) is an essential

matter as it drastically affects the the spatial and quantitative accuracy of the retrieved optical solution

x̂+. The basic theory and concepts behind regularization were briefly covered in Chapter2. This section

provides a small sample of the various regularization schemes which have been published in the DOT

specific literature. The classification of regularization methods can follow various schemes.Kaipio and

Somersalo[2005] approach the regularization according to the Bayesian formulation, giving rise to prior

densities. The main identified categories are Gaussian densities which correspond to a least squares

functional in the deterministic setting as well as non-Gaussian densities, soft and hard-priors.

3.6.1 Quadratic penalties (Gaussian priors)

The most common regularization term in DOT is the quadratic functional

Ψ(x) =
∥

∥

∥L(x− x(0))
∥

∥

∥

2

(3.71)

which in the Bayesian formulation corresponds to Gaussian densities [Kaipio and Somersalo, 2005;

Kolehmainen, 2001]. In the case ofL = I, this is known as thewhite noiseprior or zeroth-order

Tikhonov (TK0) introduced in Sec.2.4.3. It has been used in multiple studies in DOT including [Bover-

man et al., 2005; Model et al., 1997; Pogue et al., 1995].

In the case ofL 6= I but still a diagonal matrix, the regularization penalizes different regions of the

image with different weighting. Such spatially varying regularization scheme was initially proposed in

[Arridge and Schweiger, 1993a] and has been also adopted in [Arridge and Schweiger, 1995b; Li et al.,
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2003; Pogue et al., 1999b; Zhang et al., 2005a]. Specifically,Li et al. [2003]; Zhang et al.[2005a] used

variable regularization weights for different tissue types, designated by prior X-Ray anatomical images.

Lower regularization was applied to areas corresponding tolesions, as according to the authors, a smaller

τ value reduces the penalty for the reconstruction of opticalcontrast and thus increases the probability

of finding contrast in the designated region. Co-registration was guaranteed due to the DOT/X-Ray

simultaneous probing apparatus.

Smoothness priors can be introduced by the first-order Tikhonov (TK1) (see Sec.2.4.3). This is one

of the most common regularization schemes in DOT employed for example in [Arridge, 1993; Arridge

and Schweiger, 1995b; Schweiger et al., 2005].

Considering the nature of the linear operatorL, recent studies have defined more advanced forms

in order to includea priori information from alternative modalities [Brooksby et al., 2005a; Dehghani

et al., 2007; Yalavarthy et al., 2007a,b]. The methods displayed edge preserving characteristics where

a smoothing operator is firmly applied within regions identified to belong to the same tissue type but

with a reduced effect near region borders. The identification of the regions is accomplished via a labeled

anatomical prior. These type of regularization effectively is a form of edge preserving prior.

Heiskala et al.[2009] employed both TK0 and TK1 regularization in their simulated brain imaging

studies where they used the RTE as a propagation model under aMonte Carlo forward solving scheme.

In addition, they have made use of unregistereda priori information provided by a probabilistic atlas, in

order to improve the accuracy of the forward solver. The probabilistic atlas was firstly non-rigidly regis-

tered to match the boundary in the domain where light propagation would be modelled. The MRI based

atlas was assigned with optical values according to the literature and finally provided the probability of

each tissue type at each location inside the head for the Monte Carlo simulations.

3.6.2 Non-quadratic penalties

L1-norm The incorporation of theL1 norm as regularization functional, defined as

ΨL1
(x) = ‖x‖1 , where, ‖x‖1 =

N
∑

i=1

|xi| , (3.72)

was studied for DDOT as well as for the case of fluorescence DOTin [Cao et al., 2007; Mohajerani et al.,

2007]. For information regarding fluorescence DOT seeMilstein et al.[2003]. The above functional is

known to promote the reconstruction of sparse solutions with as few as possible non-zero elements. Note

that both DDOT and fluorescence reconstruct difference images hence non-zero pixels can be a part of

the solution. The ideal form of a functional that would penalize non-sparse solutions would be theL0

norm‖x‖0 = |{i : xi 6= 0}|. However its minimization is classified as an NP-hard problem [Natarajan,

1995] hence a compromise is achieved by theL1 norm which is convex and can be optimized. More

information aboutL0, L1 and sparsity can be found inCandès et al.[2007].

3.6.3 Edge preserving regularization

Total variation The total variation (TV) was initially introduced in image processing as an image en-

hancement tool, for example for the purpose of de-noising and de-blurring [Dobson and Santosa, 1996;
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Rudin et al., 1992; Vogel and Oman, 1998]. Since then it has been proven as an effective regular-

izer in imaging inverse problems, across modalities including DOT. Its functional form is given by

ΨTV(x) =
∫

Ω
|∇x(r)| dr. However, due to the discontinuity of the absolute value function at the origin,

TV is usually approximated by

ΨTV(x) =

∫

Ω

ξ
(

∇x(r)
)

dr, where (3.73)

ξ(t) =
√

t2 + β2 − β, β → 0+. (3.74)

Additional choices forξ(t) can be found in [Vogel, 2002]. TV measures thetotal lateral surface

area of the graph ofx [Vogel, 2002]. It promotes piece-wise constant reconstructions as it smooths

out fast intensity oscillations or weak edges - possibly belonging to artefacts - but allows the formation

of jump discontinuities. TV measures thetotal lateral surface areaof the graph ofx [Vogel, 2002].

Reviews which refer to TV include [Kaipio and Somersalo, 2005; Vogel, 2002] whereas DOT studies

include [Kolehmainen et al., 2000; Paulsen and Jiang, 1996; Tarvainen et al., 2005a].

Arridge et al.[2008a] recently proposed a modified TV, enabling the explicit designation of regions

in the reconstructed image based ona priori information, where data-driven edge formation would be

least penalized. A reference imagexref providing the edge information can be obtained by applying edge

detection methods on higher resolution images of the targetmedium obtained by alternative imaging

modalities. The modified TVref is defined as

ΨTVref(x) =

∫

Ω

ξ(|∇x(r)|D)dr, where (3.75)

ξ(t) = β
√

[t2 + β2]− β2, (3.76)

|∇x(r)|D =
√

(∇x)TD(r)∇x, is an image to image mapping and (3.77)

D(r) = exp

{

−|∇xref(r)|
βref

}

I, is a symmetric tensor function. (3.78)

with I being the identity matrix andβref being a threshold controlling the influence of the edges in

xref. Eq. 3.78returns small values inr with high |∇xref(r)| which propagateΨTVref
(x) and reduce the

penalty for edge formation inx(r).

Anisotropic diffusion regularization Anisotropic diffusion regularization was proposed for DOTby

Douiri et al. [2005a,b]. In the imaging paradigm, diffusion can be interpreted as aprocess of equili-

bration of the grey value concentrations in the image. In thecase of directionally invariant or simply

isotropic diffusion, “equalizing“ the concentration of grey values results in noise removal but this results

in smoothing of important structural features such as the interfaces between physiologically different re-

gions. The proposed anisotropic scheme preserved edges by blocking the diffusion process in directions

orthogonal to the edge but not parallel to it. The regularization functional is identical to Eq.3.73but

with ξ(·) being theHubert function
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ξ(|∇x(r)|) =











|∇x(r)|2
2 , if |∇x(r)| ≤ β

β |∇x(r)| − β2

2 , otherwise,
(3.79)

and whereβ is now a scale parameter adjusted in each iteration. Similarto the transition from TV to

TVref, Douiri et al.[2007] proposed a modification to the anisotropic diffusion regularization, in order to

enable the introduction ofa priori information from a reference imagexref. xref would indicate regions

in Ω where the diffusion process would be blocked, therefore edge formation would be promoted.

Anisotropic smoothness regularizationKaipio et al. [1999] proposed an edge preserving regulariza-

tion method for the severely ill-posed problem ofelectrical impedance tomography[Webster, 1990].

Although this Chapter reviews DOT related methods, we referto it as it is formulated in a similar man-

ner with TV, but with

ξ(x) = x2, and (3.80)

D(r) = I − (1 + ‖∇xref(r)‖2)−1∇xref(r)∇xref(r)
T. (3.81)

It is worth noting that the authors refer to the TV and its dependency on the total length of the edges

to be reconstructed which is not the case in this method. A comparison between this method and TVref

does not exist in the literature.

Hiltunen et al.[2008] proposed an alternative approach for anisotropic smoothness regularization.

The approach was based on an alternating optimization scheme were at each iterationk an improvement

to optical estimatex(k) was firstly computed.x(k) was perceived as the best current smooth approxi-

mation estimate of the true underlying distributionx⋆. The second part of the iteration usedx(k) as a

pilot in order to improve the estimate of a secondary scalar functionλ(k)(r). λ(k)(r) was responsible for

scaling the effect of regularization at pre-specified directions - effectively providing anisotropic smooth-

ing. λ(k)(r) computation was based on the already available estimatex(k), which provided information

about the presence of edges in the image.

3.6.4 Hard constraints and other types of prior information

Regularization provided by penalty functionals under the generalized Tikhonov regime are effectively

soft constraints. They dictate a preference to some specificsolution subspaces by penalizing the rest but

they don’t strictly enforce these constraints. On the contrary hard constraints must be satisfied by the

totality of the problem’s parameters. A regularization scheme involving hard constraints was proposed

by Schweiger and Arridge[1999b] for DOT. They employed a magnetic resonance imaging (MRI) slice

of an adult head, pre-segmented into four distinct regions corresponding to skin, bone, grey and white

matter. The regions provided by the MRI spatially corresponded to the true regions inx⋆. Rather than

using literature values as an initialization for the inverse solver, they approached the reconstruction in

two separate parts. In the first part the solver was constrained to retrieve a single optical estimatexk for

all pixels identified to belong to the same anatomical regionk. Considering all regions, this approach
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drastically reduced the dimensionality of the problem frompotentially thousands of degrees of freedom

(that is one for each pixel) to just eight - a singleµa andµ′
s value for each region. The reduction of

the dimensionality rendered a usuallyunder-determinedproblem to anover-determinedone, removing

effectively the need of regularization. The piecewise constant estimate was used as a initialization guess

for a second optimization using soft constraints, therefore resulting in a more realistic, continuously

varying final optical estimate.

Dehghani et al.[2003] used the above scheme to analyse the resolution of the images in small animal

imaging. Similarly,Ntziachristos et al.[2002] studied the performance of MRI guided diffuse optical

spectroscopy of breast lesions. The apparatus of the systemallowed scanning with both modalities

without change in the positioning of the patient, thus enforcing co-registration of the involved medical

signals. This allowed the voxels in the solution domain of the optical image to be labeled according to

the tissue type of the breast to which they were superimposed. The determination of the tissue type was

accomplished by the co-registered MRI signal. As in [Schweiger and Arridge, 1999b], by restricting all

pixels in the optical domain belonging to the same tissue type to be completely correlated, the under-

determined problem of DOT becomes overdetermined as the number of unknowns drops dramatically.

Jiang et al.[2008]; Xu et al. [2008] used the method to incorporate prior information in trans-rectal

ultrasound imaging (UI) driver, DOT imaging.

Pogue and Paulsen[1998] used the information from a segmented coronal MRI slice acquired from

a rat, in order to create a realistic finite element mesh basednumerical phantom to be probed. The three

distinct regions of bone, muscle and brain tissue in the phantom, were assigned with optical values from

the literature, known to correspond with each of the identifiable tissue types. The numerical phantom

was then used for the simulation of the data acquisition process. The solution of the inverse problem was

regularized by restricting the reconstruction of the optical parameters in regions which would correspond

to brain or bone structures, hence reducing the dimensionality of the problem. The initial guess for

the reconstruction was based on literature suggested values. The method differed from the scheme of

Schweiger and Arridge[1999b] which was discussed earlier, as it would not apply hard constraints on

the brain and bone regions but allowed the optical parameters to vary freely.

Guven et al.[2005] proposed a method towards the incorporation of a multi-modal structural prior

imagexref in DOT, explicitly designed to reduce undesirable, erroneous bias due to different features

betweenxref andx⋆. The method involved a hierarchical Bayesian approach defining multi-stage priors.

The first prior conditioned the optical solution initially with respect to the unknown hyper-parameters,

namely the the mean and standard deviation of the optical solution. A second stage prior - or hyper-prior

- conditioned these secondary hyper-parameters with respect to the anatomical image.

An alternative form of priors proposed in DOT regardsspectral priors. It is known that the opti-

cal properties of tissue vary as a function of wavelengthλ. The absorption coefficient of a mixture of

chromophores can be expressed as the sum of the products of the concentration of each chromophore

ci with its extinction coefficientǫi or µa(λ) =
∑

i ǫi(λ)ci. The wavelength dependent extinction co-

efficient of chromophore represents the level of absorptionperµmol of the chromophore, per liter of



84 CHAP. 3: DIFFUSE OPTICAL TOMOGRAPHY

solution, permm. Li et al. [2005] proposed the use of multiple spectral and spatial priors inoptical

tomography. Making use of MRI images, spatial prior information for the distribution chromophores of

water and lipid could be incorporated into the optical inverse problem. The remaining chromophores

targeted by DOT, namely oxy- and deoxy- haemoglobin were retrieved by the acquired optical data. The

reconstruction of the same chromophores from different optical wavelength data acquisitions comprised

a form of spectral prior.Brooksby et al.[2005b] compared structural with spectral priors concluding that

the former improve spatial resolution, the latter improve quantitative accuracy and their combined usage

returns superior images overall. Similar studies include [Corlu et al., 2005, 2003]. Intes et al.[2004],

extended the flexible hierarchical Bayesian scheme byGuven et al.[2005] to introduce physiological

information from chromophore concentrations obtained from multi-wavelength probing. He reported

results of optical absorption parameter reconstruction ofa slab, mimicking typical values encountered in

a human breast, assisted by MRI derived priors.

Zhuet al. [1999; 2003; 2005] proposed the simultaneous probing of breast tissue with UIand DOT,

for lesion detection. Their apparatus consisted of a hand-held probe combining on the same application

surface 12 optical source fibers, 4 optical detector fibers and 20 piezoelectric crystals comprising the

ultrasound array. The combined apparatus guaranteed sufficient co-registration between the optical and

UI signal. While the UI signal provided very accurate localization of a tumour, the optical data provided

information regarding the haemoglobin concentration of the tumour, allowing classification between

malignant cancers and benign lesions. Regularization was provided via the method of reducing the

unknowns and therefore improve the under-determined condition of the problem. They used the UI

signal to identify the location of the lesions and proceededby increasing the resolution of the optical

solution at the identified region while reducing the resolution at the background.

3.7 Reference images: anatomical and functional correspondence
Introducing structural information in DOT from reference requires the underlying true optical parameters

to be distributed in a manner similar to the secondary quantities depicted in the reference images.

Reference imagesxref are usually supplied from alternative imaging modalities probing for anatom-

ical characteristics (MRI, X-ray computed tomography (CT), UI) or physiological function (functional

magnetic resonance imaging (fMRI) and PET). These modalities consistently retrieve images of higher

spatial resolution compared to that of DOT. In this sense, the secondary quantity depicted by the images

refers to the underlying physical quantity targeted by these alternative modalities such as the magnetic

properties of tissue and possible contrast agents, X-Ray attenuation, acoustic properties of tissue or

radioactive tracer uptake characteristics of the probed anatomy. In order for the structural similarity

betweenx⋆ andxref to hold, it is understandable that features comprising the optically probed medium

should also exist in the medium probed by the secondary modality. Understandably, the probability of

the latter condition being satisfied increases when both DOTand reference modality probe the exact

same organ, in an intra-subject study and preferably at the exact same time. One should aim to match the

field of view of both modalities during the set up of the experimental data acquisition process so spatial

co-registration of the features potentially visible in both modalities is maximized.
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Even in the ideal case described above, difficulty arises as DOT is a functional imaging modal-

ity whereas a number of the high-resolution modalities return only anatomical information. Variable

amounts of blood, oxygenation levels or even electrical activationGratton et al.[1997]; Stepnoski et al.

[1991] can locally dominate the distribution of the optical properties while being undetected by other

modalities. This undoubtedly creates structural differences betweenx⋆ andxref and compromises the

quality of the prior information introduced by the latter. It is known however that distinct anatomical

areas corresponding to different tissue types, are characterized by different optical properties - at least

at a baseline level. The literature which provides suggested values for the optical coefficients of various

tissue types comprising distinct anatomical regions is extensive, for example seeCheong et al.[1990];

Durduran et al.[2002]; Okada and Delpy[2003]; Troy et al.[1996] and the references within. Because

different tissue types have different optical values (for example in brain all CSF, white, grey-matter, skin,

bone correspond to different optical properties), the trueoptical solutionx⋆ must structurally resemble

a high-resolution anatomical imagexref from another modality at least at that baseline level, justifying

the use of the latter asa priori information. Studies which successfully use anatomical prior informa-

tion in functional imaging modalities such as DOT or PET includeArdekani et al.[1996]; Boverman

et al. [2005]; Brooksby et al.[2005a, 2004]; Comtat et al.[2002]; Gindi et al.[1993]; Li et al. [2003];

Ntziachristos et al.[2000, 2002]; Rangarajan et al.[2000]; Som et al.[1998]; Zaidi et al.[2003]; Zhu

et al. [2005]. Introducing functionala priori information on a functional modality is another possi-

bility. Spatial correspondence between various functional signals has been established, for example in

the DOT/fMRI case inZhang et al.[2005b], in PET/fMRI caseJudenhofer et al.[2008]. Culver et al.

[2008] discusses the possibility of introducing prior information in DOT from reference images obtained

by PET. The finding of these studies are encouraging towards multi-modal functional imaging using

methods such as the one proposed in this work.

3.8 Ill-posedness, noise and resolution

3.8.1 Ill-posedness

There are various factors which contribute to the ill-posedness of DOT. One contributing factor is the

multiple sources of noise which can potentially contaminate the measured datay. Noisy measurements

can be unreachable by the forward operator of DOT - in the sense that they do not live inR (F(x)) for

all feasiblex. An additional reason fory /∈ R (F(x)) is that the DA is not valid very close to the sources

[Arridge, 1999]. Effectively these factors lead to a breach of the first postulate of well-posedness - that

is the existence of the true solution ofF(x) = y (see Sec.2.3). This case is usually treated by accepting

the best unique compromise solution, such asx̂
LS

(see the intuitive discussion of Sec.2.4.2for the linear

case analogue of̂x which is based on the same principle).

Solution uniqueness, the second postulate by Hadamard, is compromised as the problem is in most

cases under-determined. This case usually manifests in 3D studies where the dimensionality of the so-

lution, determined by the number of voxels comprising it, issubstantially larger than the dimensionality

of the measured data. Regarding the uniqueness of the solution of the CW-DOT, it is compromised
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by the fact that we solve simultaneously for the distribution of two physical processes (absorption and

diffusion/scattering) rather than one, proved even in the limit where the complete data is measured on

the boundary [Arridge and Lionheart, 1998; Harrach, 2009]. The non-uniqueness condition is also not

met in the frequency domain DOT when the distribution of the refractive index in the probed domain

is considered as an unknown [Arridge and Lionheart, 1998]. Furthermore, an inherent and unavoidable

source of ill-posedness in DOT is the diffuse nature of lightpropagation in tissue [Boas et al., 2001].

Additional practical issues which further complicate DOT and can potentially affect the well-

posedness of the system include the approximation of the true physical propagation of light by the

various light transport models such as the DA; the non-complete collection of the exiting light from

the medium, which effectively renders the measured data, a sample of the complete data; the non-linear

relationship between unknowns and data in the light transport models; and discretisations such as the

representation of the continuous solution by a finite numberof unknowns.

3.8.2 Noise

In Subsec.3.8.1we refered to the effects of noise in the well-posedness of the system. There a various

source of noise in DOT discussed in detail in [Schmidt, 1999].

When imaging across mediums of large thickness(> 6cm), the intensity of the exiting light is

several orders of magnitude lower than the one of the incident radiation. Only few photons exit the

medium. In this case, DOT imaging is performed using the powerful pulsed laser sources and photon

counting techniques incorporated into TD systems [Gibson et al., 2005a]. In that setting, the data is

contaminated by Poisson distributed noise arising from thestochastic nature of the photon counting

process. This results to signal-to-noise ratio which only increases with the square root of the number

of traced photons [Schmidt, 1999]. Hebden et al.[1998] notes that a measurement arising from a TPSF

built by 106 photons has less than0.2% noise. One should consider that99% of the probing laser pulses

(modulated in the order to 10 of MHz) do not produce a photon detection event [Schmidt, 1999]. The

efficiency of the MONSTIR optical tomography system of UCL, that is percentage of generated photon

count events given the number of photons arriving at the detector sites, is0.04 [Schmidt, 1999]. Then,

to ensure that the measured data at the sector sites is based on 106 photons counts, each source has to

be activated for a certain amount of time, producing pulses of light. All the photon counting events

from this prolonged activation result to a single TPSF whichthen results to a single measurement (see

Subsec.3.4.2.4). For example, probing through a9cm object withµa = 0.01mm−1 andµ′
s = 1mm−1

this would result to a required activation of4s [Hillman, 2002]. One can conclude that the shot noise

dependence to photon counts dictates the temporal resolution of the system, which depends on the size

of the probed object.

There are additional sources of noise in DOT, other than the aforementioned. The measurements

can be contaminated by noise arising from the coupling of thefibres with the skin and accuracy of the

representation of the fibres location during the FEM modelling; random noise due to detection of stray

room light and from thermally induced emission in thephoton multiplier tubesused by the detectors;

systematic noise due to detection of stray laser light, internal laser reflections in the system etc. [Schmidt,
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1999].

3.8.3 Resolution

The temporal resolution in DOT is dictated from the number ofphotons required to achieve an acceptable

signal-to-noise ratio as well as instrumentation issues. Studies targeting function in the superficial layers

of the anatomy can achieve very fast temporal resolutions(< 1s), as the source/detector array is usually

located in a surface region close to the targeted area, effectively measuring the reflected light. High

depth measurements require transmission measurements, arising from probing configurations where the

sources and detectors are located on opposite surfaces of the medium. The intensity of the exiting light

in the transmission measurements is lower than that of reflection measurements, effectively limiting the

temporal resolution (see Subsec.3.8.2).

The spatial resolution of DOT reconstructions cannot be easily quantified as it is affected by many

factors, both physical and study dependent. The resolutionis inherently limited by the diffuse nature of

light propagation in tissue. Its effect is schematically showcased in Fig.3.12where a homogeneously

absorbing medium - both in X-Rays and NIR light -with an embedded perturbation is probed by CT

and DOT. The X-Rays travel in straight lines, thus the profileof the detected intensity consists of high-

frequency components which reflect the ability of CT to resolve spatial details. In contrast, the diffuse

nature of near infrared (NIR) light results to spread out profiles carrying little spatial information re-

garding the perturbations location. By taking into consideration the multiple sources of noise and the

ill-posedness of the inverse problem, the already limited spatial information is further compromised.

Figure 3.12: Diffuse light transport. (a) A schematic view of computed tomography (CT)-like projections along

straight lines, where included objects cast âĂIJshadowsâ̆Aİ on the opposite detector array. (b) Photon density

wave from a single source propagating through a diffuse medium with an embedded object. Detectors placed

around the surface maximize data information. Courtesy ofSchweiger et al.[2003]

Another important characteristic of the resolution of DOT,is that it is spatially dependent as it

deteriorates in higher depths, where the distance from bothsources and detectors is increased. Photons

traveling across the centre of the medium are more likely to be absorbed due to the higher number
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of interactions with the molecular structure of the tissue.High depth imaging requires transmission

measurements resulting from sources/detectors located indiametrical locations. In contrast, features

close to the surface can be more accurately resolved, due to the higher number of photons following

superficial paths. The are photons emitted and later detected by spatially proximal source/detector pairs.

Effectively this constitutes a reflection1 measurement. However, regions in the reconstruction closeto

the boundary are susceptible to artefacts. Consider the case where photons emitted from a source travel

in superficial layers and are detected by an adjacent detector. Superficially traveling photons however

will not travel the full circumference of an object as the path would be very large and they will probably

get absorbed. Superficially travelling photons will only bedetected at locations proximal to the source.

This means that the reconstruction of the pixel values at regions close to the surface depend on a limited

number of measurements from the few contributing source/detector pairs, located close to these regions.

This can be thought of as a locally under-determined problemand artefacts can manifest. The intuition

regarding the depth dependent resolution of DOT has lead to spatially varying regularization schemes

discussed in Sec.3.6.1, where boundary regions are over-regularized to suppress artefacts whereas deep

locations are under-regularized to preserve the limited information coming from these regions.

In addition, the resolution of DOT is dependent on the actualtarget it attempts to reconstruct. Some

regions can be completely invisible if they can be surrounded by high absorbing layers which do not

allow light to travel inside them. A similar behaviour can beobserved in scattering, where a region

might become invisible when a surrounding layer scatters light to directions other than its interior. The

resolution of DOT increases with the number of sources/detectors employed [Ntziachristos et al., 2001].

It is evident that quantifying the resolution of DOT is a complicated task as there is not standard

imaging apparatus as well as due to its dependency to the specifics of each case. Resolution levels re-

garding the position of a perturbation, have been reported to be as low as2mm in simulated studies -

see for example [Ntziachristos et al., 2001]. The overall size of a perturbation however can be under-

estimated. In a more general note we refer to the resolution levels of DOT reported byCorreia[2010],

which vary between1− 3cm.

3.9 Summary
This chapter has introduced the main concepts of DOT imaging. The discussed topics varied from intu-

ition on the physical aspect of light propagation in media, the review of the mathematical formulation of

the forward problem, the light propagation models of RTE andits DA with weight on the FEM for the

practical implementation of the latter. In addition, the inverse problem was formulated with emphasis to

regularization and multi-modality imaging. Solving the inverse problem of DOT is a very challenging

task and this drives dedicated research from numerous labs around the world. Additional details regard-

ing DOT can be found in the suggested topical reviews [Arridge, 1999; Arridge and Schotland, 2009;

Boas et al., 2001; Gibson et al., 2005a] and the references within.

1In this context reflection means that photons are exiting themedium from the same side of the medium they entered.



Chapter 4

Information theory

4.1 Introduction

The aim of this chapter is to introduce two of the fundamentalconcepts of information theory (IT),

namelyinformation entropyH and mutual information (MI). In the context of this work, both concepts

will be approached from an imaging perspective.

Probably the most notable contribution to the development of information theory was made in the

context of telecommunications. Its mathematical foundations were laid by Claude E. Shannon in his

1948 seminal paper“A Mathematical Theory of Communication“[Shannon, 1948]. The main problem

addressed by Shannon’s work regarded the efficient encodingof messages produced by an information

source, in order to transmit them over a communication channel. Shannon defined the channel’s transfer

capacity considering its noise characteristics - as they can compromise the accuracy of the communi-

cated message at the receivers’ end - and the rate of information transmission from the source. He then

provided a ground-breaking proof which stated that if the source’s rate of generating information was

less than the maximum capacity of the channel, a message could then be encoded, communicated and

finally received with arbitrarily small uncertainty about the accuracy of its contents. By also defining the

absolute maximum rate of transmission of information in a noisy channel, Shannon effectively defined

the limits of efficient, error-free communication.

One question which needs to be answered regards to what exactly constitutes information and how

is it defined. Shannon was prompt to declare that the semanticaspect of the information produced by a

source or in a less rigorous and more abstract terminology - its meaning, is irrelevant to the engineering

problem (telecommunications in that context). Information in IT is defined as ‘the reduction inuncer-

tainty, from the level prior to the receipt of the message to the level after it has been received’. The

uncertainty after the receipt of the message, reflects on thepossibility that the received message differs

from the actual message sent from the source, due to noise contamination during transit. In this case, the

uncertainty after the arrival of the message is a measure of noise.

The next obvious question which arises regards the uncertainty - or equivalently the choice - among

the outcomes of the involved random processes - for example the message generating source or the un-

certainty in the receiver’s end due to noise contamination during transit - and how it can be measured.

Shannon identified three postulates (see Sec.4.5.1) which should be met by any uncertainty measure.
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The only measure which meets all three postulates was answered by Shannon conclusively and unequiv-

ocally and isentropyH . Entropy can be considered as a measure ofuncertainty, randomness, choice or

disorder, as all terms are equivalent in this context.

Consider the following example. In the single performance of a coin toss, there is uncertainty

involved regarding the outcome or its prediction. When the coin toss is performed and the outcome

headsis recorded, the observer has receivedinformation. As it was noted, information in the context of

IT has nothing to do with the semantic aspects of the message.Assuming that there are no errors during

the observation of the toss outcome, there is zero uncertainty about the outcome heads being realized

and the information gain (uncertainty reduction) isHbefore −Hobserved = Hbefore.

In the unlikely case of a coin withheadon both sides, there is no uncertainty involved prior to

the coin toss. The outcome will always be heads. In this case,the performance of the experiment is

completely irrelevant. There is no information to be gainedby the observer as the outcome is knowna

priori . Observing the outcome carries no information whatsoever as uncertainty is already zero.

The beauty of IT is that its rules and theorems operate on the abstract level. Quoting Kullback [Kull-

back, 1959], “information theory is a branch of the mathematical theory of probability and statistics. As

such, its abstract formulations are applicable to any probabilistic or statistical system of observations”.

Indeed, IT has found widespread use in numerous scientific disciplines such as engineering, computer

science, physics, economics and many more; see for example [Cover and Thomas, 1991] where each

chapter elaborates on a different application of IT. Recommended references for IT include the original

Shannon’s paper [Shannon, 1948] as well as [Ash, 1990; Cover and Thomas, 1991; Mackay, 2002] and

theexcellentintroductory primer [Schneider, 1995].

The structure of this chapter is as follows: Sec.4.2 introduced fundamental concepts of probabil-

ity theory such as random processes, random variables (RVs), probability density functions (PDFs) and

sample statistics in the uni-variate and bi-variate setting. Sec.4.3defines the Normal - or Gaussian den-

sity - used extensively in this work. Sec.4.4describes parametric and non-parametric density estimation

techniques. Sec.4.5 introduces the information theoretic functionals of entropy, conditional entropy,

joint entropy (JE) and MI. In addition it discusses the concepts of empirical and differential entropy

(DE). The entire discussion draws analogues to the imaging context to assist clarity and provide further

intuition.

4.2 Random processes, probabilities and random variables

4.2.1 Random process

A random process is a process whose outcome cannot be predicted with certainty. Examples include

the toss of a coin resulting to heads(h) or tails (t) or the arrival of a person in the train station at a

certain timet within a specific time intervalt1 ≤ t ≤ t2. Given such a process, it is possible to de-

scribe some of its aspects usingset theoryterminology [Papoulis and Pillai, 2001]. The sample space

Ωζ = {ζ1, ζ2, . . . , ζN} of a random experiment, is the set comprised by allN possibleexperimental out-

comesζi, i = 1, 2, . . .N . It is also known as thecertain event, as one of its elements will always be real-
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ized. The empty-set{∅} is known as theimpossible event. Ωζ consists of2N subsets known as theevents,

comprising the events’ setG⋆ = {{∅}, {ζ1}, {ζ2}, . . . {ζ1, ζ2}, {ζ1, ζ2}, . . . , {ζ1, ζ2, ζ3}, . . . ,Ω⋆},
Ω⋆ = Ω \ {∅}. For example in the single coin toss process, the events are{{∅}, {h} , {t} , {h, t}}.
We denote the individual events inG⋆ by ωi.

The sample space of a random process can befinite, countable infiniteor uncountable infinite. The

coin toss repeated a fixed number of times falls in the first category, the repetition of the coin toss until

heads are realized falls to the second category (possible events areG⋆ = {{h} , {th} , {tth} , . . . })
whereas the event of arriving at the station at some time instancet fall to the third category, due to the

continuous nature of time.

4.2.2 Probabilities

The potential eventsω ∈ G⋆ can be assigned with a probabilityPr(ω) which can be interpreted as

measure of the uncertainty regarding their occurrence [Papoulis and Pillai, 2001]. Pr(ω) should satisfy

Pr(ω) ≥0 , (4.1)

Pr(Ω) =1 and (4.2)

Pr(ωi ∪ ωj) =Pr(ωi) + Pr(ωj), if ωi ∩ ωj for i 6= j (4.3)

where∩ and∪ denote set operations of intersection and union respectively. For mutually exclusive

events it holds that

Pr(ω1 ∪ ω2 ∪ . . . ) = Pr(ω1) + Pr(ω2) + . . . (4.4)

It should be noted that in practical situations one usually considers a subsetG of G⋆. This practice

removes the need of explicitly assigning a probability for every singleω ∈ G⋆. It rather focuses on the

ones which correspond to the information attempted to be inferred by the observer of the random process.

For example, considering an experiment defined by two consecutive coin tosses, one might be interested

in the probability of tails being realized in the second toss. The event corresponding to this outcome is

ω1 = {ht, tt}. Considering the information of interest, a reduced set of events which considered for this

experiment areG = {ω1, ω1}, whereω1 ∪ ω1 = Ω with ω1 being the complement ofω1. The triplet

(Ω,G, P r) constitutes theprobability spaceof the random process [Kaipio and Somersalo, 2005].

4.2.3 Random variables

In the heart of probabilistic methods lies the concept of therandom variable (RV). In this work RVs are

denoted by boldfaced letters, for examplex. Given an experiment with a sample spaceΩx, x is defined

as a function which maps eventsG⋆ to numbersx ∈ R(x), or

x(ω) = x. (4.5)
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If R(x) = R, the RV is continuous whereas ifx is discrete if it is only defined at given values

R(x) = {xi} , i = 1, 2, . . . . Consider also two additional concepts, thetrial and thesample. A trial

refers to a single performance of a random experiment where an outcomeωj gives rise to a particular

valuexk = x(ωj). A sampleA (denoted by capital letters) is comprised for a collection of N trials

A = {a1, a2, . . . , aN} (4.6)

whereai = xk denotes the value ofx realized in theith trial. It should be noted that different trials can

be assigned with equivalent values ofx.

4.2.4 Probability distribution and density functions

Probability distributions Let ωi, i ∈ I denote all events for whichx(ωi) ≤ x or under the more

compact notationx ≤ x (the eventωi is not explicitly shown). The probability distribution function of

of x is defined as

Fx(x) ≡ Pr(x ≤ x), ∀x ∈ [a, b] (4.7)

wherePr(·) denotes the probability of some event,Fx(a) = 0, Fx(b) = 1 andFx(x+ h) ≥ Fx(x), ∀h ≥
0.

Probability mass and density functionsThe probability density function (PDF)px(x) of an RVx is a

function whose integral within some interval[xa, xb] ∈ Ω equalsPr(xa ≤ x ≤ xb). It is defined as the

derivative ofFx(x) with respect tox

px(x) =
dFx(x)

dx
(4.8)

= lim
∆x→0

Fx(x+ ∆x) − Fx(x)

∆x
≥ 0, ∀x (4.9)

where px(x) ≥ 0, ∀x due to the monotonically increasing nature ofFx(x). For any PDF,
∫

R(x) px(x)dx = 1 should always hold.

Discrete caseIn the case of a discrete RVsx the concept of a continuous density is not defined. It is

replaced by a collection of discrete masses centered at discrete RV values. The probability mass function

is defined as [Papoulis and Pillai, 2001]

Px(x) =
∑

xi∈R(x)

Pr(x = xi)δ(x − xi) (4.10)

whereδ(x−xi) is the Kronecker’s delta defined in Eq.2.12. Note that the capitalP (·) is explicitly used

for the discrete case. The discretexi correspond to the jump-discontinuity points ofFx(x) in 4.2a. In

addition it holds that
∑

xi∈R(x) Px(xi) = 1.



4.2 Random processes, probabilities and random variables 93

 

 

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

0

50

100

150

200

250

Figure 4.1: Images and randomness. A randomly generated point is depicted (see text)

4.2.5 Images and randomness

We pause the reference to the underlying theory in order to draw an analogy between the concepts

described in this section and the imaging setting. Considerthe image of sizeN depicted in Fig.4.1. It

is printed on the page, its grey values, structure and size are fixed and there is no obvious connection to

the notion of randomness. In order to enable the applicationof statistical tools - such as the information

theoretic concepts introduced in this chapter - one is required to introduce the notion of randomness. As

there is no apparent random process, it isup to usto devise one.

Consider the following. The reader can cover the image with apiece of paper which only only

depicts the pixel grid of the image, but not the actual grey value information. Then he/she can ask a

second person to randomly choose a pixel locationri, i = 1, 2, . . .N - such as the one depicted by the

red dot. In this context, the random process regards the generation of ri. This description gives rise

to a sample spaceΩζ = {{r1}, {r2}, . . . , {rN}} comprised by all possible outcomesri. There are2N

potential events inG⋆, for example{r1}, {r13} or {r7, r4, rN}, where the latter regards the case ofri

belonging to a collection of pixels locations. Because we donot want to compute the probability for all

these events, we select the subsetG ⊂ G⋆ comprised solely with the same events ofΩζ

A random variablex is now devised which maps eventsr to a numberx. In this casewechoose the

numberx to take three discrete values, equivalent to three distinctgrey levels of the image. These are

x = {0 (black), 128 (grey), 255 (white)}. We could have chosen ax of different nature, for example

the arbitraryx(ri) = r2i , however grey values are preferable in this case.

One can now ask the question, what is the probability{x(ri) = 255}?. It is sensible to expect that

as the number of white pixels is greater than the other two grey values, the event1 x(ri) = 255 would

be more probable. Note that the choice ofri must be completely random. If the person who choosesri

is biased and selects locations in the middle of the image, then the probability ofx(ri) = {{0}, {128}}
1the actual event is the generation ofri and however we now refer to the value assigned byx as the event
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Figure 4.2: Examples of probability distribution - (discrete/continuous) (Fig. 4.2a) and probability

mass/density functions (Fig.4.2b). The continuous distribution and density are estimated from a finite sized

sampleA. The trialsα depict the values of the trials. Each depicted trial actually corresponds to numerous

trials sharing the same valuex

becomes dominant. To avoid possible bias a random process involving the generation of two or more

r, we would require the sampled locations to beindependent, and identically distributed(i.i.d.) in a

uniform manner.

Assuming the i.i.d. condition, the probabilityPr(x = xk) is given by the probability mass function

depicted in Fig.4.2b. Apparently, the amplitude of the individual masses reflecton the size of the three

regions. ThePr(x = xk) values have a frequency interpretation, corresponding to the number of pixels

xk considering the full sizeN of the image. Effectively,Pr(x = xk) = Nxk
/N .

The continuouspx(x) assumes thatx ∈ R. In that case, although not reflected on the image itself,

one would expect that valuesx→ 255 would be more probable than values close to 0 or 128. Finally,the

image itself can considered as a sampleA of trialsα = x(ri) = xk, where all possibleri are considered.

4.2.6 Expectation, variance and standard deviation of a random variable and

sample statistics

Expected valuePredicting the outcome of a single trial of an RVx cannot be done with certainty. There

are however secondary quantities expressed in terms ofx, which are not considered to be random. An

example of such quantity is the long term average value ofx known as theexpected value. Using the fair

coin toss paradigm, letx describe the realization ofheadssuch asx(ω = heads) = 1, x(ω 6= h) = 0.

For a number of coin tossesN ≫ 0, the number ofx = 1 would approachN/2. For an RVx ∈ R(x)

the expected value or itsmeanE [x] (also denoted as̄x) is defined as

E [x] =











∫

x∈R(x) x px(x)dx, continuous case

∑

xi∈R(x) xi Px(xi), discrete case.
(4.11)

.
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Variance and standard deviationThevarianceV ar(x) of an RV- also denoted asσ2
x - is a measure of

the dispersion of the random variable around its meanx̄. It is defined as the average squared difference

of every value of the possible realizations ofx from the mean̄x or

V ar (x) = σ2
x = E

[

(x− x̄)2
]

=











∫

x∈R(x) (x− Ex [x])2 px(x)dx, continuous case

∑

xi∈R(x) (xi − Ex [x])
2
Px(xi), discrete case.

(4.12)

Taking the square of the difference ensures that the amplitude of the deviation from the mean is

measured irrespective of the direction of the deviation. The exponent however propagates to the actual

unit of variance, which now equals the squared unit ofx. By taking the positive root ofV ar (x), a

measure of spread is obtained in the original units. This measure is thestandard deviationdenoted by

σx given by

σx =
√

V ar (x) (4.13)

Sample statisticsThe true expectationE [x] and varianceV ar (x) of x arepopulation parameters. As

the population in its totality can be unavailable or too large to process, an estimate is usually retrieved

from anNA sized sampleA of x. If the sample based estimate matches the true population parameter,

the estimator is calledunbiased[Spiegel and Stephens, 2008]. The sample mean is defined as

EA [x] =
1

NA

NA
∑

i

ai (4.14)

Contrary toE [x], the sample mean is an RV [Viola, 1995]. For largeNA

lim
NA→∞

EA [x] = lim
NA→∞

1

NA

NA
∑

i

ai → E [x] (4.15)

The sample meanEA [x] (also denoted as̄A) is an unbiased estimator of the true expectationEx [x]

given thatNA →∞ [Viola, 1995]. Similarly, an unbiased estimator for the sample variance- given that

Ā has been estimated from sample and is not knowa priori- is given by [Papoulis and Pillai, 2001]

V arA (x) =
1

NA − 1

NA
∑

i=1

(xi − Ā)2 (4.16)

4.2.7 Systems of two random variables

Often the physical system under investigation involves more than one random processes. Each process

is described by a dedicated RV. Assume the simplest case of a multivariate system, one that is described

by two RVsx andy. Although random to some degree, the outcome of one process can be dependent

on already realized outcomes of the other. This implies a functional relationshipy = f(x). Dependency
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among RVs cannot be determined by the distributions and densities defined in Sec.4.2.4. One has to

consider theirjoint behavior. The bi-variate setting gives rise to the joint event

{x = x, y = y} , discrete RV case (4.17)

{x, y} ∈ D , D =
{

{xa, xb}, {ya, yb}
}

⊆ Ωx,y, continuous RV case. (4.18)

The bi-variate analogues of Sec.4.2.4are the joint distributionFx,y(x, y) and joint probability

mass/density functions (JPDF)Px,y(x, y), px,y(x, y). They correspond to the probability of the joint

event being realized, for discrete and continuous RVs respectively. Two RVs are statistically independent

[Papoulis and Pillai, 2001] if

px,y(x, y) = px(x) · py(y). (4.19)

In the context of the joint setting, the statistics of the individual RVs are calledmarginal. This gives rise

to the marginal PDFs

px(x) =
∑

y∈R(y)

px,y(x, y), and py(y) =
∑

x∈R(x)

px,y(x, y). (4.20)

Another function which arises in the joint setting is probability density ofx, conditionedon the fact that

some eventy = y has already been observed. The conditional probabilitypx,y(x | y) is expressed as

px,y(x | y) =
px,y(x, y)

py(y)
. (4.21)

Finally, theBayes’formula relates the two conditional probability functionsrising fromx andy, accord-

ing to

px,y(x | y) =
py,x(y | x)px(x)

py(y)
(4.22)

Randomness in pairs of imagesIn an analogy to the discussion of Sec.4.2.5, a random process in a

system of two images randomly probes two imagesx, y at corresponding spatial locationsri. There is

now uncertainty in predicting joint events of type{x(ri) = xk, y(ri) = yl}. The probability of specific

outcomes arising is provided bypx,y(x, y). Figure4.3 depicts the formed probability distribution and

mass/density functions by the two images. Apparently, the probability of the outcome{x = 255, y = 0}
is dominant due to the size of the overlap between the regionspopulated with these values.

4.3 The Normal density
Of the various density functions that have been investigated, none has drawn more attention other than the

normal density - also known asGaussiandensity [Duda et al., 2001]. A justification for the increased
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Figure 4.3: Joint probability distribution and mass/density functions between two images

attention of the normal density comes from thecentral limit theorem. GivenN independent random

variablesxi of arbitrary densitiespx(x), then the sumx =
∑N

i xi constitutes an RV with meanµ =
∑N

i µi and varianceσ2 =
∑N

i σ2
i , whereµi, σi are the means and standard deviations of the individual

RVs. The central limit theorem states that asN increases,px(x) approaches the normal density [Papoulis

and Pillai, 2001; Rice, 2001]. In essence the central limit theorem states that the aggregate effect of the

sum of a large number of small, independent random disturbances will lead to a normal density [Duda

et al., 2001]. The normal density is defined as

N (µ, σ2) =
1√
2πσ

exp

(

− (x− µ)2

2σ2

)

(4.23)

whereµ andσ2 denote the mean and variance of the density.N (µ, σ2). x ∼ N (µ, σ2) denotes thatx is

normally distributed. Examples of uni-variate normal densities are shown in Fig.4.4a. The multivariate

normal density inn dimensions is defined as

N (M,Σ) = pX(X) =
1

(2π)d/2 |Σ| exp

[

−1

2
(X−M)TΣ

−1(X−M)

]

(4.24)

whereX now refers to ad−dimensional column vector of the individual RVsxi, M is ad−component

vector of consisting ofµi, Σ is ad × d covariance matrix with|Σ| andΣ
−1 being its determinant and

inverse [Duda et al., 2001]. If ∀i, j it holds thatxi andxj are independent, then all the off diagonal

components ofΣ are zero. Examples of multivariate normal densities are shown in Fig. 4.4b-4.4c.

4.4 Density estimation
The task of estimating PDFs is central to probabilistic inference. Two of the different approaches towards

density estimation includeparametricandnon parametrictechniques. The following sections briefly
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Figure 4.4: Examples of normal densities.4.4a Uni-variate densitiesN (0, 0.5),N (0, 1),N (0, 2). 4.4b

Isotropic bi-variate density withµx = 0, µy = 0, σx = 1, σy = 1. 4.4c Anisotropic bi-variate density

with µx = 0, µy = 0, σx = 0.5, σy = 2

introduce them.

4.4.1 Parametric techniques

Parametric techniques assume that the truepx(x) approaches some already known, parametrically de-

fined PDF class. For example assume thatx is normally distributed orpx(x) ∼ N (µ, σ2). In that case

the task of estimatingpx(x) simply reduces to the estimation ofµ andσ2. Under a more general setting

the parameters which completely describe the assumed parametric form ofpx(x) are denoted asθ. The

dependence ofx to θ is explicitly expressed in the form of a conditional densityaspx(x | θ) ∼ N (µ, σ2).

4.4.1.1 Maximum likelihood estimator

Let θ⋆ denote the true unknown parameters. The maximum likelihood(ML) estimator assumes thatθ⋆

is a fixed, non-random quantity [Papoulis and Pillai, 2001]. LetA = {a1, a2, . . . , aN} be a sample ofx,

comprised by i.i.d. trials drawn frompx(x). As θ⋆ uniquely determinespx(x), it should also determine

the distribution of the trialsai ∈ A. The dependence ofA to θ is expressed byL(A|θ) = px(A | θ)
interpreted as thelikelihood of the sampleA [Viola, 1995]. It corresponds to the probability ofA being

realized for givenθ. Due to the i.i.d. and the multivariate version of Eq.4.19, the joint probability of the

realizations in the sample is expressed as
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L(A|θ) =
∏

ai∈A

px(ai | θ) (4.25)

By definition, the ML estimatêθML of θ⋆ is the one that maximizes the likelihood of the sample

[Papoulis and Pillai, 2001]

θ̂ML = arg max
θ

[L(A|θ) = px(A | θ)] . (4.26)

It is typical to maximize thelog of Eq. 4.25as the product is turned to a sum and the optima are

preserved due to the monotonic transformation by thelog transform

θ̂ML =arg max
θ

[l(A|θ) = log (px(A | θ))] (4.27)

=arg max
θ

[

l(A|θ) =
∑

ai∈A

px(ai | θ)
]

(4.28)

where we have used the same notationθ̂ML for the estimates retrieved by both standard ML and its

logarithmically transformed variant. As it was noted, parametric methods assume thatpx(A | θ)
is given. To give an example of ML estimation in action, assume that x ∼ N (µ, σ2). Then

l(A;µ, σ2) =
∑

ai∈A log
(

1√
2πσ

exp
[

− (ai−µ)2

2σ2

])

. By differentiating and setting the derivatives to

zero, the obtained parameter estimates areµ̂ = 1
N

∑N
i=1 ai and σ̂2 = 1

N

∑N
i=1(ai − µ̂) [Duda et al.,

2001]. These expressions show that the estimated mean and variance ofx based on a sampleA is the

mean and variance of the true distributionN (µ, σ2).

4.4.1.2 Bayesian estimation

Contrary to the ML estimator, the Bayesian approach regardsθ as an RV- hence denoted asθ - which

are distributed according to some PDFpθ(θ). The termpθ(θ) constitutesa priori information which

the Bayesian approach enables its incorporation in the estimation. From Bayes Law (Eq.4.22) and by

considering a sampleA, the estimator is defined as

pθ(θ | A) =
px(A | θ)pθ(θ)

px(A)
(4.29)

wherepθ(θ | A) is known as theposterior densityexpressing the probability of the parameters of interest

given a sampleA of x, px(A | θ) is the likelihood function defined earlier,pθ(θ) is theprior densityand

px(A) =
∫

px(A | θ)pθ(θ)dθ > 0 is the total probability of A [Duda et al., 2001; Papoulis and Pillai,

2001]. The second conceptual difference between the Bayesian and ML approach is that the former

retrieves a density function - the posterior - and not a pointestimate. Givenpθ(θ | A), it is now possible

to derive point based estimators such as themaximum a posterioridefined as

θ̂MAP =arg max
θ

[pθ(θ | A) ∝ px(A | θ)pθ(θ)] (4.30)
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where the denominatorpx(A) in Eq. 4.29can be omitted as it simply acts as a normalising constant

[Kaipio and Somersalo, 2005] and does not depend onθ. In addition to point based estimators, the

Bayesian approach enables interval estimates such as

p {θ1 < θ < θ2} = γ (4.31)

where1− γ is the confidence level [Papoulis and Pillai, 2001]. More detailed explanation can be found

in [Duda et al., 2001; Gelman et al., 2003; Papoulis and Pillai, 2001].

4.4.2 Non parametric kernel density estimation

Contrary to the methods introduced in the previous section,non parametric techniques do not assume

that the form of the underlying densities is known. The estimation of the density is based solely on the

available sample. This results in more generic estimators which can model densities of arbitrary shape.

One such method which is also employed in this work is the non-parametric kernel density estimation

(KDE) - also commonly referred to as the Parzen window estimator [Duda et al., 2001; Izenman, 1991;

Parzen, 1962; Silverman and Green, 1986; Simonoff, 1996; Wand and Jones, 1995].

Let px(x) be the true PDF ofx andA a drawn sample. For the uni-variate case, an estimatep̂x(x;A)

of the truep⋆
x(x) can be obtained at somex, by utilizing aN−sized sampleA of x via

p̂x(x;A) =
1

N

N
∑

i=1

Ku(x− αi). (4.32)

Its bi-variate analogue, utilizes twoN -sized samplesA andB and the estimated joint probability density

function (JPDF) is given by

p̂x,y(x, y;A,B) =
1

N

Ny
∑

i=1

KΣ(x − αi, y − βi). (4.33)

In both expressions,Ku(·),KΣ(·, ·) arekernelsor window functionsof widthu or covarianceΣ respec-

tively. In essence, the window function weights the contribution of its trialai ∈ A according to each

distance fromx. If Ku(·) is smooth and differentiable and satisfies
∫

Ku(x)dx = 1, then the estimate

p̂x(x;A) will be continuous and differentiableDuda et al.[2001]. A common choice is the normal den-

sity. Alternative distributions which have been used as kernels in the literature include the Uniform,

Triangle, Epanechnikov and Cosine kernels [Silverman and Green, 1986].

Regarding the retrieval of accurate PDF estimates, the choice of the kernel widthu is more im-

portant than the choice of the actual kernel type [Silverman and Green, 1986]. Various methods foru

selection are discussed in literature such as the L-curve orgeneralized cross-validation. For a detailed

introduction on kernel width selection methods, the readeris is redirected to specialized literature and the

references within [Hall et al., 1991; Hansen, 1992a, 1998; Jones et al., 1996; Raykar and Duraiswami,

2006; Silverman and Green, 1986; Turlach, 1993; Vogel, 2002]. In addition, many optimization problems
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which involve a KDE incorporate the bandwidth of the kernel in the overall set of optimized parameters

- see for example [Kazantsev et al., 2010; Viola, 1995].

Finally, KDE can be characterized by high levels of computational complexity. Estimating the

p̂x(x;A) for M values ofx (see Eq.4.32) results in a complexity ofO(NM), which is dependent on

the sample size. Numerous methods have been proposed to reduce of complexity. These include data

reduction methods which utilize binning or clustering strategies to reduce the size of the available data

and approximate kernel decompositions which decouple the pointx where the density is estimated from

the remaining sample pointsA, so the summation overA in Eq. 4.32can be performed separately in

a manner akin to orthogonal series density estimators [Izenman, 1991]. See [Girolami and He, 2003]

and the references within for fast KDE estimation. Viola [Viola, 1995] used a stochastic approach to

optimize entropy which requires a PDF estimate. In each eachiteration of the optimization, the KDE

utilized a randomly selected sample drawn from the RV sampleA. Although this constitutes a data

reduction strategy considering a single iteration, throughout the entire optimization routine the majority

of the sampleA was utilized.

Figure 4.5 shows a uni-variate density estimator in action computing an estimate from a finite

sample from a continuous RV. The advantage of continuous density estimates over discrete ones - for

example the depicted normalized histograms - is the potential differentiability of the former.

Figure 4.5: Non-parametric kernel density estimation. The black linesunder the horizontal axes denoteN

samplesai drawn from some continuous RVx, forming the finite sampleA. px(x; A) denotes the continuous

probability density estimate ofx, at regular spaced locationsx̆. Ku(x̆−ai) denotes a Gaussian kernel centered at

each sample pointai. Effectively, the PDF estimatêpx(x̆j ; A) at a pointx̆j , equals the sum of the contributions

from all kernelsKu(x̆j − ai), ∀i.
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4.5 Information theoretic functionals

4.5.1 Entropy

Section4.1introduced entropy as measure of uncertainty in the contextof IT. Let x ∼ Px(x) be a discrete

RV, with x = {x1, x2, . . . , xN} andpx(x).

Shannon in [Shannon, 1948] identified three properties which should characterize a measure

H
(

Px(xi)
)

of the uncertainty inx. These are:

1. H should continuously depend onPx(xi)

2. If all events are equi-probable or equivalentlyPx(xi) = 1
N , ∀i, thenH should be a monotonically

increasing function ofN . In other words given that all possible outcomes are equallylikely to be

realized, then as the number of possible outcomes increasesso does the uncertainty of predicting

their realization.

3. H should be independent on the grouping of events. For examplelet there be choice from three

eventsΩζ = {{x1} , {x2} , {x3}} with corresponding probabilitiesPi = Px(xi), i = 1, 2, 3

(see Fig. 4.6). The choice can broken down to two successive choices. The first is between
{

{x1} , {x2,3}
}

with x2,3 = {x2, x3} and corresponding probabilityP2,3. On the condition that

x2,3 is selected, the second choice is between{{x2} , {x3}}. H should then equal the weighted

sum of the individual values ofH or

H(P1, P2, P3) = H(P1, P2,3) + P2,3 ·H(P2|{2,3}, P3|{2,3}) (4.34)

wherePi|{2,3} = Px(xi | x2,3)

Figure 4.6: Entropy and independence to grouping of events.Left schematic: ungrounded eventsRight

schematic:grouped events

Shannon proved that the only function satisfying all of the above postulates is theentropyof x defined as

H(x) =−
∑

x∈R(x)

px(x) log
(

Px(x)
)

(4.35)

=− Ex
[

log
(

Px(x)
)]

(4.36)
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An alternative derivation of the entropic functional can befound in [Schneider, 1995]. We briefly repro-

duce it in the context of imaging, due to its highly intuitivenature.

Let an imageA of sizeN populated by three distinct grey valuesR(x) = {{x1} , {x2} , {x3}}.
ProbingA at a randomly generated locationri, can lead to three possible outcomesx(r) ∈ R(x). We

call thisuncertainty of three outcomes. Consider now that the image is also probed in a second location

rj , i 6= j and we seek to predict the outcome of the joint event{x(ri), x(rj)}. The joint event of this case

now has nine potential outcomes, threex(rj) for every one of the three potentialx(ri). This corresponds

to 9-uncertainty. If we would introduce a third processx(rk), the number of joint outcomes would rise

to twenty seven. To generalize, forq processes each withKi outcomes, the number of joint outcomes

(or joint uncertainty) is
∏q

i Ki. It would be more convenient if the joint uncertainty would rise linearly

with the total number of individual outcomesK =
∑q

i Ki. The latter can be achieved by measuring the

uncertainty with a logarithmic measureu(K) = log(K).

Consider again the case of a single process withK = 3 equi-probable outcomes. Applying the

uncertainty measure results in

u(K) = log(K) (4.37)

=− log

(

1

K

)

(4.38)

=− log
(

Px(xi)
)

, ∀i = 1, . . . ,K (4.39)

where we have employed the equalitylog(Kp) = p · log(K) and the frequency interpretation of prob-

ability. We know however that0 ≤ Px(xi) ≤ 1, ∀i (see Sec. 4.2.2). For highly probablexi,

Px(xi) → 1, leading to minimal uncertaintyu(Px(xi)) → 0+. On the contrary, for highly improba-

blexi, Px(xi) → 0+ andu(Px(x)) → ∞. The nature ofu(Px(xi)) as a measure of uncertainty is now

apparent. The termu(Px(xi)) is also known assurprisal, in terms of observingxi [Schneider, 1995;

Tribus, 1961].

To complete the intuitive example, one needs to consider thecase where the variousxi are not

equi-probable. In that case it is reasonable to evaluate theaverage uncertainty, which can be expressed

as an expectation (see Sec.4.2.6) of the individual uncertainties of the possible events weighted by their

probability of occurrence. This results in the entropy termof Eq. 4.35and completes the derivation.

The entropyH
(

Px(x)
)

- or simplyH(x) - is a measure of the average uncertainty per outcome ofx.

The units ofH(x) depends on the on the baseb of the logarithm. In the case ofb = 2, uncertainty is

measured inbitsand in the case of the natural logarithm, the unit is nats [Cover and Thomas, 1991]. For

H(x) it always holds

H(x) ≥ 0 (4.40)
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4.5.2 Joint entropy, conditional entropy and mutual information

The concept of entropy extends in the multi-variate settinggiving rise to additional quantities. Assume

the simplest case of a bi-variate system with RVsx andy.

Joint entropy JEH(x, y) [Cover and Thomas, 1991] corresponds to the average uncertainty in predict-

ing joint events{x = x, y = y}. It is defined as

H(x, y) =−
∑

x∈R(x)

∑

y∈R(y)

Px,y(x, y) log
(

Px,y(x, y)
)

(4.41)

=− Ex,y
[

log
(

Px,y(x, y)
)]

(4.42)

whereEx,y [·] is the bi-variate expression of the expected value. For all cases the following holds:

H(x, y) ≤ H(x) +H(y) (4.43)

with the equality being realized in the case of complete independence between the RVs. Similar to the

marginal case,H(x, y) ≥ 0 always holds.

Conditional entropy Conditional entropyH(x|y) - also known asequivocation- corresponds to the

average uncertainty ofx given thaty has been observed. Conditional entropy is expressed as

H(x|y) =−
∑

y∈R(y)

px,y(x, y) log
(

Px,y(x|y)
)

(4.44)

=− Ex,y
[

log
(

Px|y(x, y)
)]

(4.45)

If x depends ony, then by observingy the uncertainty ofx should always decrease. This results to the

inequality

H(x | y) ≥ H(x), (4.46)

with equality being realized in the case of complete independence betweenx andy. In that case, knowing

y does not reduce the initial uncertaintyH(x).

It should be emphasized thatH(x | y) is not a measure of dependency [Viola, 1995]. Low H(x | y)

values can be observed either due to high dependency betweenx andy or simply becausex is inherently

characterized by low uncertainty on its own - or equivalently H(x) is low. In order to measure uncer-

tainty, one needs to consider the relative decrease in uncertainty, from the initial valueH(x) toH(x | y).

This is accomplished by MI introduced next.

Mutual information Mutual information was introduced byShannon[1948] under the namerate of

transmission. It is ameasureof dependency and is expressed as
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MI(x, y) =MI(y, x) (4.47)

=H(x)−H(x | y) (4.48)

=H(y)−H(y | x) (4.49)

=H(x) +H(y)−H(x, y) (4.50)

The first two equations define the information betweenx, y as the reduction of the initial uncertainty after

the observation of the second RV has taken place. This is consistent with the definition of information in

the introductory section. Considering Eq.4.43, thenMI(x, y) ≥ 0 for all cases.

The relation between information theoretic functionals can be depicted aVenn diagramof Figure4.7

[Cover and Thomas, 1991].

Figure 4.7: Relationships among information theory concepts expressed in the form of a Venn diagram

4.5.3 Differential entropy

In the case of continuous RVs, then the sums of Eqs.4.36, 4.42and4.45are replaced by integrals and the

probability masses with probability densities. The continuous entropy - also known as DE - is defined

for both marginal and joint cases respectively as

h(x) =

∫

x∈R(x)
px(x) log

(

px(x)
)

dx, and (4.51)

h(x, y) =

∫

x∈R(x)

∫

y∈R(y)
px,y(x, y) log

(

px,y(x, y)
)

dx dy. (4.52)

Most inequalities of the discrete case hold in the continuous analogue, with some exceptions [Cover and

Thomas, 1991; Shannon, 1948; Viola, 1995]. The most notable is that contrary to Eq.4.40, h(x) can be

negative. This is due to the fact thatpx(x) in u(x) = − log
(

px(x)
)

, are continuous densities which can

take values greater than 1, resulting to negative entropy values. An extreme example regards the entropy

of the Dirac delta functionδ(x), for which it holds
∫∞
−∞ δ(x)dx = 1 and

δ(x) =











∞, x = 0

0, x 6= 0

. (4.53)
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In this case,hx
(

δ(x)
)

= −∞. The continuous entropy may attain values of+∞ or−∞ [Ash, 1990]. In

addition, contrary to the discrete case, continuous entropy does not measure uncertaintyin an absolute

way[Shannon, 1948]. Changes in the coordinate system - for example the spacingdx affects the entropic

values. Contrary to the discrete case, DE is not invariant toall kind of transformations. It is invariant

to translations orh(x + c) = h(x). However, it is not invariant to linear changes withh(cx) = h(x) +

log |c| or in the case wherex is a random vector subjected to a linear transformation by anoperator

F , thenh(Fx) = h(x) + log |det(F )| [Cover and Thomas, 1991]. See Sec.4.5.5.3for a case study.

For more general transformationsy = f(x), the value of DE changes according toh(y) = h(x) +
∫

px(x) log
∣

∣

∣

∂y
∂x

∣

∣

∣ dx, with
∣

∣

∣

∂y
∂x

∣

∣

∣ dx being the Jacobian of the transformationy = f(x) [Reza, 1994]. It has

to be noted however that by assuming afixedcoordinate system, DE constitutes a measure of uncertainty

relative to that system [Shannon, 1948; Viola, 1995]. It should be emphasized that mutual information

is always positive even in the case that is expressed in differential entropy terms.

4.5.4 Empirical entropy

Consider the case of DE, as it is employed later in this Thesisfor the purpose of information theoretic

regularisation, mainly due to the continuous nature and differentiability of the functional. The entropic

definitions assume thatpx(x) is known. In practice this is often not the case and the information one

has regardingx is contained in some available sample. LetA = {a1, a2, . . . , aN} beN -size sample of

x. One attempts to retrieve a continuous estimatep̂x(x;A) (see Section4.4.2) fromA. Using the PDFs/

JPDFs, theempiricalentropyĥ(x;A) of the sample can be estimated. Firstly, one can approximatethe

integral formulation with numerical integration schemes such as the the trapezoidal rule. In that case

p̂x(x;A) is estimated in regularly spaced locationxi which partitionR(x) in equal intervals of spacing

∆x. The Shannon’s integral formulation of empirical entropy can then be approximated by

ĥs(x;A) = −
∑

xi∈R(x)

p̂x(xi;A) log
(

p̂x(xi;A)
)

∆x. (4.54)

An alternative approach is to employ the expectation formulation of Eq.4.36, which in this case corre-

sponds to the sample mean (see Eq.4.14) expressed as

ĥe(x;A) =
N
∑

i=1

log
(

p̂x(ai;A)
)

(4.55)

The discrete empirical entropy uses discrete estimatesPx(x;A), for example a normalized histogram.

Finally, a crucial detail should be emphasized regarding Eq. 4.55. Assume that one employs a KDE

which optimizes the kernel widthu simultaneously with a minimization of the expectation formulation

of the entropy. Viola [Viola, 1995] explained in p. 47 of his Thesis, that if the same sample is used

for the estimation of̂px(ai;A) as well as for Eq.4.55, thenu will always converge to0+. This is

expected, as the obtained̂px(ai;A) would consist ofDirac deltas centered at eachai, a configuration

which corresponds to the minimumh(x) = −∞. To bypass this problem Viola proposed splittingA

in two parts, one for obtaining the PDF and the other for entropy estimation. In this work we do not
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optimize foru. The reader is directed to our recent work of applying information theoretic regularization

in positron emission tomography (PET) simultaneously witha search foru [Kazantsev et al., 2010].

4.5.5 Images, information theory and multi-modality data

Section4.2.5introduced randomness in the imaging setting, in the context of predicting the grey value

xk = x(ri)
1 of an image at some random locationri. Section4.5.1introduced the concept ofsurprisal

or uncertaintyin observing somexk, given its probability of occurrence and the entropy which is the

average uncertainty given possible events and weighted by their individual probability of occurrence.

We now describe the information theoretic concepts in the imaging setting.

4.5.5.1 Minimum/maximum entropy images

Consider Fig.4.8. It depicts a homogeneous image and an image with uniformly distributed grey values,

both of sizeN . ThePx(x; Image) are also depicted for each case. Regarding the first image, ifone

attempts to probe the image at randomri, the resulting value will always bexk = 128. This is depicted

by Px(x; Image 1) = 1. The surprisal forxk = 128 is u(128) = − log
(

Px(128; Image 1)
)

= 0 and as

x = 128 is the only possible outcome,u(128) is also equivalent to the average surprisal or simply the

empirical entropyĤ(x; Image 1). There is no uncertainty in the outcome of this random process.

On the contrary, most pixels of the second image are assignedwith different values. The probability

of any outcomexk is Px(xk; Image 2) = 1/N . This is the case of highest uncertainty and Image 2

corresponds to the maximum entropy configuration with maximum surprisalu(1/N). If one would

consider a larger image with uniformly distributed values,the entropic content would be even higher as

1/N ↓ which would lead to an increase in surprisal.

In general the following holds. Images with few features andsmall number of distinct grey values

have low entropic content. Their PDFs are highly clustered,with few modes corresponding to high

probability entries. On the contrary, highly disordered images with many distinct grey values have high

entropic content. Their PDFs are highly dispersed, with many entries of low probability.

It is essential at this point to draw an analogy with the popular maximum entropy method (MEM)

[Burch et al., 1983; Gull and Daniell, 1978; Jaynes, 1982, 1957a,b; Skilling and Bryan, 1984]. In the

imaging context, MEM was proposed as a regularization method for the inverse problem in astronomy

by Gull and Daniell[1978]. The favoured reconstructed image was the one which fitted the data but

was also characterized by maximum entropy. However, in thatcontext and contrary to what has been

described in this section, the maximum entropy image was homogeneous. The reason for this complete

reversal of entropic interpretation, is due to the employment of a different random process, devised to

introduce randomness in the image. The random process in that setting described the formation of the

image and not its probing in random locations. To describe the process, they assumed the proverbial team

of monkeys withN photons in their disposal [Jaynes, 1984]. The photons were then thrownrandomlyby

the monkeys, on a dark image defined by a grid of pixels of equalarea. This could lead to the formation

of various images, whereNi denotes the photons - or the grey value - in theith pixel. The entropy of

1It should be noted thatk is different thani as the former indexes gray values, whereas the latter pixel locations. It is possible

thatxk = x(ri) = x(rj) for i 6= j
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Figure 4.8: Minimum/maximum entropy images: Image 1 is homogeneous with a highly clustered PDF and

corresponds to the minimum entropy configuration. Image 2 has uniformly distributed grey values with a highly

dispersed PDF and corresponds to the maximum entropy configuration for an image of this size.

a given image was defined as the natural logarithm of the number of ways the monkeys could generate

it, with the probability of a specific image being proportional to its multiplicityN !/
∏

iNi. The most

probable image and the one favoured by MEM, was the one with maximum multiplicity, which results

in Ni = 1/N, ∀i. This image is formed in a setting of total uncertainty regarding the landing position of

each photon, hencemaximum entropy method. Using our interpretation of randomness, we could rename

the method asminimum entropy method. It is worth to note that MEM is theonly method which does

not introduce correlations in the reconstructed image, beyond those that are required by the data. It is the

least-biasingregularization method andmaximally non-committalabout what is not known regarding

the solution [Skilling and Bryan, 1984].

Similar to the case of a single image, the minimum and maximumentropy image pairs are de-

picted in Fig. 4.9. In the first image pair, any randomly selectedri returns a certain outcome

{x(ri) = 128, y(ri) = 128}. The JPDF is maximally clustered, populated with one entry corresponding

to the certain probability of the above event. On the contrary, two images with uniformly distributed grey

values have the highest uncertainty with each outcome{x(r), y(r)} having a probability1/N - with N

being the number of pixels. The JPDF is maximally dispersed as expected.

4.5.5.2 Information theoretic functionals and multi-modality

From the entropy definition of Eqs.4.35, 4.51and their multivariate counterparts, it is evident that both

marginal and JE and consequently their derived functional MI, do not depend directly on the actual grey

values of the images under consideration but rather on theircorresponding probability masses/densities.

Consequently, two images with different levels ofabsolutegrey values, which however are characterized

by similar probability distributions, are expected to havesimilar entropic content. It is exactly this non-

direct dependence on the grey values which attributes to thefunctionals a level of inherent invariance
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Figure 4.9: Minimum/maximum joint entropy images: The first pair is comprised by two homogeneous images

with a highly clustered JPDF and corresponds to the minimum joint entropy configuration. The second pair

consists of two images with uniformly distributed grey values and a highly dispersed (close to uniform) JPDF.

It corresponds to the maximum joint entropy configuration for image pairs of this size.

to the incommensurate grey values between multi-modal images and makes them ideal as multi-modal

structural similarity measures.

We now emphasize the differences between marginal entropy,JE and MI. Consider Figure4.10.

Marginal entropy Image 2 is created by transforming the grey values of Image 1 according to an arbi-

trarily selected, non-linear, injective transformationIm2 = −2(Im1)2+3(Im1)−log((Im1)+1). The

marginal entropy depends solely on the marginal PDFs depicted in the last row (reflected across thex-

axes for visualization purposes). The two images have identical structure but the grey values populating

the corresponding features are non-linearly related. However, the PDFs of both images are identical in

entropic terms, as they assign equal probabilities to the same number of events. Entropy does not depend

on the actual value of the eventsx - or equivalently on the location of the clusters in the PDF - but only on

their probability. The entropic levels of the images are equal withH(Im1) = H(Im2) = 0.9035 nats.

The third image in Fig.4.10reveals the lack of intra-image spatial dependence of entropy. Image

3 is created by applying a random spatial permutation on the pixels of Image 1, hence they both share

identical PDFs and consequently entropic value. In this case, two structurally dissimilar images have

equal entropic content. One can conclude thatthe difference between the entropy of two imagescannot

be used as a measure of their structural similarity.

JE/MI Consider now the JE and MI of three image pairs{Image 1, Image Z} , Z = [1, 2, 3] in Fig. 4.10,

as a measure of similarity between incommensurate images. Both JE and MI depend on the JPDFs of

the formed image pairs, however the latter depends also on the the marginal terms (see Eq.4.50). The

axis of the JPDFs correspond to the grey value of the images involved in a pair and the entries describe

the probability ofPr({x(r) = x, y(r) = y}). The JPDF is constructed by sequentially accessing theN

pixel positions of the involved images and for every position r, the algorithm retrieves the grey value pair

{x(r), y(r))} and increment its probability in the initially empty JPDF plane. This implies that both JE
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Figure 4.10: Entropy, multi-modality and spatial dependence.Top row: Three images of equal size. Image

2 was created by applying an arbitrary non-linear injectivetransformation, in this caseIm2 = −2(Im1)2 +

3(Im1) − log((Im1) + 1). Image 3 is created via a random permutation of thepixel locationsof Image 1,

consequently it shares an identical PDF with Image 1.Middle row: Marginal PDF of Image 1 and three JPDFs

formed by image pairs{Image 1, ImageZ} , Z = [1, 2, 3]. Bottom row Marginal PDFs of the three images,

shown with their vertical axis inverted.

and MI - due to their dependence on the JPDF - consider spatially corresponding pixels between images.

This is the source of spatial inter-image pixel-wise dependence in JE and MI. It should be emphasized

however that the functionals do not imply any spatial dependence among the various pixel valueswithin

a single image.

The JE of the first two image pairs isH(Im1, Im1) = H(Im1, Im2) = 0.9035. JE is invariant

to grey value transformations on images, given that the JPDFs are populated with the same number of

clusters and with equivalent probability between cases foreach cluster. The same holds for the MI case

asMI(Im1, Im1) = MI(Im1, Im2) = 0.9035. In this case one takes into account the similarity

between the marginal PDFs of the images. The PDF of Image 1 is constant. The PDF of ImageZ

corresponds to same levels ofH(Z), ∀Z (same number of clusters, equal amplitude).

Finally, consider the image pair{Image 1, Image 3}. According to the earlier discussion regarding

the marginal entropy approach of Fig..4.10, its entropy is equivalent to the previous images. Considering

the JE of the formed pairs, it is evident thatP (Image 1, Image 3) has additional clusters, hence more

outcomes are possible and with increasing choice the uncertainty rises. This reflects to JE which is now

increased toH(Im1, Im3) = 1.8070 as well as to MI which decreases toMI(Im1, Im3) = 0.0001,

as the images in the third pair are structurally independent. Therefore, JE and MI can measure structural
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similarity between multi-modal images, contrary to the marginal terms.

Additional differences among the JE and MI functionals exist. We revisit both similarity measures

in Sec. 5.6.4.1in the context of image registration, where the informationdepicted in the assessed

images can be altered due to spatial transformations and variable overlap regions. Finally, in Sec.7.3we

compare the capacity of JE and MI, to act as means of introducinga priori structural information in the

image inverse problem of diffuse optical tomography (DOT).

4.5.5.3 Discrete vs differential entropy in the imaging context

Consider4.11. It demonstrates the absence of full invariance in the case of differential entropy under

linear transformations (see Sec.4.5.3). The first two images are the ones depicted in Fig.4.10whereas

Image 3 is created by rescaling Image 2 in the grey value rangeof Image 1 via

Im3 = min(Im1) +
Im2−min(Im2)

max(Im2)−min(Im2)
(max(Im1)−min(Im1)). (4.56)

We seek to compare the empirical DE of the depicted images. Todo so we employ a KDE which

produces the continuous density estimates depicted in the third row.

The DE of the three images areh(Im1) = 8.83443685, h(Im2) = 15.06297344 andh(Im3) =

8.83441969 nats.h(Im3) andh(Im1) differ exactly by

log

(∣

∣

∣

∣

c =
max(Im1)−min(Im1)

max(Im2)−min(Im2
)

∣

∣

∣

∣

)

, (4.57)

wherec is the slope of the linear transformation, consistent with the theory in Sec.4.5.3. DE is in-

variant to the additive component of the linear transformation. h(3) ≈ h(1) mainly because they are

in a common range with equal binning intervals. Hence, priorto comparing the differential entropy of

images, it is preferable to compensate for linear changes either by explicitly compensating forlog(|c|)
or equivalently re-scaling one of the images in the range of the second. The reason for whichh(3) does

not completely matchh(1) is due to the difference in the corresponding PDFs, specifically the partial

overlap of the two clusters in the third PDF, which is absent in the first. Note that such need does not

exist in the case of discrete entropy. All probability masses are normalized hence their sum is invariant

to the coordinate system (see Fig.4.10). Finally, it should again be emphasized that when the coordinate

system is kept fixed, entropy is a valid measure of uncertainty between random variables defined on that

coordinate system.

4.6 Summary

This chapter has introduced the main concepts of information theory, specifically marginal, joint and

conditional entropy as well as MI. In addition, the empirical entropy of a sample was also introduced.

This discussion was preceded by a brief introduction to the fundamental probability theory concepts that

information theory is based upon. The differences between the entropy of discrete and continuous RVs

were specifically outlined. The subject of PDFs estimation was briefly covered by outlining a sample

of parametric and non-parametric methods, focusing on the latter. The discussion was held from an
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Figure 4.11: Differential entropy and images. Top row shows three imagesall of the same size. Image 1 has

three distinct grey values. Image 2 was created by applying an arbitrary non-linear injective transformation, in

this caseIm2 = −2(Im1)2 + 3(Im1) − log((Im1) + 1). Image 3 is created by re-scaling Image 2 to the

same grey value range of Image 1.

imaging perspective with the appropriate schematics to assist intuition. Finally, the inherent capacity of

the information theoretic functionals to serve as multi-modal similarity measures was discussed.



Chapter 5

Medical image registration

5.1 Introduction

Image registration is the collective term for all methods aiming to establish the accurate alignment of

images, so that their corresponding features become spatially superimposed, given a common coordi-

nate system. The alignment of images has proven to be a highlysought after capacity and it has found

numerous applications in various scientific disciplines including art, astronomy, astro-physics, biology,

chemistry, criminology, genetics, physics, remote sensing, security, machine vision and medicine [Fis-

cher and Modersitzki, 2008].

The structure of this chapter is as follows: Section5.2 briefly introduces a sample of applications

of image registration to medical imaging. In5.3 the three fundamental parts of an image registration

algorithm are introduced - namelysimilarity measures, spatial transformationsandoptimization; along-

side with the corresponding notation. Section5.4briefly outlines the classification criteria of the various

registration problems. The last sections (5.5-5.7) revisit the parts of spatial transformations, similarity

measures and optimization in more detail by presenting a sample of the various algorithmic and concep-

tual choices existing in the literature, on these topics.

5.2 Applications in medical imaging

In the context of medical imaging, image registration is a highly active subject of research and this

reflects on the size of the corresponding specialized literature. The increased attention is not surprising

as the alignment of medical images is of widespread interestacross the full spectrum of the available

imaging modalities. Image registration applications are numerous.

One of its applications regards difference imaging, to which image registration has been established

as an indispensable part. Difference imaging simply describes the process of subtracting two intra-

modal images of the same subject, resulting in a third image which depicts the differences between the

considered images. The differences which have high significance from a medical perspective include

changes in physiology for example disease progression considering individuals or a population group

where statistical outcomes are retrieved (cohort studies)[Fox et al., 2001, 1996; Freeborough and Fox,

1998; Mahanand and Kumar, 2009]; response of disease to therapy in follow up studies [Li et al., 2009];

and changes in contrast in pre- and post- contrast agent application in diagnostic studies [Rueckert et al.,
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1999] (see Fig.5.1). One expects the difference image to solely depict changesin physiology. However

the identification of changes in physiology between the images, is usually compromised by unavoidable

extra features appearing in the difference images due the spatial misalignment of the involved scans.

Medical image registration can compensate for the latter and aid towards the easier extraction of the

information of interest.

Figure 5.1: Medical image registration and difference imaging. Imagesdepict difference images formed by

pre- and post- contrast 3D MRI scans of the breast, visualized viamaximum intensity projection. (a) Difference

between pre- and post- contrast images where no registration has been applied. Motion of the breast during

the scans results in spatial misalignment of the corresponding features.(b) improvement after rigid registration

(translation/rotation)(c) improvement after affine registration (rigid transformations + scaling, shearing etc)

(d) improvement after non-rigid registration (local deformations). The vast majority of corresponding features

present in both pre- and post- contrast images become spatially aligned and hence they cancel each other in the

difference image. The only prominent feature corresponds to a tumour, as it corresponds to a difference due to

contrast variability and not spatial misalignment, hence it cannot be compensated by image registration (source:

[Rueckert et al., 1999])

Automated image registration facilitates the execution ofthese much needed alignments. The non-

rigid spatial alignment of huge data-sets in cohort studies, such as serial 3D volume scans - effectively

4D datasets - acquired from multiple subjects, is a highly intensive process even for modern computers

and from a numerical perspective is characterized by thousands of degrees of freedoms. The execution

of such tasks would be infeasible without automated image registration schemes. Even simpler tasks -

such as affine registrations of relatively small data-sets -would require significantly increased amounts

of time, effort and cost. In some tasks, arguably the automated registration schemes frequently perform
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better than the human threshold of assessing mis-registration, which has been identified to be limited to

spatial displacements equal or greater than 0.2mm [Fitzpatrick et al., 1998; Früwald et al., 2009; Holden

et al., 2000].

Image registration is also extensively used in surgical planning and interventions. Intra-operative

low resolution images can be registered to high resolution pre-operative ones, in order to update the latter

to the current state of the operated anatomy after deformation due to surgical intervention. In addition,

surgical equipment can be tracked in real time using ultrasound or visual markers and subsequently

registered against the medical images. Images and surgicalequipment are visualized in a single view,

allowing the surgeons to perform the surgery knowing exactly the position of the equipment inside the

anatomy and its proximity to vital organs or the target abnormality. The registration of patient, anatomy

and surgical equipment to a common coordinate system is alsonecessary for robotic surgery and remote

surgery. [Camarillo et al., 2004; Gering et al., 2001; Pott and Schwarz, 2002; Satava, 1999; Stoll and

Dupont, 2005]. Other tasks which would be difficult to perform without image registration include

real time compensation for target anatomy deformation due to physiological function, for example the

compensation for lung motion due to respiratory function, during radiotherapy [Coselmon et al., 2004;

Murphy, 2004] or focused ultrasound treatment [Ries et al., 2010].

Articles reviewing medical image registration specific literature include [Brown, 1992; Hill et al.,

2001; Maintz and Viergever, 1998; Maurer, Jr., C.R. and Fitzpatrick, 1993; Van den Elsen et al., 1993].

A sample of books focusing on the topic is [Fitzpatrick et al., 2000; Hajnal, 2001]. For non-medical

applications please see [Zitova, 2003].

5.3 Definitions and notation

As in previous chapters, a digital imagex is considered to be a mapping from discrete spatial positionsr

in some domainΩx, to grey valuesx ∈ R. This mapping is explicitly expressed as

x : r ∈ Ωx 7→ x = x(r) ∈ R (5.1)

An image registration process spatially transforms one image - termed asmovingor source- so

it becomes aligned with atarget image which remains unaffected by the transformation. Consider in

the 2D case, the static imagex and the moving imagey. Let x be defined over the simplest discrete

geometrical arrangement, that is a rectangular pixel gridg with spacing∆x, ∆y in the direction of each

of the the Cartesian axes, withN pixels. The nodal locations on the grid correspond to the pixel locations

r = {r1, r2, . . . , rk, . . . , rN}. Eachrk is a vector and can be expressed and/or indexed in terms of its

axial componentsrj = rij = {xi, yj}, with i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny andNx ·Ny = N . The

movingy(r′), r′ ∈ Ωy is defined in a similar manner. However it can differ fromx with respect to the

number, locations and spacing between the pixels.

Image registration algorithms can differ with respect to various algorithmic details, however they

all share three distinct algorithmic parts. These are:
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1. A spatial transformation scheme

r′′ = T (r′; θ), (5.2)

which is applied on the spatial coordinatesr′ ∈ Ωy of the moving imagey, resulting in the trans-

formedr′′ ∈ ΩyT and which is controlled by a finite number of parametersθ. The grey values

y = y(r′) are considered to be spatially coupled with the locationsr′, upon whichy are initially

defined prior to the transformation. As eachr′ is subjected to the spatial transformation result-

ing in a newr′′, the latter is assigned with the gray valuey(r′) of the original locationr′. The

transformed moving image is denoted asyT (r′′), or equivalentlyyT
(

T (r′; θ)
)

.

Spatial transformations operate in conjunction with aninterpolation scheme. The application of

the spatial transformation of Eq.5.2would most often result in continuous locationsr′′. However,

as was already noted earlier, image similarity measures canonly operate between images defined

at common spatial locations. Given thatr or equivalentlyx is unaffected from the transformation,

thenyT (r′′) has to be re-defined overr ∈ Ωx. The latter is accomplished by the interpolation

scheme. The transformed image, after the application of theinterpolation scheme is denoted as

yT(r). The different superscript betweenyT(r) andyT (r′′) emphasizes that the gray values of the

former are a product of interpolation.

2. A similarity metricΨ
(

x(r), yT(r)
)

which quantitatively evaluates the level of similarity between

two images and ideally attains its maximum value when accurate alignment is established.

For any given alignment configuration based on some estimateof θ, the similarity is evaluated

between the overlapping regions ofx andyT, commonly denoted for both images asΩx;yT .

3. A solverwhich seeks a parameter estimateθ̂ for which yT
(

T (r′; θ̂
))

= yT(r) becomes aligned

with x(r) and similarity between the two images is maximized. Most often, the solver is comprised

by an iterative optimization scheme which maximizes the similarity measure - or equivalently

minimizes a dissimilarity measure (negative similarity) with respect toθ. This is expressed as

θ̂ = arg min
θ

[

E(θ) = −Ψ
(

x(r), yT
(

T (r′; θ)
)

)

]

, r ∈ Ωx;yT . (5.3)

5.4 Classifications of registration problems
Image registrations methods can be classified according to anumber of criteria characterizing the under-

lying task. Unfortunately, there is no single, universallyaccepted image registration methodology which

can perform equally well for all given problems. Probably the most notable attempt to classify regis-

tration problems was byVan den Elsen et al.[1993], which was also adopted byMaintz and Viergever

[1998] in his extensive literature review. The identified classification criteria are worth noting as they

bring to some perspective the full extent of medical registration applications. Extensive literature for each

of the categories can be found in the review paper byMaintz and Viergever[1998]. The classification

categorizes registration problems according to:
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• The dimensionality of each of the involved images, with cases including 2D/2D [Jacquet et al.,

2009], 3D/3D [Rueckert et al., 1999], 2D/3D [Huang et al., 2009; Turgeon et al., 2005], studies

involving time series and more.

• The nature of the spatial transformationwhich needs to be employed to bring images to alignment.

Rigid transformations perform translational and rotational realignments [Zuo et al., 1996], affine

which perform rigid transformations as well as scaling and shearing [Jenkinson and Smith, 2001]

andnon-rigid transformations which compensate for local deformations.Reviews of non-rigid

registration problems include [Crum et al., 2004; Lester and Arridge, 1999].

• The domain of the transformationis classified asi) global where the transformation applies to the

full image orii) local when it only affects a smaller region.

• The nature of registration basis. The task of aligning images can in some cases be converted toa

task of aligning secondary features. Achieving alignment between corresponding inter-image fea-

tures is assumed to establish registration between the entire images. Similarity measures usually

operate on the feature space. This class refers to the categorization of registration problems de-

pending on the type of features employed. These can be further categorized asi) extrinsic, involv-

ing features explicitly added to the probed anatomy eithera) invasively - for example stereotactic

frames or implantable markers [Maurer, Jr., C.R. et al., 1997], or b) non-invasively - for example

fiducial markers attached to the skin [Breeuwer et al., 1998; Walvoord et al., 2008] and more.ii)

Intrinsic methods involve image-derived features such asa) sets of independent point landmarks

[Chui and Rangarajan, 2003], which they not necessarily have to represent explicit anatomical

sites, but can be any matching locations which can be confidently and unequivocally identified as

spatially corresponding in the involved images [Likar and Pernuš, 1999]. Such locations usually

havegeometrical significance, for example curvature extrema such as local peaks, pits or saddle

points [Audette et al., 2000]. b) Segmentation derived, higher order structures such as lines or

surfaces, expressed in full (dense-points or parametrically) or in reduced form, for example crest-

lines identified in surfaces [Thirion, 1996]. Audetteet al. provides a specialized review on surface

based registration [Audette et al., 2000]. c) Finally, other than independent points or surfaces,

one can employ the actual pixel values directly as features giving rise to intensity based methods

[Lemieux and Barker, 1998; Maes et al., 1997; Woods et al., 1993] or can further reduce the uti-

lized data by using derived statistical quantities from thegray values, as for example is done by

the method of moments [Alpert et al., 1990; Faber and Stokely, 1988].

• the relationship between the modalities of the involved images, giving rise toi) mono-modalii)

multi-modal iii) modality to model [D’Agostino et al., 2007] -for example the alignment of a

medical image with a model of statistical nature such as a probabilistic atlas of anatomy [Mazziotta

et al., 1995] or function [Lancaster et al., 2000]. iv) The last category involves registration of high-

resolution pre-operative images of the probed anatomy to lower-resolution intra-operative images

of the probed anatomy [Gering et al., 2001; Raabe et al., 2002]. This enables the information in
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the pre-operative images to be updated and match the intra-operative patient’s anatomy, potentially

altered due to the surgical intervention. Given also the knowledge of the exact physical position

of the patient in space via stereotaxy one can achieve registration of real-time tracked surgical

instruments [Gering et al., 2001]. The combination of the above methodologies gives rise to what

is known as image-guided surgery

• The subject of the imagesrefers to the actual patient subjected to scanning, giving rise toi) intra-

subjectii) inter-subject andiii) atlas, where a modality-atlas registration takes place. Inthe last

two cases, the notion of exact anatomical correspondence does not exist, however it is expected

that a level of correspondence can be recovered due to homology [Crum et al., 2003]. This can

also be the case in the intra-subject case, when the images are parts of time-series and the anatomy

changes due to pathology or medical intervention.

• The object depicted in the images, refering to the actual anatomical part depicted in the images.

Registration between different anatomical parts involvesdifferent degree of complexity. Registra-

tion between head images [Studholme et al., 1996] can potentially be established using rigid/affine

transformations in the intra-subject case, or non-rigid for inter-subject. However registration be-

tween for example cardiac images [Makela et al., 2002] or thoracic images [Goerres et al., 2002]

can prove more complex due to the dynamic movement of the heart or the lungs respectively.

• The level of interaction/supervision by an expert, duringthe registration process.

5.5 Spatial Transformations

This section briefly introduces a subset of the spatial transformationsr′′ = T (r′; θ) employed in regis-

tration applications. The discussion assumes the case of 2Dimages.

5.5.1 Linear transformations

Linear transformations are a fundamental part of most registration algorithms. They are usually em-

ployed to recover the potentially large initial misalignment betweenx andy, before employing more

accurate methods, for example see [Rueckert et al., 1999]. One of the main characteristic of these trans-

formations is that they are applied uniformly to all pixels of the transformed region. In the majority

of the cases, the transformation is global as it involves theentirey. However, there have been studies

which divide the involved images to regions orblocks, which are subsequently matched via local linear

transformations. The final transformation is constructed by combining the effect of the local transforma-

tions, usually by employing an interpolation scheme. For example see the locally affine transformation

discussed in [Commowick et al., 2006; Pitiot et al., 2006].

The general form of a 2D linear transformation consists of six control parametersθ =

{θ1, θ2, . . . , θ6}, which uniformly transform the pixel locationsr′ = [x′; y′]T to the resulting co-

ordinatesr′′ = [x′′; y′′]T according to
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x′′ = θ1x
′ + θ2y

′ + θ3, (5.4)

y′′ = θ4x
′ + θ5y

′ + θ6. (5.5)

The above can be also expressed in a matrix form
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(5.6)

or even more compactly as

r′′ = M · r′ (5.7)

Variants of linear transformations are defined for different configurations of matrix M and are discussed

in the following sections.

5.5.1.1 Rigid transformations

Rigid transformations are transformations which preservedistances, non-zero angles and straightness of

lines [Fitzpatrick et al., 1998]. They consist oftranslationsandrotations.

TranslationsTranslations regard the displacement of allr′ = [x′, y′]T in straight lines and at the same

direction, by fixed distancet = [Tx,Ty]
T, for each spatial component. The transformation is expressed

asr′′ = r′ + t or in its equivalent matrix formr′′ = T · r′, with the matrix being defined as
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(5.8)

RotationsRotational transformations in the 2D case depend on a singleparameter, that is the angleΘ

of rotation, expressed inradians. In the 2D case the rotation is performed around the axis orthogonal to

the Cartesian plane at the origin[0, 0]
T. The matrix M in Eq.5.6 is replaced by the rotation matrixR,

giving rise tor′′ = R · r′, whereR is explicitly defined as
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·
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(5.9)

5.5.1.2 Non-rigid transformations

ScalingA scaling transformation effectively multiples each of theCartesian coordinates determining a

pixel location by some scalarsSx andSy. The transformation is performed by a scaling matrixS, giving
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rise tor′′ = S · r′ or equivalently
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0 Sy 0

0 0 1











·











x′

y′
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(5.10)

where the structure ofS is revealed. In the case ofSx = Sy, the scaling is calledisotropicand preserves

the straightness of lines and angles but not distances.

ShearingShearing transformations which preserve straight lines and parallelism but they don preserve

angles among lines. Shearing transformations are defined bya matrixSh giving rise tor′′ = Sh · r′ or

equivalently
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1 Shx 0

Shy 1 0

0 0 1











·
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y′

1











. (5.11)

Affine transformations Affine transformations are the most general of the linear transformations de-

scribed by Eq.5.7. The parametersθ in Eqs.5.5-5.6are not restricted. Affine transformations preserve

the straightness of lines and parallelism but not angles [Fitzpatrick et al., 1998].

5.5.1.3 Composition of multiple transformations

Conveniently, the nature of the linear transformations enables several transformations to be performed by

the application of a single matrix. The matrix is constructed by multiplying the matrices of the individual

transformations in the reverse order which the latter are applied to the image. For example, if one seeks

to firstly scale, then rotate and finally translatey, then the transformation matrix which achieves the

sought outcome is defined as M= T · R · S and is applied to the moving coordinates according to Eq.

5.7.

5.5.1.4 Origin of transformation

The choice of the origin of transformation can affect the resulting yT. The default origin for rotation,

scaling and shearing is the Cartesian origin[0, 0]
T. This detail should be considered especially in cases

where the main feature depicted in the image is not centered at the origin. In that case, small transforma-

tions can result in large displacements of the main feature and drastically reduce the similarity between

x andyT. The effect on applying transformations about the Cartesian origin is depicted in the top row of

Fig. 5.2. The imagey to be subjected to transformation is depicted at the top-left. The dark background

depicts the extended spatial domain in order to emphasize the transformation effects. The second image

showyT resulting from a rotation about the origin, situated at the lower-left corner ofy. The gray region

corresponds to the initial location ofy and is included to assist visual comparison. For a small rotation

of 30◦ the overlap reduces significantly. Apparently, a rotation of Θ = 90◦ would lead to aΩx;yT = {∅},
where{∅} is the empty set. Similarly, considering the Cartesian origin as the origin of transformations

can result in large displacements for relatively small scaling and shearing transformations.
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One way to alleviate this problem, is to choose a different origin of the transformations. One can

use the actual geometric centre of the image - that is the centre of the pixel grid however a better choice is

the centre of mass (c.o.m.) known as the image’s zeroth ordergeometrical moment. The usage of c.o.m.

is a better choice when the main feature depicted in an image is not centered at the geometric centre

of the image. In order to choose the new origin, the c.o.m. of the image is translated at the Cartesian

origin prior to the transformations, then the transformations are applied and finally the resulting image

is translated back to the initial c.o.m. location. The c.o.m. of an image is denoted as̄r′ = [x̄′, ȳ], with

x̄′ =

∑

i

∑

j i · y(r′ij)
∑

i

∑

j y(r′ij)
, ȳ′ =

∑

i

∑

j j · y(r′ij)
∑

i

∑

j y(r′ij)
. (5.12)

Considering the composition of transformations (see Sec.5.5.1.3), then the execution of a rotation,

scaling and shearing with respect to c.o.m. at the given order, would be expressed asr′′ = M · r′ with

M = T−1
r̄′ · Sh · S · R · Tr̄′ andTr̄′ = [x̄′, ȳ′]T, T−1

r̄′ = [−x̄′,−ȳ′]T.

The effect onyT of applying transformations with respect to c.o.m. is depicted in the bottom row

of Fig.. 5.2. The resulting overall displacement is apparently smallerthan the previous case.
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Figure 5.2: Effects of the choice of origin of linear transformations. Highlighted features: c.o.m. (red),

Cartesian axes origin (blue).Column 1 Top: Moving imagex. Bottom: Translated byt = [−25, 30]T. Gray

region depicts location of initialx Column 2 Top: Rotation about originΘ = −30◦, Bottom: Rotation about

c.o.m. - sameΘ Anisotropic scaling from origin withSx = 1.5 andSy = 0.5. Bottom: Scaling from c.o.m. -

same scaling factors.Column 4 Shearing from origin, withShx = 0.5 andShy = 0. Bottom: Shearing from

c.o.m. - same shearing factors.

The c.o.m. as well as higher order image moments can be used asfeatures for driving image

alignment. Although not very robust, they can provide an initial registration estimate for more accurate

methods. Firstly,y is transformed so its c.o.m. coincides with the c.o.m. ofx. This compensates for

translational misalignment. Rotational misalignment betweenx andyT can be compensated by aligning
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the principal axes of the involved images which are returnedby the first order moments. Higher order

moments can compensate for additionally types of misalignment such as scaling. See [Alpert et al., 1990;

Lester and Arridge, 1999; Maintz and Viergever, 1998] and the references within, regarding principal

moments and registration.

5.5.2 Non-linear transformations

Non-linear transformations differ from the linear global transformations as they affect the pixels iny

in a non-uniform manner and the resulting transformations are non-rigid. Various schemes have been

proposed to facilitate such transformations. Elastic transformations assume the the moving image can

be modeled as a deformable elastic body [Bajcsy and Kovǎcič, 1989]. Under this assumption, the image

can then be deformed by the application of some external force. This external force is opposed by the

internal forces of the elastic body, resisting the deformation. In the image registration paradigm, the

driving force is proportional to the gradient of the similarity measure with respect to the deformation

of y. Consequently, the external forces tries to altery in a manner which increases its similarity with

the targetx. The registration converges when external and internal forces cancel each other, establishing

a state of equilibrium. Elastic transformations can prove restrictive in retrieving local transformations,

due to the internal forces which act antagonistically to theexternal force [Crum et al., 2004; Lester and

Arridge, 1999].

An alternative approach which does not carry this restriction, involves the modeling ofy as a viscous

fluid [Christensen et al., 1996]. The motion of the fluid’s particles, in this contextr ∈ Ωy, is described by

a velocity field evolving over time and which satisfies the Navier-Stokes partial differential equation of

conservation of momentum [D’Agostino et al., 2003]. Once again the force which drives the registration

is the derivative of the similarity measure.

5.5.2.1 Demon’s registration

Thirion [1998] approached the registration of intra-modal images as a diffusion process. He introduced

the concept ofdemon’sin imaging, originally conceived by Maxwell to illustrate aparadox of Ther-

modynamics (see Thirion’s article). In the context of imaging, demons are defined on image feature’s

interfaces, which are perceived as semi-permeable membranes. Demons act as actuators, based on the

concept of polarity which dictates if region iny should moveinsideor outsidea spatially neighbouring

region inx, via the latter’s interface. Hence, demons drive regions ofy to diffusethrough contours ofx.

To determine polarity and compute the demons forces, Thirion used a similarity measure known asop-

tical flow, which in temporal studies assumes that the intensity of a pixel, displaced between successive

time frames, remains constant. In non-temporal studies, one simply assumes that inter-image features

indicating corresponding physiological locations must becharacterized by similar intensities, hence the

method applies only to the intra-modal case. Additional information on demons’ algorithm can be found

in [Pennec et al., 1999].
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5.5.2.2 Thin plate splines

Splines are smooth piecewise polynomial functions which enable the spatial transformation to be ex-

pressed as a basis expansion. The expansion requires a set ofpoints defined in the moving image which

act as the basis coefficients. As these control points are displaced, a basis function of choice models a

smooth displacement of all locations defined among these control points. One of the two spline methods

introduced in this paper is the thin plate spline (TPS) [Bookstein, 1989]. Employing TPS implies that the

image is modeled as a thin metal plate. Letz(x, y) define the surface of the thin plate as an elevation from

the Cartesian plane. Then, the spline will take a form which minimizes its bending energy [Eriksson and

Astrom, 2006]

J(z) =

∫ ∫R2

(

(

∂2z

∂x2

)2

+ 2

(

∂2z

∂x∂y

)2

+

(

∂2z

∂y2

)2
)

dxdy. (5.13)

The function which minimizes the above equation isE(x, y) =
∑

i ciu
(∥

∥

∥[x, y]
T − ϕi

∥

∥

∥

)

, whereci

are mapping coefficients,ϕ are the control points andu(x, y) = −r2 · log(r2) is the TPS radial basis

function withr =
√

x2 + y2 [Bookstein, 1989]. The basis function in TPS has global support which can

prove costly to compute for all control point locations. Registration with TPS uses landmarks in both

x andy at corresponding physiological locations. One then attempts to match the landmarks, whereas

the rest of the space is bent as little as possible. The next spline based transformation is defined in more

detail as it is employed later in this work.

5.5.2.3 B-Spline Free form deformations

B-Spline Free form deformations (FFDs) were introduced bySederberg and Parry[1986] and have been

employed for various image processing tasks, for example image metamorphosis [Lee et al., 1996].

Rueckert et al.[1999] proposed their employment as a spatial transformation scheme for the purpose

of non-rigid medical image registration. Modeling non-rigid transformations ofy with FFDs is accom-

plished by manipulating a lattice of control points, arranged over the domainΩy. As these control points

are displaced, their surrounding pixels are also subjectedto a displacement, weighted according to their

distance from the perturbed control point via B-Spline functions. Figure5.3depicts a control point grid

overlaid on an image and the resulting transformed image dueto control point perturbation. Letϕij

denote the control points indexed byi, j uniformly spaced with spacing∆ϕ in both Cartesian directions.

Then, the transformation ofr′ can be expressed as a linear combination of the B-Spline basis functions

and the control pointsϕij , expressed as [Lee et al., 1996]
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=

3
∑

k=0

3
∑

l=0

Bk(s)Bl(t)ϕ(i+k)(j+1) , (5.15)

wherei = ⌊x′⌋ − 1, j = ⌊y′⌋ − 1, s = x′ − ⌊x′⌋ andt = y′ − ⌊y′⌋. The termsBk andBl correspond to

the uniform cubic B-spline functions defined as
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Image / Control point grid Transfomed image / control point grid

Figure 5.3: Non-rigid transformation based on B-Spline Free Form Deformations.Left: Image with superim-

posed control point gridRight: Transformed image due to perturbations on the control pointlocations

B0(t) =(1− t)3/6, (5.16)

B1(t) =(3t3 − 6t2 + 4)/6, (5.17)

B2(t) =(−3t3 + 3t2 + 3t+ 1)/6, (5.18)

B3(t) =t3/6, (5.19)

with 0 ≤ t < 1.

Considering Eq.5.15, FFD transformations are locally controlled in the sense that the B-spline

basis functions have a finite support of4 ∆ϕ [Ino et al., 2005]. This means that if aϕij is perturbed, it

will only affect pixels under the B-Spline support. This is demonstrated in Fig.5.4.

The local nature support has a number of implications. Firstly it leads to a reduced computational

cost in estimating the pixel transformations resulting from the control point perturbations, compared with

spline methods using basis of global support such as the TPS [Rueckert et al., 1999]. One only needs to

compute the transformations for the pixels in the local neighbourhood. The other implication is crucial

to the registration paradigm. Assume that the same feature is depicted inx andy in different spatial

locations, with an in-between distance> 4∆ϕ. Although the alignment of the features would maximize

the similarity measure, the transformation applied toy cannot facilitate a displacement of pixels to a

distance greater than4∆ϕ. To deal with this inherent constraint and increase the chances of global

convergence, FFD based registration methods employ a series of control point lattices of increasing

resolution. Initial coarse lattices enable alignment of corresponding features which are further away, as

the corresponding4∆ϕ is now large and is potentially greater than the spatial displacement which needs

to be recovered. When registration using the coarse latticehas been established, the algorithm refines it

to a higher resolution allowing highly localized misalignments to be matched more accurately. Lattice

refinement has been described byForsey and Bartels[1988]. Figure 5.5 depicts an example coarse

lattice and its refined version. The final transformation applied to eachr′, is constructed by summing the

k = 1, . . . , L transformationsT k
(

r′;ϕk
)

applied to the same point, from allL control-point latticesϕk
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Control point perturbation Difference imageImage /  Grid

Figure 5.4: Local support of B-Spline free form deformationsTop: Coarse gridBottom: Dense grid.Left: Ini-

tial image. Control point and local support of4∆ϕ highlightedMiddle: Extreme perturbation of control point

and transformed imageRight: Squared difference between initial and transformed image.The perturbation is

confined in the region of local support only.

[Rueckert et al., 1999] or

r′′ =

L
∑

k=1

T k
(

r′;ϕk
)

(5.20)

Finally, in order to enforce smoothness in the deformationsmodeled by FFD,Rueckert et al.[1999]

proposed the usage of the TPS as a regularization in the FFD registration framework. The registration

increases the similarity by perturbing the control points,but similar to TPS registration, the movement

of pixels located among the control points is constrained sothey minimize the thin plate bending energy.

The corresponding objective function is defined as

θ̂ = arg min
θ

[

E(θ) = −Ψ
(

x(r), yT
(

T (r′; θ)
)

)

+ τJ
(

T (r′; θ)
)

]

, r ∈ Ωx;yT . (5.21)

whereτ is the regularization parameter weighting the contribution of the TPS.

5.5.3 Interpolation

There exist various interpolation schemes which can be employed in order to re-define the transformed

imageyT (r′′) - having continuous locations - toyT(r), r ∈ Ωx;yT , with r coinciding with the regular

grid g where the targetx is defined upon. Schemes include bi-linear, bi-cubic, spline, zero padding



126 CHAP. 5: MEDICAL IMAGE REGISTRATION

Image with overlayed control point grid Initial and refined grid

Figure 5.5: Control point grid refinement.Left: Initial coarse lattice to model global transformations.Right:

Refined lattice to model highly localized transformations.

fast Fourier transform (FFT) based interpolation [Bracewell, 1999; Press et al., 1992b] and more. Apart

from the choice of the actual interpolation algorithm, one has the choice of aforward or a backward

interpolation scheme. Consider the case of bi-linear interpolation (defined in Sec.6.3.1). Consider Fig.

5.6. A forward interpolation scheme, directly populatesyT(r) from the valuesyT (r′′) defined at the

continuousr′′. This case however can be problematic. It is possible that somer might not be assigned

with a valueyT(r), if they do not lie inside the support of the interpolation kernels. On the contrary,

the backward interpolation scheme (see Fig.5.7) guarantees that such a problem does not occur. All

locationsr are explicitly visited. For anyr, the inverse transformationT −1(r; θ) - given that it exists -

results in the continuous̃r′ ∈ Ωy. The scheme continues by assigningr̃′ with ayI(r̃′) via interpolation -

hence theI notation asy is not defined in continuous locations. In this scheme, interpolation takes place

in Ωy and not inΩyT of the transformed coordinates. The value is finally transfered to the consideredr,

resulting inyT(r) = yI(r̃′). In the case that̃r′ /∈ Ωy, thenyT(r) can be assigned with a neutral value,

for example one which can be perceived as background.

5.6 Image similarity evaluation

The choice of the metricΨ
(

x(r), yT(r)
)

is crucial to the performance of the registration process. The

main reason is that different metrics can have - by design - different capacities, rendering them suitable

for specific categories of registration tasks.

5.6.1 Sum of squared differences

In the case of intensity-based registration basis, the sum of squared differences (SSD) between the scalar

gray valuesx andy of spatially corresponding pixel locations in imagesx andy is defined as

ΨSSD(x(r), yT(r)) =
1

Nx;yT

∑

r∈Ωx;yT

(

x(r) − yT(r)
)2
, ∀rk ∈ Ωx;yT . (5.22)
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Figure 5.6: Forward interpolation. Locationsr′ ∈ Ωy are transformed to the continuousr′′ ∈ Ωy. The

transformed imageyT has to be defined on the same gridg with x, to enable similarity evaluation. Forward

interpolation extrapolatesyT (r′′) to grid locationsr ∈ Ωx;yT , resulting inyT(r). Due to limited support some

r are not assigned with a value.

Figure 5.7: Backward interpolation. All locationsr are explicitly visited. For anyr, the inverse transformation

results in the continuous̃r′. Then,r̃′ is assigned with a valueyI(r̃′) via interpolation - hence theI. This value

is finally transfered to the consideredr, resulting inyT(r) = yI(r̃′).



128 CHAP. 5: MEDICAL IMAGE REGISTRATION

SSD can be expected to effectively evaluate the similarity between the involved images in cases where

the gray values of corresponding structures present in bothimages, differ only by Gaussian noise [Viola,

1995]. Understandably the above condition can only be met in the intra-modality case, but even when

the latter is the case, still it cannot be guaranteed. For example, in magnetic resonance imaging (MRI)

images, although the noise in the area corresponding to the probed medium is approximately Gaussian,

in the low intensity areas - corresponding to the air betweenprobed medium and scanner - it follows

a Rician distribution [Fitzpatrick et al., 2000; Gudbjartsson and Patz, 1995]. One way to bypass this

problem is by excluding the pixels contaminated with non-Gaussian noise - if the latter can be identified

- as done byHajnal [2001]. In addition, SSD has been consistently employed as a similarity metric in

corresponding points in landmark- and surface- based methods. In that case, similarity is interpreted

by means of spatial distance between corresponding points.In that sense, SSD measures the squared

Euclidean distance by replacingx(r) andyT (r) in Eq. 5.22with the individual, corresponding land-

marks coordinates, identified in both target and source images. Relevant work includes theorthogonal

Procrustesmethod [Arun et al., 1987; Fitzpatrick et al., 1998], the head-and-hatalgorithm [Pelizzari

et al., 1989] and theiterative closest point[Besl and McKay, 1992; Maurer, Jr., C.R. et al., 1998].

5.6.2 Correlation techniques

Cross correlation (CC) or cross-covariance [Hill et al., 2001] is an intensity based measure which exhibits

additional flexibility with respect to SSD. Specifically, itcan evaluate the similarity between images to

which their corresponding gray values are linearly related. It is expressed as:

ΨCC

(

x(r), yT(r)
)

=
∑

r∈Ωx;yT

x(r)yT(r) (5.23)

A normalized variant of CC, is the normalized cross correlation (normalized cross correlation

(NCC)) - also known as correlation coefficient. NCC is equal to 1 if the relationship between the two

signals is perfectly linear and zero if the relationship is random. It is insensitive to differences in mean

signal intensity and it is also insensitive to noise in the low-intensity areas which cause problems to SSD

[Lemieux and Barker, 1998; Lemieux et al., 1994]. NCC is defined as:

ΨNCC(x(r), yT (r)) =

∑

ri∈Ωx;yT
(x(ri)− x̄)(yT (ri)− yT )

(

∑

ri∈Ωx;yT
(x(ri)− x̄)2

)1/2 (
∑

ri∈Ωx;yT
(yT (ri)− yT )2

)1/2
(5.24)

wherex̄, yT denote the mean gray values in each image. The correlation techniques can be used in multi-

modal applications [Junck et al., 1990]. Multi-modal images are usually non-linearly related which

renders both functionals ineffective. Still, there have been studies succeeding to register multi-modal

images, by applying the functionals on secondary images, comprised by the edges, ridges or segmented

regions of the original ones [Arbel et al., 2001; Maintz et al., 1995]. It is important to emphasize on this

concept that even whenx andyT are multi-modal, it is possible to derive secondary images for which

similarity is more trivial to evaluate.
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Finally, a most recent correlation related similarity measure was proposed byRoche et al.[1998a,b]

known as correlation ratio. It is inherently more suitable for multi-modal applications as it is not limited

to image pairs related by a linear relationship, but by a moregenericfunctionalrelationship.

5.6.3 Ratio-Image Uniformity and Partitioned Intensity Uniformity

Ratio-Image Uniformity and Partitioned Intensity Uniformity are intra-modal and multi-modal similarity

measures respectively, proposed byWoods et al.[1992, 1993]. RIU involved the computation of a ratio

imagez = x/yT and a subsequent computation of the normalized standard deviation of z. When

the involved images were aligned, the normalized standard deviation would be minimized. Partitioned

intensity uniformity is in effect a generalisation of the ratio-image uniformity concept, but for multi-

modal images. It is based in the assumption that although trans-image, corresponding regions of specific

anatomical structure or functional activity were depictedby different gray values due to the different

modalities, within each image the gray values populating a single region would be similar. Partitioned

intensity uniformity requires a segmentation process in order to identify distinct regions inx. The value

of pixels populating this region would comprise an intensity partition. The algorithm would then attempt

to estimate ayT for which, the gray values of its pixels that spatially corresponded to a single region of

x, would need to exhibit minimal standard deviation from their mean value.

5.6.4 Information theoretic similarity measures in image registration

Information theoretic functionals, such as the ones introduced in Chapter4, have been the dominant

choice for image registration similarity measures. Section 4.5.5discussed their inherent invariance -

partial in absolute terms for the case of differential entropy (see Sec.4.5.3) - to the gray values of the

involved images. Understandably, this capacity has made them ideal candidates for medical image regis-

tration problems, especially multi-modality ones. joint entropy (JE) was proposed for image registration

purposes in [Collignon et al., 1995; Studholme et al., 1995]. Mutual information which is the most

widely employed registration functional was independently proposed for this purpose byViola [1995];

Wells et al.[1996] (MIT, USA) and Collignon et al.[1995]; Maes et al.[1997] (University of Leu-

ven, Belgium). A survey for mutual information (MI) based registration was conducted byPluim et al.

[2003]. Rueckert et al.[2000] proposed the usage of higher order mutual information, in order to intro-

duce the inter-pixel spatial dependence within a single image, which lacks in most information theoretic

implementations.Somayajula et al.[2008] introduced spatial information implicitly, by considering the

mutual information between the intensities of the images aswell as an extended feature space derived by

the application of differential and low-pass filter operators. The information theoretic registration litera-

ture is vast. In this section we revisit the concepts introduces in Chapter4 and we explain the differences

among information theoretic functionals in the registration framework.

5.6.4.1 Joint entropy vs Mutual information

The JEh
(

x(r), yT(r)
)

, r ∈ Ωx;yT is expected to attain a minimum when two images depicting sim-

ilar information are correctly aligned. It can be shown however that for specific types of images this

minimum is not global. Lower JE minima exist for incorrect alignment configurations between the test
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images, compromising the overall accuracy of the registration via JE.

Specifically, the problematic behavior manifests in imageswhere the main depicted feature does

not occupy the entire image area, allowing a substantial number of pixels to comprise thebackground

region. The background pixels usually differ only by noise and appear to be almost uniformly distributed

considering the dynamic range of the entire image. The incorrect minima in the JE case manifest when

the overlap domainΩx;yT betweenx andyT is comprised by a large number of these background pixels

and with partial or total absence of the the main feature.

Fig. 5.8showcases the problematic JE case, which does not affect MI and consequently gives a clear

advantage of the latter over JE. An image depicting a transverse slice of an MRI volume is translated

over its identical copy, creatingΩx;yT with variable depicted information.

Partial overlap

Image 1 slides over Image 2

Full overlap (correct alignment)

Joint PDF (overlap area)

Joint PDF (overlap area) Marginal PDFs for overlap area

Marginal PDFs for overlap area
−200 −100 0 100 200
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Figure 5.8: JE vs MI in image registration.Top row - left: Image 1 slides over identical Image 2 creating

different overlap areasΩx;yT . Right: Plots of JE and MI versus translation of moving image. The errors

corresponding to the following cases are highlighted.Middle row - left: Partial image overlap.Right: JPDF

and PDFs (only one is depicted as they are identical for both images) for the highlightedΩx;yT . This is the JE

global minimum case and evidently does not correspond to thecorrect alignment.Bottom row - left: Correct

alignment. Ωx;yT comprises by the entire image area. MI accurately attains a global maximum. JE attains a

local minimum.Right: JPDF and PDFs for overlap area are also depicted.

The overlap configuration depicted in the middle row, corresponds to the global minimum of JE

which manifests whenΩx;yT is populated entirely by background pixels. The JPDF of the overlap

area is maximally clustered, comprised by a single high probability cluster corresponding to the event

{x = background, y = background} (see Sec.4.2.5for a description of random events in the imaging

context). On the contraryMI
(

x(r), yT(r)
)

= h
(

x(r)
)

+ h
(

yT(r)
)

− h
(

x(r), yT(r)
)

, r ∈ Ωx;yT , de-

pends on JE as well as on the marginal entropy terms. The global maximum of MI - attained for correct

alignment - corresponds to a balance between the minimization ofh
(

x(r), yT(r)
)

and the maximization
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of h
(

x(r)
)

andh
(

yT(r)
)

. In the depicted case (middle row), the marginal PDFs ofx andy for Ωx;yT ,

are maximally clustered as theΩx;yT is uniform. These PDFs correspond to the minimum marginal

entropies, contrary to what is needed forMI maximization. Actually, the value attained by MI in this

case approaches the global minimum ofMI . The uniform images have zero marginal uncertainty (see

Sec.4.5.5). From Eq.4.48, given that the marginal uncertainty (or entropy) is already zero, it cannot be

further decreased by the conditional uncertainty, hence the zero MI.

The bottom row depicts the case of correct alignment. JE attains a minimum as the JPDF is highly

clustered, however not as clustered as the JPDF between the uniform images. Hence JE attains a mini-

mum however it is not global. MI benefits by the reduced JE value, however its maximum is additionally

amplified by the dispersed PDFs, corresponding to increasedH
(

x(r)
)

andH
(

yT(r)
)

.

To conclude, MI attempts to register areas which are similarbut are also populated by pixels which

exhibit high variation in intensities. The condition is metwhen the main feature in the image is depicted

in Ωx;yT . On the contrary, JE attempts to register areas which are similar but are comprised by pixels

of ideally uniform intensity, a behavior which can compromise the alignment effort. It has to be noted

that MI contains two local maxima which can compromise the recovery of alignment if the initial mis-

registration is high.

5.6.4.2 Normalized mutual information

The previous section established that MI is more robust thanJE as a similarity measure for image reg-

istration. However, there are still cases where MI fails to score maximum similarity for the correct

registration and favours inaccurate alignment configurations. These problematic cases depend on the ra-

tio of the pixels inΩx;yT which are labeled as background, over the number of pixels inΩx;yT depicting

the main feature. Consider Fig.5.9.

The left column shows the target image with variable sized field of view (FOV). As the FOV scale

increases, the background of the images is extended only in the horizontal direction. Let the target images

act also as the moving images, by rotating them about their c.o.m. in a range of anglesΘ = −30◦ → 30◦

with increments of∆Θ = 5◦. The right column of Fig.5.9, depicts two alignment configurations

for FOV scale 3, highlighting the correspondingΩx;yT . The schematic depicts one of the two cases

of highest misalignment considered in this test(Θ = −30◦), whereas the bottom schematic depicts

the correct alignment configuration, where both images are correctly superimposed(Θ = 0◦). We

proceed by computing the discrete marginal entropiesH(x), H(y), JE and MI on theΩx;yT , formed by

the transformed moving image and the target image of the corresponding FOV scale, for all angles of

rotation and for all FOV scales. The results of these evaluations are depicted in the five plots of Fig.

5.10.

As expected, the entropic functionals attain smaller values for higher FOV scales, as the background

increases. The fourth plot showcases the problem regardingMI. At the first FOV scale, MI correctly

attains a maximum for correct alignment case ofΘ = 0◦. This is not the case however for FOV scale 3,

where the maximum is now replaced by a minimum. Registrationby maximization of MI would not be

able to recover the rotational misalignment for the images of FOV scale 3.
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Figure 5.9: Framework for testing the response of MI to the ratio of the pixels in theΩx;yT which are labeled

as background, over the number of pixels in the same domain depicting the main feature.Left: Target images

at three FOV scales (see text).Right: Maximum mis-alignment configuration atΘ = −30◦ and correct

alignment atΘ = 0◦. Ωx;yT is highlighted for clarity.

The explanation of this unexpected behavior can be given by considering the marginal and JE terms

in MI. The correct alignment depicted in Fig.5.9 has minimum JE due to alignment. However, the

marginal entropies attain very low values due to the large background inΩx;yT , which reduces uncer-

tainty. In the case of maximum misalignment JE increases by definition, as the JPDF becomes more

dispersed (not depicted). However, due to the smaller background size, the corresponding marginal en-

tropies are now higher than before hence the higher overall MI. To conclude, the MI optima are obtained

by a fine balance between the sum of the marginal entropy termsand the JE term. For cases such as

the one discussed above, this balance favoursΩx;yT configurations which do not correspond to the true

alignment.

To alleviate this problematic effect, various modified MI functionals have been proposed, which

normalize the effects of the background size. These are collectively known as normalized mutual infor-

mation (NMI). The reader is refered to [Hill et al., 2001] for the various expressions. We refer to the

most prominent one proposed byStudholme et al.[1999] which is defined as

NMI(x(r), yT(r)) =
h
(

x(r)
)

+ h
(

yT(r)
)

h
(

x(r), yT(r)
) , ∀r ∈ Ωx;yT . (5.25)

For a mathematical explanation of why the above functional successfully normalizes MI see [Melbourne

et al., 2009]. The NMI values for simulation of Fig.5.9 are shown in the fifth plot in Fig.5.10.

Evidently NMI exhibits increased invariance to the size of the background inΩx;yT and successfully

attains a maximum forΘ = 0◦ at all FOV scales.
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Figure 5.10: Response of the information theoretic functionals to the various alignment configurations of the

test case described by Fig.5.9.

5.7 Optimization

Optimization in the image registration context regards theretrieval of an accurate estimate of the spatial

transformation parametersθ applied onyT, so that the latter becomes similar tox with respect to some

similarity measure. Many approaches from the optimizationrelated literature have been adopted in order

to perform the above task, including ordinary gradient based schemes such as the one used in [Rueckert

et al., 1999]; methods which perform gradient based optimization in a stochastic framework [Viola,

1995]; genetic and evolution based optimization [Price et al., 2005; Rouet et al., 2000] and more. A

sample of similar optimization schemes were introduced in ageneral context in Sec.2.6.

5.7.1 Multi-resolution pyramids

More interesting to review are image registration specific approaches which are often employed to im-

prove global convergence. Intensity based similarity metrics are often plagued by local minima which

compromise global convergence. See for example the MI plot in Fig. 5.8. One approach towards the

alleviation of these local minima is to employ a multi-resolution pyramid scheme [Maes et al., 1999;

Thï£¡venaz et al., 1998; Thï£¡venaz and Unser, 2000]. The basic principle of such schemes is quite

simple. The images to be registered are sub-sampled to coarser resolution levels. Registration is firstly

performed on the coarser resolutions where local minima arehopefully smoothed out due to the lesser

details depicted in the involved coarse images. When the optimization has converged and registration

has been established, the scheme continues by registering images at a finer resolution level. However,

the initial transformation parameter estimate for each resolution level is obtained by the converged reg-

istration of the previously visited coarser level. The process continues until the algorithm registers the
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images at their original resolutions. Registration in coarser resolution usually compensates for large

spatial discrepancies whereas local misalignments are handled in the finer resolution levels. Figure5.11

repeats the test of Fig.5.8, but in a coarser resolution. The involved images were down-sampled from

the original128x128 to 33x33. Apparently, the local minima at the MI plot have been smoothed out.
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Figure 5.11: Information theoretic, intensity based similarity measures and image resolution levels. Image 1 is

translated across Image 2. Similarity measures are computed for the various overlap configurations. Due to the

coarse resolution of the images, the global optima have a large basin of attraction, whereas local optima have

been largely smoothed out.

5.7.2 Interpolation artefacts and blurring

As was already noted at the start of this chapter, interpolation is required to transfer the transformed

yT (r̃; θ) to ther, where the target imagex(r) is defined, in order to enable similarity evaluation. The

gray values of the resulting imageyT(r, θ) are a product of interpolation. According toHill et al. [2001],

subversion interpolation can result in blurring ofyT . Details are removed from the image which leads

to an entropy reduction and potential introduction of localextrema in the solution space. One way

to alleviate this problem is to apply a low-pass filter on the images prior to registration. Hill argues

that although the loss of resolution that results from this pre-emptive blurring is a disadvantage, the

registration errors caused by the interpolation errors canbe greater than the loss of precision resulting

from blurring. To conclude, pre-blurring the images prior to registration can increase the chances of

global convergence.

5.8 Conclusion

This chapter has briefly introduced the concept of image registration. It introduced the three funda-

mental algorithmic parts comprising a registration scheme, namely the spatial transformations, similar-

ity measures and optimization. Regarding spatial transformations, both linear and non-linear schemes

were discussed with emphasis on the B-Spline free form deformations adopted later in this work. A
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brief reference to inverse interpolation as a part of spatial transformations was also given. A sample

of intensity-based similarity measures was introduced, however more emphasis was given to the ones

based on information theoretic functionals, which are the core concepts of this work. Intuitive examples

comparing the capacity of each of the functionals and showcasing the strengths and weaknesses were

also provided. Finally, we referred to a small sample of approaches which aid optimization convergence

in the image registration setting.
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Chapter 6

Efficient entropy and derivative computation

In this chapter we propose a computationally efficient implementation of the entropic terms involved

in the information theoretic regularisation of diffuse optical tomography (DOT), introduced in Chapter

7. The regularisation scheme is incorporated in the general framework of the inverse problem which

employs a gradient based optimization for the search of the optical quantities of interest. Consequently,

the efficient evaluation of the information theoretic functionals - namely joint entropy (JE) or mutual

information (MI) - as well as their derivatives with respectto the optimized quantities is required. The

proposed implementation achieves computational savings in the evaluation of both functionals and their

derivatives.

The method is inspired by the work ofShwartz et al.[2005] who proposed a scheme for the efficient

computation of the empirical marginal entropy (see Section4.5.4) and its derivative. The contributions

of the work presented in this chapter include:

I) The extension of the fast marginal entropic functional and gradient evaluation in order to enable the

efficient evaluation of JE and its derivatives.

II) The derivation of the fast marginal and JE derivatives for the case of the Shannon integral entropy

formulation (Shwartz et al.[2005] reported the derivatives with respect to the expectation based formu-

lation of entropy)

III) By utilizing the same principle which leads to computational complexity reduction for the case of

empirical entropy, we also apply the same scheme on the computation of the classic Shannon’s entropy

integral formulation, as well as its derivatives. We finallycompare both entropic estimators - the empir-

ical and classic Shannon integral - for accuracy and speed and discuss the findings.

The method is published in [Panagiotou et al., 2009b] where it was used to incorporate structural

priors in DOT. In addition, it has been used for information theoretic regularization of positron emission

tomography (PET) using structural priors [Kazantsev et al., 2010; Pedemonte et al., 2010a; Somayajula

et al., 2010] as well asPedemonte et al.[2010b] which is work-in-progress.

The structure of this chapter is as follows: Section6.1describes the method for efficient evaluation

of the marginal entropy of two entropic estimators. The method is based on a scheme for fast probability

density function (PDF) evaluation, via the interpolation of continuous quantities on a regular grid and

then utilizing the fast Fourier transform (FFT) to efficiently compute the kernel density estimation (KDE)
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due to the convolution structure of the latter. The same section presents a series of validation simulations,

designed and performed to test the accuracy of the entropic estimators. In addition we test how the

entropic estimates are affected by different choices of parameters, in the employed non-parametric KDE

process, such as the kernel width and numbers of quantization bins. Sec.6.2describes a computationally

efficient scheme for computing the derivatives of the two marginal entropy estimators. In a similar

manner, sections6.3 and6.4extend the efficient entropy evaluation and derivative estimation to the JE

case. Finally, Sec.6.5 comments on the efficient estimation of the MI between two random variables

(RVs).

6.1 Computationally efficient marginal entropy evaluation
Let x be the underlying RV governing the gray values of an image. The image itself is considered to

be a sample ofx, where the gray value of each pixel is considered an independent trial of x at some

locationri ∈ Ωx. In effect this implies that all gray values are assumed to beindependent and identically

distributed (i.i.d.) - hence no spatial inter-pixel dependence within a single image is considered. This

clearly an erroneous assumption which does not reflect reality as natural images - including medical

images - are structured. Pixels which belong to the same anatomical class are more likely to attain similar

values. Hence, the PDF describing their gray values is conditioned with respect to spatial location, or

similarly the values of their neighbours. However, the independent and identically distributed (i.i.d.)

assumption is commonly adopted by entropy estimation methods in medical imaging.

We define a sampleA asA = {α1, α2, . . . , αN}, whereN denotes its size andαk = x(rk) denotes

the gray values for pixel locationsrk ∈ Ωx. We note thatαk ∈ R, ∀i.
The aim is to estimate the marginal entropy ofA. Firstly, the Shannon’s entropy ofx, re-iterated

here for convenience, is expressed as

hs(x) = −
∫R p⋆

x(x) log
(

p⋆
x(x)

)

dx, (6.1)

wherep⋆
x is the true PDF ofx. The expression can be approximated using standard numerical integration

techniques, such as Riemann integration using the trapezoidal rule. One can utilize the sampleA to

obtain estimateŝpx(x̆i ;A) of p⋆
x(x), at regularly spaced locations̆x = {x̆

1
, x̆

2
, . . . , x̆

N̆
}, x̆i ∈ R. The

spacing between the sample points is∆x̆ = x̆
i+1
− x̆

i
, i = 1 . . . N̆ − 1. The approximation of Eq.6.1

is expressed as

ĥs(x;A) = −
N̆
∑

i=1

p̂x(x̆i
;A) log

(

p̂x(x̆i
;A)
)

∆x̆, (6.2)

Consider also the expectation formulation of Eq.6.1which will be referred for convenience as empirical

entropy. For the case of the finite sampleA it is given by

ĥe(x;A) = − 1

N

N
∑

k=1

log
(

p̂x(αk;A)
)

. (6.3)
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Both formulations include a summation over PDF entries, either atx̆ for the case of Shannon en-

tropy or directly atα for expectation formulation. The next section describes the adopted approach for

computationally efficient marginal PDF estimation proposed by [Silverman, 1982; Silverman and Green,

1986].

6.1.1 Efficient marginal PDF estimation

For the purpose of PDF estimation, we employ a non-parametric kernel density estimation (KDE) which

returns a continuous estimate and does not requirea priori assumptions regarding the form of the under-

lying unknown density (see Section4.4.2).

Consider a KDE such as the one introduced in Section4.4.2 which utilizes the entireN -sized

sampleA in order to obtain continuous estimates. We provide the expression here for convenience

p̂x(x;A) =
1

N

N
∑

k=1

Ku(x− αk). (6.4)

We employ a Gaussian kernel of standard deviationu

Ku(x̆
j
− αk) =

1√
2πu

exp

(

− (x̆
j
− αk)2

2u2

)

. (6.5)

The computation of the PDF at a single point requiresN kernel evaluations. Hence, populating the

entireN̆ grid points in order to perform the numerical integration ofShannon integral of Eq.6.2 leads

to a computational complexity ofO(N̆N). In the case of empirical entropy of Eq.6.3, the complexity

isO(N2).

The complexity of both estimators can be improved by reducing the complexity of the employed

KDE. As will become apparent, the KDE is a convolution operation. Before proceeding, consider the

following definitions.

The convolution between two continuous functionsf(x), g(x) is expressed as

f(x) ⋆ g(x) =

∫ ∞

−∞
f(x− s)g(s)ds =

∫ ∞

−∞
f(s)g(x− s)ds. (6.6)

The convolution of a signalf(x) with a shifted Dirac delta functionδ(x− a) (see Eq.4.53for the

definition ofδ(x− a)) returns the shifted original signalf(x− a) [Chui, 2008] or

f(x) ⋆ δ(x− a) =

∫ ∞

−∞
f(x− s)δ(s− a)ds = f(x− a). (6.7)

The convolution structure of the KDE becomes now apparent as
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p̂x(x;A) =
1

N

N
∑

k=1

Ku(x− αk) (6.8)

6.7
=

1

N

N
∑

k=1

∫ ∞

−∞
Ku(x− s)δ(s− αk)ds (6.9)

6.7
= Ku(x) ⋆

1

N

N
∑

k=1

δ(x− αk) (6.10)

= Ku(x) ⋆
1

N
III (x− αk) (6.11)

where III(x − α) =
∑N

i=1 δ(x− α)dx is a continuous impulse train.

In addition, the convolution theorem [Bracewell, 1999] states that the convolution between two

functionsf(x), g(x), is equivalent to the product of their Fourier transforms, subsequently subjected to

an inverse Fourier transform. LetF {f(x)} , F {g(x)} denote the Fourier transforms of each function

andF−1 {·} be the inverse Fourier transform . Then the convolution theorem is expressed as

f(x) ⋆ g(x) = F−1
{

F {f(x)} × F {g(x)}
}

(6.12)

Silvermanet al. [1982; 1986] was the first to propose the employment of the Fourier transform

in order to perform a convolution with significantly reducedcost. It is known that in the case of dis-

crete signals - meaning thatα ∈ A are regularly spaced - one can employ the FFT implementationof

the Discrete Fourier transform, which transforms anN signal in the frequency domain inO(N logN)

[Bracewell, 1999; Cooley and Tukey, 1965].

We employ Silverman’s approach, where the initial non-equispacedN -size sampleA is re-sampled

on a grid ofN̆ regularly spaced locations̆x with spacing∆x̆. Note that this is the same grid of locations

where the numerical integration of Shannon entropy will be performed. The resulting regularly spaced

version ofA is expressed as̆A = {ᾰ1, ᾰ2, . . . , ᾰN̆}, whereᾰi = w(x̆
i
). The weightw(x̆

i
) represents

the density of the original continuous sampleA in the vicinity of x̆i . To understand the nature ofw(x̆)

consider the following. In the case of the continuousA, eachαk ∈ A corresponds to an impulse

δ(x − αk). The density ofA would be encoded in the frequency which these non-equispaced impulses

appeared in the continuous impulse train. However in the case of Ă, the comprisinğα are defined over

fixed equispaced locations̆x, hence the density cannot be represent in terms of the frequency for which

they appear in the domain. Instead, the density is encoded byamplitude so each̆x
i

is associated with

the weightw(x̆
i
) which reflects the density of theoriginal sample pointsα in the vicinity of x̆

i
. Each

weightw(x̆i) is computed via a linear interpolation

w(x̆
i
) =

1

N

N
∑

j=1

∧(x̆
i
− αj), (6.13)

where∧(·) is a triangular kernel defined as
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∧(u) =







1−
(

|u| /∆x̆
)

, if |u| < ∆x̆

0, otherwise.
(6.14)

Figure6.1graphically shows the re-sampling of a continuous sampleA with frequency-encoded density,

to the equispaced̆A with amplitude encoded density.
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Figure 6.1: The continuous gray valuesα ∈ A are interpolated to a regularly spaced gridx̆. The originally

frequency encoded density ofA is now reflected by the weightsw(x̆) fixed over the equispaced̆x.

It is apparent from the nature of∧(·) that eachαk ∈
[

x̆
j
, x̆

j+1

]

contributes solely to the weights of

its neighbourinğxj , x̆j+1
with the individual weights beingw(x̆j ) = (1− bi)/N andw(x̆j+1

) = bi/N ,

with bi =
( ∣

∣αk − x̆j

∣

∣ /∆x̆
)

. The values inbk, ∀k are the normalized distance between each continuous

αk ∈ A and its left neighbourinğx
i
. Shwartz et al.[2005] proposed that the valuesbk can be stored into

an array, in order to reduce the complexity of subsequent interpolations, as they are later used to transfer

quantities defined inα to x̆ and the opposite. For that purpose, one additional quantityneeds to be stored

in an array, which is the index of left neighbouringx̆i of eachαk. This is explicitly stored in a second

arrayik = i. Figure6.2graphically represents the nature of the entries inb.

Figure 6.2: Graphical representation of the entries in arrayb, which is used for fast interpolations betweenx̆

andα. Array b stores the normalized distance between a continuousαk and its immediate neighbour̆xi for

which x̆j < αi. The arrayi stores the indexi of the left neighbouring grid point.
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A probability density estimatêpb
x(x̆i

; Ă) is retrieved for̆x
i
, ∀i, by weighting the contribution from

all w(x̆) using the kernel functionKu(·). This gives rise to thebinned kernel density estimator[Sil-

verman and Green, 1986] which effectively is equivalent to the discrete version ofEq. 6.11where the

continuous impulse train is replaced by a discrete impulse train comprised by weightsw(x̆). The binned

kernel estimator is expressed as

p̂b
x(x̆; Ă) =

1

N

N̆
∑

j=1

Ku(x̆− x̆
j
)w(x̆

j
) (6.15)

=Ku(x̆) ⋆
1

N
w(x̆) (6.16)

which is effectively the discretized analogue of Eq.6.8. It should be noted that the binned estimator

p̂b
x(x̆; Ă) becomes an arbitrarily good approximation top̂x(x̆;A) asN̆ increases [Wand, 1994]. We thus

write:

p̂b
x(x̆; Ă)→ p̂x(x̆;A), asN̆ ↑ (6.17)

In practice,N̆ between 100 and 500 is adequate for the retrieval of an accurate PDF estimate [Hall

and Wand, 1996; Wand, 1994]. The binned KDE of Eq.6.15 has a complexity ofO(N̆2) which is

smaller than the complexitiesO(N̆N) andO(N2) reported in the start of this section. It is important to

emphasize that the new complexity is independent of the sample size. It has a reduced value asN̆ ≪ N ,

where the latter holds especially in the 3D case. However, itis important to note that as all entries inA

contribute toĂ via the interpolation scheme, so effectively the entire information inA is utilized by the

binned KDE.

Given thatw(x̆) andKu(x̆) are now defined at equispaced points, the most significant reduction in

complexity is achieved by performing the convolution in theFourier domain using the FFT [Silverman,

1982; Silverman and Green, 1986].

p̂b
x(x̆; Ă) = Ku(x̆) ∗ 1

N
w(x̆) (6.18)

= F−1

{

F {Ku(x̆)} × F
{

1

N
w(x̆)

}

}

(6.19)

We choose to limit the supportsupp(Ku) of the kernelKu(x̆) to a distance of6u from its mean

µ = 0. We thus pre-sampleKu on a regular grid̆g of sizeNK and with the same spacing∆x̆ separating

the equidistant̆x. Thenğ =
{

−NK−1
2 ,−NK−1

2 + 1, . . . , 0, . . . , NK−1
2 − 1, NK−1

2

}

∆x̆, with −6u ≤
−NK−1

2 and NK−1
2 ≤ 6u. The actual sizeNK is not user-defined as it depends onu and∆x̆. Its size is

computed in real-time according to the values ofu and∆x̆.

We can now comment on the complexity of Eq.6.19 whereKu(x̆) is replaced with its finite

support analogueKu(ğ). Both discrete signalsKu(ğ) andw(x̆) are padded with zeros up to a size
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Npad = N̆ + NK − 1 prior to the FFT to ensure that no spurious frequencies wouldresult by wrap-

ping effects due to circular convolution [Bracewell, 1999]. Hence the complexity of Eq.6.19 is

O
(

Npad log(Npad)
)

. However most papers for example [Shwartz et al., 2005; Silverman, 1982; Sil-

verman and Green, 1986] do not consider convolution complexity with respect to theextended (via

padding) domain and simply report the dominant complexity (asN̆ > NK) of O
(

N̆ log
(

N̆)
)

for Eq.

6.19. In this work we adopt the same approach. This is a significantreduction fromO(N̆2) of the non-

FFT binned KDE - given the relatively small̆N , and a vast reduction from the complexities reported in

the start of this section. Figure6.3 shows the binned KDE in action. The continuous trialsα ∈ A are

interpolated to the regular grid̆x producing the amplitude encoded weightsw(x̆). Evidently, the entries

of x̆ which are assigned with a weightw(x̆) are the ones immediately neighbouring a continuousα.

This results in a sparsely populated impulse train. The weightsw(x̆) sum to one, so one can perceive

them as discrete probabilities. Effectively,w(x̆) constitute a normalized histogram where the kernel is

the triangle function∧(·) and not the standard box function. The convolution - via FFT -of w(x̆) with

the sampled Gaussian kernelKu(ğ) results in the densitŷpb
x(x̆; Ă) and populates all̆x which are within

a distance of6u from a continuous entryα. The density estimate obtained by the explicit (non-binned,

non-FFT) KDEp̂x(x̆;A) are also shown for comparison. In this instance the normalized error between

the two sets of estimates is0.3% which is considered acceptable.
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Figure 6.3: Graphical illustration of the binned kernel density estimator. See text for the corresponding discus-

sion.

6.1.1.1 Binning range and spacing

One is required to define the regularly spaced gridx̆ where PDF is estimated. Our approach of setting

the grid ofx̆ is graphically illustrated in Fig.6.4. Prior to settinğx, the binning rangeR(x̆) has to be
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defined. For this purpose, we firstly identify the rangeR(A) of the initial sampleA. According to the

discussion in the previous section, the standard KDE returns p̂x(x;A) 6= 0 for all x inside the support

of the kernelsKu centered at all regularly spaced trialsα ∈ A. Consequently the estimated̂px(x;A) is

expected to be non-zero for a distance|x− αi| ≤ 0.5supp(Ku) = 6u from the two extreme continuous

trialsα1, αN . In the case of Fig.6.4, the kernelsKu centered at the extremeα are highlighted. Hence,

the final binning rangeR(x̆) equals the rangeR(A) plus a further extension at both ends by6.5u, in

order to accommodate the area of non-zero kernel support.

After computingR(x̆), the spacing∆x̆ between̆x is given by∆x̆ = (x̆
N̆
− x̆

1
)/N̆ whereN̆ is the

a priori defined number of regularly spacedx̆.
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Figure 6.4: Binning range for PDF sampling. Regular gridx̆ is not visualized. The Gaussian kernels centered

at the extreme sample points are highlighted.

6.1.2 Fast marginal entropy estimation (Shannon formulation)

Utilizing the binned, FFT enabled KDE of Section6.1.1, it is possible to efficiently obtain an estimate

of the entropy of some underlying RVx from an available continuous sampleA. The Shannon’s classic

integral formulation of entropy (Eq.6.2) using the efficient KDE is expressed as

ĥb
s(x;A) = −

N̆
∑

i=1

p̂b
x(x̆i

; Ă) log(p̂b
x(x̆i

; Ă)) ∆x̆ (6.20)

The governing complexity in Eq.6.20 is the one of the KDE which isO
(

N̆ log(N̆)
)

. This is a vast

reduction from the initialO(N̆N) of the initial entropy estimator of Eq.6.2which is based on the slow

KDE estimator of Eq.6.8. In addition, it does not depend on the size of the image - onlyindirectly

during the interpolation steps. As an indicator of the achieved computation cost reduction, consider a 3D
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image withN = 1003 voxels. Assume a grid̆x of sizeN̆ = 1000 used for the numerical integration of

the PDF. Then the computational cost of the fast Shannon entropy estimator is six orders of magnitude

smaller than the non-FFT based estimator.

6.1.3 Fast marginal entropy estimation (empirical formulation)

The empirical entropy formulation utilizing the fast KDE is

ĥb
e(x; Ă) = − 1

N

N
∑

k=1

log
(

p̃b
x(αk; Ă)

)

, (6.21)

wherep̃b
x(αk; Ă) is defined over the original continuous locationsαk ∈ A and is computed via an extra

interpolation step from the equispacedp̂b
x(x̆; Ă). Specifically, the interpolation is based on Eq.6.14and

is expressed as

p̃b
x(αk; Ă) =

N
∑

j=1

∧(αk − x̆j
) p̂b

x(x̆j
; Ă) (6.22)

One can use the arrayb defined in Section6.1.1for interpolation purposes and compute the entire

p̃b
x(αk; Ă), ∀k as an inner product of vectors, by utilizing efficient linearalgebra libraries. The interpo-

lation is then expressed as

p̃b
x(αk; Ă) =

(

1− bik

)

· p̂b
x(x̆ik ; Ă) + bik · p̂b

x(x̆(ik+1); Ă), ∀k = 1, 2, . . . , N (6.23)

Although the extra interpolation step has a complexity ofO(N), the overall complexity of Eq.

6.21 is based on the dominantO
(

N̆ log(N̆)
)

of the computation of̂pb
x(x̆; Ă). Hence, the empirical

formulation is directly comparable in computational cost terms with Shannon’s formulation of Eq.6.20.

6.1.4 Comparison of the entropic estimators

We seek to evaluate the Shannon’s entropy formulationĥb
s(x; Ă) of Eq. 6.20and the empirical entropy

ĥb
e(x; Ă) of Eq. 6.21, both utilizing the binned FFT accelerated KDE.

Entropic estimators compared to a ‘gold standard’Evaluating the accuracy of the two entropic esti-

mators can be accomplished by comparing their estimates against some ‘gold standard’ entropic value of

a known density. As a gold standard, we employ the Normal density N (0, σ) which for given standard

deviationσ, its entropy can be analytically derived and expressed as [Cover and Thomas, 1991; Viola,

1995]

h(x ∼ N (µ, σ)) =
1

2
log(2πeσ2) (6.24)

Let x ∼ N (0, σ). Before proceeding to entropy estimation with both methods, it is important to

choose the widthu of the kernel used in the KDE employed by the entropic estimators. The optimum

uopt would minimize a distance measure between the PDF estimatep̂b
x(x̆; Ă) obtained by the KDE and
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the true PDFp⋆
x(x̆) = N (0, σ). A commonly used distance measure of similarity between PDFs is the

mean integrated square error (MISE) [Silverman and Green, 1986]. By replacing integrals with their

numerical approximations MISE is given by

MISE(u, Ă) =
∑

x̆

E
[

p̂b
x(x̆; Ă, u)− p⋆

x(x̆)
]2

∆x̆ (6.25)

=
∑

x̆

E
[

p̂b
x(x̆; Ă, u)− E

[

p̂b
x(x̆; Ă, u)

]

+ E
[

p̂b
x(x̆; Ă, u)

]

− p⋆
x(x̆)

]2

∆x̆ (6.26)

=
∑

x̆

[

p̂b
x(x̆; Ă, u)− E

[

p̂b
x(x̆; Ă, u)

]

]2

+

(

E
[

p̂b
x(x̆; Ă, u)

]

− p⋆
x(x̆)

)2

∆x̆ (6.27)

=
∑

x̆

V ar
(

p̂b
x(x̆; Ă, u)

)

∆x̆+
∑

x̆

bias2
(

p̂b
x(x̆; Ă, u)

)

∆x̆ (6.28)

The expectation terms in MISE formula denote that the error is averaged over multiple realizations ofA,

in order to obtain a more robust statistical estimate.

For the case of a target PDFp⋆
x(x̆) = N (0, σi), the optimum kernel standard deviationuopt for

which p̂b
x(x̆; Ă, u

opt) minimizes MISE, can be analytically derived and is given by [Parzen, 1962; Silver-

man and Green, 1986]

uopt
i = 1.06σiN

−1/5 (6.29)

whereN the size of the sample used for the PDF estimation.

Now that we have a formula for the optimumuopt, we proceed with the evaluation of the entropic

estimators. We define 60 RVsxi ∼ N (0, σi) with σi = 0.005→ 2, for i = 1, 2, . . . , 60. For eachxi we

obtain 50 samplesAij indexed byj = 1, 2, . . . , 50, each consisting ofN = 1000 continuous trials. For

sample sizeN = 1000, the optimum kernel standard deviation isuopt = 0.2663 (Eq. 6.29).

Figure6.5ashows the differential entropy estimates obtained for bothShannon & empirical binned

entropy estimators, each utilizinğN = 400 regularly spaced locations̆x and the optimumuopt. The

entropic estimates for eachσi are averaged over the 50 samplesAij . In addition, the true entropy of

N (0, σi) is also plotted for the variableσi with h⋆(N (0, σi)) = 0.5 log(2eπσi).

The errors of both estimators compared to the true entropy are computed via a normalized MISE.

For the current case ofN = 1000 sized samples, the errors are presented in the third row (columns

1 & 2) of Table6.1. The empirical estimator returns an error of less than1%, whereas the Shannon

implementation returns an increased error of2%. Figure6.5bdepicts a magnification of Figure6.5ato

enhance details. Interestingly, the Shannon estimates appear to overestimate the true entropy values and

deviate from the empirical ones by an almost constant offsetor ĥb
s(xi; Ăij , u

opt
i ) = ĥb

e(xi; Ăij , u
opt
i )+ ǫi,

with ǫi ≈ c, ∀i andc ∈ R+. We test the total normalized mean squared error betweenǫi, ∀i and the mean

value ǭ, which returned an error of0.34% (last column of Table6.1). The relatively small value is an

indicator that the entropic estimates obtained by the Shannon estimator deviate from the ones obtained

by the empirical estimator by the almost constant valueǭ for all xi. We repeat the same test for samples
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Figure 6.5: Comparison between Shannon & empirical entropy estimatorsfor optimum kernel widthuopt. 6.5a

Entropic estimates are obtained from samples drawn fromxi ∼ N (0; σi) for variableσi ∈ [0.005, 2]. The

analytically derived entropyh⋆(N (0, σi)) is also plotted. The monotonically ascending graph is expected as

N (0, σi) becomes more clustered for smallerσi, hence it is characterized by smaller entropy.6.5bDetail of

6.5a

comprised of either lesser or more trials and we present the corresponding errors in the other entries of

Table6.1. We observe a progressive improvement in the accuracy of both estimators as samples become

larger. In addition, for larger samples the Shannon estimator converges to the empirical estimator and

the offset between them approaches a constant value.

From this study we conclude that both estimators can return acceptable entropy estimates given that

the utilized samples are large enough. Empirical entropy returned more accurate results for all considered

sample sizes.

Entropy estimators and kernel width The next test assesses the effect of the kernel widthu on the

accuracy of the obtained entropic estimates. Once again we useN̆ = 400 regularly spaced locations used

by the binned estimators. A single target RVx ∼ N (0, 1) is used, from which we retrieve 2000 samples

Ai, (i = 1→ 2000), each consisting ofN = 1000 trials. Estimateŝhb
s(x; Ăi, uj), ĥb

e(x; Ăi, uj) - where
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Table 6.1: Normalized error of the Shannon & empirical entropy estimators against “gold standard”

entropy values

Entropy Estimator Empirical Shannon ǭ (MSE%)

Normalized error (N = 100000) 0.008% 0.036% 0.058 (0.04%)

Normalized error (N = 10000) 0.09% 0.86% 0.0143 (0.14%)

Normalized error (N = 1000) 0.4% 2% 0.0358 (0.34%)

Normalized error (N = 100) 1.63% 4.2% 0.088 (0.9%)

Ăi is obtained by re samplingAi in x̆ - are obtained for eachAi. For the kernel standard deviations we

use 60 linearly spaced valuesuj = 0.005→ 0.45. We recall that the optimumuopt forN (0, 1) is 0.2663.

Figure6.6shows the mean entropy estimates for eachuj, averaged over all estimates obtained by using

the 2000 samplesAi. The empirical estimator returns its best estimate for a value ofue = 0.3776 > uopt

whereas the Shannon estimator forus = 0.1313 < uopt. The empirical estimator demonstrates higher

invariance to changes inu compared to the Shannon estimator and obtains more accurateestimates for a

higher range ofu. Foru = uopt, the true entropy ish⋆(x) = 1.4189, whereas the two estimators return

ĥb
s(x;Ai, u

opt) = 1.447 andĥb
e(x;Ai, u

opt) = 1.412.
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Figure 6.6: Comparison graph among the mean entropy estimates ofx ∼ N (0, 1) for variable kernel widthu

and of the true entropyh(N (0, 1)).

Entropy estimators and regular grid sizeWe now assess the effect of the size of the regular gridx̆ used

by the binned KDE. Consider the underlying RVxi ∼ N (0, 1). We instantiate 1000 samplesAi, each

comprised by 1000 trials. We estimate the entropy of each sample using both estimators, for variable grid

sizesN̆i ∈ [100, 10000] in 20 logarithmically spaced intervals. The standard deviation u of the kernels

used for each estimator, are the ones which returned the bestentropic estimates in Fig.6.6. Figure6.7
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presents the normalized mean integrated square error of each estimator when compared against the true

entropy ofxi ∼ N (0, 1). Table6.2 shows the percentage of the error reduction achieved for different

N̆i. We see that the upper limit of the bin number range (0 → 500) which was suggested by Wandet

al. [1996; 1994] for the accurate PDF estimation via a KDE method (see Sec.6.1.1), retrieves 96% of

the total error. We note that by using the optimal kernel widths for each estimator, both estimators return

comparable errors.
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Figure 6.7: Comparison graph among the mean entropy estimates ofx ∼ N (0, 1) for variable grid sizeN̆

Table 6.2: Percentage of error recovered vs number of bins

Percentage retrieve 94% 95% 96% 97% 98% 99%

N̆ (Empirical) 428 546 546 695 886 1129

N̆ (Shannon) 428 546 546 695 886 1129

As a concluding remark of this section, it is evident that both entropic estimators return accurate

estimates, given that an optimal kernel width is used. The empirical estimator exhibits less variation

to changes inu. However, it should be mentioned that even for non-optimalu, the obtained entropic

estimates can still operate as a measure of image uncertainty, or equivalently clustering between differ-

ent PDFs corresponding to different RVs. For example see theShannon estimator in Fig.6.5, which

monotonically increases with the increasingσi of the considered RVsxi ∼ N (0, σ). If we are interested

to compare the uncertainty of two samples obtained by the RVs, the absolute accuracy of the entropic

estimate corresponding to each sample is not as useful as theaccuracy of difference between the two

estimates.

6.2 Computationally efficient marginal entropy derivative estima-

tion

In this section we describe the used scheme for the efficient estimation of the derivatives of the two

entropic estimators.
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6.2.1 Shannon’s entropy derivatives

By applying the chain rule wherever necessary, the derivative of Eq.6.2with respect to the continuous

αi ∈ A is

∂ĥs(x;A)

∂αi
=−∆x̆

N̆
∑

j=1

[

∂p̂x(x̆j
;A)

∂αi
log
(

p̂x(x̆j
;A)
)

+ p̂x(x̆j
;A)

∂ log
(

p̂x(x̆j
;A)
)

∂p̂x(x̆j
;A)

∂p̂x(x̆j
;A)

∂αi

]

(6.30)

=−∆x̆

N̆
∑

j=1

(

log
(

p̂x(x̆j
;A)
)

+ 1
) ∂p̂x(x̆j

;A)

∂αi
(6.31)

Eq. 6.8
= − ∆x̆

N

N̆
∑

j=1

(

log
(

p̂x(x̆j
;A)
)

+ 1
) ∂Ku(x̆j − αi)

∂αi
(6.32)

where after considering the Gaussian formulation ofKu(x̆
j
− αi) (see Eq.6.5)

∂Ku(x̆
j
− αi)

∂αi
= −Ku(x̆

j
− αi)

(

x̆
j
− αi

u2

)

(6.33)

The complexity of Eq.6.32is O(N̆). However, the derivatives are required for allN continuous

αi, leading to a total complexity ofO(N̆N). Once again Eq.6.32 has a convolution structure. By

utilizing the FFT one can achieve reduction in the computational cost. In order to do so, all involved

quantities have to be regularly arranged on a common grid. For that reason we firstly compute the

derivative not with respect to the continuousαi but rather with respect to the regularly spaced gray

valuesx̆ corresponding to the regular grid. Equation6.32then becomes

∂ĥb
s(x; Ă)

∂x̆i
=− ∆x̆

N

N̆
∑

j=1

(

log
(

p̂b
x(x̆j

;A)
)

+ 1
)∂Ku(x̆

j
− w(x̆i))

∂x̆i
(6.34)

=

(

log
(

p̂b
x(x̆i;A)

)

+ 1

)

⋆

(

− ∆x̆

N

∂Ku (x̆i)

∂x̆i

)

(6.35)

=F−1

{

F
{

log
(

p̂b
x(x̆i;A)

)

+ 1

}

×F
{

−∆x̆

N

∂Ku(x̆i)

∂x̆i

}

}

(6.36)

The complexity of Eqs.6.34-6.35 is O(N̆2) considering that the derivative is computed for all

i = 1 → N̆ and also given the fact that̂pb
x(x̆i;A) is already pre-computed∀x̆i during the entropy

evaluation. Hence, computational cost reduction has been achieved considering theO(N̆N) of Eq.

6.32simply due to the computation of the derivative with respectto x̆ rather thanα. The FFT based

convolution further reduces the complexity toO(N̆ log(N̆ )).

Eq. 6.36computes the derivative at̆x. However, the derivative is required at the continuous lo-

cationsα ∈ A. For that purpose we interpolate the computed derivatives at the continuous locations

αi ∈ A, ∀i = 1, . . . , N via

∂ĥb
s(x; Ă)

∂αi
=
(

1− bi

)∂ĥb
s(x; Ă)

∂x̆qi

+ bi
∂ĥb

s(x; Ă)

∂x̆(qi+1)
, ∀i = 1, 2, . . . , N (6.37)
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6.2.2 Evaluation of the efficient Shannon entropy estimatorderivatives

It is essential to evaluate the accuracy of the FFT accelerated analytic derivatives of Eqs.6.34- 6.37. To

do so, we compare the latter against the following derivatives:

1. The non-FFT accelerated analytic derivatives of Eq.6.32 which do not employ an intermedi-

ate regularly spaced samplĕA for the purpose of PDF estimation. They rather use the full KDE

representation of Eq.6.8which ensures that there are no errors propagating from the linear inter-

polations of the binned KDE. In addition, the FFT accelerated derivatives utilize Gaussian kernels

Ku of finite supportsupp(Ku) ≈ 12u. The non-FFT derivatives use kernels of infinite support,

henceKu(x̆j − αi) of Eq. 6.32 is non-zero for any input. Hence, all trialsα ∈ A contribute

directly for the PDF estimate at any continuous locationx. This test reveals the effects of the

interpolation in the binned entropy estimators, as well as the effects of reducing the continuous

N -sized sample to the regularly spacedN̆ -sized sample

2. The numerical derivatives obtained by finite differences(). Let Ai− = {α1, α2, . . . , αi −
h, . . . , αN} andAi+ = {α1, α2, . . . , αi + h, . . . , αN} denote the original sampleA including

a perturbation of a specific trialαi by someh → 0+. For αi, ∀i = 2 : N − 1, the central

derivatives for the fast Shannon estimator of Eq.6.20are given by

∂ĥb
s(x;A)

∂αi
=
ĥb

s(x;Ai+)− ĥb
s(x;Ai−)

2h
. (6.38)

whereas fori = 1 or i = N we use the forward and backward rules
(

ĥb
s(x;Ai+)− ĥb

s(x;A)
)

/h

and
(

ĥb
s(x;A)− ĥb

s(x;Ai−)
)

/h respectively.

A N = 1000 sized sampleA is drawn fromx ∼ N (0, 1).We compute the Shannon estimator

partial derivatives with respect toα ∈ A using all three mentioned derivatives. The size of the grid

remainsN̆ = 400. We set a kernel width for the Shannon estimator ofus = 0.1313, which returns

the best entropic estimate with respect to the true entropy of N (0, 1) (see Fig.6.6). Figure6.8 shows

the graphs of the computed partial derivatives superimposed. The normalized error among the depicted

derivatives are given in Table6.3. We consider the error between the binned, FFT enabled analytic

derivatives and the ones obtained by the full KDE implementation to be acceptable. We note that the

full KDE implementation - no FFT, unlimited kernel support -is the textbook definition of the KDE.

The substantial match between the two is an encouraging outcome. However, the error between the

analytic derivatives and the derivatives is significant. However, it shows a dramatic reduction as the

size of the sample increases. Although the graphs appear to be matching, the detail in Fig.6.8 shows

that the derivatives are not as smooth as their analytic analogues, possibly due to the binned nature of

the estimator.Shwartz et al.[2005] mentioned that an entropy estimator utilizing the binned locations

can result in the staircase effect, whereas its analytic derivative exhibits higher invariance. We will see

however in the next section that the empirical estimator which is computed directly at the continuous

locations, is also affected by the binning process.
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Figure 6.8: Shannon entropy estimator derivatives. Analytic partial entropic derivatives with respect to individ-

ual trials (FFT and full KDE, non-FFT implementations), as well as the numerical derivatives based on . Detail

of the main graph also provided

Table 6.3: Errors between Shannon entropic estimator analytic derivatives

Compared derivative quantities Mean squared error(%)

Sample sizeN = 100

Analytic FFT vs analytic non-FFT 0.13%

Analytic FFT vs numerical 36.07%

Sample sizeN = 1000

Analytic FFT vs analytic non-FFT 0.11%

Analytic FFT vs numerical 9.5%

Sample sizeN = 10000

Analytic FFT vs analytic non-FFT 0.04%

Analytic FFT vs numerical 2.45%
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6.2.3 Empirical entropy derivatives

The derivative of the empirical entropy formulationĥb
e(x;A) of Eq. 6.21with respect to the continuous

samplesα ∈ A was derived byShwartz et al.[2005]. The derivation is given here for completeness

∂ĥe(x;A)

∂αr
=− ∂

∂αr

(

1

N

N
∑

i=1

log (p̂x(αi;A))

)

(6.39)

=− 1

N

N
∑

i=1

1

p̂x(αi;A)

∂

∂αr

(

p̂x(αi;A)
)

(6.40)

=− 1

N

N
∑

i=1

(

1
1
N

∑N
j=1Ku(αi − αj)

)





∂

∂αr

( 1

N

N
∑

j=1

Ku(αi − αj)
)



 (6.41)

=− 1

N

N
∑

i=1

(

1
1
N

∑N
j=1Ku(αi − αj)

)





1

N

N
∑

j=1

K ′
u(αi − αj)

(

δ̆(i, r)− δ̆(j, r)
)



 (6.42)

=− 1

N

1
N

∑N
j=1K

′
u(αr − αj)

p̂x(αr;A)

+
1

N

N
∑

i=1

1
NK

′
u(αi − αr)

p̂x(αi;A)
(6.43)

whereK ′
u(·) = ∂Ku(·)/∂αr is defined according to Eq.6.33. Considering Eq.6.33thenK ′

u(αi−αr) =

−K ′
u(αr−αi). Finally δ̆(i, r) is the Kronecker delta, corresponding to the discrete analogue of the Dirac

delta function and is given by

δ̆(x) =











1, x = 0

0, x 6= y

, (6.44)

The complexity of estimating∂ĥe(x;A)/∂αr via Eq. 6.43isO(N). As the derivative needs to be

computed for allN trialsαr ∈ A, the overall complexity isO(N2).

Both parts of Eq.6.43can be computed efficiently by utilizing a regular grid and FFT. We re-iterate

its derivation for completeness and also in order to reveal an implementation detail which is important

for the purpose of comparison with the Shannon derivatives.Following notation, Equation6.43can be

rewritten as

∂ĥe(x;A)

∂αr
=

1

N

F1(αr;A)

p̂x(αr;A)
− F2(αr;A) (6.45)

where

F1(αr;A) =
1

N

N
∑

j=1

K ′
u(αr − αj) and (6.46)

F2(αr;A) =
1

N

N
∑

i=1

K ′
u(αi − αr)

p̂x(αi;A)
. (6.47)
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Fast computation of 1
N

F1(αr ;A)
p̂x(αr ;A)

Considering the KDE formulation of Eq.6.8, thenF1(αr;A) = ∂p̂x(αr;A)/∂αr. However, we

have established that̂px(αr;A) can be also computed using the utilization of the binned KDE of Eq.

6.15, which computeŝpb
x(x̆;A) at N̆ regularly spaced locations, followed by an interpolation step which

transfers the binned PDF estimate to the continuous locationsα. Computingp̂b
x(x̆;A) for all N̆ regular

locationsx̆, is the convolution process expressed byp̂b
x(x̆; Ă) = ( 1

N̆
K̆σ ∗ w)(x̆) (Eq. 6.18).

ComputingF1(x̆;A) simultaneously for all̆x can be accomplished by utilizing a property of the

convolution of two functionsf, g, which says that the derivative of the convolution equals the convolution

of one of the functions with the derivative of the second [Bracewell, 1999]. The latter is expressed as

(

f(x) ⋆ g(x)
)′

= f ′(x) ⋆ g(x) = f(x) ⋆ g′(x). (6.48)

Utilizing this property enables the computation ofF1 as

F1(x̆;A) =
∂p̂b

x(x̆;A)

∂x̆
(6.49)

=
1

N
Ku

′(x̆) ∗ w(x̆) (6.50)

=F−1

{

F
{

w(x̆)

}

×F
{

1

N

∂Ku(x̆)

∂x̆

}

}

(6.51)

Similar to Eq.6.19, the complexity of the above equation isO(N̆ log
(

N̆)
)

. Figure6.9depicts a sample

A; the PDFp̂b
x(x̆;A); the computed weightsw(x̆) and the regularly sampled kernel derivativeKu

′(x̆),

which when convolved withw(x̆) results inF1(x̆;A) = ∂p̂b
x(x̆;A)/∂x̆.

Finally, the computation ofF1(α;A) from F1(x̆;A) is achieved by an interpolation similar to the

one of Eq.6.37.

F̃1(αi;A) =
(

1− bi

)

F2

(

x̆qi ;A
)

+ biF1

(

x̆(qi+1);A
)

, ∀i = 1, 2, . . . , N (6.52)

To complete the computation of the first term in Eq.6.45, the p̂x(αr;A) in the denominator of

1
N

F1(αr ;A)
p̂x(αr ;A) is replaced bỹpb

x(αr;A) which is already precomputed for the purpose of entropy evaluation

in Eq. 6.22.

Fast computation ofF2(αr ;A)

The computation ofF2(x;A) can also benefit from fast convolutions via FFT. In a manner anal-

ogous to Eq.6.18 - on which the fast computation ofF1 was based on -F2(x̆;A) can be expressed

as

F2(x̆;A) =
1

N
K ′

u
mirror

(x̆) ∗ w(x̆)

p̂b
x(x̆;A)

(6.53)

=F−1

{

F
{

1

N
K ′

u
mirror

(x̆)

}

×F
{

w(x̆)

p̂b
x(x̆;A)

}

}

. (6.54)
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Figure 6.9: Fast PDF derivative estimation. A PDF estimate using the binned estimator is shown bŷpb
x(x̆; Ă).

Its derivative at̆x is computed by convolving - in the Fourier domain - the regularly spaced samplĕA consisting

of w(x̆) with the analytic kernel derivativeKu
′(x̆). As a visual qualitative assessment, note that all optima of

the p̂b
x(x̆; Ă) correspond to zero crossings in∂p̂b

x(x̆; A)/∂x̆.

where termsw(x̆), p̂b
x(x̆;A) have been precomputed for the entropy evaluation andK ′

u is the derivative

of the kernel sampled at̆x, computed in in Eq.6.51and visualized in Fig.6.9. The sampledK ′
u(x̆) is

mirrored due to the reversal of inputs in Eq.6.47. An interpolation step similar to Eq.6.52transfers

F2(x̆;A) to the continuous̃F2(α,A).

F̃2(αi;A) =
(

1− bi

)

F2

(

x̆qi ;A
)

+ biF2

(

x̆(qi+1);A
)

, ∀i = 1, 2, . . . , N (6.55)

It is important to note that the implementation proposed byShwartz et al.[2005] differed in the

computation ofF2(αi;A). In his approach, the factor of Eq.6.53was computed directly at the contin-

uousα. The factor was then interpolated back at the regularx̆, and finally subjected to the convolution

of Eq. 6.53 and the interpolation of Eq.6.55. We improve on that approach by directly computing

the factor at̆x. Our approach of empirical entropy estimation removes the need for the first interpola-

tion hence reduces the complexity byO(N). Shwartz et al.[2005] used explicitfor-loopsfor entropy

and derivative computation whereas in our implementation all involved quantities are stored in vectors

and matrices which enable the computation of entropy and itsderivative by utilizing fast linear alge-

bra libraries. Later, when we evaluate the derivative computation approaches we will see that the error

between the two approaches is insignificant - see for exampleTable6.4. The complexity of Eq.6.55,
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computed in a manner similar to Eq.6.51, isO(N̆ log
(

N̆)
)

.

6.2.4 Evaluation of the efficient empirical entropy estimator derivatives

Having efficiently computed̃F1(αi; Ă) and F̃2(αi; Ă), the fast empirical entropy derivatives are ob-

tained by computing the sum of Eq.6.45. An important difference between the Shannon and empirical

derivatives is that the latter requires two 2D FFT in order tocompute each of two derivative terms in

Eq. 6.45. The combined complexity isO(2N̆ log
(

N̆)
)

which is twice the complexity of the Shannon

derivatives.

We now test the empirical derivatives using the same approach discussed at the end of Section6.2.1

and using thesameN = 1000-sized sampleA drawn fromx ∼ N (0, 1) and used for the Shannon

derivative evaluation. Again we usĕN = 400 and we use the optimumue = 0.3776 (see Fig.6.6). The

FFT based derivatives are tested against

i) the ones obtained by numerical ,

ii) the ones obtained by explicitly computing Eq.6.43without the employment of binned KDE and FFT

as well as

the ones byShwartz et al.[2005] implementation. The obtained derivatives are depicted inFig. 6.10.

The normalized errors between the analytic derivatives, provided in Table6.4, are less than1% for

two different sample sizes. However, once again there is significant discrepancy between the analytic

derivatives and the . The detail in Fig.6.10shows that the stair case effect is also a characteristic of the

empirical entropy estimator. We note that the derivatives of theN = 1000 sized sample are not depicted.

It is encouraging to see that the derivative error decreasesas the sample increases.
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Figure 6.10: Empirical entropy estimator derivatives. Analytic partial entropic derivatives with respect to

individual trials (FFT; full KDE, non-FFT; and Shwartz implementation) as well as the numerical derivatives

based on . Detail of the main graph also provided
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Table 6.4: Errors between empirical entropic estimator analytic derivatives

Compared derivative quantities Mean squared error(%)

Sample sizeN = 100

Analytic FFT vs analytic non-FFT 0.05%

Analytic FFT vs numerical 17%

Analytic FFT vs analytic Shwartz FFT 0.008%

Sample sizeN = 1000

Analytic FFT vs analytic non-FFT 0.02%

Analytic FFT vs numerical 3.13%

Analytic FFT vs analytic Shwartz FFT 0.0077%

Sample sizeN = 10000

Analytic FFT vs analytic non-FFT 0.012%

Analytic FFT vs numerical 0.7%

Analytic FFT vs analytic Shwartz FFT 0.0078%

6.2.5 Comparison of the derivatives of the marginal entropyestimators

The previous sections evaluated the derivatives of both estimators independently. It is important to

see how the derivatives compare to each other. We only consider the FFT enabled analytic derivatives

which are of interest in this work. The derivatives depictedin Figs. 6.8-6.10differ by a very significant

20% (see Fig.6.12afor their visual superposition). For the estimation of bothempirical and Shannon

derivatives we have used kernel standard deviationsue = 0.3444 andus = 0.1372, which produced the

best entropic estimates with respect to the trueh⋆(N (0, 1)). These values differ significantly as well as

the resulting PDFs obtained by the KDE (not depicted). In order to check if the discrepancy between the

derivatives is due to the choice ofu, we keepus fixed and we search in a range of valuesue = c · us

with c = 1 → 2 for an empirical derivative which produces a better match against the Shannon one.

The derivative error with respect to the variousc is shown in the left graph of Fig.6.11. The graph on

the right is similar to the one of Fig.6.6, where the entropy estimates are plotted for variableu. The

values ofus, ue and the estimated̂ue = c · us, for c corresponding to the minimum in the left graph of

Fig. 6.11, are highlighted. Interestingly, thêue is very close to theu which minimizes the MISE value

discussed in Sec.6.1.4. Using the newly estimated̂ue we recompute the derivatives for the same sample

with sizeN = 1000 and for a bigger sample withN = 10000. The obtained derivatives are depicted

in Fig. 6.12. The match between the derivatives vastly improves visually as well the quantitatively. The

various errors are summarized in Table6.5.

As it was already noted, the true derivative is not availableto provide the ‘gold standard’ point

of reference in order to assess the absolute accuracy of the two estimators’ derivatives. However, the

inability to conduct a test against a ‘gold standard’ is not disabling. Even if this gold standard existed,

the estimated derivatives could largely deviate from it forincorrectu. In practice, what we are really
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interested in is that theestimatedderivative is an accurate descriptor of the slope of theestimatedentropy.

One would expect that for accurateu, the empirical (expectation based) entropy formulation would

approach the true entropy for very large samples and that theShannon entropy would approach the true

entropy for very large samples and dense discretisation. The fact that the error decreases as the sample

size increases is an encouraging indicator regarding the comparable nature of the two estimators. In an

imaging perspective, the image itself is the maximum sized sample which can be possibly used, hence

its estimated entropy is the best possible value which we canobtain. The concept of true entropy does

not hold in that case as there is nottrue underlying probability density which describes the gray values.

Thus, in the imaging perspective, even the search for the ‘best’ u does not really exist due to the luck of a

‘gold standard‘ PDF, but it is now a subjective choice given what we seek to accomplish. Using smallu

in the KDE, captures details in the image but simultaneouslydoes not assume high correlation between

different gray values. The opposite happens for largeu.
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Table 6.5: Comparison between the Shannon and empirical entropy derivatives estimates obtained from

the same sample. Two different sized samples are considered.

Analytic FFT Shannon vs analytic FFT empiricalNormalized error

Ideal kernelu for both estimators

Sample sizeN = 1000 20.1%

Sample sizeN = 10000 8%

Ideal kernelu for Shannon estimator and fittedu for empirical estimator

Sample sizeN = 1000 7.26%

Sample sizeN = 10000 2.6%

Table 6.6: Marginal entropy evaluation and derivative estimation: Computational complexity of explicit

as well as the FFT based implementations

Non-FFT Order of Complexity FFT Order of complexity

ĥs(x;C) O(N̆N) ĥb
s(x;C) O

(

N̆ log(N̆)
)

ĥe(x;C) O(N2) ĥb
e(x; Ă) O

(

N̆ log(N̆)
)

∂ĥs(x; Ă)/∂αi O(N̆N) ∂ĥb
s(x; Ă)/∂αi O

(

N̆ log(N̆)
)

∂ĥe(x;C)/∂αr O(N2) ∂ĥb
e(x; Ă)/∂αi O

(

N̆ log(N̆)
)
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e(x; A, c · us)/∂α

Trials α ∈ A

(c)

Figure 6.12: Visual comparison between Shannon & empirical entropy estimator derivatives of two samples

of different size.6.12aN = 1000, incorrect widthsus, ue; whereas the following subfigures use the optimal

widths for derivative matchingus, c ·us for two different sample sizes6.12bN = 1000 and6.12cN = 10000.
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6.3 Computationally efficient joint entropy evaluation
This section builds on the concepts previously discussed inthis chapter and extends them to the case

of JE between two RVs. Similar to the definition ofx (see start of Section6.1), y is introduced as the

underlying RV describing the gray values of a second image. The second image is effectively a sampleB

of y, expressed asB = {β1, β2, . . . , βN} whereβi = y(ri) for all pixel locationsri ∈ Ωy. We consider

Ωx ≡ Ωy and also that both imagesA andB have equal sizeN .

When considered jointly, the gray values of imagesA andB forms a joint sampleC which consists

of N trial pairs{αi, βi} , ∀i = 1, 2, . . . , N . It should be emphasized that each of the joint trial pairs is

comprised byspatially correspondinggray values from both images - that is the gray values sampledat

the same pixel location. This constitutes the source of the pixel-wise spatial correspondence betweenA

andB, which is captured by joint entropy. However, it should be noted that within a single image, gray

values are considered to be i.i.d.. Hence, no spatial dependence among the pixels of a single image is

considered via this formulation.

The approximation of Shannon’s joint entropy integral via means of numerical integration is given by

ĥs(x, y;C) =

∫ ∞

−∞

∫ ∞

−∞
p̂x,y(x, y;C) log

(

p̂x,y(x, y;C)
)

dx dy (6.56)

≈−
N̆
∑

i,j=1

p̂x,y(x̆i ; y̆j ;C) log
(

p̂x,y(x̆i , y̆j ;C)
)

∆x̆∆y̆, (6.57)

wherey̆ = {y̆
1
, y̆

2
, . . . , y̆

N̆
}, y̆

i
∈ R is a discretisation ofy in regularly spaced intervals with spacing

∆y̆ = y̆i+1
− y̆i+1

. Throughout this work, we set an equal number of grid locationsN̆ for both x̆, y̆.

TheN̆2 nodal positions of the grid can also be indexed via the shorter notationr̃i,j =
{

x̆
i
, y̆

j

}

.

Similar to its marginal analogue of Eq.6.3, the joint empirical entropy is expressed in terms of the

continuous joint trials{αi, βi} and is expressed as

ĥe(x, y;C) = − 1

N

N
∑

i=1

log
(

p̂x,y(αi, βi;C)
)

. (6.58)

Consider now the joint KDÊpx,y(x, y;C), which estimates the joint density for{x, y} , x, y ∈ R+,

by utilizing the joint sampleC. In an analogy with the marginal KDE, the joint KDE with its 2D

convolution (denoted by⋆⋆) structure made apparent is expressed by

p̂x,y(x, y;C) =
1

N

N
∑

i=1

KΣ(x− αi, y − βi) (6.59)

=
1

N

N
∑

i=1

∫ ∞

−∞

∫ ∞

−∞
KΣ(x− s, y − t)δ(s− αi, t− βi)ds dt (6.60)

=KΣ(x, y) ⋆ ⋆
1

N

N
∑

i=1

δ(x− αi, y − βi) (6.61)
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whereKΣ(x, y) is a bi-variate Gaussian kernel re-iterated here for convenience as

KΣ(x, y) =
1

2π |Σ|1/2
exp

(

−1

2
[x, y]

T
Σ−1 [x, y]

)

, (6.62)

with Σ =





u2
x 0

0 u2
y



 being the covariance matrix andδ(x, y) is the 2D Dirac delta function for which

∫∞
−∞

∫∞
−∞ δ(x, y)dx dy = 1, δ(x, y) = 0 for x2 + y2 6= 0 andδ(x, y) = ∞ otherwise. Regarding Eq.

6.59, it should be emphasized that the estimation ofp̂x,y(x, y;C) utilizes a joint sample comprised by

the joint trials{αi, βi} , ∀i = 1, 2, . . . , N .

At this point, we should emphasize a very crucial detail. Thedimensionality of the images consti-

tutingC does not affect in any way the computation, computational complexity or implementation of

joint entropy which assumes i.i.d. trials. Due to the spatial independence, both images are considered by

the functional as vectors, where their entries at corresponding index locations constitute the joint trials.

Both joint entropy estimators solely depend on the JPDF whose dimensionality is independent of the

dimensionality of the images (1D/1D, 2D/2D or 3D/3D). The JPDF is always 2D; that is one dimension

for describing the marginal PDF of the gray values of each of the two images. Hence, the computational

complexity estimates which will be derived apply equally tothe 2D/2D or 3D/3D case and depend solely

on the number of pixels in the image.

6.3.1 Efficient joint PDF estimation

The complexity of the joint KDE of Eq.6.59 for retrieving an estimate for all̆N2 continuous{x, y}
of the joint Shannon entropy (Eq.6.57) is O(N̆2N) whereas for the empirical formulation (Eq.6.58)

is O(N2). Both costs however are significantly high and they can be reduced by following an ap-

proach similar to Section6.1.1, which reduces the complexity of the KDE. The continuous joint tri-

als {αi, βi} , ∀i = 1, 2, . . . , N are interpolated to a regular 2D grid with grid locations
{

x̆
i
, y̆

j

}

with

i, j = 1, 2, . . . , N̆ and with spacings∆x̆, ∆y̆. In a manner similar to the marginal case, the weights

w(x̆, y̆) assigned to the grid locations, represent the density of thecontinuous joint trials{α, β} in the

vicinity of {x̆, y̆} and are computed via a bi-linear interpolation

w(x̆i , y̆j ) =
1

N

N
∑

k=1

∧(x̆i − αk, y̆j − βk) (6.63)

where

∧(u, v) =







(

1−
(

|u| /∆x̆
)

)(

(1−
(

|v| /∆y̆
)

)

, if |u| < ∆x̆ and |v| < ∆y̆,

0, otherwise.
(6.64)

We term the collection of
{

x̆
i
, y̆

j

}

as C̆ which corresponds to the regularly arranged versionC.

Figure6.2 graphically shows the quantities involved in the bi-linearinterpolation process. In a manner

similar to its 1D analogue (see Figure6.2), after the first application of the interpolation process,a
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number of the involved quantities are stored in order to be re-used in subsequent interpolations and save

computational time. For all joint trials{αk, βk} , ∀k = 1, 2, . . . , N , the stored quantities area) the

normalized distance of bothαk andβk from their nearest regular location
{

x̆
i
, y̆

j

}

, with x̆
i
< αk and

y̆j < βk. The normalized distances are given bybx
k = (αk − x̆i) /∆x̆ andb

y
k =

(

βk − y̆j

)

/∆y̆. b) the

indicesi, j indicating the nearest regular location
{

x̆
i
, y̆

j

}

which was mentioned above. The indices are

stored in the arraysik = i andjk = j. The three remaining grid locations enclosing the joint trial can

the easily be recovered via{ik + 1, jk} , {ik, jk + 1} , {ik + 1, jk + 1}

Figure 6.13: Bi-linear interpolation in JPDF estimation. Graphical representation of involved quantities. These

quantities are normalized distancesbx andby between{αk, βk} and
˘

x̆i , y̆j

¯

, which are stored in the homony-

mous arrays (bx andby) and the corresponding indicesi, j stored inik andjk respectively.

In an analogy to its 1D counterpart of Eq.6.16, the joint binned kernel estimator which retrieves a

density estimate at the regular locations{x̆, y̆} and can utilize the 2D FFT1 is defined by

1For the purpose of this work we use the open-source Matlab based implementation of

1D/2D FFT based convolution, implemented by Luigi Rosa. Thesource can be found in

http://www.mathworks.com/matlabcentral/fileexchange /4334

http://www.mathworks.com/matlabcentral/fileexchange/4334
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p̂b
x,y(x̆, y̆; C̆) =

1

N

N̆
∑

l,m=1

KΣ(x̆ − x̆
l
, y̆ − y̆

m
)w(x̆

l
, y̆

m
) (6.65)

=KΣ(x̆, y̆) ⋆ ⋆
1

N
w(x̆, y̆) (6.66)

=F−1

{

F {KΣ(x̆, y̆)} × F
{

1

N
w(x̆, y̆)

}

}

(6.67)

The FFT based convolution of Eq. 6.67 populates the discretĕN2 grid with a cost of

O
(

N̆2 log(N̆)
)

.

6.3.2 Fast joint entropy estimation (Shannon formulation)

The efficient joint entropy binned estimator (integral formulation) is obtained by simply replacing the

slow p̂x,y(x̆, y̆;C) in Eq. 6.57, with the binned version introduced in the previous section. We thus arrive

to

ĥb
s(x, y; C̆) = −

N̆
∑

i,j=1

p̂b
x,y(x̆i

; y̆
j
; C̆) log

(

p̂b
x,y(x̆i

, y̆
j
;C)

)

∆x̆∆y̆. (6.68)

The order of complexity isO
(

N̆2 log(N̆)
)

, largely dominated by the joint KDE. This is a huge reduction

from the initialO(N̆2N) especially when considering the 3D case with largeN .

Regarding the empirical JE (expectation formulation) in Eq. 6.58, we recall that it utilizes the

joint sampleC which is expressed in terms of the continuousp̂x,y(αi, βi;C). FFT enabled̂pb
x,y(x̆, y̆; C̆)

is expressed in terms of the regularly spaced{x̆, y̆}. The utilization of the latter in the empirical joint

entropy estimator requires interpolation which enable thetransitionŝpb
x,y(x̆, y̆;C)→ p̃b

x(αk, βk; C̆). The

interpolation is effectively the inverse of the scheme expressed in Eq.6.63. We utilize the pre-computed

quantities discussed in the text relevant to Figure6.2to efficiently compute the interpolation as

p̃b
x,y(αk, βk;C) =

(

1− bx
k

)

·
(

1− b
y
k

)

· p̂b
x,y(x̆ik , y̆jk ; C̆) +

(

bx
k

)

·
(

1− b
y
k

)

· p̂b
x,y(x̆ik+1

, y̆jk ; C̆) +
(

1− bx
k

)

·
(

b
y
k

)

· p̂b
x,y(x̆ik , y̆jk+1

; C̆) +
(

bx
k

)

·
(

b
y
k

)

· p̂b
x,y(x̆ik+1

, y̆jk+1
; C̆), ∀k = 1, 2, . . . , N. (6.69)

The final FFT enabled empirical joint entropy estimator is given by

ĥb
e(x, y; C̆) = − 1

N

N
∑

k=1

log p̃b
x,y(αk, βk;C). (6.70)

Considering the interpolations and the summation, the fullcomplexity isO
(

2N + N̆2 log(N̆)
)

which

reduces to the dominantO
(

N̆2 log(N̆)
)

.
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6.3.3 Validation and comparison of the joint entropic estimators

Similar to the 1D case (see Section6.1.4), both joint entropy estimators are validated by comparingtheir

performance in computing the joint entropy of two RVs{x, y} which follow a bi-variate normal density

N (µ,Σ⋆). The joint entropy ofN (µ,Σ⋆) is analytically derived [Cover and Thomas, 1991] and given

by

h⋆(N (µ,Σ⋆)) = 0.5 log
(

(2πe)2 |Σ⋆|
)

(6.71)

where|Σ⋆| denotes the determinant ofΣ⋆. The estimators obtain the estimates by utilizing a joint sample

C drawn from{x, y}. Again, in an analogy to the 1D case, the values ofux anduy in Σ of theKΣ can

affect the estimates. Their analytically derived optimum values which minimize theMISE between

p̂x,y(x, y;C) andN (µ,Σ⋆) can be found in Silverman [Silverman and Green, 1986] and are given by

v
opt
x = v

opt
y = 0.96N−1/6 × 0.5(σ2

x + σ2
y ), whereσx, σy are the true standard deviations inN (µ,Σ⋆).

The optimum covariance matrix forKΣ is denoted asΣopt.

For the validation of the estimators, we consider multiple isotropic normal densitiesN (0,Σ⋆
i ),

where(σx)i = (σy)i in Σ⋆
i vary from0.005 to 2. For eachN (µ,Σ⋆

i ) we instantiate multiple samplesCj .

Figure6.14graphically shows such a sampleC drawn fromN (0, ux = uy = 0.005).

x
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Figure 6.14: Example of a normally distributed joint sample used in jointentropy evaluation. Visual-

ization of joint trials {αk, βk} constituting the joint sampleC drawn from the jointly distributedRV s

{x, y} ∼ N (µ, Σ⋆). Regarding the specifics of this example,σx = σy = 0.005 and µ = [0, 0]T. The

joint PDF estimate is also visualized showing the normally distributed nature of the RVs.

Figure6.15ashows the plots of botĥhb
s(x, y;C) andĥb

e(x, y;C) for the various targetN (0,Σ⋆
i ).

For each differentΣ⋆
i , the depicted value corresponds to the average of multiple entropic estimates.

Figure6.15bshows a detail of6.15a. The normalized mean squared errors between the estimatorsand

the true entropic value, for two different sample sizesN is shown in Table6.7. In addition similar to

the marginal case, the Shannon estimates deviate from the more accurate empirical ones by an almost

constant offset̄ǫ.
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Figure 6.15: Comparison between joint Shannon & empirical entropy estimates of a sample drawn from nor-

mally distributed RVsx, y. 6.15a: Entropic estimates are obtained for multipleC (see text). The analytically

derived entropyh⋆(N (µ, Σi)), µ = [0, 0]T is also plotted. The monotonically ascending graph is expected as

N (µ, Σi) becomes more clustered asσx = σy become smaller. Clustered JPDFs are characterized by lower

values of entropy. The size of the sample for this case isN = 100 × 100. 6.15b: Detail of 6.15a.

Table 6.7: Normalized error of the joint Shannon & empirical entropy estimators against the “gold stan-

dard” analytic joint entropy of the bi-variate Normal densi ty

Entropy Estimator Empirical Shannon (MSE%)̄ǫ

Normalized error(N = 100× 100) 0.3% 1% 1%(ǭ = 1%)

Normalized error(N = 1000× 1000) 0.02% 0.2% 0.9%(ǭ = 0.3%)

6.4 Efficient joint entropy derivative computation

As in the 1D case, the computation of the partial derivativesof both ĥb
e(x, y;C) and ĥb

s(x, y;C) with

respect to one of the images - that is trialsαk or βk - can be efficiently computed via 2D FFT based

convolutions. We consider the derivatives with respect toαk. The derivatives with respect toβk can be

obtained by a simple change of variable due to the symmetry ofJE.

6.4.1 Shannon’s joint entropy derivatives

The derivatives of the Shannon estimatorĥs(x, y;C) with respect to the continuous gray valuesαk of

imagex and for all trial pairs{αk, βk} are
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∂ĥs(x, y;C)

∂αk

Eq. 6.68
= −∆x̆∆y̆

N̆
∑

i,j=1

[

∂p̂x,y(x̆i
, y̆

j
;C)

∂αk
log
(

p̂x,y(x̆i , y̆j ;
)

)+

p̂x,y(x̆i
, y̆

j
;C)

∂ log
(

p̂x,y(x̆i
, y̆

j
;C)

)

∂p̂x,y(x̆i
, y̆

j
;C)

∂p̂x,y(x̆i
, y̆

j
;C)

∂αk



 (6.72)

= −∆x̆∆y̆

N̆
∑

i,j=1

(

log
(

p̂x,y(x̆i
, y̆

j
;C)

)

+ 1

)

∂p̂x,y(x̆i
, y̆

j
;C)

∂αk
(6.73)

Eq. 6.59
= − ∆x̆∆y̆

N

N̆
∑

i,j=1

(

log
(

p̂x,y(x̆i
, y̆

j
;C)

)

+ 1

)

∂KΣ(x̆
i
− αk, y̆j

− βk)

∂αk
(6.74)

with

K ′
Σ(x̆

i
− αk, y̆j

− βk)
Eq. 6.62

= −KΣ(x̆
i
− αk, y̆j

− βk)

(

x̆i − αj

u2
x

)

(6.75)

Evaluating Eq. 6.74 for all N trials α, has a complexity ofO(N̆2N). The first stage towards

the reduction of the complexity, requires the replacement of the derivative estimator with its binned

analoguêhb
s(x, y;C) utilizing the binned KDÊpb

x,y(x̆i , y̆j ;C). The joint trials considered in this case are

the regular grid nodal positions{x̆
k
, x̆

l
} , ∀k, l = 1 → N̆ . It should be understood that the derivative

with respect to the trials ofx, has to be computed with respect to thex̆
k

part of allN̆2 binned trial pairs

{x̆
k
, x̆

l
}. The binned version of Eq.6.74is

∂ĥb
s(x, y;C)

∂x̆
k,l

=− ∆x̆∆y̆

N

N̆
∑

i,j=1

(

log
(

p̂b
x(x̆i , y̆j ;C)

)

+ 1

)

∂KΣ(x̆
i
− x̆

k
, y̆

j
− y̆

l
)

∂x̆
k,l

(6.76)

wherex̆
k

= x̆
k,l
, ∀l. Hence, the last term of Eq.6.76is effectively∂KΣ(x̆

i
− x̆

k
, y̆

j
− y̆

l
)/∂x̆

k
. The

only reason we employ a double index is to emphasize that the derivative is computed in̆N2 2D grid

locations{x̆
k
, x̆

l
} and not inN̆ 1D grid locations̆x

k
.

Eq. 6.76has a 2D convolution structure and the derivatives at allN̆2 locations can be computed

efficiently as the product of the 2D FFT of the involved quantities

∂ĥb
s(x, y;C)

∂x̆
=

(

log
(

p̂b
x,y(x̆, y̆;C)

)

+ 1

)

⋆ ⋆

(

− ∆x̆∆y̆

N

∂KΣ (x̆, y̆)

∂x̆

)

(6.77)

=F−1

{

F
{

log
(

p̂b
x,y(x̆, y̆;C)

)

+ 1

}

×F
{

−∆x̆∆y̆

N

∂KΣ(x̆, y̆)

∂x̆

}

}

(6.78)

Similar to the 1D version, the 2D Gaussian kernel is chosen tohave a limited support of12ux

and12uy in each direction. Again both quantities are padded with zeros up to a size ofN2
pad with

Npad = N̆+NK−1. This leads to a complexity in Eq.6.78ofO
(

N2
pad log(Npad)

)

→ O
(

N̆2 log(N̆)
)

.

This is a huge reduction compared to the initial complexityO(N̆2N) of Eq. 6.74. To comprehend the
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computational savings, assume the case of two 2D images ofN = 1002. Let N̆ = 400 and also assume

a realisticNK = 100. The achieved reduction in the order of complexity is three orders of magnitude.

Assuming moderate size 3D images ofN = 1003, then the achieved cost reduction is a massive five

orders of magnitude.

The final derivative is required at the initialA continuous locationsαk and is obtained via the interpola-

tion utilizing the pre-saved quantities depicted in Fig.6.13. The interpolation is expressed as

∂ĥb
s(x, y;C)

∂αk
=
(

1− bx
k

)

·
(

1− b
y
k

)

· ∂ĥ
b
s(x, y;C)

∂x̆(ik,jk)
+

(

bx
k

)

·
(

1− b
y
k

)

· ∂ĥ
b
s(x, y;C)

∂x̆(ik+1,jk)
+

(

1− bx
k

)

·
(

b
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(
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)

·
(
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)

· ∂ĥ
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, ∀k = 1, 2, . . . , N. (6.79)

6.4.2 Empirical joint entropy derivatives

The derivatives of the empirical joint entropy with respectto the continuousαk are given by

∂ĥe(x, y;C)

∂αk
=− ∂

∂αk

(

1

N

N
∑

i=1

log
(

p̂x,y(αi, βi;C)
)

)

(6.80)

=− 1

N

N
∑

i=1

1

p̂x,y(αi, βi;C)

∂

∂αk

(

p̂x,y(αi, βi;C)
)

(6.81)

=− 1

N

N
∑

i=1

[(

1
1
N

∑N
j=1KΣ(αi − αj , βi − βj)
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∂

∂αk

(

1

N

N
∑
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KΣ(αi − αk, βi − βk)

)



 (6.82)
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N
∑
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[(

1
1
N

∑N
j=1KΣ(αi − αj , βi − βj)

)

×




1

N

N
∑

j=1

K ′
Σ(αi − αj , βi − βj)

(

δ̆(i, k)− δ̆(j, k)
)







 (6.83)

=− 1

N

1
N

∑N
j=1K

′
Σ(αk − αj , βk − βj)

p̂x,y(αk, βk;C)

+
1

N

N
∑

i=1

1
NK

′
Σ(αi − αk, αj − βk)

p̂x,y(αi, βi;C)
(6.84)

Equation6.84can be re-written as

∂ĥe(x, y;C)

∂αk
=

1

N

F1(αk, βk;C)

p̂x,y(αi, βi;C)
− F2(αk, βk;C) (6.85)
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with

F1(αk, βk;C) =
1

N

N
∑

j=1

K ′
Σ(αk − αj , βk − βj), and (6.86)

F2(αk, βk;C) =
1

N

N
∑

i=1

1
NK

′
Σ(αi − αk, αj − βk)

p̂x,y(αi, βi;C)
. (6.87)

Similar to the 1D case,F1(αk, βk;C) is computed efficiently in the 2D regular grid by utilizing the

2D analogue of the convolution property expressed in Eq.6.48which can be computed via the 2D FFT

F1(x̆, y̆;C) =
1

N
KΣ

′(x̆, y̆) ⋆ ⋆w(x̆, y̆) (6.88)

=F−1

{

F
{

w(x̆, y̆)

}

×F
{

1

N

∂KΣ(x̆, y̆)

∂x̆

}

}

(6.89)

The scheme continues by interpolationF1(x̆, y̆;C) back to the continuous locations in a manner

similar to the interpolation of Eq.6.69, wherep̂b
x,y(·; ) in that Equation is replaced byF1(·). Finally, the

denominator of Eq.6.86is already available from Eq.6.69.

In a similar manner,F2(x̆, y̆;C) is firstly computed over the regular grid according to

F2(x̆, y̆;C) =
1

N
K ′

Σ
mirror

(x̆, y̆) ∗ w(x̆, y̆)

p̂b
x(x̆, y̆;C)

(6.90)

=F−1

{

F
{

1

N
K ′

Σ
mirror

(x̆, y̆)

}

×F
{

w(x̆, y̆)

p̂b
x(x̆, y̆;C)

}

}

, (6.91)

and it is subsequently interpolated onto the continuous locations in a manner similar to Eq.6.79.

Eq. 6.84 has a complexity ofO(N2) whereas bothF1(·), F2(·) haveO
(

N2
pad log(Npad)

)

→
O
(

N̆2 log(N̆)
)

. Actually, the empirical derivative requires two FFT convolutions - one for each

F1(·), F2(·) term and is double of the Shannon derivatives. However, the final order of complexity

is again reduced to simplyO
(

N̆2 log(N̆)
)

. Having efficiently computed the terms in the empirical JE

expression of Eq.6.85at the regular locations, the derivative at the continuousα is obtained via an

interpolation similar to the one of Eq.6.79. Considering a 2DN = 1002 imageN̆ = 400, then the

reduction is two orders of magnitude whereas for a 3DN = 1003 and the same sized grid, it is a massive

six orders of magnitude.

Table6.6summarizes the complexities of the joint estimators and their derivatives.

6.4.3 Comparison of the derivatives of the joint entropy estimators

In order to assess the accuracy of the derivatives of the JE weconsider the two images depicted in Fig.

6.16. The second row depicts the FFT enabled analytic derivatives of each estimator with respect to the

individual pixels of image 1. The derivatives are obtained for kernel standard deviations valuesux anduy

which returned the best derivative match. The derivatives are plotted on a common scale. The last image

shows the normalized squared difference between the two images. The last row depicts the derivatives

obtained by individual perturbations in the gray value of each pixel, following a similar scheme to the
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Table 6.8: Joint entropy evaluation and derivative estimation: Computational complexity of explicit as

well as the FFT based implementations

Non-FFT Order of Complexity FFT Order of complexity

ĥs(x, y;C) O(NN̆2) ĥb
s(x, y;C) O

(

N̆2 log(N̆)
)

ĥe(x, y;C) O(N2) ĥb
e(x, y;C) O

(

N̆2 log(N̆)
)

∂ĥs(x, y;C)/∂αk O(NN̆2) ∂ĥb
s(x; Ă)/∂αi O

(

N̆2 log(N̆)
)

∂ĥe(x, y;C)/∂αk O(N2) ∂ĥb
e(x; Ă)/∂αi O

(

N̆2 log(N̆)
)

one described in Sec.6.2.1. The errors associated with Fig.6.16are provided in Table6.9. Although the

error between the two estimator is significant, the errors with respect to the derivatives can be considered

acceptable.

We have also attempted to convert image 1 to image 2 by following a line-search enabled itera-

tive gradient descent scheme, where in each iteration, the derivative of image 1 was subtracted by the

image itself. However, both estimators stuck in local minima due the null spaces characterizing the JE

functional. The null spaces are present, due to the gray value invariance of the JE functional.

Table 6.9: Errors regarding the derivatives of the joint Shannon & empirical entropy estimators

Compared derivative quantities Normalized error(%)

Analytic Shannon vs analytic empirical 9%

Analytic Shannon vs Shannon 2.2%

Analytic Empirical vs Empirical 2.7%

6.4.4 Run time tests

We compute JE and and its derivative for images of different sizes, using the non-FFT based estimator as

well as the FFT enabled Shannon and empirical estimators. The slow empirical estimator is not plotted

as it is even slower than the non-FFT Shannon analogue. The computational times are presented in Fig.

6.17b. Although the order of computational complexity is similarin both images, the exact complexity

of the empirical estimator is higher than the Shannon one andthis difference is depicted in the plots.

6.5 Efficient mutual information evaluation via marginalization of

the joint probability density function

The MI functional (Eq. 4.50) requires the estimation of both marginal and JE terms as well as their

derivatives. One can compute all involved terms with the methods discussed in the previous sections.

Regarding the functional evaluation, the main source of computational complexity reduction is the effi-

cient PDF and joint probability density function (JPDF) estimation via the linear interpolations on the
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Image 1 Image 2

Analytic Shannon 
derivative

Analytic empirical 
derivative

Normalized 
square error

FD Shannon 
derivative

FD empirical 
derivative

Normalized 
square error

Figure 6.16: Derivatives of the Shannon and empirical joint entropy estimators. The figure depicts the analytic

and derivatives of the two estimators, with respect to perturbations applied on the pixels of image 1.

regular grid and and the application of the FFT. The best approach for this is firstly to compute the JPDF

and then subsequently derive the marginal PDF via the integral analogue of Eq.4.20.

6.6 Summary

In this chapter we have described in detail the marginal and joint entropy estimators expressed either as

an integral formulation (Shannon entropy) or as an expectation (empirical entropy). We have extended

the work ofShwartz et al.[2005] enabling the efficient evaluation of the joint entropy estimators and their

derivatives. We have tested both entropic formulations andtheir derivatives against ‘gold standards’ and

discussed the response of the former with respect to the number of bins and the choice of the kernel’s

standard deviation used in the non-parametric KDE. The evaluation against ‘gold standards’ is necessary

to validate the correctness of the entropic estimators’ implementation. The validated methods are em-

ployed later in this work, for estimating the entropy of images - as well as the derivative of the entropy

with respect to the images’ gray values - all done for the purpose of regularizing the inverse problem
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in optical imaging. Finally we derived the orders of complexity of the discussed concepts and provided

examples showcasing the run time efficiency of each estimator and its derivative. The suitability of the

implementations for image reconstruction are evaluated inSec.7.5.
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Figure 6.17: Run times forJE and derivative computation between square images of different size. AsJE does

not depend on image dimensionality, we plot the 2D size of theimages as well as the approximate 3D volume

equivalent.6.17aComputational time for non-FFT Shannon entropy evaluationand FFT Shannon and empirical

entropy evaluation. The slow method is evaluated up to a sizeof 400x400 due to increased complexity.6.17b

Similar plots for derivative estimation.



Chapter 7

Information theoretic regularization in diffuse

optical tomography

7.1 Introduction

In this chapter we propose a regularization scheme for diffuse optical tomography (DOT) based on in-

formation theory (IT). The proposed method and part of the results presented in this discussion, has been

published in [Arridge et al., 2008b; Panagiotou et al., 2009a,b]. The scheme enables the incorporation

of a priori structural information in the inverse problem, aiding towards the alleviation of the negative

effects of ill-posedness. As a consequence, it results in animprovement in the quantitative accuracy as

well as in the spatial resolution of the obtained optical solution. The scheme addresses the first of the

aims set in chapter1.

Thea priori information is provided in the form of pairs of reference imagesxµa

ref andxµ′

s

ref , expressed

also by a combined notation

xref :=





xµa

ref

x
µ′

s

ref



 . (7.1)

The reference images depict some secondary quantities of different physical meaning - for example

the magnetic properties of tissue obtained by a magnetic resonance imaging (MRI) - which under a

fundamental assumption, are expected to be spatially distributed in a manner similar to the true - and

initially unknown, optical quantities of interestµ⋆
a andµ′

s
⋆ respectively. The two latter quantities can

also be referenced using a combined notationx⋆ in a manner similar to Eq.7.1. The pre-requisite

regarding the similarity between the reference images and the true optical solutions, is solely limited

to their spatial distribution patterns - also interpreted as structure. No assumptions are made regarding

the relationship between the gray values, which populate spatially corresponding locations or features,

between prior and optical images. It should be noted that in practice a single imagexref = xµa

ref = x
µ′

s

ref

will be available, as most of the high resolution imaging modalities return a single image - although

one can consider the possibility of using images obtained from different modalities forµa andµ′
s for

example functional magnetic resonance imaging (fMRI) as priors for absorption and anatomical MRI
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for scattering. In the numerical simulations of this chapter, we will use both combinations - different and

common priors forµa andµ′
s.

Knowing a priori the expected structure ofx⋆ - at least to some extent, allows the penalization

of the optical solutions according to their level of structural dissimilarity with the reference images or

equivalently, the regularization scheme favours solutions similar to the reference images. By assigning

different penalties to different solutions, the regularization effectively changes the solution space. Ideally,

this leads to an improvement in the definition of the optima and hopefully to a treatment of the null-

spaces, which plague the solution retrieval process of the un-regularised inverse problem. In this work

we consider joint entropy (JE) and mutual information (MI) as the functionals of choice.

Information theoretic regularization with explicita priori information has recently drawn increased

attention.Somayajula et al.[2005] proposed the usage of MI based priors for the linear inverseprob-

lem in positron emission tomography (PET). The method was further extended to enable a scale space

approach. Specifically, the method regularized the PET solution by assessing its MI similarity with the

prior images at various scales. The priors at their various scales were considered simultaneously, thus the

final PET solution was the one most similar to all scale-priors. The scales at that study were i) the images

at their initial resolution ii) after being subjected to low-pass filtering and iii) after the application of dif-

ferential operators. The pixel values at the last two scalesincorporate neighbourhood information - for

example the gradient at a pixel location depends on the values of its neighbouring pixels. Thus, via the

consideration of these scales, the method implicitly modelled spatial dependency between neighbouring

pixels. The latter is missing from the standard IT functional implementations, based on kernel density

estimation (KDE) methods operating under the independent and identically distributed (i.i.d.) assump-

tion. Nuyts[2007] followed by commenting on the inferiority of the MI functional compared to JE for

the purpose of reconstruction regularization, although the study did not entail an in-depth comparison

between the two.Van de Sompel and Sir., Brady, M.[2009b] incorporated JE priors in the linear inverse

problem of limited view tomography. In a manner similar toSomayajula et al.[2007] they studied the

effects of introducing inter-pixel spatial dependency in the JE priors, but their approach differed as now

the pixel dependency was explicitly enforced using a Markovrandom field smoothness prior, effective

incorporated as an extra regularization functional.Kazantsev et al.[2010] proposed an optimization

scheme for JE priors in PET where the regularization weight was optimized in real-time, simultaneously

with the image reconstruction.Pedemonte et al.[2010a] proposed a class-conditional JE scheme for

introducing priors in single photon emission computed tomography (SPECT) reconstruction. Finally,

Tang et al.[2010] investigated the use of JE prior in reconstruction of 4-D datasets.

The contributions of the work presented in this chapter include:

I) the first application of IT regularization in a severely ill-posed, non-linear inverse problem such as

DOT,

II) an in-depth theoretical analysis and comparison regarding the capacity of both JE and MI to act as

regularizing functionals, accompanied by custom-made simulations to support the findings,

III) the use of the efficient scheme for marginal and joint entropy evaluation and gradient computation
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discussed in chapter6 for the purpose of IT regularization. The accuracy of the presented results in this

section, is a strong indicator regarding the validity of theefficient entropic estimators and gradients.

IV) finally, the application of the priors to 3D experimentaldata obtained from a phantom study.

The structure of this chapter is as follows: Section7.2re-formulates the inverse problem in DOT in

order to enable IT regularization and discusses the adoptedoptimization scheme. Section7.3 provides

theoretical intuition between the differences between JE and MI regularization. Section7.4 revisits the

choice of binning range during the KDE as well as the standarddeviation of the used kernels. Finally

sections7.5-7.7present 2D and 3D numerical simulations, whereas a study based on experimental data

is presented in Sec.7.8.

7.2 Formulation of the inverse problem

The proposed objective functionE(x) enabling the IT regularization of DOT is defined as

E(x) =

∥

∥

∥

∥

ý −F(S−1(x))

c1

∥

∥

∥

∥

2

+ τΨ(x, xref) (7.2)

whereS−1(x) = x+ = [µa, κ]
T denotes the optical parameters estimatesx := [µ̌a, κ̌]

T are the log-

arithmically transformed and normalized analogues (see Sec. 3.5.4); the data fit term is theL2 norm;

Ψ(x, xref) is an IT regularization functional assessing the similarity betweenx andxref weighted by the

regularization parameterτ ; c1 is the normalizing constant defined in Eq.3.69. The evaluation of the

forward operatorF (x+) is approached using a finite element method (FEM) based approach. We utilize

the TOAST software package mentioned in Sec.3.4.3.

The solution̂x of the scheme is obtained via a minimization scheme

x̂ = arg min
x



E(x) =

∥

∥

∥

∥

∥

ý −F
(

S−1(x)
)

c1

∥

∥

∥

∥

∥

2

+ τΨ(x, xref)



 . (7.3)

The proposed scheme is realised by replacingΨ(x, xref) with either the differential JE or the neg-

ative mutual information -MI. Then considering thatx := [µ̌a, κ̌]
T, Ψ(x, xref) is defined for the case of

JE regularization as

Ψ(x, xref) =ĥ(x, xref) (7.4)

=ĥ(µ̌a, x
µa

ref ) + ĥ(κ̌, κref), (7.5)

whereas for the case of MI regularization as
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Ψ(x, xref) =−MI(x, xref) (7.6)

=−
(

ĥ(x) + ĥ(xref)− ĥ(x, xref)
)

(7.7)

=−MI(µ̌a, x
µa

ref )−MI(κ̌, κref) (7.8)

=−
(

ĥ(µ̌a) + ĥ(xµa

ref )− ĥ(µ̌a, x
µa

ref )
)

−
(

ĥ(κ̌) + ĥ(κref)− ĥ(κ̌, κref)
)

. (7.9)

Note that the MI functional is negated. We know that the valueof MI increases as solution estimates

x become more similar to the priorsxref. Considering thatΨ(x, xref) is introduced in minimization

framework such as the one described by Eq.7.2, the functional should attain a minimum value for

solutionsxmaximally similar toxref, in order for these solutions to be minimally penalized. Thenegation

of the MI is hence essential in order to achieve the desired behavior.

The retrieved optical solution estimatex̂ is subsequently subjected to a transformationS−1(x) (see Eq.

3.67) which results in the positive and un-normalized estimate of the optical solution̂x+.

7.2.1 Objective function minimization scheme

The minimization of Eq. 7.2 is approached using the iterative non-linear conjugate gradients (CG)

optimization method utilizing thePolak - Ribièreupdating scheme described in Sec.2.6.2.2. CG-based

optimization has been used before in diffuse optical imaging - for example seeArridge and Schweiger

[1998]. Methods based on higher order derivatives (Sec.2.6.3) exhibit faster convergence however

they are not considered in this context, as the entropic gradients discussed in Chapter6 have only been

analytically derived up to the first order. To further speed up convergence, we adopt the inexact line-

search algorithm described in Sec.2.6.4. An inexact line-search of this kind has been used bySchweiger

et al.[2005] for the purposes of DOT reconstruction, although the principal optimization in that work is

a second order method. The pseudo code for the CG and the inexact line search algorithms are provided

in Algorithms2.1and2.2.

The gradientg(k) = ∂E(x(k))/∂x(k) of Eq. 7.2 at iterationk and with respect to the parameter

vectorx is derived using the chain rule according to

∂E
(

x(k)
)

∂x(k)
= − 2

c1

(

ý −F
(

x+
(k)
)

)

∂F
(

x+
(k)
)

∂x+
(k)

∂x+
(k)

∂x(k)
+ τ

∂Ψ
(

x(k), xref
)

∂x(k)
(7.10)

Regarding the terms on the RHS of Eq.7.10, the partial derivative of the forward operator

∂F
(

x+
(k)
)

/∂x(k) is the Jacobian matrix introduced in Sec.3.5.3. Its computation can be accomplished

efficiently by utilizing the photon measurement density functions (PMDFs) based approach discussed in

the same section. The term∂x+
(k)/∂x(k) is expanded by considering the parameter transformation

discussed in Sec.3.5.4and results in

∂x+
(k)

∂x(k)

Eq. 3.67
=

∂ exp(x)x̄+

∂x
(7.11)

Eq. 3.66
= x. (7.12)
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Finally, the derivative ofΨ
(

x(k), xref
)

depends on which IT functional is adopted. In the case of

JE it is simply equivalent to

∂Ψ
(

x(k), xref
)

∂x(k)
=
∂ĥ(x, xref)

∂x
, (7.13)

=

[

∂ĥ(µ̌a, x
µa

ref )

∂µ̌a
,
∂ĥ(κ̌, κref)

∂κ̌

]T

(7.14)

which can be efficiently computed using the fast Fourier transform (FFT) enabled analytic derivative

estimation scheme proposed in Sec.6.4. In the case of MI the derivative is

∂Ψ
(

x(k), xref
)

∂x(k)
= − ∂ĥ(x)

∂x
+
∂ĥ(x, xref)

∂x
, (7.15)

=

[

−∂ĥ(µ̌a)

∂µ̌a
+
∂ĥ(µ̌a, x

µa

ref )

∂µ̌a
,−∂ĥ(κ̌)

∂κ
+
∂ĥ(κ̌, κref)

∂κ̌

]T

(7.16)

Once again, the efficient estimation of∂ĥ(x)/∂x is discussed in Sec.6.2. One can notice that derivative

of the termĥ(xref) of Eq. 7.9is not included in the MI derivative, as it is independent ofx. Also note that

the presence of∂ĥ(x)/∂x in the derivative of MI differentiates it from its JE analogue. In the following

section where we compare JE with MI, the effects of the marginal term in the capacity of the functionals

for the purpose of regularization will become clearer.

7.3 Comparison between JE and MI for regularization purposes:

Theoretical intuition

Section4.5.5introduced JE and MI as similarity measures in the multi-modal setting. In Sec.5.6.4,

we revisited the functionals to comment on their differences in the image registration setting, where the

functionals depend on the assessed images but also on the variable overlap domain between the images.

Here, we revisit the functionals to assess the similarity betweenxref and a continuously varyingx. In

this section we assess the behaviour of the functionals, considering not only the differences in their gray

values but also differences on the the structural features which are depicted by them. The reason for this

analysis is to extract intuition regarding the bias expected to be introduced in the solution by JE and MI

regularization, due toxref not having a ‘one-to-one’ structural feature correspondence with the truex⋆.

Before proceeding it is important to reiterate that the minimization of -MI (or equivalently maxi-

mization of MI) corresponds to maximization of the marginalĥ(x) and minimization of̂h(x, xref). The

former results in increased variation in the probability density function (PDF) whereas the minimization

of JE results in increased clustering in the joint probability density function (JPDF).

Figure7.1 is central to this discussion. The first row shows five test images, all under a common

scale. In order to compare MI and JE, pairs of images are needed. For this reason we consider five image

pairs{1, Z}, whereZ = 1, 2, . . . , 5. As the functionals are defined in terms of the PDFs/ JPDFs, the

visualization of the latter is essential to obtain intuition regarding the behaviour of the functionals. The
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second row presents the marginalp̂(1) of image 1 - present in all five image pairs (first column) as well

as the joint̂p(1, Z), ∀Z (remaining columns). Row three shows thelog
(

p̂(1, Z)
)

, which reveals the full

extent of the clusters1. Finally, the fourth row shows the marginalp̂(Z) which varies among pairs. It is

important to note that the same binning range, binning widthand kernel standard deviation were used

for the KDE in all cases. The axes of the PDFs/ JPDF are common in all PDFs/JPDFs. All PDFs and

JPDFs are displayed under a common scale to enable consistent visual comparison.

The JE and - MI scores for each of the pairs, together with the marginalĥ(Z) involved in the MI

computation, are provided in Table7.1. We will refer to these values when we consider the formed pairs

individually.
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Figure 7.1: Test images and corresponding PDFs/JPDFs for comparing JE and MI. Top row: Test images.

Second row:Marginal PDF of image 1 and JPDFs between image pairs{1, Z} whereZ = 1, 2, . . . , 5. Third

row: Same as second row but JPDFs are now inlog scale. Bottom row: Marginal PDFs for each of the test

images.

We should note that Image 1 is present in all image pairs and remains structurally unchanged. In

order to relate the discussion with the image reconstruction framework, image 1 is interpreted asxref

whereas the variable imageZ completing the pair corresponds tox⋆ - except if stated otherwise.

7.3.1 JE vs MI: Image pair {1,1}

Image pair{1, 1} corresponds to the case of a perfectxref as it is identical tox⋆. p̂(1, 1) displays the well

known example - from image registration studies (for example see [Hill et al., 2001]), diagonal cluster

arrangement which is characteristic of this case. This casewas discussed in Sec.4.5.5. The three clusters

1we use a KDE with kernel of finite support
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Table 7.1: Joint entropy, negative mutual information and marginal entropy values for the image pairs

in Figure 7.1

Image pair {1, 1} {1, 2} {1, 3} {1, 4} {1, 5}
ĥ(1, Z) 8.834 8.834 8.834 8.834 9.052 nats

−MI(1, Z) -0.904 -0.897 -0.564 0 -0.845 nats

Image 1 2 3 4 5

ĥ(Z) 4.869 4.862 4.529 3.965 5.028 nats

in the JPDFs is the minimum number of clusters which can be formed given the fact that both images

have three distinct intensities and all structural features are spatially registered.̂h(1, 1) and−MI(1, 1)

attain their theoretical global minimum in this case from all other possibleZ = 1. For example, because

image 1 and imageZ are identical, knowing image 1 maximally reduces the uncertainty of the solution

(image Z) - which is the definition of MI. By using image 1 as a prior, the solution imageZ = 1 would

be minimally penalized by the regularization functionals -as they attain their minimum values - and

consequently the solution imageZ would be correctly favoured over the majority of other solutions.

7.3.2 JE vs MI: Image pair {1,2}

Image pair{1, 2} corresponds again to the case of a structurally correct prior. However, the gray values

of image 2 have been transformed according to the arbitrarily chosen non-linear function discussed in

Sec.4.5.5and subsequently rescaled to the range of image 1. Table7.1shows that JE is invariant to the

gray value transformation aŝh(1, 2) = ĥ(1, 1) up to the third decimal point. Regarding MI it is apparent

that MI(1, 2) 6= MI(1, 1) as it carries the error from̂h(1) < ĥ(2). We remind we seek to minimize

-MI. This is due to the partial overlap of the two modes inp̂(2). One would expect that in minimization

framework involving−MI, the functional would favour a solutionZ whereĥ(Z) is maximized. This

corresponds to a highly spreadp̂(Z), which in this case is translated as three completely non-overlaping

modes inp̂(Z). Due to the partial overlap however this case does not correspond to the global minimum

−MI solution. Hence, if image 1 was used as a prior in a reconstruction scheme and the regularization

parameterτ was very high, -MI would bias the gray values of the obtained solution in order to form

an optimalp̂(Z) (with three distinct modes). In other words, it would attempt to increase the contrast

among the formed features. The above effect will be demonstrated in practice in the case study7.5and

specifically to Figs.7.12b& 7.12d, which depict reconstructions regularized by MI for variable τ .

A similar cluster overlap takes place in̂p(1, 2) but JE is less affected, as the overlap area in the

p̂(1, 2) is a smaller fraction of the total area of the 2D plane, whereas the overlap area in̂p(2) is more

significant considering the support of the entirep̂(2). In addition, because the movement of clusters

in the JPDF has an additional degree of freedom (vertical direction), there can be configurations where

overlap of modes appears only in the marginal PDF. Such a casewould manifest if the circular (green)

feature in image 1 was re-coloured to a value closer to the oneof the background (brown). This would



182 CHAP. 7: INFORMATION THEORETIC REGULARIZATION IN DIFFUSE OPTICAL TOMOGRAPHY

result in the corresponding cluster (green/orange) to moveup in the vertical direction and the overlap in

p̂(1, 2) (log-version) would fully vanish. However, the above change would not result in any change in

p̂(2) and the overlap would be still present.

To conclude, the maximization of̂h(Z) in MI favours highly varying solutions which can be differ-

ent from the true solutionZ. In this case JE is superior to MI, as the former does not depend on ĥ(Z)

and hence does not bias the gray values in the pre-described manner.

7.3.3 JE vs MI: Image pair {1,3}

Image pair{1, 3} corresponds to the case wherexref contains features not present inx⋆. In this case we

show that JE displays a level of structural invariance whichcan prove both beneficial and disadvanta-

geous in a reconstruction regime. Apparently the removal ofthe smaller feature in image 3 does not lead

to a removal of a cluster in̂p(1, 3). As a rule of thumb for these trivial cases, the number of clusters in a

JPDF is always equal or greater to number of different gray values in the more varying of the two images

- in this case image 1. It becomes greater when there is partial overlap between features (see image pair

{1, 5}). The above only holds in these non realistic cases, as the difference between the gray values in

the most varying image, is large enough to ensure that they don’t contribute to the same cluster, thus

there is one distinct cluster for every gray value.

In {1, 3} there are now two features in image 1 which overlap with the background of image 3.

This results in a characteristic alignment of the corresponding clusters in̂p(1, 3), with respect to the hor-

izontal direction. We should emphasize that as image 1 is constant, clusters can only move horizontally.

Because the number and amplitude of clusters inp̂(1, 3) do not change compared to the previous cases

and because cluster overlap is minimal, thenĥ(1, 3) = ĥ(1, 1) (see Table7.1). Thus, while using the

incorrect image 1 as a prior, the correct solutionZ = 3 could still be obtained (as a feasible solution) -

along with the incorrectZ = 1 andZ = 2 which return the same JE. Hence, as all solutionsZ = 1|2|3
correspond to equivalent levels of JE, then when considering an image reconstruction scheme it is up to

the data fit term (data likelihood) to select one of the solutionsZ. That solution would be the one which

maximally satisfies the measured data. Apparently, as JE regularizes the likelihood term by reducing the

set of feasible solutions, so does the likelihood term to JE.

On the contrary, MI is greatly altered due to the large changein p̂(3), which reflects the removal of

the feature. Two of the modes have now fully merged, creatinga dominant mode with high probability.

The reduction in uncertainty in image 3 results in a reducedĥ(3) which increases -MI. Hence, MI does

not exhibit any invariance in cases such as this.

We mentioned that the structural invariance of JE can also bedisadvantageous. Consider the case

where image 1 reflects bothx⋆ and priorxref - this is again the case of a correct prior. Assume also that

due to ill-posednessx⋆ cannot be correctly reconstructed and that the best retrieved estimatêx resembles

image 3. In this case, the extra feature in image 1 is wrongly missing from image 3. However, we have

already established that, if image 1 is acting as a prior, theoretically it cannot enforce the reconstruction

of the extra feature in image 3 due to the aforementioned structural invariance. This is an important

limitation of the JE.
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On the contrary, MI is not prone to this problematic case as all features in the prior are strongly

enforced to the solution, due to maximization of the marginal entropy term. There is no structural

invariance to MI. Unfortunately the latter is very ill-behaved and as we said it can induce further variation

in the reconstructed image, such as extra variance or the emphasis of artefacts which appear due to noise.

Both behaviours are once again demonstrated in practice in the case study of Sec.7.5and specifically in

Fig. 7.12. We will revisit these topics later.

Finally, we should emphasize that the structural invariance of JE is only partial. For example see

Fig. 7.2 and the considered image pairs{1, 1}, {1, 2} as well as{3, 3} and{3, 4}. JE is the same for

image pairs{1, 1}, {1, 2} for the reasons already discussed (corresponds to{1, 1}-{1, 3} of Fig. 7.1).

Consider now{3, 3}-{3, 4}. Image 4 is created by removing a feature from image 3. However, the

gray value of the removed feature is also assigned to anotherpart of the image which is not affected by

the removal. Apparently the removal of the rightmost feature creates an extra cluster in the JPDF1 and

increases the joint entropy. Information theoretic functionals - especially under the i.i.d. assumption -

treat features with equal or similar gray values as one, evenwhen these features are located in different

parts of the image. Although such features are not proximal in a spatial sense, they contribute to the

same clusters of the JPDF. Hence, by changing one part of the image, it is possible to bias spatially

distant parts just because they are populated with values similar to the altered part. Once again, we have

observed this in practice and it is discussed in Case III of Sec. 7.5.2as well as in Fig.7.8 where the

corresponding JPDF are depicted.

7.3.4 JE vs MI: Image pair {1,4}

Image pair{1, 4} highlights the above findings using the extreme case of a homogeneous solution. As

now the solutionZ is homogeneous, all gray values pairs formed between the images share the common

gray value ofZ, which causes all clusters in thêp(1, 4) to vertically align. Again,p̂(1, 4) has three

clusters, minimally overlapping henceĥ(1, 4) = ĥ(1, 1).

Another important detail regarding JE is revealed. The vertical alignment of the clusters maximally

reduces their in-between distance and consequently their overlap. This is more noticeable when kernels

of substantial width are used in the KDE. Two clusters with substantial overlap can resemble a single

cluster, hence JE is reduced. Thus there is the possibility that the JE between axref and an incorrect

‘homogeneous’ solutionx can score a smaller value than the correct solution which resembles the prior.

We note that this behaviour is due to approximation of the gray value pairs as 2D Gaussians of substan-

tial width. Theoretically this does not reflect reality as the Gaussians should resemble 2D Dirac delta

functions.

The preference of homogeneous solutions by JE has also been observed in practice. Over-

regularization with JE can lead to the removal of features from the solution in order to favour the for-

mation of dominant clusters in the JPDF. The removed image features are usually the ones not strongly

supported by the data. High values ofτ can break any resistance posed by the likelihood regarding

1In {3, 3} we had two clusters corresponding to the superimposed features (circle/circle),(background/background). In{3, 4}

we still have those but also (circle-background)
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Image 1 Image 3 Image 4
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p(1,2)

p(1,2)
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p(3,3)

p(3,4)
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Figure 7.2: Demonstration of JE partial structural invariance. The removal of pair in{1, 2} is similar to the

{1, 3} in Fig. 7.1 and preserves the number of clusters in the JPDF. However, the removal of a non-unique

feature in{3, 4} does alter the JPDF. They-axis in the JPDFs correspond to the first (unchanged) image in each

pair.

the removal of features, hence the effect is observed. One again, the above effect will be demonstrated

in practice in the case study7.5 and specifically to Figs.7.12a& 7.12c, which depict reconstructions

regularized by JE for variableτ .

Regarding -MI, it is evident (Table7.1) that its marginal term̂h(4) attains its global minimum for

this case (̂p(4) now contains a single mode, although a narrower mode would result in an even lower

value) which results in a great reduction in MI. In this case the global minimum of MI=0 is attained.

Another minimum proximal to the global one is realized when every pixel in Z is assigned with a

different gray value or equivalently when̂p(Z) tends to be uniform (the corresponding image is not

depicted).

7.3.5 JE vs MI: Image pair {1,5}

Finally image pair{1, 5} corresponds to the case where the solutionZ has features not present in the

prior space. The minimal number of clusters inp̂(1, 5) is now determined byZ, however an additional

cluster manifests due to the partial overlap present in thiscase. By examining the values in Table7.1 it

is apparent that this case does not constitute an optimum forany of the functionals.

7.4 KDE binning range/ kernel standard deviation

7.4.1 Binning range

The binning range of the KDE was discussed in Sec.6.1.1.1. In the context of that discussion, we seek

a density estimate from a known sample - for example one retrieved from a Gaussian density. In the
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reconstruction context and in the case of a joint functional- i.e. the JE or MI, we have two samples. The

fixed priorxref and the solutionx which evolves during the iterative optimization. The binning range

regarding the gray values ofxref is estimated in a manner similar to Sec.6.1.1.1. In contrast, the range

of x is not knowna priori, asx is subjected to constant improvement.

We approach this problem by preceding the IT regularized reconstruction with a fixed number of

iterations based on a more generic reconstruction scheme utilizing regularization functionals such as

first-order Tikhonov (TK1) or total variation (TV). The solution estimatêxinit obtained by the latter is

used as an initial solution estimate for the IT enabled reconstruction. We assume that a significant part

of the rangeR (x̂) - wherex̂ is the solution ultimately obtained by the proposed regularization scheme,

is captured byR (x̂init). In order to be able to process potential values outside thisrange, the final range

R(x̆) of the equispaced bins̆x utilized by the KDE, is computed by extendingR (x̂init) by a fixed amount

c at both its ends. ThusR(x̆) =
[

min
(

R (x̂init)
)

− c,max
(

R (x̂init)
)

+ c
]

. Throughout this work we

choose ac = 1.5R (x̂init). We note that the extension ofR (x̂init) is required in both directions as thêx

is not strictly positive asx+, but it is expressed in a logarithmic scale so it is unboundedat both ends.

Finally, in the case that some reconstructed values still fall outsideR(x̆), we have facilitated a

scheme of dynamic extension ofR(x̆) which appends sufficient amount of bins in any needed direction.

The newly appended bins have the same size∆x̆ of the initial x̆. The magnitude of the extension is large

enough to bring anyxout /∈ R(x̆) insideR(x̆), as well as a further0.5supp(Ku) from the outermostxout,

for the reasons discussed in Sec.6.1.1.1.

7.4.2 Kernel standard deviation

The kernel standard deviationu is not considered as an optimized quantity in this work, but it is fixed

during initialization. Its value is naturally a function ofthe gray values inx andxref, from which we seek

to retrieve density estimates. In this work we consideru as a function of the rangeR (x̂init), specifically

as its percentage. Thusu(c) = cR (x̂init) with c ∈ (0, 1). We have identified an empirical optimum

c in a pilot reconstruction - where the true solution is considered known, and we maintain the same

choice for all subsequent data sets. To identify the optimumwe perform multiple reconstructions from

the same data set, for multiple values ofc. The obtained reconstructions for eachu(c) are compared

against the true solution and the valuec which returns the most accurate reconstructions is nominated as

the optimum and employed in all subsequent studies. We explicitly perform this process in7.5.2.

7.5 Case study 1: 2D numerical simulation

7.5.1 Simulation description

We test the method on a 2D simulated case. We seek the recoveryof the optical absorption and reduced

scattering coefficient parameter distributions, denoted by µa andµ′
s respectively, in a circular object of

25mm diameter. As a light transport model we employ the DA of the RTE which is expressed in terms of

µa and the diffusion coefficientκ whereκ is computed from Eq.3.24. We simulate the probed anatomy

by mapping the target optical distributions on the nodes of an unstructured mesh, consisting of 7261

10-noded triangles and a total of 32,971 nodes. The target optical quantities are depicted in Figure7.3.
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The trans-illumination of the medium and the data acquisition process is simulated from 32 sources and

32 detectors arranged on the boundary at equidistant angular spacing, with sources and detectors being

interlaced. The sources are amplitude modulated at a frequency of 100MHz. The sources are activated

sequentially. For each source, we solve the frequency domain DA using the TOAST FEM implementa-

tion. For each source, the exitance at the boundary is measured by all 32 detectors. Considering the full

set of 32 sources, this leads to a total of 1024 detected signals. The full set of collected data constitutes

the simulated measured dataý. The measurable quantitýy at the boundary consists of the logarithmi-

cally transformed amplitude as well as the phase of the radiation exiting the medium. The acquired́y is

finally contaminated with 1% of multiplicative Gaussian noise.
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Figure 7.3: Targetµa andµ′

s images for 2D simulations. The optical coefficients for the labeled regions are:

µa - 1: 0.037,2: 0.0167,[3,4,5]: 0.05,6: 0.0125,7: 0.025mm−1

µ′

s - 1: 1.33,2: 3, 3: 1.975,4: 1, 5: 2, [6,7]:2 mm−1

The reconstruction process is based on the iterative non-linear CG scheme method, which starts by

some initial guessx(0) and is then successively improved until pre-defined convergence criteria are met.

In this case, the initial guessx(0) = [µa
(0), µ′

s
(0)] is the result of 10 iterations of CG minimization of Eq.

7.2with Ψ(x) being a TK1 penalty withτ = 1e−4. The initial guess for the initial TK1 reconstruction is

homogeneous for both optical quantities, populated with the target background parametersµa = 0.025

andµs = 2mm−1.

The FEM mesh used for solving the DA during the reconstruction process is different from the one

used in the simulation of the data acquisition process. It consists of 3511 nodes and 6840 three-noded

triangles, using linear shape functions. Adopting different meshes for the generation of the initial data

and during the reconstruction process ensures that the simulation does not involve an inverse crime. The

reconstruction is performed on a 128x128 solution basis with square pixels.

7.5.2 Comparison between Shannon and empirical entropy implementation

Before we proceed with testing the capacity of JE and MI to regularize DOT with different priors,

we have to choose between the Shannon and empirical entropy formulations introduced in Chapter6.

We execute the forward problem on the software phantom, in order to simulate the data acquisition

process. We subsequently create 20 different data sets by contaminating the measured data with 20
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different realizations of1% Gaussian multiplicative noise. For each data set we perform20 JE-based

reconstructions based on the Shannon and empirical entropyformulations for variable kernel standard

deviationsu. Thexref introduced by the JE for this test is shown in the third columnof Fig. 7.5. We

compare the accuracy of the reconstructions with the groundtruth. Executing the comparison over a

wide range ofu is essential, as the two formulations perform optimally at different values (see Sec.

6.1.4). A commonτ = 0.02 was employed for both formulations. The error between reconstructionŝx

and true solutionx⋆ was measured by the normalizedL2 metric.

L2(x̂, x
⋆) =

1

2

(‖µa − µ⋆
a‖

‖µ⋆
a‖

+
‖µ′

s − µ′
s
⋆‖

‖µ′
s
⋆‖

)

(7.17)

Figure7.4shows the error plots for the Shannon and empirical entropy formulation. The Shannon

formulationmarginallyoutperforms the empirical formulation when compared at their absolute minima

of 0.6761nats and 0.06783 nats respectively. Although the the number of reconstructions (20) might

not be large enough to credit statistical significance to thestudy, it is a strong indicator regarding the

validity of the findings of Sec.6.1.4, that is, at their optimumu both formulations perform comparably.

Henceforth, we employ the Shannon formulation due to its better run-time performance in evaluating the

JE and its derivative between images (see Sec6.4.4).
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Figure 7.4: Comparison between Shannon & empirical entropy estimatorsfor variable kernel widthuopt. Nor-

malized reconstruction error forSubfig. 7.4aShannon formulationSubfig. 7.4bEmpirical (expectation based)

formulation. Minima at: Shannon 0.6761nats Empirical: 0.06783 nats

Case study 1 - continuedFigure7.5 introduces thex⋆ and four different pairs ofxref (columns 2-4)

one forµa and one forµ′
s, all with incommensurate gray values in relation to thex⋆. The reconstructed

region consists only of the circular domain and the sources/detectors have been placed on its boundary.

The remaining region is masked out and serves only for visualization purposes.

It is important to comment on the structure of thexref as they are designed to assess the capacity of

both JE and MI for various cases.

• Case I. The first set consists of the perfectxref in structural terms as it shares the exact number of
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features withx⋆ and with the exact number of distinct gray values. It should be emphasized that

when multiple features inx⋆ share the same gray value, their corresponding features inxref share

also a common gray value.

• Case II. Thexref of the second set have been created by summing thexµa

ref andxµ′

s

ref of Case I,

adding an additional feature onxµa

ref and re-scaling the gray values arbitrarily between 1 and 3.8

for both images. The significance of this reference set is as follows. Firstly the prior space has

features which do not appear in the target space. Second, dueto the way thatxµa

ref andxµ′

s

ref are

created, more regions share similar gray values [1,2,3,5,6], hence they are less distinguishable by

the KDE. This is the main reason that a continuous KDE is needed, so that the entropic estimates

and their derivatives are continuous and enables them to resolve regions with similar values.

• Case III. The thirdxref is missing features which are found inx⋆. The purpose of this test is to

access if the inaccuratexref suppress the reconstruction of the true features.

• Case IV The final set consists of non-piecewise constantxref. The are replaced byxref with a

generic structure based on the ones of Case I, but with gray values changing according to a radial

gradient. To complicate things further we add 5% of multiplicative Gaussian noise to the prior

image. The noise was simulated via

xref = (xref)�η
+ 5%× |xref| × η, (7.18)

where(xref)�η
is the reference image, represented as aN × 1 vector, prior to noise-contamination;

andη is aN ×1 vector consisting of random trials drawn from a Gaussian densityN (µ, σ2), with

meanµ = 0 and standard deviationσ = 0.05.

Figures7.6 and7.7 present the obtained reconstructions for bothµa andµ′
s respectively. Each

figure in columns 2-4 show the reconstructed images obtainedusing both JE (top row) and MI (bottom

row), using the corresponding image pairs. We have used the same kernel widthu (optimum from Sec.

7.5.2) for both JE and MI as they both computed using the Shannon entropy implementation. In the first

column we present the initial guess used for the IT reconstruction and also a converged reconstruction

using TK1 regularization to be used for comparison purposes. Figures7.9 and7.10depict the profiles

of the images aty-axis coordinates 40 or 100 depending on which is more revealing, taking into account

the features in thexref andx⋆ spaces. The formed JPDFs are depicted in Fig.7.8. Note for example

that the added noise in the fourth prior is reflected in the profile (gray/dashed line). A discussion of the

obtained results now follows.

Regarding Case I, it is apparent that both JE and MI perform well. Consistent to the our discussion

in Sec.7.3, we emphasize that theMI reconstruction ofµ′
s exhibits higher variation in the background

region - which should be homogeneous, possibly due to the maximization ofĥ(x) term.

Case II is far more revealing about the superiority of JE as itreflects on the theory in Sec.7.3.

We observe that the extra features in the reference images leave a distinct footprint in the MI based
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reconstructions. The fact that the extra features inxref appear with distinct gray values in̂x is due to the

effect of the marginal entropy term̂hx discussed in Sec.7.3. Apparently, MI based priors wrongly bias

the solution in the case of extra features in the prior space.In contrast, in the case of JE, the enforced

blob can attain the gray value of the background so effectively it disappears (vertical alignment in the

JPDF as discussed in Fig.7.1). This is a significant advantage of JE over MI. The effects ofthe extra

feature inxref can be observed in the JPDFs in Fig.7.8.

In Case III we observe that the features inx⋆ which do not have a corresponding feature in the

reference image are successfully reconstructed, althoughnot as resolved as in cases I and II. However,

the accuracy of the reconstruction regarding these features is better than the corresponding one in the

TK1 reconstructions, which should be expected asTK1 smooths out the region borders corresponding

to high gradients. Another possible explanation is that by providing accurate prior support to the rest of

the domain, the overall reconstruction is improved. Thus the modelling of the overall light propagation

becomes more accurate and as a by-product, it leads to the improved recovery of the features which miss

explicit prior support. Hence, their improved spatial resolution compared toTK1 can be considered as

a by-product of the overall improvement of the reconstruction. It should be noted that the IT functionals

are not easily predictable in their behavior. By adding or removing a blob in the prior space, the effect in

the reconstruction is not necessarily constrained in the region of the missing/extra blob. These changes

propagate through the PDF/JPDF and affect spatially distant regions in the reconstruction, although their

gray values are proximal in the PDF/JPDF space. One can easily see that the removal of blob [4] affects

the contrast of the reconstructed blob [1]. This is a potential drawback of the IT functionals. This effect

is observable in the JPDFs in Fig.7.8.

Finally, case IV shows that even with the added complexity induced by the gradient/noise in the

prior space, both functionals display increased invariance to the complex incommensurate gray value

relationship betweenx andxref, producing acceptable reconstructions.

Tables7.2and7.3show the normalized Sobolev norm distance [Terzopoulos, 1986]

‖x− x⋆‖2S,2 = 0.5
‖x− x⋆‖22
‖x⋆‖22

+ 0.5
‖∇(x− x⋆)‖22
‖∇x⋆‖22

, (7.19)

evaluated between the target and reconstructed images forµa andµ′
s respectively. It is apparent that in

all cases JE is better in quantitative and qualitative terms. Its superiority is also evident in the profiles of

Figs.7.9& 7.10.

Table 7.2: Sobolev norm distance between target and reconstructed absorption distributions

Recon. TK1 1 2 3 4

JE 0.44 0.15 0.22 0.29 0.22

MI 0.44 0.20 0.29 0.31 0.30
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Figure 7.5: Target distributions and the 4 reference images pairs, incommensurately related to the target gray

values. Ref 1 displays full correspondence between its features and the ones in the target distributions. Ref. 2

contains features not existing in the target space. Ref. 3 ismissing features. The gradient in Ref. 4 is enforced

by centring a 2D Gaussian (σ: 50 pixels) on top of Ref. 1 and multiplying the pixels valuesunderneath. We

also add 5% Gaussian multiplicative noise.
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Figure 7.6: µa reconstructions by introducing the available reference image pairs with joint entropy or mutual

information. The converged TK1 reconstructions are provided for comparison along with the initialization

guess.
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Figure 7.7: µ′
s reconstructions by introducing the available reference image pairs with joint entropy and mutual

information.
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p(TK1,Ta) p(Recon. 1,Ta) p(Recon. 2,Ta) p(Recon. 3,Ta) p(Recon. 4,Ta)

top: JE
bottom: MI

(a)
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dark
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Figure 7.8: Effect of information theoretic regularization on JPDFs.Subfig. 7.8a: µa. Depiction of the

JPDFs for the case ofµa. Visualization scale cut-off thresholdt applied to reveal all clusters. All values> t

are shown as brown. For all JPDFs;x-axis: prior,y-axis: Recons.3rd col.: Clusters indicate value of region

[7]. JE cluster unaffected. MI cluster shows dispersion iny-axis (disordered background). This increases

ĥ(Recon.2) and reduces−MI . 4rd col.: Arrows point to the cluster of white regions [3,4,5]. Tail corresponds

to the reconstructed blob 4 lucking explicit prior support.JE preserves dominant top cluster corresponding to

[3,5]. MI does not, hence [3,5] are affected - see increased variance in [3].Subfig. 7.8b: µ′

s. 3rd: JE mostly

unaffected. Few new values created due to minimal bias from extra prior feature [7]. MI - dispersion (overall

disorder in [3 + gray background]) and significant change dueto strong bias from extra feature (small arrow)

4rd col.: Arrows point to value of the black blob lucking support. IMPORTANT: notice that the removal of

the blob [4] from the prior, affects its reconstruction but also the reconstruction of blob [1] in JE and more in

MI. REASON: Blobs: [1,4] are spatially distant but close in JPDFs. Overall usage of priors cluster JPDFs

compared to TK1 case, which is interpreted as improved contrast and resolution.
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Table 7.3: Sobolev norm distance between target and reconstructed scattering distributions

Recon. TK1 1 2 3 4

JE 0.42 0.23 0.23 0.24 0.27

MI 0.42 0.296 0.28 0.30 0.34

Figure 7.9: Profiles forµa at y = 40 or y = 100 for reconstructions using TK1, JE and MI. We also provide

the profiles forx⋆ andxref. The choice ofy targets the profiling of different features and was made taking into

account the feature correspondence betweenx⋆ andxref space for each case.
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Figure 7.10: Profiles forµ′

s aty = 40 or y = 100.
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In order to fairly compare MI and JE, each was weighted by their individually computed optimum

τ , in order to ensure that the observed biasing tendencies were not a product of unfair weighting of one

of the methods. This ensures that the results reflect the theoretical capacity of each method and no unfair

under- or over- regularization of one of the methods is taking place. For both methods and for each

different reference image pair, we performed multiple reconstructions using the same data but variable

τ ∈
[

10−4, 10
]

, ranging in 40 logarithmically spaced intervals and theτ which returned the best match

for each case was adopted.

Figure7.12shows thêµa andµ̂′
s reconstructions obtained using prior pair #2 of Fig.7.5, for the variable

τ and for both JE and MI. The corresponding error plots for the same prior case, are shown in Fig7.11

as an indicator. The reconstructions corresponding to the minima of the plotted errors are highlighted in

Fig. 7.12.

One can observe that JE regularization removes features asτ increases whereas MI fully enforces

the priorxref. This is due to the absence and presence of the marginal term in the two methods. In the

JE case, the removal of features leads to vertical alignmentof the clusters in the JPDFs (not depicted),

their in-between distance is minimized and JE decreases. MIenforces all features (maximum amount of

clusters in the PDF/JPDF) and induces higher contrast amongfeatures to increase the distance among

clusters. The final JE reconstruction in Fig.7.12ais consistent to the theory. Although all features

appear, the global contrast is significantly reduced. The reduction in the contrast among the depicted

features - except feature 6 (black circle) - significantly clusters the JPDF (not depicted for this case) thus

reducing JE. We have observed in other studies which we have performed (not included here) that for

τ ≫ 0, the reconstructions approach the homogeneous image.
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Figure 7.11: Reconstruction errors (against true solution) for the images depicted in Fig.7.12. MI errors

corresponding to indices36 → 40 have been truncated as the correspond to very high values andcompromise

the clarity of the rest of the plot. Minima are explicitly indicated
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(a)

(b)

(c)

(d)

Figure 7.12: Reconstructions using prior pair #2 for 40log-spacedτ values. Recons.1 → 12 have been

removed (under-regularized, solely data-driven). They are similar to the first two depicted recons. Minimum

error recons. have been highlighted.Subfig. 7.12aJE-µa Subfig. 7.12bMI-µa Subfig. 7.12cJE-µ′

s Subfig.

7.12dMI-µ′

s.
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7.6 Case study 2: 2D MRI-derived target, MRI prior

7.6.1 Simulation description

This study corresponds to a more realistic case. The structure of the simulated target anatomy is provided

by a coronal slice of a 3D MRI scan of the breast. A simple segmentation process classified the tissue

to two different types - adipose and glandular. The identified regions were re-assigned with optically

meaningful values - although the choice was arbitrary and does not reflect the literature reported optical

values of the considered tissue types. In addition, an artificial (non-MRI derived) elliptical perturbation

was added to theµ⋆
a to simulate a tumour and was assigned with a value6× higher that the background

adipose tissue and1.5× higher than the glandular tissue. Tumours have higher absorption levels due

to extra vascularization. The resulting optical image plays the role of the probed medium. The target

optical values are summarized in Table7.4.

Table 7.4: Case study 2: Target optical values. The values are in mm−1. The have been arbitrarily

selected and they do not reflect literature reported opticalvalues of the considered tissue types.

Tissue type µa µ′
s

glandular 0.04 2

adipose 0.01 1

tumour 0.06 -

The MRI providing the structure ofx⋆ will be used as the priorxref image. This case is more

complicated compared to the previously presented case study for the following reasons. The MRI is not

piecewise constant - whereas the target optical image is - and it contains micro-features and noise which

is also absent from the target. In addition, the explicitly added feature inx⋆ does not have a corresponding

entry in xref, hence it does not benefit from explicit prior support. We thus test the flexibility of the

methods to reconstruct it. To complicate things even further we add a circular feature on the MRIxref.

We saw in Sec.7.3(discussion regarding image pair{1, 3}) that partial overlaps such as the ones induced

by the added feature, compromise the JE structural invariance. Finally, the regions comprising the target

image are non-convex, thus creating small structural details which their retrieval is an added challenge

for the relatively low resolution of DOT.

7.6.2 Meshes and reconstruction initialization

We utilize the same meshes of the Case study 1 (see Sec.7.5). Similar to that case, we ensure not to

commit an inverse crime by using different meshes for forward data generation and also for the recon-

struction process. Finally,1% of Gaussian distributed random noise was added to the simulated data.

The initialization guesŝxinit used in the IT reconstruction scheme was provided by a converged TV-

regularised solution̂xTV . This reconstruction will also be used in order to evaluate the potential achieved

improvement by the informational theoretic regularisation scheme. Figure7.13presents the true solution

x⋆, priorxref, the initialization estimatêxinit - obtained by a converged TV reconstruction - as well as the



7.6 Case study 2: 2D MRI-derived target, MRI prior 197

formed PDFŝp(x̂init , xref). The above quantities are presented for bothµa andµ′
s. All reconstructions

presented in this case are visualized using the colour rangeof the targetx⋆. The magnitude of the

challenge is evident. The initial estimate, especially in the case ofµa fails completely to reproduce

structural detail. The simulated tumour is reconstructed with lower contrast and an additional feature -

not corresponding to the true solution also appears. The normalizedL2 error between the retrieved̂µa

and the trueµ⋆
a is 22.01%. The scattering reconstruction is marginally better resulting to anL2 error of

20.75%.

Absorption target

Scattering target

Absorption TV converged

Scattering TV converged

Absorption prior

Scattering prior

PDF: TV − Prior

PDF: TV − Prior

Figure 7.13: Case study 2: Initial images.Top row: AbsorptionBottom row: Scattering1st col. : Targets

2nd col. : MRI-priors 3rd col. : TV-converged reconstruction̂xTV - used also as the initial estimatex̂init 4th

col. : JPDFs between̂xTV andxref

7.6.3 Information theoretic regularization

Similar to the previous case, we have performed multiple JE and MI reconstructions with variablelog-

spacedτ , similarly to Case 1. These reconstructions are depicted inFig. 7.14. The top two subfigures

correspond toµa andµ′
s for the case of JE, whereas the bottom two showµa andµ′

s for the case of

MI. In every image, the dashed box indicates the reconstruction which matches best (inL2 norm terms)

the target solution for the depicted optical quantity. Thusthe optimumµa andµ′
s reconstruction can be

retrieved for different values ofτ . The continuous box indicate the reconstruction which minimizes the

combinedµa andµ′
s error and it is this which is ultimately chosen.

In Subfig.7.14a(JE-µa) we once again observe that JE reduces contrast asτ increases. This is not

observed in the scattering reconstructions. A potential explanation is that the initialµ′
s obtained from the

TV reconstruction is more accurate than the correspondingµa initialization. In the case of MI contrast

progressively increases as expected from the theory.

The optimal reconstructions corresponding to the minimum combinedL2 error are depicted in Fig.

7.15. There is an evident improvement in the reconstructions, especially in the case ofµ′
s. We mentioned
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(a)

(b)

(c)

(d)

Figure 7.14: Reconstructions using 40log-spacedτ values. Top to bottom: JE-Absorption, JE-Scattering,

MI-Absorption, MI-Scattering.Continuous boxesindicate reconstruction corresponding to minimum totalL2

error whereasdashed boxesindicate recons. with minimum error for that case (JE/MI,µa/µ′

s).
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that this can be the case due to the better initialµ′
s guess. Another possible reason for the superiority of

the retrievedµ′
s overµa is inadequate normalization between the two, during the optimization. Thus,µ′

s

can potentially be subjected to higher regularization thanµa. Such problems do not occur in alternative

modalities which retrieve a single image.

JE: Absorption reconstruction JE: Scattering reconstruction

PDF−JE:  Absorption − Prior PDF−JE: Scattering − Prior

MI: Scattering reconstruction

PDF−MI: Scattering − Prior

MI: Absorption reconstruction

PDF−MI: Absorption − Prior

Figure 7.15: Case study 2: Reconstructed images.Top row: Reconstructed images.From left to right: JE-

Absorption, JE-Scattering, MI-Absorption, MI-Scattering Bottom row: Final JPDFs.From left to right: The

reconstructed images (image above each PDF) vs the priorxref.

Regarding the comparison between JE and MI, it is apparent that MI promotes the formation of

structure more strongly due to its marginal term, which is optimized when the obtained image exhibits

higher variation. The same term promotes higher contrast between the reconstructed values (see discus-

sion in 7.3.2), thus emphasizing all regions which differ from their surroundings. Hence, we observe

higher absorption in the tumour region, but for the same reason inaccurate values (centre-right) in the

reconstructed image are also emphasized. JE on the other hand, due to the lack of the marginal term does

not emphasize neither the artefacts as well as the tumour. Both methods however improve on the initial

TV reconstruction.

The normalizedL2 errors between the retrievedµa, µ′
s reconstructions against their targets and also

the total error are provided in Table7.5. In this case MI outperforms JE. It should be noted that the best

JE-µ′
s reconstruction is not the one indicated in Fig.7.15but it occurs for higherτ value (see dashed

boxes in7.14). It results in an error of7.26% and achieves a reduction of35% from the initial error -

which is higher than the one achieved by MI. However, for the same highτ , the error of the JE enabled

µa reconstruction is far higher, increasing the total error.
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Table 7.5: Case study 2: NormalizedL2 errors

Images considered Normalized L2 error Reduction

µa: x⋆ - x̂TV 22.01% -

µa: x⋆ - x̂TV 11.18% -

Total initial error 16.60% -

µ′
s: x⋆ - x̂JE 20.75% −5.72%

µ′
s: x⋆ - x̂JE 8.11% −27.47%

Total JE final error 14.43% −13.07%

µ′
s: x⋆ - x̂MI 19.29% −12.36%

µ′
s: x⋆ - x̂MI 7.34% −34.3%

Total MI final error 14.43% −19.9%
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7.7 Case study 3: 3D reconstruction of a software phantom

7.7.1 Simulation description

In this study we test the method in the 3D DOT problem. The 3D case is usually more ill-posed than the

2D setting as the ratio of the number of unknowns (equalling the voxels in the 3D volume) to the acquired

data increases. In addition, a significant potion of the light that exits the domain goes undetected, as the

detectors are now arranged over a 3D surface and not a 2D boundary.

In this case, the test domain consists of a cylindrical object with radius of25mm, and height of

50mm. Sources and detector sites were placed in 5 rings around themantle of the cylinder, at elevations

-20, 10, 0, 10, 20 from the central plane. 16 sources and 16 detectors were arranged in each ring,

totalling a set of 80 sources and 80 detectors. Data was acquired for all source/detector combinations

resulting to 6400 acquisition events The domain was represented by a FEM mesh which consisted of

83142 nodes and 444278 4-noded tetrahedral elements. The optical background parameters were set to

µa = 0.01mm−1 andµ′
s = 1mm−1. Spherical and elliptical perturbations have also been defined, with

increased absorption and scattering coefficients. The arrangement of target objects is shown in Figure

7.16. The measurements consisted of logarithmic amplitude and phase at a source modulation frequency

of f = 100MHz, contaminated with 0.5% of multiplicative Gaussian-distributed random noise.

7.7.2 Reconstruction and initialization

The reconstruction is performed on a32×32×32 grid of bilinear voxels. Figure7.17shows a converged

reconstruction using TV regularization which used a regularization parameter valueτ = 1e − 5. The

display range in the corresponding images is optimally computed to enhance visual clarity. However,

the solutions obtained using the JE and MI priors are displayed in the same range of the true solution.

Hence, we also present Figure7.18which shows the same reconstruction, but now scaled according to

the range of the true solution. The reconstruction is depicted in order to enable visual comparison with

the IT reconstructions in order to showcase the magnitude ofthe improvement. The same reconstruction

was used as the initialization guess for the IT reconstructions.

7.7.3 Information theoretic regularization: correct prio r

In this case we utilize a prior imagexref which shares the same structure with the true optical solution.

However, its gray values are incommensurately related to the true optical parameters. The prior image is

depicted in Fig.7.19. Figures7.20& 7.21present selected reconstructions using JE and MI regulariza-

tion. The display range of the presented results is that of the true solution for bothµa andµ′
s. It has to

be noted that the selection of the presented images over alternatives obtained for different regularization

weightingτ , was based on qualitative criteria (visual inspection). Itis evident that both methods improve

on the initial TV solution as the correctly retrieve the underlying features of the true solution.

7.7.4 Information theoretic regularization: incorrect pr ior

In this case we utilize a prior imagexref is not an accurate structural representation of the true solution.

It contains extra features with respect to both trueµ⋆
a andµ′

s
⋆. As in the previous case, its gray values

are incommensurately related to the true optical parameters. The prior image is depicted in Fig.7.22.
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Figures7.23& 7.24present selected reconstructions using JE and MI regularization. The display range

of the presented results is that of the true solution for bothµa andµ′
s. Once again the reconstructions

were selected based on visual inspection.

As expected, the JE reconstruction induces less bias due to the extra features in the obtained solu-

tion. Neither the ellipsoidal nor the spherical perturbation have a significant impact on theµ′
s andµa

solutions respectively, from which they should be absent. However, we observe that the small features

which do not exist in theµ′
s
⋆, do appear in the obtainedµ′

s. A possible explanation for this result is

that these features share similar gray values. According tothe discussion of in Sec.7.3.3, this can

compromise the structural invariance of JE.

In the case of MI reconstruction, bias from the extra features is apparent. We note that all the recon-

struction which we have examined had noticeable bias - except the ones which were under-regularized

and did not significantly improve from the TV reconstruction. For higher values ofτ the spatial resolu-

tion increased along with the bias.

Figure 7.16: Left: Cylindrical software phantom with embedded absorption (red) and scattering (blue) per-

turbations. The position of the cross-sectional planes used for displaying the reconstruction results is indicated

in gray.Right: cross sectionsz = 7, z = 24 andy = 16 through the absorption (top and scattering target. The

top three images showµa and the bottom threeµ′

s.
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Figure 7.17: Converged TV reconstruction: Visualized using optimal display range to enhance features

Figure 7.18: Converged TV reconstruction: Visualized using the same display range as the true solution
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Figure 7.19: Prior image 1: The prior has one-to-one feature correspondence with the true solution. Gray

values are incommensurately related to the true solution.

Figure 7.20: Converged JE reconstruction using the structurally correct prior 1
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Figure 7.21: Converged MI reconstruction using the structurally correct prior 1

Figure 7.22: Prior image 2: The prior has extra features when consideringthe trueµa and trueµ′

s solution. Gray

values are incommensurately related to the true solution. The displayed isosurface image is not representative

of the gray values as the high background value dominates theisosurface rendering. It is solely displayed as an

indicator of the locations of the various features.
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Figure 7.23: Converged JE reconstruction using the structurally incorrect prior 2

Figure 7.24: Converged MI reconstruction using the structurally incorrect prior 2
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7.8 Case study 4: DOT/MRI experimental phantom multi-

modality study
In this study we test the IT regularization scheme on experimental data. We seek to retrieve the optical

properties of a cylindrical phantom. The phantom is probed by an optical tomography system and is also

subjected to an MRI scan. The aim is to reconstruct the optical propertiesx of the phantom using its

MRI representation as the structural priorxref.

7.8.1 Phantom description

The phantom was constructed1 by a two-component, room temperature vulcanizing silicone(ELAS-

TOSIL RT 601, Wacker Chemie AG). The cylinder’s height was 120mm, whereas its inner diameter was

69mm. Alternative building materials for the phantom include, polysaccharide gels, gelatin, polynivyl

alcholol [Mazzara et al., 1996; Ohno et al., 2008; Surry et al., 2004]. Silicone was the material of choice

due to its minimal deterioration over time, as well as due to the ease which one can construct regions

with different magnetic contrast within it.

Silicone is clear and colourless and its optical propertiescan be modified by adding scattering and

absorbing ingredients. The scatterer used in this instancewasT iO2 powder whereas the absorbing

properties were assigned by adding a near infrared (NIR) dye(Pro Jet 900 NP, Avegia Biologics Ltd.)

to the silicone. Similar ingredients have been previously used in resin based optical phantoms [Firbank

and Delpy, 1993; Firbank et al., 1995]. The dye was first mixed with a small amount of ethanol with the

help of an ultrasound cleaner. Then the result was mixed withthe silicone in a plastic stirring pot.T iO2

was mixed with the hardener, again with the help of ultrasonic vibration. The hardener was then added

to the stirring pot and mixed carefully to minimise bubble formation. The concentrations of ingredients

to achieve approximately desired optical properties were 230.4 mg/dl forT iO2 and 0.5 mg/dl for the

NIR dye. The stirred silicone was poured in a mould made of nylon, which was first treated with silicone

spray. The mould consisted of a hollow cylinder, bottom plate and three cylindrical pegs, which leave

holes for the perturbations in the cast. The parts were attached to each other with screws.

The cured phantom was removed from the mould. Material for three different perturbations were

poured in the holes of the phantom. The first perturbation haddouble the concentration ofT iO2 com-

pared with the background. The second had double the concentration of the near-infrared dye and a MRI

contrast. The third perturbation had only MRI contrast. Silicone itself can be seen in an MRI image

and its magnetic properties can be altered with different paramagnetic substances. In this phantom, the

MRI contrast was created with Dotarem (Guerbet S.A.), whichcontains gadoteric acid. Its paramagnetic

nature is based on gadolinium. It is used as an MRI contrast agent and normally given by injection. After

the perturbations were cured, the holes were filled with silicone with the same optical properties as the

background material. The phantom can be seen in Fig.7.25.

The background optical properties of the phantom were approximately set toµa = 0.01 andµ′
s

mm−1 at a wavelength of 785nm. The base of the three cylindrical cavities were formed on a plane

1The phantom was constructed by Atte Lajunen, Department of Biomedical Engineering and Computational Science, Aalto

University
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parallel to the base of the cylinder and at an elevation ofy =56.25mm from the base. The cavities were

filled with dyes of different concentration of the background in order to provide optical contrast. Cavity

A was filled with double the concentration of the NIR dye aiming to achieve twice the absorption of

the background. The aimed optical quantities of the background are{2µa, µs}. Cavity B had solely

MRI contrast, resulting in optical properties{µa, µs} same as the background. Finally, cavity C was

filled with the scattererT iO2 in double concentration of that used for the background, resulting in

optical parameters{µa, 2µ
′
s} relative to the background. The magnetic properties of cavity C were

aimed to be similar to the background ones, thus C should be virtually absent in the corresponding MRI

reconstruction.

The internal structure of the phantom as well as its absorption/scattering/magnetic properties are

graphically depicted in the schematic of Fig.7.26. In addition, we provide two sets of MRI images cor-

responding toa) planes parallel to the base of the cylinder, located at elevationsy =33.7mm,y =63.7mm

& y =78.7mm from the baseb) planes vertical to the base of the cylinder and in the front-to-back direc-

tion, which depict the phantom at various depths, specifically in distancesz =19.4mm,z =36.7mm &z

=49.6mm from the front.

It should be noted that provided distances are estimates obtained by the information depicted in the

full set of slices obtained by the MRI, given that the first slice corresponds to the base and and the last to

the top of the cylinder and by utilizing the known height and diameter of the cylinder. For example, we

utilize the down-sampled MRI image volume of32 × 32 × 32 (x, y, z) resolution and we then identify

the first image slice in the 3D volume stack (starting from thecylinder’s base), where the cavities firstly

appear. Let the index of that slice bek. We simply compute its distance from the base in mm by

y = (120/32) ∗ k. We have applied a similar process for all provided distances. The utilized MRI was

down-sampled from its original256× 256× 40 resolution to match the resolution of the optical solution

discussed earlier. The reported positions of the considered planes are computed from the down-sampled

MRI - as the prior and resulting optical solutions are also represented in this lower resolution.

7.8.2 Data acquisition process

The optical probing of the phantom and the acquisition of therelevant data1 was obtained using a fre-

quency domain optical tomography system described in [Nissilä et al., 2002; Nissilä et al., 2005]. The

wavelength of the incident radiation was set to 785nm. The optical probing was performed by 15 NIR

sources and 16 detectors arranged over a two-ring geometry (see Fig. 7.26), with sources and detec-

tors being interlaced and arranged with equidistant angular spacing. The corresponding planes of the

two rings were located at elevations ofy =65mm andy =70mm from the base of the cylinder. These

distances were communicated to us by the scientific staff responsible for the actual measurements.

7.8.3 Reconstruction setting and initialization

The image reconstruction process utilizes an unstructuredtriangular mesh with 70218 nodes and 26878

elements. The obtained optical solutions are retrieved in the already reported32× 32× 32 grid - which

11 The data acquisition process was performed by Dr. Ilkka Nissilä, Department of Biomedical Engineering and Computational

Science, Aalto University



7.8 Case study 4: DOT/MRI experimental phantom multi-modality study 209

Figure 7.25: Case study 3: Photograph of probed phantom

Figure 7.26: Case study 3: Structure of MRI/DOT phantom.Perturbation A: i) MR contrast ii) Absorption

twice as the background.Perturbation B: MR contrast only.Perturbation C: i) MR contrast ii) Scattering

twice as the background.



210 CHAP. 7: INFORMATION THEORETIC REGULARIZATION IN DIFFUSE OPTICAL TOMOGRAPHY

also determines the dimensionality of the inverse problem.We firstly perform an initial reconstruction

using a converged TV regularization. We then use this retrieved optical solution as the initialization

estimatex̂init for the reconstruction which introduces the MRI priorxref using the IT functionals. We

were given an estimate of the true background optical quantities of the phantom, by the scientific staff

responsible for its creation, ofµa = 0.008mm−1 andµ′
s = 0.75mm−1. These values are employed as

the homogeneous initial guess for the TV enabled reconstruction.

We now discuss the obtained results with the considered methods. For each method, allµa images

are displayed in common scale. Similarly forµ′
s. We note that we show multiple images for each optical

quantity, corresponding to the views considered in Fig.7.26. We also need to note that for someµ′
s re-

constructions, there are few pixels in the boundary - close to source positions - which attain significantly

higher values than the rest of the image. Specifically these pixels have a value of 1.78mm−1, whereas

the rest of the reconstruction is limited to 1.2mm−1. We thus impose an upper limit of 1.2mm−1 to

the display range to enhance visual clarity. When scaling has been applied, it is explicitly stated in the

caption.

Figure7.27showcases the converged TV reconstruction. Regarding theµa part, the reconstruction

of perturbation A (see Fig.7.26) is correctly reconstructed - however its spatial resolution is compro-

mised by overestimating its original size. In addition, it is apparent that although perturbations B & C

were aimed to be invisible in absorptions terms, this is clearly not the case. Regarding itsµ′
s part, the

obtained̂xTV is clearly erroneous. Perturbation C which contains a scatterer in2× the concentration of

the background, attains the higher values however its spatial resolution is significantly compromised. In

addition, perturbations A & B which were designed to be invisible in µ′
s terms, have a clear footprint in

the obtained̂xTV .

It is understandable that quantitative analysis of the obtained reconstructions is not trivial in this

case as the true solution images are not available.
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Figure 7.27: Case study 3: TV-reconstructed volume at selected views. Display range cut-off has been applied.

ScatteringColumns 1-3: AbsorptionColumns 4-6: ScatteringTop row: Top-to-Bottom viewBottom row:

Front-to-back view
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7.8.4 Information theoretic regularization: original pri or

The MRI volume is now employed to act as the priorxref for the IT enabled reconstructions. It is depicted

in Fig. 7.28. The non-trivialness of the task at hand becomes evident. The structure betweenµ⋆
a andµ′

s
⋆

differs1, however they will receive explicit regularizing support from a single prior. Hence one-to-one

correspondence betweenxref and eitherµ⋆
a of µ′

s
⋆ is unavoidably compromised.
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Figure 7.28: Case study 3: MRI prior volume at selected views. Display range cut-off has been applied.Top

row: Top-to-Bottom viewBottom row: Front-to-back view

7.8.4.1 Joint entropy reconstruction

We firstly test the JE functional. We have performed multiplereconstructions for various regularizing

weightsτ and qualitatively have selected the best. Alternative waysto select the bestτ include methods

such as the L-curve [Hansen, 1998]. Figure7.29shows the obtained results. By visual comparison means

only, the structurala priori information improves the spatial accuracy of the reconstructed absorption

perturbation A. Perturbation B exists inxref but not inx⋆ and has a noticeable impact in bothµa and

µ′
s reconstructions. One would expect that JE due to its structural invariance discussed in Sec..7.3.3

would induce bias to thex⋆ from the extra prior feature. However, because all MRI visible features have

similar gray value representations, the JE invariance is compromised due to the reasons discussed in Sec.

7.3.3. Finally, we can observe that perturbation C is now underestimated, as due to the highτ used for

this case, JE tends to reduce the contrast in the image as it results in clustering in the JPDF and hence

reduction in the entropy.

7.8.4.2 Mutual information reconstruction

The reconstructions utilizing the MI functional are shown in Fig. 7.30. Regarding theµa part of the

reconstruction, MI achieves an accurate reconstruction ofthe perturbation A, in both spatial and quanti-

tative terms, as its attainedµa value is approximately2× the background absorption. The strength with

1Although a picture ofµ⋆
a andµ′

s
⋆ cannot be provided, their expected structure is deduced by Fig. 7.26
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Figure 7.29: Case study 3: JE-reconstructed volume at selected views. ScatteringColumns 1-3: Absorption

Columns 4-6: ScatteringTop row: Top-to-Bottom viewBottom row: Front-to-back view

which MI enforces the prior features - due to its marginal entropy term - is evident in the 2nd and 3rd

column bottom images, where the structure of the cavity is clearly depicted. Unfortunately, for the same

reason we observe significant bias in theµ′
s part of the reconstruction from perturbations A & B. Feature

C is practically unchanged - structure wise - due to the lack of explicit prior support, however its contrast

increased due to the marginal term in MI.
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Figure 7.30: Case study 3: MI-reconstructed volume at selected views. ScatteringColumns 1-3: Absorption

Columns 4-6: ScatteringTop row: Top-to-Bottom viewBottom row: Front-to-back view

7.8.5 Information theoretic regularization: alternative prior

In this case, we tamper with the prior image by performing a manual rotation - no automatic registration

involved - around its axis passing from the centres of its twobases. The magnitude of the rotation

was qualitatively selected so that perturbation B would be aligned with the centre of the ‘reconstructed’

perturbation C depicted in the converged TV reconstruction. This simple alteration enables the scattering

perturbation C to receive explicit support from the prior image, which now has a distinctive feature in the

corresponding location. However, even in this case the prior contains one extra feature when compared
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to theµ⋆
a andµ′

s
⋆. The altered prior image is depicted in Fig.7.31.
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Figure 7.31: Case study 3: MRI prior volume at selected views.Top row: Top-to-Bottom viewBottom row:

Front-to-back view.

7.8.5.1 Joint entropy reconstruction

We re-examine the performance of the JE for the new prior. We employ the same regularizing weight

used in the case of the original prior. The major difference in this case regards the improved reconstruc-

tion of the scattering perturbation B. This is a direct result of the explicit support by the corresponding

feature depicted in the newxref. However, the contrast of the reconstructed C decreases compared to

the one initially retrieved by TV. One should notice that theperturbation C in the MRI image is visible.

However, it minimally affects the obtained reconstruction.
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Figure 7.32: Case study 3: JE-reconstructed volume at selected views forthe case of rotated prior. Display

range cut-off has been applied. ScatteringColumns 1-3: AbsorptionColumns 4-6: ScatteringTop row: Top-

to-Bottom viewBottom row: Front-to-back view

7.8.5.2 Mutual information reconstruction

Finally, we apply the new prior image using MI. The bias in theabsorption reconstruction simply changes

position following the perturbed - due to rotation - MRI feature. It should be noted that the third and

less visible feature in the MRI has a notable impact in bothµa andµ′
s reconstructions compared to the

JE case and this is attributed to the marginal entropy term inthe MI functional. The reconstruction of
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the scattering perturbation C in this case is not as accurate- in terms of spatial accuracy - compared to

the JE case and this is an unexpected result as MI enforces structure more strongly than JE. A potential

explanation for this behaviour is that the third feature appearing in the reconstruction - corresponding

to perturbation B - is strongly opposed by the data results inthe entrapment of the optimization in local

minima.
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Figure 7.33: Case study 3: MI-reconstructed volume at selected views forthe case of rotated prior. Display

range cut-off has been applied. ScatteringColumns 1-3: AbsorptionColumns 4-6: ScatteringTop row: Top-

to-Bottom viewBottom row: Front-to-back view

We should emphasize on the complexity of the above experimental study. The magnetic properties

of the phantom were specifically designed to produce an MRI image which did not have an one-to-one

feature correspondence with the target optical solution. This alone tests the ability of the functionals to

introduce partially correct structural priors while minimizing the bias inflicted in regions of the optical

solution, which receive inaccurate prior support. One expects that the data would oppose the bias in

these regions and if a functional exhibits a level of flexibility, bias would be minimized.

However, in the TV enabled reconstruction of Fig.7.27it is evident that the data itself promoted

the creation of features in parts of the solution - more specifically in theµ′
s part - which by design were

not attributed with optical contrast. The location of these‘artefacts’ coincided with the cavities in the

phantom, which by design should have been invisible toµ′
s. A possible explanation for this result is that

the interaction of the propagating light with the cavities,as well as at the interface which they shared

with the main body of the phantom, ultimately resulted to scattering. In this case the IT regularization

functional are asked to produce an impossible result. That is the incorporation of regionallyincorrect

prior information which promotes the formation of featuresthat are supposedly not a part of the true

solution, however the formation of the same features is ultimately favoured by the data itself.

We conclude from this study that the JE absorption reconstruction of Fig 7.29produced a more

spatially accurate result while the inflicted bias from the extra features in the prior was not substantial.

The result by MI in Fig. 7.30was spatially and quantitatively accurate however bias washigher. In

addition, the scattering result in the case of the JE rotatedprior is encouraging (see Fig7.31). The

accuracy of the reconstructed features which received correct prior support, is a positive indicator about
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the performance of the method when the entire prior is an accurate representation of the underlying true

optical solution.

Before we summarize on the findings of this chapter, as a concluding remark we need to comment

on both JE and MI. The inability of JE to strongly enforce structure is simultaneously an advantage (less

bias) and disadvantage (weak enforcement of the prior structure). The recent studies which take into

account spatial intra-image, inter-pixel dependence (seethe reviewed IT regularization literature in Sec.

7.1) suggest that JE can be modified to enforce prior informationmore strongly. Such alterations will

possibly reduce any flexibility of the functional in inducing less bias and also it will suppress data-driven

features not supported by the prior. However for all features which are in one-to-one correspondence

with the prior image, it is safe to assume that a JE method withintra-image spatial dependency explicitly

modeled, would perform better than the version of JE based onthe i.i.d. assumption. Our feeling is that

if one requires a regularization method which strongly enforces prior information, JE is probably more

suitable than the unpredictable and bias-inducing MI. We aim to test structurally dependent JE in the

severely ill-posed inverse problem of DOT in the near future.

7.9 Summary and discussion
We have presented an IT regularization framework for DOT, which utilizes the functionals of JE and MI.

We assessed the regularizing capacity of the considered functionals and highlighted their in-between dif-

ferences from a theoretical perspective. JE was found to display partial invariance to potential structural

differences between the reconstructed solution and the prior image, which enables it to inflict less bias

in the case where the prior contains features not existing inthe true optical solution. However, for the

same reason JE cannot strongly enforce the prior’s structure on the reconstructed solution. In addition,

we found that due to the nature of the KDE employed for the purpose of PDF estimation, JE can lead

to solutions which are characterized by low contrast between the depicted features, as this corresponds

to increased clustering in the JPDF and reduces JE. The latter was demonstrated in practice, with over-

regularized JE reconstructions which progressively removed features weakly supported by the data. In

contrast, MI was shown to strongly enforce its structure dueto the inclusion of the marginal entropy of

the optical image, in its formulation. MI does not exhibit any structural invariance, thus features in the

prior space will most probably bias the reconstructed image, unless if they are un-regularized. In addi-

tion, the marginal term in MI promotes highly varying optical solutions, hence it can emphasize artefacts

and induce added variation in the solution.



Chapter 8

Information theoretic regularization in diffuse

optical tomography with unregistered

structural priors

8.1 Introduction

In this chapter we propose an extension to the information theoretic regularization scheme proposed

in Chapter7, in order to enable the incorporation of spatially unregistered prior information in diffuse

optical tomography (DOT). The scheme addresses the second aim in Chapter1.

Consider the three spaces central to this discussion. Theseare the true and unknown solutionx⋆;

the space of the optical solution undergoing reconstruction x - with the final estimates explicitly being

denoted byx̂; and the space of the supplied priorxref - which by definition is considered spatially

unregisteredwith respect tox⋆.

In the context of the discussion held in Chapter7, xref was characterized as accurate if it contained

all the features present inx⋆ (one-to-one feature correspondence). In that contextxref accuracy reflected

on its contents. Even in the case where an accuratexref is available, potential for error still exists. One

needs to know exactlywherethea priori supplied features should appear inx̂, otherwise by forcing them

to appear at incorrect locations, we bias the reconstruction and compromise the accuracy of the obtained

result. In effect, we seek axref which is in accurate registration withx⋆. This prior isx⋆
ref.

When the above registration condition is not guaranteeda priori, we need to explicitly compensate

for it. Only when registration is established,xref can accurately regularize the inverse problem and lead

to the accurate retrieval of a solution estimatex̂ which resemblesx⋆. The task at hand was described in

Sec.1.2with Fig. 1.3schematically showcasing the task at hand.

Figure8.1shows the potential bias which can affect a reconstruction,whenxref are blindly trusted,

without having established its accurate spatially registration with x⋆. Rows correspond to absorption

and scattering. The first column depicts the true optical solutions corresponding toµa andµ′
s. Column

two depicts a correct priorx⋆
ref in terms of content and alignment. The prior in DOT can be comprised

by two different images, one forµa and one forµ′
s. Column three depicts a spatially mis-registeredxref.
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Column four depicts the difference images formed by subtractingxref from thex⋆
ref, revealing the extend

of the misalignment. Columns four and five depictx̂, obtained by a converged reconstruction via mutual

information (MI) and joint entropy (JE) regularization respectively. Thea priori structural information

is enforced to the reconstruction in a manner similar to ’carbon copying’. The bias in the reconstructions

is apparent, especially at the regions where the information depicted inxref does not correspond to the

true structure ofx⋆ at the same region, due to misalignment. We should comment onthe fact that,

although both reconstructions are not accurate qualitatively, one can observe that the bias is greater in

the case of MI. According to the discussion in Chapter7, this is expected as MI priors enforce all their

features due to the marginal entropy term in MI. On the contrary, JE induces reduced bias compared to

MI at the locations wherexref andx⋆ are not in agreement. We specifically indicate a sample of areas

in the JE reconstruction̂xJE which have been affected by inaccuratea priori information, but are not

highly biased. Increased bias is observed in the vicinity ofthe dominant elliptical and circular features.

It should be noted that different regularization weights were chosen for the JE and MI reconstructions as

the dynamic ranges of the functionals differ. This ensured that the amount of bias induced by MI is not

a product of over-regularization but it reflects the naturalbehavior of the functional. The same approach

ensured that the decreased bias induced by JE is not a productof under-regularization

True solution
Unregistered prior
(non−rigid + affine)

Difference image
(registered − 

unregistered prior)
JE reconstruction with

unregistered prior
MI reconstruction with

unregistered priorCorrect prior

Figure 8.1: Depiction of bias in reconstructions induced by the introduction of spatially unregistered priors.

Top row: absorptionBottom row: ScatteringFirst col.: Target optical imagesx⋆ Second col.:Registered

priorsx⋆
ref Third col: Unregistered priorxref (non-rigid + affine)Fourth col.: Difference images (x⋆

ref − xref)

Fifth and sixth col.: Reconstruction viaJE andMI regularization (̂xJE, x̂MI )

The obvious problem which rises in the attempt of establishing registration betweenxref andx⋆,

is that the latter is unknown prior to the reconstruction process. Effectively one is asked to register

xref against an unknown quantity. Firstly, not all information regardingx⋆ is completely unknown. We

have found two categories of methods in the imaging literature regarding the establishment registration

betweenxref andx⋆.

The first involves simultaneous probing of the probed anatomy by two (or more) imaging modalities.

This approach does not require any knowledge ofx⋆. Spatial registration involves the alignment of the

images given a common coordinate system. This alignment however, is not necessary driven by the
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actual information depicted in the two images - as we alreadynoted one of them is unknown. One

simply needs to ensure that the involved coordinate systemsare in alignment, under the assumption of

course that inter-image corresponding features occupy spatially corresponding areas in both co-ordinate

systems. The alignment of the two coordinate systems can be guaranteed by simultaneous probing of the

anatomy by the involved modalities - the one which corresponds tox⋆ and the ones which providexref.

The latter can be more easily demonstrated by considering ananalogy with photography. One can place

a camera on a fixed tripod and take a picture of a scene. Then, the camera is replaced by a second camera

- assumingly infra-red in order to maintain the condition ofmulti-modality. Given that calibration has

taken place, i.e. both cameras use lenses of equivalent focal lengths, the resulting pictures should depict

exactly the same scene. Differences in the depiction of the features of the true scene might exist between

the obtained images, due to the different nature of the two cameras. Some features might be more blurry

and some features may be absent in one of the images, but this is not a product of mis-registration. Spatial

alignment between corresponding features is guaranteed bythe imaging setting and our best estimate

regarding the true location of the features is depicted in the image obtained by the higher-resolution

camera. In general, the highest-resolution images are employed asxref. There are reported studies in

the literature which introduce prior information in DOT by secondary modalities, where registration is

guaranteed by concurrent probing. For example see the DOT-ultrasound imaging (UI) scheme in [Zhu

et al., 2005] or a multi-wavelength DOT-magnetic resonance imaging (MRI) coupling [Brooksby et al.,

2006]. The concurrent imaging approach enables the establishment of correspondence only in intra-

subject studies. If the actual probing is serial, meaning that the data acquisition by both modalities is not

exactly simultaneous but one precedes the other, the subject must remain still and the imaged anatomy

should not be subjected to deformations, otherwise the underlying physiological information scanned

by both modalities, at different times, is not in registration by definition. For example, the accurate

registration in serial scanning of organs such as the heart or lungs, cannot be guaranteed as such organs

are constantly subjected to deformation due to their natural function.

The second category of methods explicitly address the potential misalignment betweenx⋆ andxref

as a part of the overall task. All these methods are based on the same concept. The global location/shape

as well as the local form ofxref is parametrized with respect to some spatial transformation parameters

θ. These transformation parameters are included in the set ofthe optimized quantities. Effectively,

the overall task involves a simultaneous reconstruction/registration (SRR) approach. This method has

been used in super-resolution imaging where a number of low-resolution images are combined to form

a high-resolution image. In order for the images to be combined, they should be registered. In [He et al.,

2007; Tom and Katsaggelos, 1995; Zhi et al., 2008] an SRR scheme is adopted. In medical imaging the

same method has been adopted for positron emission tomography (PET) and limited view tomography

[Bowsher et al., 2006; Van de Sompel and Sir., Brady, M., 2009c]. The study byBowsher et al.[2006]

assumed an intra-modal case andxref which was rigidly mis-registered withx⋆. Van de Sompel and Sir.,

Brady, M. [2009c] considered non-rigidly deformed, multi-modal priors, similar to what we propose

in this work. Our proposal for DOT differs as we reconstruct two images and not one. In addition,
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we propose a multi-resolution scheme in terms of the B-Spline free form deformation (FFD) control

point grid. Finally, we proposed the use of a sole functionalfor both reconstruction and registration,

which guarantees the consistency of the objective function, throughout the process. To the best of our

knowledge no such scheme has been proposed for DOT.

The contributions of the work presented in this chapter include

I) the first application of information theoretic regularization with unregistered priors in a severely ill-

posed, non-linear inverse problem such as DOT, which requires the registration of the prior against two

reconstructed images,

II) the proposition of conditional entropy (CE) as the functional of choice, for the purpose of driving the

SRR scheme and finally

III) a scheme of elaborate solution resets which enables theretrieval of improved solutions.

The structure of this chapter is as follows: Section8.2 re-formulates the inverse problem in DOT

in order to enable information theoretic regularization with unregistered anatomical priors. The section

contains a discussion regarding the performance of the information theoretic functionals to perform on

both solution regularization and prior registration tasks. Section8.3 introduces the proposed elaborate,

alternating optimization scheme comprised by the a B-Spline grid refinement as well as a solution reset

scheme. The chapter continues in Sec.8.4, which describes a series of test cases based on simulated

data, designed to test the validity of the proposed scheme aswell as the obtained results. Section8.5

presents a comparison of the results, obtained from the presented test cases. Finally, Sec.8.6 briefly

discusses the presented topics.

8.2 Formulation of the inverse problem

The SRR scheme involves the retrieval of estimates regarding two quantities: the optical solution̂x

and the optimal spatial transformation parametersθ which bringxref in registration withx⋆, leading to

x̂T
ref → x⋆

ref. The objective function of the proposed SRR scheme - here defined directly in terms of a

minimization scheme - modifies Eq.7.2to the following form

[

x̂, θ̂
]

= arg min
x,θ
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wherexT
ref

(

T (r′; θ)
)

= xT
ref(r) is the transformed prior imagexref, originally defined inr′ . The su-

perscriptT explicitly emphasizes that interpolation is applied to define the transformed image over the

coordinate system ofx(r) (see Sec.5.3 for registration specific notation). We should remind thatx

andxref - as well as its transformed analoguexT
ref, are comprised by two distributions, either the optical

absorptionµa andµ′
s images in the case ofx or the corresponding reference imagesxµa

ref andxµ′

s

ref in the

case ofxref. RegardingΨ
(

x(r), xT
ref

(

T (r′; θ)
)

)

, it should be noted that regularization is computed over

the locationsr which are defined inside the overlap domainΩx;xT

ref
of x andxT

ref. Finally, it should be

emphasized that both reference imagesxµa

ref andxµ′

s

ref , are subjected to the same spatial transformation,

defined by a common transformation parameter vectorθ.
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8.2.1 Regularization functional

In a combined reconstruction registration scheme, the functionalΨ
(

x(r), xT
ref

(

T (r′; θ)
)

)

is required to

perform two tasks. These are

• The regularization of the optical solutionx. This is accomplished by penalizing all solutionsx

which are not ‘similar’ to thea priori suppliedxref and

• the assessment of similarity betweenx(r) andxT
ref(r), with r ∈ Ωx;xT

ref
, in order to drive the spatial

registration process.

Section5.6.4discussed the use of information theoretic functionals forthe purposes of image reg-

istration. It conclusively demonstrated the inferiority of JE compared to MI, as well as the inferiority

of MI compared to normalized mutual information (NMI), for the purpose of assessing similarity in the

variable overlap domain and ultimately driving a registration scheme.

On the contrary, the discussion in Chapter7 regarding the regularization with registered priors,

showed that the inclusion of the marginal entropy termh(x) in the MI can introduce bias to the image,

rendering JE as the preferable choice for the regularization function. This is also demonstrated in the

reconstructions provided at the introductory section of this chapter (see Fig.8.1). It should be noted that

h(x) also exists in the NMI term which was not tested for regularization purposes, however its effects

should be similar to its un-normalized variant, the MI.

We are now faced with the choice of a functional which would perform best for both cases. The

only other study employed a SRR scheme based on information theoretic priors employed as well an

alternating approach was byVan de Sompel and Sir., Brady, M.[2009c]. In that studyΨ
(

x(r), xT
ref(r)

)

was set to JE during the reconstruction step and was then switched to negative NMI during the regis-

tration step. Such an approach can work in practice if one ensures that both JE and NMI are subjected

to minimization and return an improved estimate, at every step of the alternating approach. Such an

approach however effectively changes the objective function (Eq.8.1) between the two steps and raises

questions regarding its pure mathematical validity. By doing so, one simply discards the JE derivative

with respect toθ and similarly the NMI derivative with respect tox.

In our approach we propose to use a functional which performsbetter than JE in registration (al-

though it is inferior to both MI and NMI) and as well as JE in reconstruction. By using the same

functional for both steps, we keep the global objective function unchanged. The proposed functional is

formulated by dropping the marginal entropy termh
(

x(r)
)

of the reconstructed image from the negative

MI, however it retains the marginal term of the transformed imageh
(

xT
ref(r)

)

. Consider the MI formu-

lations of Eqs.4.47-4.49. By dropping the marginal term on the RHS, effectively the resulting function

is the CEh(x | xT
ref). In practice we drop the term from thenegativeMI (as we don’t maximize MI but

minimize its negative), hence the employed functional is defined as

Ψ
(

x(r), xT
ref(r)

)

=−
(

h
(

xT
ref(r)

)

− h
(

x(r), xT
ref(r)

)

)

(8.2)

=h
(

x(r) | xT
ref(r)

)

. (8.3)
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We now examine the behavior of the above functional (Eq.8.3) during the reconstruction and

registration steps of the alternating optimization scheme.

1. Reconstruction step :The optimization ofx is driven by the derivative of Eq.8.2with respect to

x. The derivative∂h
(

xT
ref(r)

)

/∂x is zero asxT
ref does not depend onx. Hence, the derivative of

Ψ
(

x(r), xT
ref(r)

)

with respect tox is equivalent to the one of JE and consequently it results in the

same image update in the context of an iterative image reconstruction scheme. The termh
(

xT
ref(r)

)

is constant during the reconstruction step. One has to remember thatr ∈ Ωx;xT

ref
. For all locations

r ∈ Ωx\Ωx;xT

ref
, the derivative∂Ψ

(

x(r), xT
ref(r)

)

/∂x is simply set to zero. This means that all parts

of the solutionx which are not overlapping withxT
ref, are not subjected to regularization until the

registration process advances and they become a part ofΩx;xT

ref
. In theory, we can employ a second,

solely data-driven regularization functional such astotalvariation(TV ) to provide regularization

for the parts of̂x which are not inΩx;xT

ref
. Such a modification is not however considered in the

current implementation.

2. Registration step : Considering the registration step and by recalling thatxT
ref

(

T (r′; θ)
)

=

xT
ref(r), both terms in Eq.8.2 depend onθ. We need to examine howΨ

(

x(r), xT
ref(r)

)

behave

in a registration framework. Firstly, it is a dissimilaritymeasure so it attains its minimum when

the images are similar. This involves the minimization of JEin Eq. 8.2, which we know from Sec.

5.6.4attains a minimum at the correct alignment, however this minimum is not global. Recall

that the global minimum in JE registration is achieved when bothx(r) andxT
ref(r) are populated

by uniform values in the area of overlapΩx;xT

ref

1. The retained marginal term−h
(

xT
ref(r)

)

in Eq.

8.2partially alleviates this effect as it attains its global maximum for uniform images, opposite to

what is needed in the minimization ofΨ
(

x(r), xT
ref(r)

)

.

We repeat the tests of Sec.5.6.4to test the behavior of CE in a registration framework. Firstly we

repeat the test of Subsec.5.6.4.1(Fig. 5.8) where one image is horizontally translated over itself and

the functionals are computed for the various overlap configurations. Figure8.2 shows the plots of the

various information theoretic functionals, including CE,the new functional proposed in this work. CE

attains a stronger minimum at the correct registration compared to JE, however it is still the global one.

One can only expect that registration can be recovered if theinitial misalignment falls inside the basin

of attraction of the desired minimum - hence it depends on good initialization. It should be emphasized

that both MI and NMI are also plagued by local optima, hence they too depend on accurate initialization

- although they attain their global one at the correct registration. Local minima can be alleviated by

multi-resolution strategies.

We also repeat the test of Subsec.5.6.4.2, which was used to compare NMI to MI. The functionals

are tested for various alignment configurations formed by a target image against itself, where the latter

is rotated between−30◦ → 30◦. In addition we considered three different sizes of its background -

varying in the horizontal direction, which we called field ofview (FOV) scales. It should be noted that

1This results in a joint probability density function (JPDF)of a single entry of maximum probability and corresponds to the

global minimum ofJE
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Figure 8.2: Conditional entropy in translational transformations. Werepeat the test of Fig.5.8 and plot all

information theoretic functionals in order to compare themagainst conditional entropy.

the tests of Sec.5.6.4.2which resulted in the plots of Fig.5.10were performed using the discrete entropy

formulation. Figures8.3and8.4show similar plots - including the proposed functional of CE(negated

so it can be compared with NMI), for the discrete and continuous case respectively. It is apparent that in

the discrete case, the CE - and similar to NMI, does not have the problem which manifests in MI with the

maxima becoming minima. Hence, for each FOV scale the CE attains a global optimum for the correct

alignment.

An interesting finding which has not been reported in the rather extensive medical image registration

literature, is that in the continuous case, the NMI does not maintain the beneficial capacity of its discrete

analogue, that is being invariant to the size of the background included in theΩx;xT

ref
. It rather exhibits

the same problematic behavior as MI. The same result was obtained by both empirical and Shannon

implementations. On the contrary, CE exhibits comparable behavior in both discrete and continuous

formulations. It has to be noted that this is simply an observation for this case and we have not extensively

tested its general validity. A recent publication by Cahillet al. Cahill et al.[2008] has brought attention

to the non full invariance of NMI to the size of background. Their proposed solution requires known

background/foreground statistics which is not a method we want to adopt in this case. In practice, CE

performs more than adequately its registration duties, especially in cases where the largest part of both

x andxref are inside the common overlap domain.

8.3 Objective function minimization scheme

We employ a gradient based minimisation scheme to retrieve asolution estimate from Eq.8.1. The

scheme requires the derivatives of its comprising terms with respect tox andθ.
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Figure 8.3: Information theoretic functionals against different overlap configurations manifesting from rota-

tional misalignment and for various sizes of field of view: Discrete entropy case.
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Figure 8.4: Information theoretic functionals against different overlap configurations manifesting from rota-

tional misalignment and for various sizes of field of view: Continuous entropy case.

8.3.1 Derivatives with respect to optical solution

The gradient of the data-fit term
(

g(k) = ∂E(x(k))/∂x(k)
)

was discussed in Sec.7.2.1. In the same

section we discussed the marginal and joint entropy derivatives with respect tox. Regarding the regular-

ization functional, as it was noted in Sec.8.2.1, its derivative∂Ψ
(

x(r), xT
ref(r)

)

/∂x is equivalent to the

derivative of JE (see Eq.7.14).
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8.3.2 Derivatives with respect to transformation parameters

The gradient of the data-fit term with respect toθ is zero, as none of its terms depend on it. Regarding

the regularization functional, we employ numerical derivatives. Consider transformation parameters

θ = {θ1, θ2, . . . , θk, . . . , θM}. Perturbing a single parameterθk by some∆θk → 0, gives rise toθ+k =

{θ1, θ2, . . . , θk + ∆θ, . . . , θM} andθ−k = {θ1, θ2, . . . , θk −∆θ, . . . , θM}. Then the central numerical

derivatives of the regularization functional are defined as

∂Ψ
(

x(r), xT
ref

(

T (r′; θ)
)

)

∂θk
=

Ψ
(

x(r), xT
ref

(

T (r′; θ+k )
)

)

−Ψ
(

x(r), xT
ref

(

T (r′; θ−k )
)

)

2∆θk
, ∀k. (8.4)

We also note that

∂Ψ
(

x(r), xT
ref

(

T (r′; θ)
)

)

∂θk
=
∂Ψ
(

µa(r), xµa

ref
T(T (r′; θ)

)

)

∂θk
+
∂Ψ
(

µ′
s(r), x

µ′

s

ref

T
(

T (r′; θ)
)

)

∂θk
, ∀k.

(8.5)

One can decompose the transformation parameters toθ = {θAffine, θFFD}. θFFD is comprised by

the perturbations of FFD grid nodesϕi,j (see Eq.5.15). Each nodal location is perturbed by a fixed

amount - common for all nodes, in bothx andy directions. Choosing the perturbation amount forθAffine

is not a trivial task, especially ifθAffine is explicitly comprised by parameters expressing translations,

rotations, scaling and shearing and not by the general affineparameters of Eq.5.6. In the former case, the

perturbations of the different transformations composingthe combined global affine, have to be scaled

as they have dis-analogous effect on the optimized functional. For example a rotational perturbation by

0.1 radian results in smaller transformation of the moving image compared to a scaling transformation

of 0.1. One can perceive the ‘amount’ of transformation as a function of the number of displaced pixels

as well as the displacement magnitude. The employed packageuses empirically derived constants to

scale the different types of individual global transformations. This is a common approach employed by

many prominent registration packages1. A more elaborate, geometry based approach was proposed by

Studholmeet al. [Studholme et al., 1996]. Finally, it should be mentioned that probably the best option -

from a computational complexity perspective, is to employanalyticderivatives with respect toθ. These

can be obtained via chain rule according to

∂Ψ
(

x(r), xT
ref

(

T (r′; θ)
)

)

∂θk
=
∂Ψ
(

x(r), xT
ref

(

T (r′; θ)
)

)

∂xT
ref

(

T (r′; θ)
)

∂xT
ref

(

T (r′; θ)
)

∂T (r′; θ)
∂T (r′; θ)

∂θ
(8.6)

The first term in the RHS involves the derivative of the entropy (marginal/joint) with respect to

the image gray values, which we discussed in Chapter6. The second term is simply the gradient of

1see for example Insight’s ITKhttp://www.itk.org/ or

Imperial’s IRTKhttp://www.doc.ic.ac.uk/~dr/software/

http://www.itk.org/
http://www.doc.ic.ac.uk/~dr/software/
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the image∇rx
T
ref(r) = ∇xx

T
ref(r) + ∇yx

T
ref(r). The latter term depends on the actual transformation

employed. Analytic affine derivatives for the affine case were used byViola [1995] whereas analytic

B-Spline FFD derivatives were employed byModat et al.[2009], who also presented a GPU enabled

implementation in the same study.

8.3.3 Simultaneous reconstruction/registration (SRR)

We minimize the objective function of Eq.8.1 using a multi-resolution approach, where the variable

resolution regards the spacing of the B-Spline FFD control point grid and not the resolution of the

involved images. The control point grid refinement is absolutely necessary as it is the only way to recover

both large as well as local spatial misalignments (see Sec.5.5.2.3). During the SRR, it is assumed that

global affine misalignments have already been recovered, thus a good initialization estimate is essential.

Facilitating the affine registration as a part of the SRR is possible, but not realized in the implemented

scheme.

8.3.3.1 Initialization

Prior to the SRR scheme we obtain initial estimatesx̂init andθ̂init of the optical solution and transforma-

tion parameters respectively. The former is obtained by a reconstruction using a regularization functional

such as TV or first-order Tikhonov (TK1). In this work we employ the former. Specifically for the re-

construction initialization we minimize

x̂init = arg min
x

[

Erec(x) = ‖ý −F(x)‖2 + τ1TV(x)
]

(8.7)

The second estimatêθinit is obtained by registeringxref against the now availablêxinit . The process

involves an initial affine registration scheme which recovers global misalignments

θ̂affine
init = arg min

θaffine

[

Ereg(x) = Ψ
(

x(r), xT
ref(r

′; θaffine)
)]

(8.8)

followed by the B-Spline FFD non-rigid registration

θ̂non-rigid
init = arg min

θnon-rigid

[

Ereg(x) = Ψ
(

x(r), xT
ref(r

′; θnon-rigid)
)

+ τ2J
(

T (r′; θ)
)]

(8.9)

whereJ
(

T (r′; θ)
)

is the thin plate spline (TPS) penalty function introduced in Sec. 5.5.2, which pe-

nalizes for non-smooth transformations. Both schemes utilize a multi-resolution approach, the former in

terms of the resolution of the images, whereas the latter in terms of both image resolution and B-Spline

control point grid spacing. We will refer to the combined (global+affine) initial estimate aŝθinit .

8.3.3.2 Iteration in simultaneous reconstruction/registration

Regarding the SRR scheme, we seek to minimize Eq.8.1. In practice we employ an alternating approach,

where each iterationk is split in two steps. The two steps are performed in succession and update the

optical and registration part of the solution respectively.
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StepSRR1/2 The first step updates the optical solution via a minimization of limited iterations

x(k+1) = arg min
x

[

ESRR1/2
(x(k)) = ‖ý −F(x(k))‖2 + τΨ

(

x(k)(r), xT
ref(r

′; θ(k))
)

]

(8.10)

wherex(k), θ(k) are the estimates at the start of the iteration. In the first iteration these are replaced

by x̂init and θ̂init . In this step, both data-fit term and regularization depend on x and hence both terms

are evaluated. In the current implementation, the minimization in this step involves five iterations of

conjugate gradients (CG) utilizing a line-search strategyto compute the update stepλx.

StepSRR2/2 The second step updates solely the non-rigid transformation parameters. It assumes that

global mis-registration has been recovered. In addition, the involved images are considered in their

full resolution without pre-applying blurring, in order tomaintain consistency of the overallE(x, θ), by

assessing the similarity between the same images in both SRRsteps. The update is obtained via the

minimization scheme

θ(k+1) = arg min
θ

[

ESRR2/2
(θ(k)) = Ψ

(

x(k+1)(r), xT
ref(r

′; θ(k)) + τ2J
(

T (r′; θ(k))
)

]

(8.11)

The scheme utilizesx(k+1) which was computed inSRR1/2 and is now considered as the current best

estimate and a fixed quantity. This step involves the evaluation of only the regularization term (as the

data-fit term does not depend onθ), which now acts as an image registration similarity measure. The

minimization in this step is performed via five iterations oflimited memory BFGS (L-BFGS) (see Sec.

2.6.3), utilizing a line-search strategy to compute the update stepλθ. The final estimates obtained by

SRR at convergence are denoted asx̂SRR andθ̂SRR.

Figure8.5 schematically shows the geometrical principle of the alternating approach. Successive indi-

vidual updates in orthogonal axial directions can lead to a solution similar to the one that would have

been obtained by atruly-simultaneous approach (in reality the orthogonal axes areorthogonalN - and

M -dimensional spaces, withN andM being the dimensionality of the individual spaces). However,

the magnitude of the individual updates should be kept relatively small, in order for the alternating op-

timization path to be comparable with the combined one. Otherwise, one could perform a full optical

reconstruction followed by a full registration and claim a simultaneous scheme. Such an approach could

compromise convergence, as excessive individual steps canbe trapped in local minima (see Subfig.8.5b).

This is the reason we are forced to limit the number of iterations performed in each of the SRR steps. It

should be noted that the choice of five iterations was rather arbitrary. We have tried schemes with less

iterations in each of the SRR steps, however the method was prohibitively slow. Identifying the optimum

number of iterations is a topic open for further research.

8.3.3.3 B-Spline grid refinements and solution resets

To guarantee global convergence of the B-Spline registration, successive control point grid refinements

are necessary. LetGi denote the grid resolution, where increasingi corresponds to increasing resolution.
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(a) (b)

Figure 8.5: Simultaneous reconstruction/registration: Alternatingoptimization scheme.Subfig. 8.5a: Small

successive updates can lead to solution estimates similar to a the one retrieved by atruly-simultaneous scheme.

Subfig. 8.5b: If very big steps are allowed, local variations in the solution space can compromise one step and

jeopardize the combined convergence.

Refinements:SRR atG1 is initialized with the aforementioned
[

x̂init , θ̂init

]

. Each full SRR results in es-

timates
[

x̂Gi , θ̂Gi

]

. The next SRR leveli+1 is initialized by
[

x̂init , θ̂Gi

]

. Effectively, all the intermediate

SRR resolution levels prior to the last, solely updateθ.

Solution resets:We have observed that by performing SRR more than once on the same grid levelGi,

the retrieved optical solutions are improved. In each repetition we reset the optical solution to the initial

x̂init , however we do use thêxT
ref - corresponding to last̂θ estimate - computed from the previous SRR

realization. LetGz
i denote thez performance of the SRR forGi. We initializeG1

i with
[

x̂init , θ̂Gi−1

]

,

whereθ̂Gi−1
corresponds to the converged estimate from the previous refinement leveli− 1. For i = 1

we use
[

x̂init , θ̂init

]

. Then for allGz
i , z 6= 1, we use

[

x̂init , θ̂Gz−1
i

]

.

The data-flow diagram of the proposed implementation is depicted in Fig.8.6.

8.3.3.4 Discussion

The reason we employ an alternating approach is the following. If we try to optimize bothx andθ simul-

taneously, we need to normalize the effects of the perturbations ofx andθ (this is during the derivative

evaluation) on the combined objective function (Eq.8.1) and consequently the overall optimization. The

normalization is required in order to avoid having the descent direction being dominated by one set of

parameters. However such a task is non-trivial asx andθ represent very different quantities in physical

terms. In addition, the gradient∇θE (x, θ) is subjected to the scaling by the regularization parameterτ

which is applied toΨ
(

x(r), xT
ref

(

T (r′; θ)
)

)

in Eq. 8.1. The usually small values ofτ vastly minimize

the effect of∇θE (x, θ) in the optimization compared to∇xE (x, θ) and practically render the moving

imagexT
ref spatially stationary during the full optimization process. This is unacceptable as, the longer
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Figure 8.6: Data flow diagram in the proposed simultaneous registration/reconstruction scheme

xT
ref remains stationary at a wrong location, the more it biases the optical solution. In turn, the biased op-

tical solution satisfies the registration similarity measure leading to a vicious circle andxT
ref is eventually

stuck in a local minimum.

In order to consider a fully simultaneous optimization ofE (x, θ) one needs to normalize the effect

of∇xE (x, θ) and the scaled transformation derivativesτ∇θE (x, θ). This would enable the employment

of truly simultaneous optimization schemes which would exhibit faster convergence than the alternat-
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ing approach. Unfortunately, the exact mathematics of achieving such normalization and keeping the

derivatives consistent with the objective function are currently not clear.

Finally, it is essential to emphasize a compromise which hadto be made. We stressed earlier that

the same functional must be used for both regularization andregistration purposes, otherwise the objec-

tive function changes during its minimization. Although weestablish this conceptually by proposing the

use of CE which can adequately perform in both tasks, in practice the implementation of the functional

differs between the two steps. Although the proposed efficient entropy evaluation scheme is fast for

reconstruction purposes, it is not fast enough to facilitate the computation of the B-Spline FFD trans-

formation derivatives via numerical differences. The number of required evaluations is incapacitating,

given the current MATLAB based implementation. The currentSRR scheme employs a discrete CE

implementation for the registration task. This compromisecan be lifted in the future by either em-

ploying implementation in more efficient programming environments or simply by utilizing the analytic

derivatives of the information theoretic similarity measures with respect to transformation parameters.

8.4 Testing framework and results

We test the validity of the proposed SRR scheme by obtaining preliminary results from case studies

based on numerical simulated data. Figure8.7 introduces the images involved in the simulation. The

images depicted in the top row - apart from the third column - correspond to absorption whereas the

bottom row corresponds to scattering.

x
µa

ref
: Correct prior

x
µ
′

s

ref
: Correct prior

Initial regular

FFD grid
FFD non-rigid

transform

FFD non-rigid

transform

Control point

perturbation

Affine transformed

prior

Affine transformed

prior

µ
⋆
a: True solution

µ
′⋆
s

: True solution

Figure 8.7: Simultaneous registration/reconstruction test images.Top row: AbsorptionBottom row: Scatter-

ing First col.: Target optical imagesx⋆ Second col.:True, registered priorsx⋆
ref Third col. - top: Initial FFD

B-spline control point arrangement (overlaid onx⋆
ref) Third col. - bottom: Perturbed FFD B-spline control

pointsFourth col.: Non-rigidly transformed priors via control point perturbation Fifth col.: Subsequent affine

transformation of the non-rigidly transformed priors. This is the priorxref which is considered as the supplied

unregistered reference image.
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The first column depicts the true optical solution and the target reconstruction image. The second

column depicts the correct reference images(xµa

ref )
⋆ and(x

µ′

s

ref )
⋆ comprisingx⋆

ref, which are in accurate

spatial registration withx⋆. The top image in the third column depicts a regularly spacedFFD B-spline

grid defined over the domainΩxref of the truex⋆
ref. It should be noted that two extra rows and columns

of control points are defined outside the domain of thex⋆
ref, in a manner similar to Fig.5.4, but they

are not visualized. The grid spacing is16 pixels in both axial directions. The bottom image of the

third column shows the non-rigidly deformed control point grid which is used to create the non-rigidly

transformed prior images. The perturbation magnitude and direction of every control point, has been

randomlygenerated individually across each of the axial directionsx andy. More specifically, for any

control pointϕ located at[ϕx, ϕy]
T, its new horizontal location was generated according to

ϕtransformed
x

= ϕx + 0.03× h× n1 (8.12)

ϕtransformed
x

= ϕy + 0.03× v × n2 (8.13)

where h corresponds to the maximum horizontal distance between twocontrol points (rightmost-

leftmost), similarlyv denotes the maximum vertical distance between any two control points on the

grid andn1, n2 are random trials realized fromN (0, 1). In the depicted case, the maximum realized

control point perturbation
√

∆ϕ2
x

+ ∆ϕ2
y

was17.78 pixels and the minimum0.52 pixels.

Finally, the fifth column further transforms the non-rigid priors via an affine transformation with

arbitrarily selected translationsTx = 5, Ty = −5; rotationΘ = −15◦; scalingSx = 0.93;Sy = 0.8 and

shearingShx = −0.5, Shy = 0.5. The resulting images are considered to be the prior imagexref used in

the following studies.

8.4.1 Case study 1

The setting of the case study is equivalent to the one described in Sec.7.5. We use the same meshes and

the same data-set contaminated with1% of random, normally distributed noise. Case 1 tests SRR in the

case of non-optimal initialization and its ability to recover large prior misalignments as well as a signif-

icant portion of the optical solution. Finally, in this casewe further compromise the consistency of the

objective functional by using different overlap domains for the regularization and registration similarity

measures. The former is evaluated by definition in the circular region which is populated byx. The latter

however considers that the boundary is known, hence we also consider the dark blue background values

surroundingx. In many applications of DOT, the surface of the domain is unequivocally known, for

example in the case of brain imaging where the surface can be obtained via photogrammetry [de Souza

et al., 2006]. As we will see in the next case study (Sec.8.4.2), the inclusion of the background of

xref (which constitutes the initial estimate ofxT
ref) in Ωx;xT

ref
does not compromise the effort towards the

validation of the proposed SRR scheme. In Case study 3 (see Sec. 8.4.3) the above compromise is lifted.

8.4.1.1 Case 1: Initialization

Let x⋆
ref, (xT

ref)init and(xT
ref)SRR denote the correct prior imagexT

ref

(

T (r′, θ)
)

for θ = θ⋆, as well as the

pre- and post-SRR priors corresponding toθ̂init and θ̂SRR. Prior to the SRR, we obtain the initial esti-
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Absorption reconstruction:
Initial estimate

Absorption prior: Initial
registration estimate

JPDF: Recon. estimate 
(y−axis) vs prior (x−axis)

Scattering reconstruction:
Initial estimate

Scattering prior: Initial
registration estimate

Absorption true solution

Scattering true solution
JPDF: Recon estimate

(y−axis) vs True solution (x−axis)

JPDF: Recon estimate
(y−axis) vs True solution (x−axis)

JPDF: Recon. estimate 
(y−axis) vs prior (x−axis)

Figure 8.8: Case 1: limited initialization for the SRR scheme.First col.: True solutionsSecond col.:Initial

reconstruction estimateŝxinit obtained from 10 iterations using TV regularization.Third col.: Initial prior

(xT
ref)init alignment estimate. The correspondingθ̂init is obtained by a full affine registration of thexref against

x̂init. Fourth col.: JPDF: Initial solution estimateŝxinit (y-axis) vs initial priors estimate(xT
ref)init (x-axis)Fifth

col.: JPDF: Init solution estimateŝxinit (y-axis) vs True solutionsx⋆ (x-axis).

mates
[

x̂init , θ̂init

]

. For this case, the former is obtained by a reconstruction utilizing TV regularization,

limited to 10 iterations only. Regardinĝθinit , it is initialized by registeringxref against the obtained̂xinit

with affineregistration only - giving rise to(xT
ref)init . The first three columns of Fig.8.8depictx⋆; x̂init

and(xT
ref)init , for both absorption and scattering.

The depicted JPDFs in columns four and five correspond top̂
(

x̂init , (x
T
ref)init

)

andp̂
(

x̂init , x
⋆
)

. JPDF

p̂
(

x̂init , x
⋆
)

exhibits increased disorder, asx̂init is an inaccurate estimate ofx⋆ in terms of quantization

and spatial resolution. The increased disorder inp̂
(

x̂init , (x
T
ref)init

)

is due to the same reasons, and due to

the spatial misalignment between the two images. The additional cluster corresponds to the background,

which is solely considered during the registration similarity evaluation

8.4.1.2 Case 1: SRR results

At this point, the SRR algorithm commences. We use CE for bothregularization and reconstruction. We

employ 400 bins for the JPDF evaluation of both images, however as previously noted the registration

functional uses the discrete entropic formulations to render the problem computationally tractable. We

note that we choose to visualize the continuous version ofp̂
(

x̂init , x
T
ref

)

and not the discrete histogram

used for registration purposes as the continuous images exhibits more clarity. The continuous JPDF

is explicitly computed at initialization (Fig.8.8) as well as when the scheme converges, solely for

visualization purposes.

Regarding the SRR, we use three resolution levels for the B-Spline grid with respective control

point spacingsG1 = [32, 32], G2 = [16, 16] andG3 = [8, 8]. We employ three solution resets for the

first level and two for the remaining levels.

It should be mentioned that the last two columns of the introductory Fig.8.1, depict the reconstruc-
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Absorption solution:
Final estimate

Absorption prior: Final
registration estimate

Scattering solution:
Final estimate

Scattering prior: Final
registration estimate

Absorption true solution

Scattering true solution

JPDF: Recon estimate
(y−axis) vs True solution (x−axis)

JPDF: Recon estimate
(y−axis) vs True solution (x−axis)

JPDF: Recon. estimate 
(y−axis) vs prior (x−axis)

JPDF: Recon. estimate 
(y−axis) vs prior (x−axis)

Figure 8.9: Case 1: results obtained by the SRR scheme. Image description similar to Fig.8.8. Reconstructed

images are evidently close to the true solution, as priors have successfully recovered the true solution structure.

The JPDFs of the third column (x̂SRR − x⋆) are clustered due to the increased resolution and accurate con-

trast/minimized variance of the recovered solution. The JPDFs of the fourth column (̂xSRR − (xT
ref)SRR are

clustered due to the same reasons, as well as due to the improved registration.

tions obtained by blindly applying the unregistered reference images of this case. Figure8.9 presents

the obtained results from the SRR scheme. The reconstructedimages are evidently improved from the

reconstructions depicted in Fig.8.1. This is mainly due to the fact that the SRR scheme has recovered

a substantial level of the initial misalignment between theunregistered(xT
ref)init and thex⋆. The JPDFs

p̂
(

x̂SRR, x
⋆
)

andp̂
(

x̂SRR, (x
T
ref)SRR

)

exhibit the expected increased clustering compared to their state

at initialization (Fig.8.8). The clustering is interpreted as a reduction in JE - which is the dominant part

of CE and results in the minimization of both the registration and reconstruction parts of the algorithm. It

is apparent in the registered images, that the current transformation implementation induces new values

in (xT
ref)SRR. Possibly these would be eliminated by the use of higher weighting τ2 on the functional

J
(

T (r′; θ(k))
)

which penalizes non-smooth transformations. These new values result in spreading of

the JPDFs (similar effect to blurring) and a subsequent increase in entropy. This is a problematic is-

sue which can jeopardize convergence. Its resolution is of primary importance, compared to the other

potential future improvements.

Table8.1reports normalizedL2 errors between the image pairs formed by: the convergedx̂TV (see

Sec.8.4.2for the fully converged TV solution) and̂xSRR againstx⋆; as well as the pre-SRR(xT
ref)init and

the post-SRR(xT
ref)SRR against the truex⋆

ref. The SRR scheme utilizing the unregistered prior, achieves

a reduction of36.3% compared to the full TV reconstruction error. The relevant registration error is

reduced by SRR by a significant43.1%. It should be noted, that the errors would be expected to be

reduced even further, if the transformation induced artefacts affecting thexT
ref were to be alleviated.

Figure8.10presents the corresponding error plots recorded during theSRR optimization. The plot-

ted values correspond to the state of the various quantitiesat the end of each SRR iteration, in other
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Table 8.1: Case 1: NormalizedL2 errors: 1) x⋆ vs converged TV-based̂xinit 2) x⋆ vs x̂SRR 3) x⋆
ref vs

(xT
ref)init 4) x⋆

ref vs (xT
ref)SRR

Images considered Normalized L2 error

x⋆, x̂init 19.8%

x⋆, x̂SRR 12.6%

x⋆
ref, (xT

ref)init 17.6%

x⋆
ref, (xT

ref)SRR 10.1%

words just after the registration stepSRR2/2. All plots are characterized by spikes which correspond

to the grid refinements as well as to the solution resets. We also include theL2 errors between the

x undergoing reconstruction as well as the priorxT
ref subjected to transformation, againstx⋆ andx⋆

ref

respectively. It should be noted that although the data regularization and registrations errors decrease

during resets/refinements, theL2 errors can exhibit increase. A possible explanation for this behavior is

once again the presence of interpolation artefacts inducedby registration. More specifically, the regu-

larization functional is minimized whilex matches thexT
ref - whether the latter contains artefacts or not.

There is no feedback mechanism between theL2 error and theψ(x, xref) asL2 errors are simply based

on the unknownx⋆ and are computed for validation purposes only when SRR has been completed. The

decrease in the regularization, data & registration errorscannot fully guarantee reduction in the recon-

structedL2 error if these artefacts are not treated. It should be noted that the above is the current best

explanation we can provide. Other reasons might contributeto the increase in theL2 errors. Finally, the

registration and regularization error differ due to the discrete and continuous implementations respec-

tively as well as due to the different overlap region considered between the two. We note that all errors

exhibit significant decrease between their initial and finalvalues.

Finally, Figures8.11and8.12present the converged optical solutionsx̂Gz
i

and the priors(x̂T
ref)Gz

i
,

at the end of each SRR performance for the correspondingGj
i . Difference images are also provided (see

caption for details). Note the further registration which takes place between solution resets.
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Figure 8.10: SRR error plots.First Row: Left: Total error
`

D
`

ý,F(x)
´

+τΨ(x, xT
ref)

´

(in this caseΨ(x, xT
ref)

corresponds to the continuous implementation used inSRR1/2) Right: Data errorD
`

ý,F(x)
´

Second Row:

Left: Registration errorΨ(x, xT
ref) (discrete CE)Right: Ψ(x, xT

ref) Continuous CEThird Row: Left:

NormalizedL2 reconstruction error(‖(µa − µ⋆
a)/µ⋆

a‖ + ‖(µ′

s − µ′

s
⋆)/µ′

s
⋆‖) /2. The spikes indicate B-Spline

grid refinements/resets. We remind that the algorithm uses grids
ˆ

G1
1, G2

1, G2
1, G1

2, G1
2, G1

3, G1
3

˜

. Thex-axis

values denote the number of iterations in each grid level.
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(a) (b) (c) (d)

Figure 8.11: Case 1: SRR output at the various FFD grid refinement/reset levels.Cols. (a),(c):µa, µ′

s Row 1:

x⋆ Row 2-4: SRRG1 = [32, 32]. ResetsG1
1, G2

1, G3
1. Rows 5-6:SRRG2 = [16, 16]. ResetsG1

2, G2
2. Rows

7-8: SRRG3 = [8, 8]. ResetsG1
3, G2

3. Cols. (b),(d): Intra-row differences in cols. (a),(b).Row 1: x̂SRR-x⋆

[8-1] (also interpreted as registration accuracy asx̂SRR → (xT
ref)SRR in structural terms)Rows 2-7: Intra-SRR

diff/s. [2-1], [3-2] etc.Row 8: x̂SRR − x̂init .
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(a) (b) (c) (d)

Figure 8.12: Case 1: SRR output at the various FFD grid refinement/reset levels. Cols. (a),(c): xµa
ref , xµs

ref

Row 1: (xT
ref)init Row 2-4: SRRG1 = [32, 32]. ResetsG1

1, G2
1, G3

1. Rows 5-6:SRRG2 = [16, 16]. Resets

G1
2, G2

2. Rows 7-8: SRRG3 = [8, 8]. ResetsG1
3, G2

3. Cols. (b),(d): Intra-row differences in cols. (a),(b).

Row 1: (xT
ref)SRR-(xT

ref)init (magnitude of total recovered alignment) [8-1]Rows 2-7: Intra-SRR diff/s. [2-1],

[3-2] etc.Row 8: (xT
ref)SRR − (xT

ref)init .
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8.4.2 Case study 2

The setting of this case is identical to the one of the previous section in terms of data used, overlap regions

considered and supplied prior image (see Fig.8.7), however this time the scheme is initialized by the

best possible estimate
[

x̂init , θ̂init

]

. The optical initialization estimatêxinit is obtained by a converged

TV reconstruction. The transformation parameters initialestimatêθinit is obtained by registeringxT
ref to

x̂init until convergence. The registration process involves an affine registration scheme using a multi-

resolution pyramid approach, followed by a - new to this case- non-rigid registration using a multi-

resolution pyramid approach as well as successive B-splinegrid refinement.

We should also note that the registration non-rigid initialregistration estimate could be improved

by either employing more elaborate registration schemes ofby further optimizing secondary parameters,

such as smoothing penalties, grid resolutions etc. The important point is that the same registration

scheme is employed during the SRR approach hence the relative improvement between initialization and

post-SRR is of importance. We note that the non-rigid registration part employs the same smoothness

penalty utilized duringSRR2/2. The initialized optical solution as well as the prior transformed by the

initial θ̂init are depicted in Fig8.13.

Absorption reconstruction:
Initial estimate

Absorption prior: Initial
registration estimate

Scattering reconstruction:
Initial estimate

Scattering prior: Initial
registration estimateScattering true solution

Absorption true solution
JPDF: Recon estimate

(y−axis) vs True solution (x−axis)

JPDF: Recon estimate
(y−axis) vs True solution (x−axis)

JPDF: Recon. estimate 
(y−axis) vs prior (x−axis)

JPDF: Recon. estimate 
(y−axis) vs prior (x−axis)

Figure 8.13: Case 2: limited initialization for the SRR scheme. Image description similar to Fig.8.8. Solution

is initialized by a full TV reconstruction. Prior alignmentis initialized by a full affine registration against the

initial solution estimate, followed by a full non-rigid registration.

The significance of this case isparamounttowards the validation of the proposed concept and we

now explain the reasons. Case 1 utilized less accurate initialization guesses for both prior alignment

and solution estimate. The effect of the regularizing functional Ψ(x, xT
ref) is weighted by usually low

values ofτ to avoid extreme bias from the introduced prior - except in the cases where one consciously

chooses to do so, due to high trust in the supplied prior. For low τ , the regularizing effects ofΨ (that

is the enforcement of the prior’s structure onx) become more noticeable during the last iterations of

the reconstruction, when the gradient of the data-fit term∇xD
(

ý,F(x)
)

(in this case theL2 norm

between data and modeled data) is reduced - due to proximity to the minimum, to a level comparable
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with theτ∇xΨ(x, θ). At this level the next updates are influenced by both data andregularization, at a

comparable level.

We need to ensure that the level of registration achieved in the previous case, is not a result of a

largely data-driven reconstruction which strongly opposed or even disregarded theincorrect bias from

the unregistered and possibly under-regularized prior during the early iterations, during which it holds

∇xD
(

ý,F(x)
)

≫ τ∇xΨ(x, xT
ref). A data driven initial reconstruction would avoid local minima due

to incorrect bias from the prior and proceed mostly under theinfluence of∇xD
(

ý,F(x)
)

, until near-

convergence ofD
(

ý,F(x)
)

. At that point, the recovered data-driven solutionx would be more accurate

than the TV-based (10-iterations)x̂init used in Case 1 and would expectedly be able to further drive a

better registration of the prior from that point on. At that final stage, the now more accurately registered

prior would have a non-biasing but rather positive regularizing effect (as its structure would be close

to registration with the unknown true solution), all objectives would further descend in unison and the

final high resolution solution would be obtained. In a more simple terms, we need to ensure that the

encouraging results obtained in Case 1, were not simply a product of the registration ofxref against a

more accurate, data-driven̂x.

For this reason, it is crucial that we can further improve theregistration error between prior andx⋆,

compared to the one formed by thebest-possibleinitialization estimate(xT
ref)init andx⋆. This analysis

has not been performed by any other publication involving SRR. Figure8.14shows the obtained results.

It is clear that the reconstructions are qualitatively better than the ones obtained by TV. The reported

errors in Table8.2 quantitatively show a19% improvement of̂xSRR over x̂init and a highly significant

reduction in the error of30.1%. This result is a strong indicator regarding the validity ofthe method.

In Case 1 we compromised by considering the boundary ofxT
ref during registration similarity evaluation.

In this case, although the boundary is still a part of the overlap region during registration, the boundary

mismatch between(xT
ref)init and(xT

ref)SRR is minimal. Thus, the reported decrease in the errors is mainly

due to local improvement in the registration ofxT
ref againstx (and not its boundary) and the subsequent

improvement of the latter due to more accurate regularization. Finally, Figs.8.15& 8.16show the state

of the reconstruction and the transformed priors during thevarious SRR B-Spline control grid refinement

and solution reset stages.

Table 8.2: Case 2: NormalizedL2 errors: 1) x⋆ vs converged TV-based̂xinit 2) x⋆ vs x̂SRR 3) x⋆
ref vs

(xT
ref)init 4) x⋆

ref vs (xT
ref)SRR

Images considered Normalized L2 error

x⋆, x̂init 16.8%

x⋆, x̂SRR 13.6%

x⋆
ref, (xT

ref)init 12.6%

x⋆
ref, (xT

ref)SRR 8.8%

The intra-SRR output images are presented in Figs.8.15-8.16. SRR error plots are not provided for this
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case.

Absorption reconstruction:
Initial estimate

Absorption prior: Initial
registration estimate

Scattering reconstruction:
Initial estimate

Scattering prior: Initial
registration estimate

Absorption true solution

Scattering true solution

JPDF: Recon estimate
(y−axis) vs True solution (x−axis)

JPDF: Recon estimate
(y−axis) vs True solution (x−axis)

JPDF: Solution estimate vs
prior

JPDF: Solution estimate vs
prior

Figure 8.14: Case 2: results obtained by the simultaneous reconstruction/registration scheme. It is evident that

the registration has further improved from the best possible initialization estimate. All JPDFs exhibit increased

clustering which indicates reduction inJE.
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(a) (b) (c) (d)

Figure 8.15: Case 2: SRR output at the various FFD grid refinement/reset levels.Cols. (a),(c):µa, µ′

s Row 1:

x⋆ Row 2-4: SRRG1 = [32, 32]. ResetsG1
1, G2

1, G3
1. Rows 5-6:SRRG2 = [16, 16]. ResetsG1

2, G2
2. Rows

7-8: SRRG3 = [8, 8]. ResetsG1
3, G2

3. Cols. (b),(d): Intra-row differences in cols. (a),(b).Row 1: x̂SRR-x⋆

[8-1] (also interpreted as registration accuracy asx̂SRR → (xT
ref)SRR in structural terms)Rows 2-7: Intra-SRR

diff/s. [2-1], [3-2] etc.Row 8: x̂SRR − x̂init.
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(a) (b) (c) (d)

Figure 8.16: Case 2: SRR output at the various FFD grid refinement/reset levels. Cols. (a),(c): xµa
ref , xµs

ref

Row 1: (xT
ref)init Row 2-4: SRRG1 = [32, 32]. ResetsG1

1, G2
1, G3

1. Rows 5-6:SRRG2 = [16, 16]. Resets

G1
2, G2

2. Rows 7-8: SRRG3 = [8, 8]. ResetsG1
3, G2

3. Cols. (b),(d): Intra-row differences in cols. (a),(b).

Row 1: (xT
ref)SRR-(xT

ref)init (magnitude of total recovered alignment) [8-1]Rows 2-7: Intra-SRR diff/s. [2-1],

[3-2] etc.Row 8: (xT
ref)SRR − (xT

ref)init.
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8.4.3 Case study 3

Finally, in this case we do not consider the boundary ofx as a known quantity. The same circular domain

of imagex is now solely considered asΩx, where both regularisation and registration similarity measures

are evaluated. Of course, in case of partial overlap betweenthe full (square)ΩxT

ref
andΩx, it holds that

ΩxT

ref
= Ωx ∩ ΩxT

ref
. We use the same initialization used in Case 1 (see Fig.8.8) (10 TV iterations/ full

affine registration) as well as the same smoothness penalty weighting. The obtained results from this

case are presented in Fig.8.17. It is evident that, as in the previous cases, thatx̂SRR improves on the

converged̂xTV (see Fig.8.13). Table8.3reports the corresponding errors. Reconstruction improves by

19.5% whereas registration by14.7%, according to the employedL2 norm.

Absorption true solution

Scattering true solution

Absorption solution:
Final estimate

Scattering solution:
Final estimate

Absorption prior: Final
registration estimate

Scattering prior: Final
registration estimate

JPDF: Recon. estimate 
(y−axis) vs prior (x−axis)

JPDF: Recon. estimate 
(y−axis) vs prior (x−axis)

JPDF: Recon estimate
(y−axis) vs True solution (x−axis)

JPDF: Recon estimate
(y−axis) vs True solution (x−axis)

Figure 8.17: Case 3: results obtained by the Simultaneous reconstruction/registration scheme. Registration

between corresponding features has been largely established. Local non-rigid transformations have signifi-

cantly compromised the resolution of the prior at feature boundaries. The obtained All JPDFs exhibit increased

clustering which indicates reduction inJE.

Table 8.3: Case 3: NormalizedL2 errors: 1) x⋆ vs converged TV-based̂xinit 2) x⋆ vs x̂SRR 3) x⋆
ref vs

(xT
ref)init 4) x⋆

ref vs (xT
ref)SRR

Images considered Normalized L2 error

x⋆, x̂init 16.8%

x⋆, x̂SRR 12.9%

x⋆
ref, (xT

ref)init 28.6%

x⋆
ref, (xT

ref)SRR 20.8%

As boundaries are not considered by the similarity measure,the initial circular boundary ofxT
ref is

now largely deformed compared to thex⋆
ref. The latter is artificially added on the depicted final(xT

ref)SRR

to assist visual comparison. Achieving accurate registration in this case is not trivial. The two features at

the top-left of the circular domain ofx are in close proximity with the boundary. This means that if the
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initial information inx̂init is such that it drives them outside of the boundary, this caseis very difficult to

recover from. The reason is that they are no longer included in the registration similarity evaluation.

In addition, we should comment on the effects of the non-rigid transformations on the boundary of

the depicted features in(xT
ref)SRR, which is clearly erroneous. The registration process tends to promote

the expansion of the distinctive (3-4 pixels wide) boundaries enclosing features in(xT
ref)init . The same

boundary is more evident inx⋆ (white line encompassing most features). A possible explanation of why

these effects are more noticeable in this case is due to the exclusion of the boundary from the similarity

evaluation. The alignment of the boundary corresponds to a strong minimizer in the solution space as

it is unequivocally known in both images. Thus, the boundaryregistration is greatly favoured by the

registration. As the moving boundary becomes fixed on the target one, then all the pixels in the inte-

rior subjected to deformations which push them against the boundary, are penalized by the smoothness

penalty. A higher smoothness penalty could possibly alleviate this problem. This is still a topic open for

research. Finally, the intra-SRR output images are presented in Figs.8.18-8.19. SRR error plots are not

provided for this case.
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(a) (b) (c) (d)

Figure 8.18: Case 3: SRR output at the various FFD grid refinement/reset levels. Output inΩx;yT only. Cols.

(a),(c): µa, µ′

s Row 1: x⋆ Row 2-4: SRRG1 = [32, 32]. ResetsG1
1, G2

1, G3
1. Rows 5-6:SRRG2 = [16, 16].

ResetsG1
2, G2

2. Rows 7-8: SRRG3 = [8, 8]. ResetsG1
3, G2

3. Cols. (b),(d): Intra-row differences in cols.

(a),(b). Row 1: x̂SRR-x⋆ [8-1] (also interpreted as registration accuracy asx̂SRR → (xT
ref)SRR in structural

terms)Rows 2-7: Intra-SRR diff/s. [2-1], [3-2] etc.Row 8: x̂SRR − x̂init.
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(a) (b) (c) (d)

Figure 8.19: Case 3: SRR output at the various FFD grid refinement/reset levels. Output inΩx;yT only. Cols.

(a),(c): xµa
ref , xµs

ref Row 1: (xT
ref)init Row 2-4: SRRG1 = [32, 32]. ResetsG1

1, G2
1, G3

1. Rows 5-6: SRR

G2 = [16, 16]. ResetsG1
2, G2

2. Rows 7-8: SRRG3 = [8, 8]. ResetsG1
3, G2

3. Cols. (b),(d): Intra-row

differences in cols. (a),(b).Row 1: (xT
ref)SRR-(xT

ref)init (magnitude of total recovered alignment) [8-1]Rows

2-7: Intra-SRR diff/s. [2-1], [3-2] etc.Row 8: (xT
ref)SRR − (xT

ref)init.
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8.5 Comparison among cases

In this section we compare the results obtained from the three discussed cases. The columns of Fig.

8.20show the regions of interest from (i)x⋆, (ii) x̂JE with a registered prior
(

we use the reconstructions

obtained by the application of the prior with extra features(iii-v) shows thex̂SRR for the three discussed

cases, in the order which they were presented and6) a converged̂xTV .

Figure8.21present errors among the corresponding region of interests(ROIs) of Fig. 8.20. Sub-

figures8.21a-8.21bshow the bias error for each region defined as(z̄ − z̄⋆)/z̄⋆), wherez denotes the

reconstructions from the various schemes mentioned above and z⋆ the true optical solutions. Negative

values correspond to underestimation of a region’s mean compared tox⋆.

Similarly, Figs.8.21c-8.21dshow the variance error, defined as(V ar (z) − V ar (z⋆))/V ar (z⋆).

We do not plot the variance of each region but rather its difference from the true variance. The reason

for this is that althoughx⋆ is seemingly piecewise constant, its ROIs have the distinctive high-contrast

ring surrounding them, therefore the variance of these regions is not zero. However, they are are still

small enough to produce large discrepancies when compared against the variances of the corresponding

reconstructed ROI, where the latter are not homogeneous. Thus in this setting, variance or even the

variance difference which is shown, is not the most suitableindication for evaluating the accuracy of

reconstructions. However, we have chosen to include the plots for completeness.

Finally, Figs.8.21e-8.21fshow the normalizedL2 error among the corresponding pixels of corre-

sponding regions, defined as‖z(r) − z⋆(r)‖ / ‖z⋆(r)‖ , ∀r pixels in a the considered region.

Table8.4 simply plots the mean value from the corresponding plots of all regions, for a single

method. For example, in the case of bias, the provided value is the average bias in the whole image,

computed as the mean of the regionally reported biasses for that method, for bothµa andµ′
s. All

errors are shown as percentages. Once again the large variance errors are not strong indicators of the

reconstructions’ accuracy as the reconstructed images arecompared to nearly piecewise constant targets.

They are provided however for completeness. All SRR methodsoutperform the TV. This hold for bias

andL2, however not for variance as the TV reconstruction is smoother and does not reconstruct the

erroneous high-contrast boundary around features.

Table 8.4: Inter-regional mean errors

Recon. scheme ∆-Bias ∆-Variance L2

x̂JE 5.92% 276.9 % 12.19%

x̂SRR (case 1) 5.99 % 1230.5% 17.14%

x̂SRR (case 2) 6.09 % 1049.9% 16.23%

x̂SRR (case 3) 6.23 % 846.87% 16.40%

x̂TV (case 3) 15.69 % 712.39% 20.51%
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8.6 Discussion
All presented cases used the same randomly deformed reference image. Different priors need to be tested

in the future, such as non-piecewise constant priors, priors with no one-to-one feature correspondence

(incorrect content) or highly mis-registered priors. Although we would have preferred to show statistical

results with multiple randomly generated priors or target images, the current MATLAB based registration

scheme still results in prohibitive run-times for such large-scale analysis. It should be noted however

thatanymis-registered prior which can be adequately registered against thex̂init should produce similar

results such as the ones presented. A more interesting case would be to test more complex DOT target

images, such as the 2D breast simulation in Chapter7. The important finding in this chapter - product

of the comparison of Case studies 1 & 2 - is that there is a strong indication that SRR schemes further

improve registration from its best possible initialization estimate. This indication alone renders SRR

schemes worthy of further research.

8.7 Summary
In this chapter we have proposed a simultaneous registration/reconstruction scheme toward the incor-

poration of unregistered priors in DOT. We have presented preliminary results which act as indicators

towards the validity of the principle of SRR. Further analysis has to take place to characterize the capac-

ity of the scheme to perform in cases of prior with inaccuratecontent; increased initial mis-registration;

acquired optical data with higher percentages of contamination and finally more complex target optical

solutions. A fully functional scheme would enable the incorporation ofa priori information from generic

population based probabilistic atlases. This would renderthe latter as potential priors in atlas-to-subject

multi-modality imaging. In the case of intra-subject multi-modality imaging, a single high-resolution

image of the probed anatomy, could be used repetitively as a prior for subsequent DOT studies.
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(a)

(b)

Figure 8.20: Regions of interest: Cases 1 & 2.Subfig. 8.20a: absorption,Subfig. 8.20b: scattering.Rows: x⋆,

x̂JE (reconstruction of7.5- prior with extra features),̂xSRR (cases 1 | 2 | 3),̂xTV ColumnsRegions of interest
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Figure 8.21: Region of interest: Bias and Variance error. Errors corresponds to the regions depicted in Fig.

8.20. They-axis corresponds to error(%)/100. The bias error is defined as(z̄ − z̄⋆)/z̄⋆), wherez denotes

the reconstruction from the various schemes (see legend) and z⋆ the true optical solutions. Negative values

correspond to underestimation. Similarly the variance error is defined as(V ar (z) − V ar (z⋆))/V ar (z⋆).
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Chapter 9

Summary and future directions

This thesis introduced information theoretic (IT) regularization in the context of diffuse optical tomog-

raphy (DOT). The scheme enables the incorporation of structural a priori information from reference

images, with gray values incommensurately related to the optical solution. In addition, the scheme was

extended in order to enable the incorporation of spatially unregistered reference images, without us-

ing anya priori knowledge regarding their correct location. The proposed scheme was developed with

emphasis on computational efficiency.

Chapters2 to 5 introduced the underlying theoretical categories on whichthe propositions in this

thesis have been based, namelyinverse problems& regularization, DOT, IT andmedical image registra-

tion.

In Chapter6 we proposed a scheme for the efficient computation of joint entropy (JE) and its

derivative in order to enable IT regularization in tractable run times. The proposed scheme extended

a method initially proposed byShwartz et al.[2005], enabling the efficient evaluation and derivative

computation of the entropy of a single random variable from its samples. In addition, we characterized

two possible implementations of entropy, namely the standard integral formulation by Shannon as well

as its formulation as an expectation - termed empirical entropy. Finally we evaluated the accuracy of the

obtained derivatives and validated the current implementation.

In Chapter7 we presented the proposed IT scheme of DOT. The functionals of JE and mutual infor-

mation (MI) were considered as candidates. A detailed analysis on their theoretical capacity to perform

as regularizing functionals was presented. The findings were consistent with the outcomes of numerical

simulations specifically designed to test IT regularization in complex cases. The proposed scheme in

all cases managed to improve the solutions obtained using generic regularization schemes such as total

variation (TV) or first-order Tikhonov (TK1) regularization. In addition to numerical simulations, the

method was tested on experimental data. The task involved the reconstruction of the optical properties of

a phantom with both optical and magnetic contrast. A magnetic resonance imaging (MRI) scan depicting

the magnetic structure of the phantom was used as the structural a priori information to be introduced

by the proposed scheme. The magnetic properties of the phantom were specifically designed to produce

an MRI image which did not have a one-to-one feature correspondence with the target optical solution.

Considering the quality of the optical data itself, the taskexhibited an increased level of difficulty. The



253

functionals managed to improve the reconstruction at regions where the prior support was consistent

with the underlying optical solution, however unwanted bias was also observed.

Finally, in Chapter8 we proposed a scheme towards the incorporation of unregistered prior in-

formation in DOT. The majority of methods in the literature assume that the spatial co-registration of

the prior image and the underlying optical solution is guaranteed at initialization, usually through con-

current probing of the target anatomy from the modality which provides the high-resolution reference

images, as well as the modality which seeks to benefit from them. This condition however cannot always

be guaranteed and it is disabling when one considers tasks such as the incorporation ofa priori infor-

mation from probabilistic atlases, where the notion of concurrent image does not exist. The proposed

scheme involves a simultaneous reconstruction/registration (SRR) approach which compensates for po-

tential misalignments of the prior image with respect to theoptical solution, in real time and without

preconditions. For the purpose of this task, we examined viable choices for similarity measures and we

found that conditional entropy can adequately perform for the given task. It behaves as joint entropy

in the image reconstruction setting while it improves on JE with respect to its capacity as a similarity

measure in the image registration context. It has to be said however that the functional is less capable

than the MI or normalized mutual information (NMI) as it is more prone to be affected by local minima

in the solution space. We have tested the scheme in a series ofnumerical simulations and the obtained

preliminary results are a positive indicator regarding thevalidity of the approach. Further research is

however necessary in order to test the extent of misalignments which can be compensated by the scheme

as well as its robustness to consistently perform in the severely ill-posed setting of DOT.

We have presented an extensive study, both in terms of theorycoverage and testing of IT regulariza-

tion in DOT. It is important to outline a number of identified limitations of the presented study. In terms

of the scope of the work undertaken, the study of entropic regularization has been conducted under the

popular independent and identically distributed (i.i.d.)assumption regarding the random variables (RVs)

considered in the problem. No spatial inter-pixel dependence within a single image has been modeled. In

addition, kernel density estimation (KDE) estimation was conducted with kernels of fixed width, where

the latter was estimated via exhaustive search in initial pilot studies. Given the issues which were cov-

ered, there are a number of potential sources of error which have not been investigated, or at least not in

full. Regarding the entropic regularization, it would be useful to conduct a dedicated study in cases of

target distributions which are not piece-wise constant. More complex target distributions can potentially

compromise the structural invariance of JE, which appears when the prior image has features which do

not exist in the solution. Regarding the SRR scheme, we have not tested the framework in the presence

of mismatches between the prior and the target solution, in terms of the features present in both distri-

butions. The absence of one-to-one feature correspondencebetween the two distributions, can introduce

local optima in the solution space and compromise both registration and regularization accuracy. The

case can become even more complicated if one considers global mismatches between the distributions,

such as the presence of gradient fields in one of the image or noise contamination of the prior images1

1We should note that the presented studies included data noise artificially added to the optical data, but the prior imageswere

piecewise constant
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undergoing registration against the optical images. Finally, we have not quantified the possible extend

of mis-registration which can be recovered by the scheme, although such task might be impossible given

the complexity of the parameters which affect its performance, such as the very structure of images,

mis-registration level, ill-posedness levels, noise - allconsidered simultaneously. Finally, we have to

refer to potential limitations which may arise in the practical/clinical application of the method. Clinical

multi-modal images exhibit large variations and the level of mismatch between prior and optical images

is expected to be high. In the case of simultaneous imaging (registration is guaranteed) one can force the

structure of the prior to the solution and expect the opticalsystem to populate it with the best possible

optical parameters. We have seen however that as ill-posedness increases, JE ability to enforce structure

decreases - due to the i.i.d. assumption. The clinical setting can indeed be severely ill-posed (see Sec.

3.8). Finally, regarding the application of the SRR scheme in a clinical setting, its performance has to be

quantified. Some mis-registration can be indeed too high forthe scheme to be recovered. For example,

breast X-Ray mammography compresses the breast during imaging whereas DOT does not. Such high

levels of mis-registration might require special treatment or specific effort to establish the best possible

initialization estimate prior to SRR. In the case of using probabilistic atlases of the neonatal brain as

priors, mis-registrations can be expected to be more localized and we are more hopeful and excited to

test the method in this context.

9.1 Potential improvements

9.1.1 Kernel density estimation

The trivial KDE employed in this work for the purpose of entropy estimation, centres Gaussian kernels

of equal bandwidth, over each data point - in this context thegray values of the considered images. More

accurate KDE methods can be used where the global width of allGaussian kernels is considered as an

optimized quantity. Such a scheme was recently proposed by [Kazantsev et al., 2010]. An even better ap-

proach would be to consider locally adaptive KDEs [Silverman and Green, 1986]. These methods place

kernels of variable width at the different data points. Thisadded flexibility allows the accurate modeling

of problematic long-tailed densities, by reducing the width of the kernels at data points corresponding to

low density regions in the probability density function (PDF), whereas broader kernels are used at high

density areas. However, we have not yet established if such methods can be accelerated by the usage of

fast Fourier transform (FFT) which is crucial to enable the optimization of entropy in tractable times.

9.1.2 Modeling of intra-image spatial dependency among gray values

The employed KDE conveniently treats the gray values of an image as i.i.d.. This assumption does

not reflect reality, as distinct anatomical regions are populated by similar gray values. Hence, one would

expect that the reconstructed gray value of a pixel is conditioned by the anatomical region which it resides

on. There are a number of recently developed methods in information theoretic regularization of other

modalities, which consider intra-image spatial gray valuedependence and which we can potentially

employ in the future in the DOT scheme. These include the implicit modeling of intra-image spatial

dependency bySomayajula et al.[2010] in positron emission tomography (PET) ; the class-conditional
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entropic regularization proposed byPedemonte et al.[2010a] and the modeling of spatial dependence

proposed byVan de Sompel and Sir., Brady, M.[2009a] via the incorporation of a smoothness prior. We

intend to incorporate the explicit modeling of intra-imagespatial dependency in the current information

theoretic regularization scheme of DOT in the near future. In case such methods are adopted, the efficient

entropy and derivative evaluation scheme has to be re-visited.

9.1.3 Optimization

An area of potential improvement concerns the employed optimization schemes. In this work we have

employed the first-order, gradient based, iterative optimization scheme of conjugate gradients (CG). The

selection of this particular approach over potential alternatives was made after considering a number of

factors. Firstly, the objective function in the inverse problem of DOT includes the forward problem (see

Eq. 3.60). The computational complexity of the latter can be significantly high, especially in the 3D case.

Therefore the optimization scheme has to make as few forwardproblem evaluations per iteration as pos-

sible. The non-gradient methods described in Sec.2.6.1require multiple objective function evaluations,

rendering their choice inefficient in computational terms.Gradient based schemes successively improve

a single initial solution estimate, resulting to a single forward evaluation per iteration. The employment

of more advanced gradient-based optimization schemes suchas the second-order methods described in

Chapter2 are known to establish convergence in less iterations and higher accuracy, given that the so-

lution space in the vicinity of the optimum resembles a quadratic basin. However, to incorporate such

change, we are required to derive the analytic second derivatives of the entropic functionals with re-

spect to the image’s gray values. The application of the FFT for the purpose of reducing computational

complexity would need to be re-established.

Regarding the simultaneous reconstruction/registrationscheme one can pursue the employment of

analytic derivatives of the information theoretic similarity measures with respect to the transformation

parameters. Analytic derivatives have been used in medicalimage registration in various studies [Modat

et al., 2009; Viola, 1995].

9.1.4 Application to other modalities

In addition to the information theoretic regularization ofDOT [Panagiotou et al., 2009b] and PET

[Kazantsev et al., 2010; Pedemonte et al., 2010a; Somayajula et al., 2010], we have also obtained pre-

liminary unpublished results from the application of information theoretic regularization in the linear

inverse problem offluorescence diffuse optical tomography. We have tested the method on studies based

on numerical simulations. This setting introduces additional challenges as the obtained optical recon-

structions are usually sparse. The implication of this is that potential anatomical images to be used as

priors, would contain dense structural information for theentirety of the probed domain and not specif-

ically for the non-zero regions in fluorescence reconstructions. Such a large scale lack of one-to-one

feature correspondence between solution and prior could result in increased bias compared to the optical

solution. Developing methods that minimize the bias due to prior/solution structural disagreement is a

challenging task.

Information theoretic regularization its still in its infancy. In recent years however, the interest in
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the method is rapidly increasing. The concepts of JE and MI have proven their worthiness in medical

image science due to their inherent ability of measuring similarity between images while by-passing

the multi-modality barrier of incommensurately related gray values. It is our feeling that the increased

attention on information theoretic regularization will continue and the scheme will evolve to become one

of the dominants choices for regularization of inverse problems in imaging. —
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