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ABSTRACT 

 

This thesis explores the propagation of acoustic waves in pipe strings by designing a 

series of experimental procedures to characterize their behavior. It describes in detail 

four sets of experiments that were used to characterize the behavior of the acoustic 

waves as they propagate in pipe strings. First, the Existence Test tried to prove the 

existence of the dispersion phenomenon in pipe strings by measuring the speed of waves 

with different frequencies on a small scale version of the field test bed. Second, the 

Consistency Test tried to determine the circumstances that allow for reliable and 

consistent measurements as a preparation for the field tests by testing the transmitter, 

receiver, and coupling consistency. Third, the Dispersion Test aimed at discovering all 

of the existing vibrational modes and matching them with the theoretical solutions by 

performing a two-dimensional Fourier Transform. Finally, the Frequency Test attempted 

to describe the pipe strings response to both narrowband and broadband signals by 

proving the existence of passbands and stopbands. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

The propagation of guided acoustic waves in pipe networks has many applications in 

industry and specifically in the oil and gas industry. Acoustic and ultrasonic waves have 

been used to perform several inspections to pipe strings since they can detect 

irregularities such as leaks, damage, and corrosion over long distances. Moreover, the 

acoustic wave can be used as a replacement for wired communication systems. It offers 

several advantages over the classic means of communication such as being a low cost 

substitute to the otherwise high maintenance equipment. It also allows access to pipe 

strings located in inaccessible areas for both inspection and establishment of 

communication. 

 

One of the most important tools in the inspection of pipes and in using them as a 

medium for acoustic waves in order to transmit information is the dispersion relation. 

Commonly known in physics, the dispersion relation characterizes the relationship 

between the frequency and the wavenumber or wavelength of a certain wave traversing a 

medium. Simply put, the dispersion relation makes waves with different frequencies 

travel at different speeds. In the case of guided waves, the dispersion relation is dictated 

by three factors: the frequency of the transmitted signal, the geometry of the waveguide, 

and the material of the waveguide. Knowing these three parameters, one can predict how 

the wave will behave as it propagates. The dispersion phenomenon will split the wave in 
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groups of modes where each one is vibrating according to a different wavenumber or 

wavelength. For a cylindrical waveguide, that is a pipe, there are three possible families 

of modes: the longitudinal, the flexural, and the torsional modes which will be explained 

in depth in the next chapter. 

 

A significant number of works has been done in the field of ultrasonic waves. They are 

commonly used in what is known as Ultrasonic Testing where ultrasonic waves are 

made to propagate in numerous objects in order to detect anomalies or determine certain 

material properties [1]. Its main advantage is that it is a non-destructive test that does not 

cause any harm or damage to the subject that is being tested. Ultrasonic waves have been 

used to conduct tests and experiment in several industries. They can be used in the 

aerospace industry [2], in the food industry [3], in the nuclear industry [4], in the oil and 

gas industry [5], and countless other industries. A good number of ultrasonic testing 

techniques rely on the use of Lamb waves that can propagate long distance in solid 

plates. Several techniques have been discovered to optimize these testing procedures [6] 

and come up with specific excitation techniques [7]. 

 

As for acoustic waves, the works of Drumheller have laid the foundations for acoustic 

waves’ propagation in pipe strings and drill strings that are of extreme importance to the 

drilling and oil and gas industries [8]. Drumheller studied several aspects of this field 

such as explicitly describing the response of drill strings to acoustic transmission [9] in 

addition to evaluating their impedance [10]. He also characterized the propagation of 
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acoustic waves in drill strings [11] and described their attenuation [12], and even studied 

the case of the presence of fluids in pipe strings [13]. 

 

There exists a good number of noteworthy works in the scientific literature that 

experimented with transmitting acoustic waves in pipe strings [14, 15] and attempted to 

characterize the channel and its response to different excitation frequencies [16]. Other 

works studied the phenomenon of the existence of pass-bands and stop-bands in pipe 

strings [17, 18]. There has also been some more work that explored how acoustic waves 

propagate in pipe strings filled with liquids such as [19, 20]. Some papers focused on the 

effect of different types of pipes on the propagation of acoustic waves [21] while others 

focused on the effect of excitation sources and receiving instruments and built some 

simulation tools for the study of sound waves [22]. 

 

The goal of this work is to design a series of experiments that can characterize the 

behavior of guided acoustic waves propagating in pipe strings and match it with the 

theoretical results. 
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CHAPTER II 

GUIDED WAVE PROPAGATION IN PIPES 

 

A guided wave is a wave whose propagation properties such as amplitude, direction, 

frequency, and wavenumber are dictated by a physical structure called the waveguide. 

The waveguide not only supports the propagation of different types of waves such as 

mechanical, acoustic, ultrasonic, and electromagnetic waves but also introduces two 

major phenomena that distort the traveling wave created by a certain excitation to the 

waveguide. These two phenomena are the creation of a finite number of propagating 

modes or patterns of vibration and the dispersion relation between the temporal and 

spatial characteristics of the wave. As a result, the initial excitation signal will be split 

into several modes that will travel with different phase and group velocities when 

observed. 

 

A pipe segment or a network of pipes can be represented as a cylindrical waveguide that 

will excite certain modes that will in turn travel down the pipe with different frequencies 

and different wavenumbers causing the existence of dispersion. The types of propagating 

modes for a cylindrical waveguide and their dispersion relations will be discussed in 

depth in the next sections. 
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1. Propagating Modes 

 

Since the pipe can be analytically represented by a hollow cylinder with an inner radius 

and an outer radius, it seems more suitable to use cylindrical coordinates in order to 

mathematically describe the system as shown in Figure 2.1. 

 

 

 

Figure 2.1: Cylindrical coordinate system for a pipe 

 

 

Any propagating wave will have to adjust to the medium and travel along the three r, z, 

and θ axes. These modes can be grouped into three families known as the longitudinal, 

flexural, and torsional modes. Each one of these families of modes is defined by the 

direction of displacement. The displacement indicates how much, in terms of distance, 

the wave has traveled from its original position for a given time. 
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The longitudinal modes have displacements in the r and z direction but none along the θ 

axis. The torsional modes have displacements in the θ direction and are fixed along the r 

and z axes. Finally, the flexural modes have displacements in all three directions. Figure 

2.2 should help to visualize how each family of modes propagates inside the pipe [23]. 

 

 

 

Figure 2.2: Simulation of the three families of modes in a pipe: longitudinal (left), 

torsional (center), and flexural (right) [23] 

 

 

2. Dispersion Relation 

 

Dispersion is the effect of the medium on the properties and characteristics of the 

travelling wave. It is essentially a relation between the frequency and the wavenumber or 
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wavelength. Consequently, the phase velocity and the group velocity of the wave can be 

determined for any given frequency. The phase velocity is the rate at which the phase of 

the wave changes [24]. In other words, it measures how fast the phase changes for a 

given frequency over a certain propagating distance. On the other hand, the group 

velocity is the velocity of the envelope or the overall shape of the wave [24, 25]. It 

measures how much the overall shape of the wave has moved during a certain period of 

time. 

 

In order to characterize the dispersion relation, the wave equation in cylindrical 

coordinates must be solved, then the boundary conditions must be applied, and finally 

the pairs of frequencies and wavenumbers that satisfy the boundary conditions can be 

found. 

 

Wave propagation in an unbounded isotropic medium can be expressed by the equation 

of motion as found in [26]. 

 𝜌
∂2𝑢

∂t2
= ∇𝜎 (2.1) 

 

In this equation, 𝑢 is the three dimensional displacement vector, 𝜌 is the material density 

of the pipe, 𝜎 is the stress tensor, and ∇ is the three dimensional differential operator. 

The stress tensor can then be related to the strains and displacements by Hooke’s Law 

as: 
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 𝜎 = 𝜆𝐼∇𝑢 + 𝜇(∇𝑢 + (𝑢∇)𝑇) (2.2) 

 

In this equation, 𝜆 and 𝜇 are known as Lame constants [7] and 𝐼 is the identity matrix. 

Combining equations (2.1) and (2.2) produces what is known as the Navier equation [26, 

27]: 

 𝜌
∂2𝑢

∂t2
= (𝜆 + 𝜇)∇(∇𝑢) + 𝜇∇2𝑢 (2.3) 

 

Using the Helmholtz decomposition, the displacement vector can be decomposed into a 

scalar potential and a vector potential [26, 27]: 

 𝑢 = ∇𝜙 + ∇ × 𝐻 with ∇.𝐻 = 0 (2.4) 

 

In this equation, 𝜙 is the scalar potential and 𝐻 is the vector potential. Using these 

potentials and the method of separation of variables, equation (2.3) can be solved and the 

solution is given by Gazis in [28]. The results for the displacement vector and the stress 

tensor are [29]: 

 𝑢(𝑟, 𝜃, 𝑧) = 𝑢(𝑟)𝑒𝑗𝑛𝜃𝑒𝑗𝑘𝑧  (2.5) 

 𝜎(𝑟, 𝜃, 𝑧) = 𝜎(𝑟)𝑒𝑗𝑛𝜃𝑒𝑗𝑘𝑧 (2.6) 

 

In equations (2.5) and (2.6), 𝑘 represents the wavenumber and 𝑛 is called the 

circumferential order which determines the symmetry of the solutions in the azimuthal 

or θ direction. 
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The radial parts of both the displacement vector and the stress tensor can be further 

expressed as follows [29]: 

 𝑢(𝑟) = [

𝑢𝑟(𝑟)

𝑢𝜃(𝑟)

𝑢𝑧(𝑟)
] = 𝐷𝑢 ∙ 𝐴, (2.7) 

 𝜎(𝑟) =

[
 
 
 
 
 
𝜎𝑟𝑟(𝑟)

𝜎𝜃𝜃(𝑟)
𝜎𝑧𝑧(𝑟)
𝜎𝜃𝑧(𝑟)
𝜎𝑟𝑧(𝑟)
𝜎𝑟𝜃(𝑟)]

 
 
 
 
 

= 𝐷𝜎 ∙ 𝐴, (2.8) 

 𝐴 =

[
 
 
 
 
 
𝐿+

𝐿−

𝑆𝑉+

𝑆𝑉−

𝑆𝐻+

𝑆𝐻−]
 
 
 
 
 

. (2.9) 

 

The matrix A represents the amplitudes for each direction. L stands for longitudinal, SV 

stands for shear vertical, and SH stands for shear horizontal. The + and – sign indicate 

the direction of motion of the wave. The matrices 𝐷𝑢 and 𝐷𝜎 are respectively the 

displacement and stress matrices. Their entries are found in [29, 30] and stated in 

Appendix A. 

 

The dispersion relation is thus determined by finding the frequency-wavenumber pairs 

that satisfy the boundary conditions of the waveguide. For a cylindrical waveguide, the 
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boundary conditions state that there is no stress at the traction part at the inner and outer 

radii of the pipe. That is, when 𝑟 = 𝑟𝑖𝑛 and 𝑟 = 𝑟𝑜𝑢𝑡: 

 [

𝜎𝑟𝑟(𝑟)
𝜎𝑟𝜃(𝑟)
𝜎𝑟𝑧(𝑟)

] = [
0
0
0
] (2.10) 

 

This condition will be satisfied when the determinant of the stress matrix is equal to zero 

at the inner and outer radii. This is known as the Pochhammer-Chree frequency equation 

as given in [29, 30, 31]. In other words: 

 det(𝐷𝜎) = det ([
𝐷𝑖,𝑗(𝑟𝑖𝑛)

𝐷𝑖,𝑗(𝑟𝑜𝑢𝑡)
]) = 0 for 𝑖, 𝑗 = 1,5,6 (2.11) 

 

The stress matrix will be different for each family of modes. For the torsional modes, it 

is simplified to a 2-by-2 matrix since the displacements are in the azimuthal direction 

only. For the longitudinal modes, it becomes a 4-by-4 matrix since the displacements 

take place in both the longitudinal and radial directions. As for the flexural modes, the 

stress matrix is the full 6-by-6 matrix since the displacements are occurring in all 

directions. 

 

Once the determinant of the stress matrix is calculated, a computer algorithm can search 

for the frequency-wavenumber pairs that make it go to zero following the change of sign 

method. For a given frequency, all the wavenumbers that satisfy the boundary conditions 

and force the determinant of the stress matrix to be equal to zero correspond to the 
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different modes that are present. A program known as PCDISP in [31] was used to 

determine the theoretical dispersion curves for the pipe strings used later in the 

experiments. 
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CHAPTER III 

THE EXISTENCE TEST 

 

1. Experimental Setup for the Existence Test 

 

This test aims at verifying that the pipe can act as a dispersive medium for an acoustic 

wave. It serves as a small scale version of the Dispersion Test to confirm the 

assumptions regarding both the existence and the nature of the dispersion phenomenon. 

Later this test was repeated on the field using pipe segments that were nominally 32 foot 

long. This test consisted of a series of experiments where a 5 foot long metallic rod was 

excited using piezoelectric discs that convert electric signals to an acoustic wave. The 

received signals were recorded using another piezoelectric disc connected to a laptop. 

Figure 3.1 shows a picture of the piezoelectric discs used for exciting and sensing the 

acoustic wave and Figure 3.2 shows the experimental setup. 
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Figure 3.1: Piezoelectric discs used for the Existence Test 

 

 

 

Figure 3.2: Experimental setup for the Existence Test 

 

 

 

Signal Generator 

Piezoelectric Discs 

Recording Laptop 
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Once the received signals are recorded, the propagation delay 𝑑𝑡 between the transmitter 

and the receiver was measured for a given frequency. The propagation delay can be 

determined by observing the time when both transmitted and received signals begin to 

rise above the noise level and subtracting the difference. Figure 3.3 shows how this 

process is done. The upper plot represents the signal measured in the first position and 

the lower plot represents the signal measured in the second position. The two positions 

are separated by a distance 𝑑𝑥. The bottom plot has higher amplitude because an 

accelerometer was used to measure the signal at that position while the piezoelectric disc 

was used to measure the signal at the first position. 

 

Figure 3.3: Calculation of propagation delay for the Existence Test 

 

 

 𝑉𝑔𝑟𝑜𝑢𝑝 = 𝑉𝑝ℎ𝑎𝑠𝑒 =
𝑑𝑥

𝑑𝑡
=

𝜔

𝑘
 (3.1) 
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 𝑘 =
𝜔

𝑉𝑝ℎ𝑎𝑠𝑒
=

2𝜋𝑓

𝑉𝑝ℎ𝑎𝑠𝑒
=

2𝜋𝑓 ∙ 𝑑𝑡

𝑑𝑥
 (3.2) 

 𝑉𝑝ℎ𝑎𝑠𝑒 =
𝜔

𝑘
 

(3.3) 

 
𝑉𝑔𝑟𝑜𝑢𝑝 =

𝜕𝜔

𝜕𝑘
 

(3.4) 

 

Knowing the propagation distance 𝑑𝑥 and the propagation delay 𝑑𝑡, the group velocity 

can be calculated. This method can only determine the dispersion for the fastest 

vibrational mode that is expected to be the longitudinal L(0,1) from the theoretical 

dispersion curves. The L(0,1) mode behaves linearly at low frequencies, thus the phase 

and group velocities become equal. The phase velocity can then be determined from 

equation (3.1) and consequently the wavenumber 𝑘 can be found from equation (3.2). 

Therefore, this experiment can determine the dispersion relation for the metallic rod 

[32]. However, one of the limitations of this experiment is that it can only determine the 

mode with the fastest travelling frequencies since it only looks at the beginning of the 

signals. 

 

In order to produce an experimental dispersion curve that is expected to be linear, five 

data points were produced for 2000, 4000, 6000, 8000, and 10000 Hz. This method 

suffers from an accuracy issue and is vulnerable to large errors when the propagation 

delay needs to be estimated. However, it still helps to show that there is a dispersion 

phenomenon. The next experiments will use a two-dimensional Fourier Transform to 

produce more accurate dispersion curves. 
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2. Results of the Existence Test 

 

For low frequencies between 0 and 10 kHz, it is expected that only three modes are 

present and propagate along a pipe segment. These modes are the first longitudinal 

L(0,1) mode, the first flexural F(1,1) mode, and the first torsional T(0,1) mode. In the 

frequency-wavenumber space, it is expected that the T(0,1) behaves linearly for all 

values, the F(1,1) does not behave linearly for low frequencies, while the L(0,1) behaves 

linearly for low frequencies. When the dispersion relation is linear or when the curve 

behaves linearly, the phase velocity and the group velocity defined by equations (3.3) 

and (3.4) respectively become equal. 

 

As a result, the time difference between the beginnings of the transmitted and received 

signals which corresponds to the group delay becomes equal to the phase delay. 

Therefore, for a linear dispersion, it is possible to determine the phase velocity by 

measuring the group velocity which leads to determining the wavenumber corresponding 

to a fixed transmit frequency as shown in the previous chapter. 

 

When the pipe was excited using piezoelectric discs and the delay between the 

transmitted and the received copy of the signal was measured, the frequency-

wavenumber pair was found for several data points. The fact that each frequency 

generated a different wavenumber that increased as the frequency increased meant that 

there was indeed a dispersion phenomenon occurring in the pipe. The gathered data 
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points allowed the creation of an experimental dispersion curve that was compared with 

theoretical curves for all the modes in order to identify which mode was captured. 

Figure 3.4 shows the comparison between the theoretical and the experimental curves. 

The plot shows that the captured mode was the longitudinal L(0,1) since the 

experimental data points tracked the curve for that particular mode. This is expected as 

identifying the time of the beginning of the signal meant finding the time delay for the 

fastest mode which is also the L(0,1) since at a given frequency it vibrates with the 

smallest wavenumber. The plot not only verified the existence of the dispersion 

phenomenon but also verified that the metallic rod was made of steel since the 

theoretical curves were produced for a steel pipe. 

For this test, a pipe segment was excited using a broadband pulse. The pulse was filtered 

using band-pass Bessel filters to isolate different frequencies from the broad spectrum of 

the signal. The Bessel filter is characterized by a linear phase response which delayed 

the signals by the same amount, and therefore maintaining the propagation delay 

constant for each frequency. The filter delay was accounted for during the calculation of 

each data point and was subtracted from the propagation delay. The filter delay was 

determined using the group delay plots for each Bessel band-pass filter. Table 3.1 shows 

the cutoff frequencies for the Bessel band-pass filter for each data point. 



 

18 

 

Table 3.1: Bessel filters passbands 

Center Frequency Passband 

2000 Hz 1500-2500 Hz 

4000 Hz 3500-4500 Hz 

6000 Hz 5500-6500 Hz 

8000 Hz 7500-8500 Hz 

10000 Hz 9500-10500 Hz 

 

 

 

Figure 3.4: Comparison between the experimental and theoretical dispersion 

curves 
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CHAPTER IV 

THE CONSISTENCY TEST 

1. Experimental Setup for the Consistency Test

This test aims at verifying the consistency of the measurements that will be taken in the 

field. It tries to show that the measurements, the instruments, and the experimental 

setups are reliable and can be used as a foundation and as a feedback source for a 

simulation tool. These experiments were carried out in the field using 6 pipe segments, 

each one nominally 32 feet long and 2 7/8 inches in diameter. The pipe segments were 

connected to an acoustic transmitter and an accelerometer was used to record those 

signals. The repeatability of the measurements needed to be tested for three stages: the 

transmitter, the coupling, and the receiver. 

The first set of experiments tried to determine whether the acoustic transmitter can 

produce repeatable signals. A broadband pulse was transmitted several times and the 

accelerometer was used to record it. Then, these successive pulses were compared by 

calculating the correlation coefficients to indicate the level of similarity between them. 
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The second set of experiments aimed at discovering the best adhesive material that can 

be used to attach the accelerometer. The accelerometer was attached to the pipe using 

both glue and wax while the signals coming from the transmitter were recorded several 

times. These recordings were later compared to determine the similarity between the 

received signals. The similarity was measured by calculating the correlation coefficients 

between several recordings as before and the amplitudes were compared as well. 

The final set of experiments aimed at discovering which of the orientations of the 

accelerometer offer reliable measurements and which do not. The accelerometer was 

attached to the pipe using three different configurations which are the longitudinal (z-

direction), the radial (r-direction), and the azimuthal (θ-direction) configurations. Each 

configuration allows the accelerometer to measure the vibration and the displacements 

along a certain axis. The orientation of the accelerometer and the direction of the 

displacements are extremely important for the next Dispersion Test where different 

modes create displacements in different directions. Figures 4.1-4.3 illustrate these 

configurations and figures 4.4-4.6 show them in real life. 
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Figure 4.1: R-configuration measurements 

Figure 4.2: Z-configuration measurements 

Figure 4.3: θ-configuration measurements 
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Figure 4.4: Accelerometer r-configuration measurements 

Figure 4.5: Accelerometer z-configuration measurements 
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Figure 4.6: Accelerometer θ-configuration measurements 

Several transmitted signals were recorded and the correlation coefficients were 

calculated between several pairs of recordings in order to determine the consistency of 

each configuration. 

2. Results of the Consistency Test

a. Transmitter Consistency

A total of 6 successive broadband pulses were recorded and the first pulse was used as a 

reference for comparison with the other pulses. The correlation coefficients were 

calculated between the first pulse and the remaining ones. Table 4.1 shows the results of 

this comparison. 
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Table 4.1: Correlation coefficients for the successive transmitted pulses 

Pulses 

Pulses 1 and 

2 

Pulses 1 and 

3 

Pulses 1 and 

4 

Pulses 1 and 

5 

Pulses 1 and 

6 

Correlation 

Coefficient 

0.9428 0.803 0.9418 0.993 0.9442 

 

 

Figure 4.7 shows the visual comparison between the 6 successive transmitted pulses 

where they appear to be in good agreement in terms of both shape and amplitude. 

 

 

 

Figure 4.7: Successive transmitted broadband pulses 
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b. Coupling Consistency

The signals were recorded multiple times for both the r and z directions and the 

correlation coefficients were calculated for each pair of signals to determine the level of 

similarity between them. The signals that were transmitted consisted of the default 

transmitter square waves with linearly increasing frequency. The results are presented in 

tables 4.2 and 4.3. 

Table 4.2: Correlation coefficients for wax measurements 

Orientation\ 

Signal 

625-675 Hz 

Square 

Wave 

1150-1250 

Hz Square 

Wave 

225-245 Hz 

Square 

Wave 

850-900 

Hz Square 

Wave 

Broadband 

Pulse 

R-direction 0.8792 0.7883 0.8197 0.9034 0.8323 

Z-direction 0.969 0.9547 0.965 0.9694 0.9882 

Table 4.3: Correlation coefficients for glue measurements 

Orientation\ 

Signal 

625-675 Hz 

Square 

Wave 

1150-1250 

Hz Square 

Wave 

225-245 Hz 

Square 

Wave 

850-900 

Hz Square 

Wave 

Broadband 

Pulse 

R-direction 0.8957 0.6812 0.8229 0.8903 0.8877 

Z-direction 0.9712 0.9891 0.9645 0.9615 0.9932 
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Figures 4.8-4.12 show the transmitted signals that were used as an input for this series of 

tests. It can be noted from the frequency domain plots that the side lobes for the 625-675 

Hz, the 1150-1250 Hz, and the 850-900 Hz are gradually getting wider. This is due to 

the frequency modulation in the signals. The first series of peaks occur at the transmit 

frequencies. The next series of peaks represent the harmonics that occur at integer 

multiples of the transmit frequencies therefore they are spaced further apart than the first 

series of peaks. 

 

 

Figure 4.8: 625-675 Hz square wave in time and frequency domains 
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Figure 4.9: 1150-1250 Hz square wave in time and frequency domains 

Figure 4.10: 225-245 Hz square wave in time and frequency domains 
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Figure 4.11: 850-900 Hz square wave in time and frequency domains 

Figure 4.12: Broadband pulse in time and frequency domains 
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Both materials showed high correlation coefficients that exhibited above 80% similarity 

most of the time. However, the glue showed a small advantage over the wax and 

especially for the broadband pulse which was later used as an input to the Dispersion 

Test. 

c. Receiver Consistency

The last set of experiments tried to test the consistency of each measurement orientation 

for the accelerometer. Two different transmitted signals were sent and in each case the 

orientation of the accelerometer was alternating between the radial, longitudinal, and 

azimuthal directions for several measurements. The glue was used to attach the 

accelerometer and hold it in place. The correlation coefficients were calculated between 

two pairs of signals for each combination. Tables 4.4 and 4.5 present the findings of this 

experiment in terms of correlation coefficients and the percentage of relative voltage 

difference. The percentage of relative voltage difference was calculated by subtracting 

the two signals for each time sample and taking the average over all samples then 

dividing the result by the maximum peak value between the two signals. 

Table 4.4: Correlation coefficients for the different orientations 

Orientation\Signal 850-900 Hz Square Wave Broadband Pulse 

R-direction 0.9579 0.9647 

Z-direction 0.9182 0.9141 

θ-direction 0.9321 0.8814 
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Table 4.5: Percentage of relative amplitude difference for the different orientations 

Orientation\Signal 850-900 Hz Square Wave Broadband Pulse 

R-direction % 14.98 % 2.69 

Z-direction % 12.74 % 2.61 

θ-direction % 7.752 % 2.5 

Table 4.4 shows that all three orientations presented consistent data that exceeded 90% 

similarity in most cases. Table 4.5 shows that the percentage of relative difference in 

amplitude between the compared signals is much better for the broadband pulse. 

Therefore, the broadband pulse produced better consistency in terms of shape and 

amplitude of the signals. As a result, the broadband pulse was later used for the 

Dispersion Test. Figures 4.13-4.18 show the visual comparison between the different 

combinations of measurements. 
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Figure 4.13: 850-900 Hz square wave measured in the radial direction 

 

 

 

Figure 4.14: 850-900 Hz square wave measured in the azimuthal direction 
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Figure 4.15: 850-900 Hz square wave measured in the longitudinal direction 

 

 

 

Figure 4.16: Broadband pulse measured in the radial direction 
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Figure 4.17: Broadband pulse measured in the azimuthal direction 

Figure 4.18: Broadband pulse measured in the longitudinal direction 
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CHAPTER V 

THE DISPERSION TEST 

1. Experimental Setup for the Dispersion Test

Once the previous two experiments are successful, this test consists of measuring a 

transmitted signal in several locations in order to produce an experimental dispersion 

curve and determine whether it matches the theoretical dispersion curves and whether all 

of the predicted vibrational modes are present. 

An experimental dispersion curve can be produced by two possible means. The first 

method was used during the Existence Test where signals with different center 

frequencies are allowed to propagate a certain known distance and then recorded at the 

receiver. The propagation delay is then estimated and the phase velocity can be 

calculated as in equation (3.1). From there, the wavenumber can be calculated from 

equation (3.2) and the frequency-wavenumber pair is found. The second method 

involves a more complicated setup but produces more reliable data. It consists of 

measuring the transmitted signal at a series of equidistant positions and arranging the 

data in an array where each column represents a signal measured in time at a certain 

location. Then a two-dimensional Fourier Transform is carried out in the following 

manner [33, 34]. First compute the temporal Fourier Transform over each column to 

obtain the frequency spectrum for each position then compute a spatial Fourier 
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Transform over each row to obtain the frequency-wavenumber information and thus 

producing a dispersion curve. The output of the 2D-FFT is related to the data 𝑢(𝑥, 𝑡) by 

equation (5.1). 

𝐻(𝑘, 𝑓) = ∫ ∫ 𝑢(𝑥, 𝑡)𝑒−𝑖(𝑘𝑥+𝜔𝑡)𝑑𝑥𝑑𝑡
+∞

−∞

+∞

−∞

(5.1) 

Figure 5.1 shows the experimental setup that was used to perform the Dispersion Test. 

Figure 5.1: Experimental setup for the Dispersion Test 

A broadband pulse was sent from the transmitter and was recorded in the 1
st
, 3

rd
, and 5

th

pipe segments using the accelerometer that was placed in both the z-direction to capture 

the longitudinal L(0,1) mode and in the θ-direction to capture the flexural F(1,1) mode 
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and the torsional T(0,1) mode. For each pipe segment, the signal was recorded starting at 

8 feet from the beginning in 32 different positions that were separated by 6 inches. 

Figure 5.2 shows the pipe segments and the measurement locations. 

Figure 5.2: Pipe segments and measurement locations for the Dispersion Test 

The joints were each 5.25 inches long and the 6 pipe segments used in the experiment 

had varying lengths that are summarized in Table 5.1. The outer diameter was 3.5 inches 

and the thickness of the pipes was 0.25 inches. 
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Table 5.1: Lengths of the pipe segments used in the Dispersion Test 

Pipe Segment Length (feet) 

1 32.323 

2 32.24 

3 32.266 

4 32.208 

5 32.302 

6 32.385 

The transmitter is an instrument that only takes digital waveforms as input and sends 

acoustic signals according to that input. However, the impulse response of the 

transmitter is unknown. Thus, it is not possible to predict the shape of the transmitted 

signal and they can only be viewed at the receiving end. This ambiguity however does 

not affect the success of the Dispersion Test since the frequency content is the only 

required information about the signal in order to produce a dispersion curve. Besides, the 

transmitter is still able to produce both broadband and narrowband signals at any desired 

frequency in the acoustic range. 

The transmitted signal was a broadband pulse that was recorded in order to have a time 

reference so that the appropriate propagation delay can be measured and accounted for in 
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each received signal before they are placed in an array as a preparation to the 2D-FFT 

procedure. 

In addition, a 6
th

 order low-pass Butterworth filter with cutoff frequency at 4 kHz was

used as an anti-aliasing filter to limit the bandwidth of the broadband pulse. The filter 

was designed by a cascade of three 2
nd

 order low-pass filters built using the Sallen-Key

topology as shown in Figure 5.3. An NI USB-6009 analog to digital converter sampling 

at 24 kHz was used to convert the data and read it in LabVIEW and later in MATLAB. 

Figure 5.3: 2nd order Sallen-Key low-pass filter 

The poles of the designed filter needed to match those of the theoretical 6
th

 order

Butterworth low-pass filter. The filter needed to have a flat magnitude and phase 

responses in the passband and constant phase and group delays. Figures 5.4-5.6 describe 

the behavior of the anti-aliasing filter designed to limit the bandwidth of the signals and 

Table 5.2 shows the component values chosen for the design of each stage. The phase 
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and group delays peak at the cutoff frequency due to the sudden change in the frequency 

response of the filter. 

Figure 5.4: Comparison between the poles of the designed filter and the theoretical 

poles 
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Figure 5.5: Magnitude and phase responses of the anti-aliasing filter 

Figure 5.6: Group delay and phase delay of the anti-aliasing filter 
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Table 5.2: Component values for the anti-aliasing filter 

Stages\Component 

Values 
𝑅1(Ω) 𝑅2(Ω) 𝐶1(𝑛𝐹) 𝐶2(𝑛𝐹) 

1
st
 Stage 2280 510 47 22 

2
nd

 Stage 1680 1000 47 22 

3
rd

 Stage 3200 1000 100 4.7 

2. Results of the Dispersion Test

Figures 5.7-5.12 show the comparison between the experimental dispersion curves 

generated using the 2D-FFT of the measured data and the theoretical dispersion curves 

generated using the PCDISP program [29, 31]. The colors indicate the amplitude of the 

output of the Fourier Transform in decibels. Warm colors indicate high amplitudes and 

cold colors indicate low amplitudes. The peaks of the curves correspond to the 

frequencies and the wavenumbers at which the acoustic wave was propagating. 
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Figure 5.7: Comparison of theoretical and experimental dispersion curves for the 

1st pipe segment in the z-direction 
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Figure 5.8: Comparison of theoretical and experimental dispersion curves for the 

3rd pipe segment in the z-direction 
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Figure 5.9: Comparison of theoretical and experimental dispersion curves for the 

5th pipe segment in the z-direction 
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Figure 5.10: Comparison of theoretical and experimental dispersion curves for the 

1st pipe segment in the θ-direction 
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Figure 5.11: Comparison of theoretical and experimental dispersion curves for the 

3rd pipe segment in the θ-direction 
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Figure 5.12: Comparison of theoretical and experimental dispersion curves for the 

5th pipe segment in the θ-direction 

 

After careful observation of figures 5.7-5.12, one can observe that the theoretical curves 

and the experimental curves are matching well. 

 

Due to the presence of unwanted frequency content, some of the weaker modes were not 

clearly seen. Therefore, further processing was required. In order to improve the plots, 

each row in the resulting two-dimensional Fourier Transform was divided by its 

maximum value. Thus, the amplitudes were normalized and the disturbance that 
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occurred in the previous plot was minimized. Figures 5.13 and 5.14 show the dispersion 

curves after normalization. 

Figure 5.13: Normalized experimental dispersion curve in the z-direction showing 

the L(0,1) mode 
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Figure 5.14: Normalized experimental dispersion curve in the θ-direction showing 

the F(1,1) and the T(0,1) modes 
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CHAPTER VI 

THE FREQUENCY TEST 

1. Experimental Setup for the Frequency Test

The goal of this experiment is to explore how narrowband signals with different 

frequencies and broadband signals propagate in the pipe strings and how the energy in 

the signals decays as a function of distance. This test helps to characterize the frequency 

response of the pipe strings. 

A sequence of narrow band tone bursts lasting each 50ms and covering a range of 

frequencies from 100 Hz to 3000 Hz with a step size of 100 Hz were transmitted using 

the transmitter and the acoustic wave was recorded in 6 different positions located at 1 

foot after the beginning of each pipe segment with the accelerometer placed in the z-

direction. Figure 6.1 illustrates the measurement points for the Frequency Test. 

Figure 6.1: Pipe segments and measurement locations for the Frequency Test 
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The transmitter created a large number of undesirable harmonics that needed to be 

filtered out later in MATLAB using an 8
th

 order Butterworth low-pass filter with

different cutoff frequencies depending on the frequency of the generated tone burst. 

A second series of tests was performed in order to verify the existence of passbands and 

stopbands in the pipe strings. It consisted of transmitting a series of broadband pulses 

and then making the measurements at different locations. The data for this test was 

gathered during the Dispersion Test which consisted of sending a broadband pulse and 

recording it at 32 different locations for three pipe segments. The measurements for the 

3
rd

 and 5
th

 pipe segments were performed with all six pipe segments connected while the

measurements for the 1
st
 pipe segment were performed with the 1

st
 pipe segment

connected. This was done in order to verify the results of Drumheller in [9] about the 

effect of the number of pipe segments on the passbands and stopbands. 

2. Results of the Frequency Test

a. Time Domain Observations

The recorded signals in the time domain can be split in three components: the main pulse 

that arrives first, followed by large and equally spaced reflections coming from the far 

end of the pipe strings, and smaller reflections that are not equally spaced caused by the 

presence of joints between the different pipe strings. 

After careful observation of the time domain plots, one can come to a series of 

conclusions: 
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- The main reflections coming from the far end of the pipe arrive at equally spaced 

time intervals as shown in Figure 6.2. 

- The weaker reflections coming from the joints appear at inconsistent time 

intervals due to the fact that the pipe segments do not have the same lengths. 

Therefore, the measurement points will not be at the same position with respect 

to the joints. 

- The weaker reflections coming from the joints arrive much faster than the main 

reflections since they propagate smaller distances. They appear between the main 

pulse and the first large reflection and between every two large reflections. As a 

result, they merge and accumulate then add up to one of the large reflections 

causing it to exceed the others in terms of amplitude. However, they can also add 

destructively and weaken the received signal if they collide and their amplitudes 

are opposites of each other. This is shown in Figure 6.2. 
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Figure 6.2: 2800 Hz pulse measured at position 5 

b. Frequency Domain Observations

The observation of the frequency content of the received signals showed that the 

transmitter successfully transmitted narrowband signals at different frequencies and that 

the pipe strings acting as a wireless channel allowed the successful transmission of all 

desired pulses. In addition, the low-pass filters applied later were successful in 

attenuating the harmonics and keeping their frequency content around 40 dB below the 

main transmit frequency. Figures 6.4-6.8 show the frequency content for selected 

frequencies from the transmitted pulses between 100-3000 Hz pulses. 
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Figure 6.3: Frequency content of the 1000 Hz pulse 

Figure 6.4: Frequency content of the 1500 Hz pulse 
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Figure 6.5: Frequency content of the 2000 Hz pulse 

Figure 6.6: Frequency content of the 2500 Hz pulse 
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Figure 6.7: Frequency content of the 3000 Hz pulse 

c. Passbands and Stopbands Observations

Examination of the data gathered during the Dispersion Test proved the existence of 

passbands and stopbands in the pipe strings. Figures 6.8-6.10 show a comparison of the 

frequency content for the measurements performed on the three pipe segments at 

positions 10, 20, and 30 of the Dispersion Test which were respectively at 12.5 feet, 17.5 

feet, and 22.5 feet from the beginning of each pipe segment. 
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Figure 6.8: Passbands and stopbands for the 1st (top), 3rd (middle), and 5th 

(bottom) pipe segments at position 10 (12.5 feet from the beginning of the segment) 

Figure 6.9: Passbands and stopbands for the 1st (top), 3rd (middle), and 5th 

(bottom) pipe segments at position 20 (17.5 feet from the beginning of the segment) 
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Figure 6.10: Passbands and stopbands for the 1st (top), 3rd (middle), and 5th 

(bottom) pipe segments at position 30 (22.5 feet from the beginning of the segment) 

After careful examination of the above plots, it can be observed that there exist several 

stopbands and passbands which meant that different frequency components of the signal 

are affected differently. In other words, several frequencies are getting attenuated while 

others are getting amplified. The stopbands and passbands are illustrated by the several 

dips and spikes in Figures 6.8-6.10. The reason behind this is that for a given frequency, 

the wavenumbers can be either real or complex. When the wavenumber is real, the 

frequency corresponding to that number appears in the passband of the pipe strings and 

when the wavenumber is complex, its corresponding frequency appears in the stopband 

[9]. 
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In terms of propagating distance, the passbands and stopbands appear at roughly the 

same frequencies for each pipe segment. For the middle and bottom plots in figures 6.8-

6.10, it can be noted that the dips and spikes are roughly aligned and occur at the same 

frequencies. This is expected since there two measurements were performed with all six 

pipe segments present during the experiment. However, for the top plots in figures 6.8-

6.10, the passbands and stopbands appear to be less in terms of number. This is due to 

the presence of the extra pipe segments for the measurements taken at the 3
rd

 and 5
th

segments. If there are n pipe strings, it is expected to see n spikes in the passband. The 

reason behind this phenomenon is that each of the n pipe segments requires a change in 

frequency in order to fit an extra half of the wavelength, since the pipe is dispersive, 

causing a resonance at these frequencies demonstrated by the spikes [9]. 

Figure 6.11 compares the passband between 900 Hz and 1200 Hz for the measurements 

at the 1
st
 and 3

rd
 pipe segments. It shows that there exists what looks like six highlighted

spikes roughly spaced by 50 Hz when the six pipe segments are present while there are 

no significant spikes when only one segment is connected. There still appears to be some 

distortion due to noise and experimental error. For the purpose of demonstration, a band-

pass filter was utilized to filter out the frequency content below 900 Hz and above 1200 

Hz. 
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Figure 6.11: Comparison of the passband between the measurements at the 1st 

(top) and 3rd (bottom) pipe segments 
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CHAPTER VII 

CONCLUSION 

1. Summary

This work tried to experimentally study and characterize the propagation of guided 

acoustic waves in pipe strings interconnected by joints. The ultimate goal of the study 

was to verify the theoretical results derived by previous works in the scientific literature. 

In order to achieve this objective, a set of methodical experiments needed to be designed 

and implemented that can gather robust and reliable data. 

First, the existence of the dispersion phenomenon needed to be verified. Second, the 

instruments used and the experimental setup needed to be checked for consistency of 

measurements. Once these two tests were successful, the dispersion curves had to be 

produced and matched with the theoretical curves in order to reinforce the theory, 

determine the properties of the waveguide, and characterize the dispersion experienced 

by the acoustic wave. Finally, the response of the pipe strings to different signals and 

frequencies had to be tested. 
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2. Main Findings

The first preliminary tests showed that the steel pipe strings can act as a dispersive 

medium to acoustic waves and that the experimental setup was reliable and produced 

consistent data. The next round of tests showed that the experimentally produced 

dispersion curves closely match the theoretical ones. The final tests proved that the pipe 

strings had several passbands and stopbands in the frequency domain that depend on the 

number of pipe segments connected. They showed that the reflections and echoes of the 

acoustic wave arrive at the appropriate times corresponding with the layout of the pipe 

strings and can add constructively to amplify the signal or destructively to weaken the 

signal. 
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APPENDIX A 

 

The entries of the displacement and stress matrices derived in [29, 30] are found to be: 

 𝐷𝑢(1,1) = 𝑛𝑊𝑛(𝛼𝑟) − 𝛼𝑊𝑛+1(𝛼𝑟) (A.1) 

 𝐷𝑢(1,2) = 𝑛𝑍𝑛(𝛼𝑟) − 𝜆1𝛼𝑍𝑛+1(𝛼𝑟) (A.2) 

 𝐷𝑢(1,3) = 𝑘𝑟𝑊𝑛+1(𝛽𝑟) (A.3) 

 𝐷𝑢(1,4) = 𝑘𝑟𝑍𝑛+1(𝛽𝑟) (A.4) 

 𝐷𝑢(1,5) = 𝑛𝑊𝑛(𝛽𝑟) (A.5) 

 𝐷𝑢(1,6) = 𝑛𝑍𝑛(𝛽𝑟) (A.6) 

 𝐷𝑢(2,1) = 𝑗𝑛𝑊𝑛(𝛼𝑟) (A.7) 

 𝐷𝑢(2,2) = 𝑗𝑛𝑍𝑛(𝛼𝑟) (A.8) 

 𝐷𝑢(2,3) = −𝑗𝑘𝑟𝑊𝑛+1(𝛽𝑟) (A.9) 

 𝐷𝑢(2,4) = −𝑗𝑘𝑟𝑍𝑛+1(𝛽𝑟) (A.10) 

 𝐷𝑢(2,5) = 𝑗𝑛𝑊𝑛(𝛽𝑟) − 𝑗𝛽𝑟𝑊𝑛+1(𝛽𝑟) (A.11) 

 𝐷𝑢(2,6) = 𝑗𝑛𝑍𝑛(𝛽𝑟) − 𝑗𝜆2𝛽𝑟𝑍𝑛+1(𝛽𝑟) (A.12) 

 𝐷𝑢(3,1) = 𝑗𝑘𝑟𝑊𝑛(𝛼𝑟) (A.13) 

 𝐷𝑢(3,2) = 𝑗𝑘𝑟𝑍𝑛(𝛼𝑟) (A.14) 

 𝐷𝑢(3,3) = 𝑗𝜆2𝛽𝑟𝑊𝑛(𝛽𝑟) (A.15) 

 𝐷𝑢(3,4) = 𝑗𝛽𝑍𝑛(𝛽𝑟) (A.16) 

 𝐷𝑢(3,5) = 0 (A.17) 

 𝐷𝑢(3,6) = 0 (A.18) 
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 𝐷𝜎(1,1) = ((𝑘2 − 𝛽2)𝑟2 + 2(𝑛 − 1))𝑊𝑛(𝛼𝑟) + 2𝛼𝑟𝑊𝑛+1(𝛼𝑟) (A.19) 

 𝐷𝜎(1,2) = ((𝑘2 − 𝛽2)𝑟2 + 2(𝑛 − 1))𝑍𝑛(𝛼𝑟) + 2𝜆1𝛼𝑟𝑍𝑛+1(𝛼𝑟) (A.20) 

 𝐷𝜎(1,3) = 2𝜆2𝛽𝑘𝑟2𝑊𝑛(𝛽𝑟) − 2(𝑛 + 1)𝑘𝑟𝑊𝑛+1(𝛽𝑟) (A.21) 

 𝐷𝜎(1,4) = 2𝛽𝑘𝑟2𝑍𝑛(𝛽𝑟) − 2(𝑛 + 1)𝑘𝑟𝑍𝑛+1(𝛽𝑟) (A.22) 

 𝐷𝜎(1,5) = 2𝑛(𝑛 − 1)𝑊𝑛(𝛽𝑟) − 2𝑛𝛽𝑟𝑊𝑛+1(𝛽𝑟) (A.23) 

 𝐷𝜎(1,6) = 2𝑛(𝑛 − 1)𝑍𝑛(𝛽𝑟) − 2𝑛𝜆2𝛽𝑟𝑍𝑛+1(𝛽𝑟) (A.24) 

 

𝐷𝜎(2,1) = ((2𝛼2 − 𝛽2 + 𝑘2)𝑟2 − 2𝑛(𝑛 − 1))𝑊𝑛(𝛼𝑟)

− 2𝛼𝑟𝑊𝑛+1(𝛼𝑟) 

(A.25) 

 

𝐷𝜎(2,2) = ((2𝛼2 − 𝛽2 + 𝑘2)𝑟2 − 2𝑛(𝑛 − 1))𝑍𝑛(𝛼𝑟)

− 2𝜆1𝛼𝑟𝑍𝑛+1(𝛼𝑟) 

(A.26) 

 𝐷𝜎(2,3) = 2(𝑛 + 1)𝑘𝑟𝑊𝑛+1(𝛽𝑟) (A.27) 

 𝐷𝜎(2,4) = 2(𝑛 + 1)𝑘𝑟𝑍𝑛+1(𝛽𝑟) (A.28) 

 𝐷𝜎(2,5) = −2𝑛(𝑛 − 1)𝑊𝑛(𝛽𝑟) − 2𝑛𝛽𝑟𝑊𝑛+1(𝛽𝑟) (A.29) 

 𝐷𝜎(2,6) = −2𝑛(𝑛 − 1)𝑍𝑛(𝛽𝑟) − 2𝑛𝜆2𝛽𝑟𝑍𝑛+1(𝛽𝑟) (A.30) 

 𝐷𝜎(3,1) = (2𝛼2 − 𝛽2 − 𝑘2)𝑟2𝑊𝑛(𝛼𝑟) (A.31) 

 𝐷𝜎(3,2) = (2𝛼2 − 𝛽2 − 𝑘2)𝑟2𝑍𝑛(𝛼𝑟) (A.32) 

 𝐷𝜎(3,3) = −2𝜆2𝛽𝑘𝑟2𝑊𝑛(𝛼𝑟) (A.33) 

 𝐷𝜎(3,4) = −2𝛽𝑘𝑟2𝑍𝑛(𝛼𝑟) (A.34) 

 𝐷𝜎(3,5) = 0 (A.35) 

 𝐷𝜎(3,6) = 0 (A.36) 

 𝐷𝜎(4,1) = −2𝑛𝑘𝑟𝑊𝑛(𝛼𝑟) (A.37) 
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 𝐷𝜎(4,2) = −2𝑛𝑘𝑟𝑍𝑛(𝛼𝑟) (A.38) 

 𝐷𝜎(4,3) = 𝑘𝑟2𝑊𝑛+1(𝛽𝑟) − 𝜆2𝑛𝛽𝑟𝑊𝑛(𝛽𝑟) (A.39) 

 𝐷𝜎(4,4) = 𝑘𝑟2𝑍𝑛+1(𝛽𝑟) − 𝑛𝛽𝑟𝑍𝑛(𝛽𝑟) (A.40) 

 𝐷𝜎(4,5) = −𝑛𝑘𝑟𝑊𝑛(𝛽𝑟) + 𝛽𝑘𝑟2𝑊𝑛+1(𝛽𝑟) (A.41) 

 𝐷𝜎(4,6) = −𝑛𝑘𝑟𝑍𝑛(𝛽𝑟) + 𝜆2𝛽𝑘𝑟2𝑍𝑛+1(𝛽𝑟) (A.42) 

 𝐷𝜎(5,1) = 2𝑗𝑛𝑘𝑟𝑊𝑛(𝛼𝑟) − 2𝑗𝑘𝛼𝑟2𝑊𝑛+1(𝛼𝑟) (A.43) 

 𝐷𝜎(5,2) = 2𝑗𝑛𝑘𝑟𝑍𝑛(𝛼𝑟) − 2𝑗𝜆1𝑘𝛼𝑟2𝑍𝑛+1(𝛼𝑟) (A.44) 

 𝐷𝜎(5,3) = 𝑗𝜆2𝑛𝛽𝑟𝑊𝑛(𝛽𝑟) − 𝑗(𝛽2 − 𝑘2)𝑟2𝑊𝑛+1(𝛽𝑟) (A.45) 

 𝐷𝜎(5,4) = 𝑗𝑛𝛽𝑟𝑍𝑛(𝛽𝑟) − 𝑗(𝛽2 − 𝑘2)𝑟2𝑍𝑛+1(𝛽𝑟) (A.46) 

 𝐷𝜎(5,5) = 𝑗𝑛𝑘𝑟𝑊𝑛(𝛽𝑟) (A.47) 

 𝐷𝜎(5,6) = 𝑗𝑛𝑘𝑟𝑍𝑛(𝛽𝑟) (A.48) 

 𝐷𝜎(6,1) = 2𝑗𝑛(𝑛 − 1)𝑊𝑛(𝛼𝑟) − 2𝑗𝑛𝛼𝑟𝑊𝑛+1(𝛼𝑟) (A.49) 

 𝐷𝜎(6,2) = 2𝑗𝑛(𝑛 − 1)𝑍𝑛(𝛼𝑟) − 2𝑗𝑛𝜆1𝛼𝑟𝑍𝑛+1(𝛼𝑟) (A.50) 

 𝐷𝜎(6,3) = −𝑗𝜆2𝛽𝑘𝑟2𝑊𝑛(𝛽𝑟) + 2𝑗𝑘𝑟(𝑛 + 1)𝑊𝑛+1(𝛽𝑟) (A.51) 

 𝐷𝜎(6,4) = −𝑗𝛽𝑘𝑟2𝑍𝑛(𝛽𝑟) + 2𝑗𝑘𝑟(𝑛 + 1)𝑍𝑛+1(𝛽𝑟) (A.52) 

 𝐷𝜎(6,5) = 𝑗(2𝑛(𝑛 − 1) − 𝛽2𝑟2)𝑊𝑛(𝛽𝑟) + 2𝑗𝛽𝑟𝑊𝑛+1(𝛽𝑟) (A.53) 

 𝐷𝜎(6,6) = 𝑗(2𝑛(𝑛 − 1) − 𝛽2𝑟2)𝑍𝑛(𝛽𝑟) + 2𝑗𝜆2𝛽𝑟𝑍𝑛+1(𝛽𝑟) (A.54) 

 

All the entries of the displacement matrix are scaled by 
1

𝑟
 while all the entries of the 

stress matrix are scaled by 
𝐺

𝑟2 with G being the shear modulus of the material. The 

parameters α and β are defined as: 
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 𝛼 =
𝜔2

𝑐𝑙
2 − 𝑘2 (A.55) 

 𝛽 =
𝜔2

𝑐𝑠
2

− 𝑘2 (A.56) 

 

𝑐𝑙 and 𝑐𝑠 are the respective longitudinal and shear velocities of the waveguide, and 

𝜔 = 2𝜋𝑓 being the angular frequency. The rest of the parameters are defined by Table 

A.1 [29, 30]: 
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Table A.1: Choice of parameters for the determinant equation solution 

Frequency Range Coefficients Bessel Functions Wavenumber 

𝜔

𝑘
< 𝑐𝑟 𝛼2, 𝛽2 < 0 

𝜆1 = 𝜆2 = −1 

𝑍𝑛(𝛼𝑟) = 𝐼𝑛(𝛼𝑟) 

𝑊𝑛(𝛼𝑟) = 𝐾𝑛(𝛼𝑟) 

𝑍𝑛(𝛽𝑟) = 𝐼𝑛(𝛽𝑟) 

𝑊𝑛(𝛽𝑟) = 𝐾𝑛(𝛽𝑟) 

Real 

𝑐𝑟 <
𝜔

𝑘
< 𝑐𝑙 

𝛼2 < 0, 𝛽2 > 0 

𝜆1 = −1, 𝜆2 = 1 

𝑍𝑛(𝛼𝑟) = 𝐼𝑛(𝛼𝑟) 

𝑊𝑛(𝛼𝑟) = 𝐾𝑛(𝛼𝑟) 

𝑍𝑛(𝛽𝑟) = 𝐽𝑛(𝛽𝑟) 

𝑊𝑛(𝛽𝑟) = 𝑌𝑛(𝛽𝑟) 

Real 

𝜔

𝑘
> 𝑐𝑙 

𝛼2, 𝛽2 > 0 

𝜆1 = 𝜆2 = 1 

𝑍𝑛(𝛼𝑟) = 𝐽𝑛(𝛼𝑟) 

𝑊𝑛(𝛼𝑟) = 𝑌𝑛(𝛼𝑟) 

𝑍𝑛(𝛽𝑟) = 𝐽𝑛(𝛽𝑟) 

𝑊𝑛(𝛽𝑟) = 𝑌𝑛(𝛽𝑟) 

Real 

Any 𝛼2, 𝛽2 > 0 

𝜆1 = 𝜆2 = 1 

𝑍𝑛(𝛼𝑟) = 𝐽𝑛(𝛼𝑟) 

𝑊𝑛(𝛼𝑟) = 𝑌𝑛(𝛼𝑟) 

𝑍𝑛(𝛽𝑟) = 𝐽𝑛(𝛽𝑟) 

𝑊𝑛(𝛽𝑟) = 𝑌𝑛(𝛽𝑟) 

Imaginary 

 




