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Abstract

Background: Antimalarial interventions designed to impact on the transmissible sexual stages of Plasmodium falciparum are
evaluated by measurement of peripheral gametocyte carriage in vivo and infectivity to mosquitoes. Drug or vaccine-elicited
effects may differentially affect the relative abundance of mature male and female sexual forms, and this can be measured
by estimation of sex ratios before and after intervention in vivo and in vitro. Measuring the impact of anti-gametocyte drugs
on sexual commitment of immature gametocyte stages in vitro is not currently possible as male and female parasites cannot
be distinguished by morphology alone prior to stage IV.

Methodology/Principal Findings: We have modified an existing immunofluorescence-based approach for distinguishing
male and female gametocytes during development in vitro, by using highly synchronised magnetically-enriched
gametocyte preparations at different stages of maturity. Antibodies recognising a-tubulin II (males) and Pfg377 (females)
were used to attempt to discriminate the sexes. Transcription of these two proteins was not coordinated during in vitro
development, with pfg377 transcripts accumulating only late in development, immediately prior to immunofluorescent
signals from the PfG377 protein appearing in stage IV gametocytes. Contrary to previous descriptions of this protein as
male-specific in P. falciparum, a-tubulin II recognised both male and female gametocytes at stages I to IV, but evidence of
differential expression levels of this protein in late stage male and female gametocytes was found. Using antibodies
recognising PfG377 as the primary marker and a-tubulin II as a secondary marker, robust estimates of sex ratio in in vitro
cultures were obtained for gametocytes at stage IV or later, and validated by light microscopic counts. However, sex ratio
estimation was not possible for early stage gametocytes due to the promiscuity of a-tubulin II protein expression, and the
relatively late accumulation of PfG377 during the development process.

Conclusions/Significance: This approach is a feasible method for the evaluation of drug impacts on late-stage gametocyte
sex ratio in in vitro studies. Additional sex-specific antigens need to be evaluated for sex ratio estimation in early stage
gametocyte preparations.
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Introduction

The propagation of malaria is a public health threat throughout

the tropics. Recent calls for intensification of the effort towards

malaria elimination have emphasised the need for drugs and

vaccines that target gametocytes, particularly those of P. falciparum,

in order to bring malaria transmission under control [1]. Recent

renewed interest in the evaluation of the anti-gametocyte effects of

therapeutic agents, both in vitro and in vivo, is thus very welcome

[2,3]. These evaluations require establishment of novel methods

for studying gametocytes in vitro. One potential impact of interest is

perturbation of the natural sex ratio, and recent studies have

shown that changes in the proportion of male gametocytes taken

up by feeding mosquitoes can affect transmission [4]. Rodent

parasite studies strongly implicate sex ratio as an indicator of

fitness in P. chabaudi [5]. Studies of P. falciparum in vivo have

suggested that drug treatment may differentially affect the half-life

of male and female gametocytes [6], and therefore may affect the

transmission success of the parasite.

Currently, the standard method for quantifying the P. falciparum

gametocyte sex ratio remains the identification of male and female

gametocytes by light microscopy, using five discriminatory

morphological characters [7]. Individual P. falciparum gametocytes

from in vitro cultures have been sexed with alternative methods at

low densities, including electron microscopy [8], in situ hybridiza-

tion [9], immunoelectron microscopy [10] and immunofluorescent

antibody test (IFAT) [11–16]. However, these methods are

laborious, and hitherto have only been applicable to small

numbers of specially prepared gametocytes, and have thus not

been used to derive reliable estimates of the gametocyte sex ratio in

vitro. Further, all studies to date have estimated sex ratios in

preparations of mature stageIV/stageV gametocytes only, as sex-

distinguishing morphological characteristics are absent in imma-

ture stages.
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Discrimination between the gametocyte sexes by IFAT has

relied on two relatively well characterised sexual stage proteins,

Pfg377 (PFL2405c in the 3D7 genome database) used to identify

female gametocytes and a-tubulin II (PFD1050w) which has been

used to identify male gametocytes [13,14]. a-tubulin II has been

described as a gametocyte-specific, male-specific protein in P.

falciparum [12–14,17,18]. However recent studies in rodent malaria

parasites have demonstrated transcription and expression of the P.

berghei homologue of this protein in both asexual parasites and

female gametocytes in infected mice [19,20]. In P. falciparum, there

is some in vitro evidence of expression of the a-tubulin II protein in

asexual parasites [21], although these authors analysed expression

of this protein from bulk cultures and so could not rule out the

presence of some young parasites committed to sexual develop-

ment. However, Khan et al. [19] were able to use a-tubulin II in

transfected P. berghei parasites as a marker to separate male from

female gametocytes using fluorescent flow cytometry, suggesting

much higher expression levels are found in male compared to

female gametocytes, at least in this rodent parasite. The utility of

this protein as a potential male-specific probe in P. falciparum thus

remains unclear.

A strategy for discriminating P. falciparum gametocyte sexes

based on differential antibody staining by IFAT was deployed to

examine sex ratios at all stages of gametocyte development in vitro.

Improved differential staining and enhanced enrichment of

gametocytes permitted robust estimation of the sex ratio in 3D7

cultures, and thus provide a basis for in vitro evaluation of drug

effects on sex ratio, and so parasite transmission potential, in future

studies.

Materials and Methods

Parasite culture
Parasites were cultured from the P. falciparum cell line 3D7A [22]

(MRA-151; MR4-Malaria Research and Reference Reagent

Resource Centre, Manassas, VA, USA) using the standard

methods with slight modifications [7,23,24]. Parasites were

maintained in T75 cell culture flasks (Iwaki, Japan) containing

AB+ erythrocytes, and RPMI medium (PAA Laboratories, UK)

supplemented with 10% AB serum. Cultures were incubated at

37uC and gassed for 1 minute every day (3% O2, 4% CO2, N2;

BOC). Parasites were kept between 0.1–15% parasitemia at a

haematocrit of 2–5%.

Parasite harvesting
Magnetic activated cell sorting (MACSH; Milentyi BioTec,

Bergisch Gladbach, Germany) [25,26] was used for the purifica-

tion of the parasites as previously described, with some

modifications [24,27]. Gametocytes were harvested on days 3

(stage II), 5 (stage III), 7 (stage IV) and 11 (stage V). Stages were

identified after Field and Shute [28]. Before harvest, parasite

cultures were washed twice with pre-warmed incomplete media

(RPMI 1640 containing 25 mM HEPES and L-Glutamine, Gibco)

at 5006g for 5 minutes and the supernatant was removed.

MACSH columns (25CS columns, Miltenyi Biotec, Germany) were

preheated in the incubator and filled with incomplete medium at

37uC. The pellet was diluted with incomplete medium at

approximately 50% haematocrit, with slight adjustment for

percentage parasitaemia. The parasites were then resuspended

in pre-warmed RPMI and parasites were transferred into the

column with a 1 ml pipette, until the whole sample moved through

the column. Warm incomplete medium was added to the column

until no RBCs were visible, to wash the column free of any

remaining gametocytes. The eluate was then centrifuged at 5006g

for 4 minutes at a minimum of 25uC and the supernatant was

removed. Following this, gametocytes were washed and resus-

pended in a small volume of incomplete medium. To achieve the

desired parasite density, a thin film was prepared on a glass slide

and analyzed under a light microscope (magnified 61000).

Parasite density was then adjusted, by addition of incomplete

medium, to the optimal of approximately 100 parasites per field of

view and gametocytes were quantified exactly by haemocytometer

(C-Chip, Neubauer, Germany).

For the observation of activated gametocytes, prior to slide

preparation the gametocytes were incubated at room temperature

for 10 minutes with 56pellet volumes of cold incomplete medium

including 20 ml of 100 mM xanthurenic acid (Sigma-Aldrich). This

was not adjusted to reflect pellet volumes. Stage I to V and

activated gametocytes were then pipetted onto multiwell slides

(Hendley Essex), slides were air dried and stored at 220uC in a

sealed box containing silica gel (Sigma-Aldrich) for long term

storage.

Isolation of gametocyte RNA
Parasites were harvested, purified and quantified with a

haemocytometer (C-Chip, Neubauer, Germany) then added to

1.5 ml of Tri-ReagentH (Sigma, UK) pre-warmed at 37uC.

Samples were gently shaken, left at room temperature for at least

five minutes and were then stored at 280uC. Isolation of RNA was

achieved by following the Tri-ReagentH manufacturer’s protocol.

Briefly, samples were thawed at 37uC and gently vortexed; 0.1 ml

of 1-Bromo-3-chloropropane (Sigma-Aldrich) was added per

0.75 ml of Tri-ReagentH, vortexed and left at room temperature

for 5 minutes. Samples were centrifuged for 30 minutes at

12,0006g at 4uC, which allowed the phase separation of the RNA

and DNA. The upper aqueous phase containing the RNA was

carefully removed, to which 0.5 ml of isopropanol (Sigma Aldrich)

was added, allowing precipitation of the RNA. Samples were

stored at 4uC overnight and then centrifuged at 12,0006g for 30

minutes. The RNA pellet was washed once in 75% ethanol (Sigma

Aldrich), and the supernatant removed. Pellets were air-dried until

no ethanol remained and resuspended in 20 ml of nuclease free

water (Promega). The RNA solution was then stored at 280uC for

up to three months.

Obtaining cDNA from gametocyte RNA
20 ml of RNA dissolved in nuclease free water was added to a

reagent mix containing 3 ml of 25 mg/ml random hexamer primers

(Promega), 3 ml of 5 mM dNTPs (Promega), 3units of RQ-DNase

(Invitrogen), 20 units of the restriction enzyme RsaI (Invitrogen),

12 ml of 56first strand RT-buffer (Invitrogen), 3 ml of 0.1 M DTT

(Invitrogen) and nuclease free water to a total of 60 ml. The

DNase/RsaI reaction was incubated at 37uC for 1 hour, 94uC for

6 minutes and 12uC for 2 minutes. Each DNA-free RNA

preparation was then split into two, one portion containing

50 ml, to which 320 units of reverse transcriptase (Superscript II;

Invitrogen) were added for synthesis of cDNA, the other portion of

10 ml to which 0.33 ml nuclease free water (Promega) was added.

All samples were incubated at 50uC for 1 hour and 70uC for

15 min; both reactions were then stored at 220uC.

RT-PCR targeting Pfs16, Pfs25, Pfg377 and a-tubulin II
cDNA was prepared from parasites harvested on days 1, 3, 5, 7

and 11 of a gametocyte culture. The master mix for the RT-PCR

was made with the following per 25 ml reaction: 2.5 ml of 106
NH4 buffer (Bioline), 0.5 ml of 50 mM MgCl2 (Bioline), 0.5 ml of

5 mM dNTPs (Promega), 1 ml of 5 mM of the chosen forward and

reverse primers, 25 units of Taq polymerase (Bioline) and 3–5 ml of

Gametocyte Sex-Specificity
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cDNA. Nuclease free water (Promega) was used to bring the

reaction to a volume of 25 ml. Positive controls, containing 3D7

DNA and negative controls containing nuclease free water

(Promega) were included in each run. Amplification primers used

were:

a-tubulin II: forward (SA05) 59-TGAACATGGAATTCAAC-

CGG-39

reverse (SA06) 59- CGTCAACGACGGTGGGTTC-39

Pfs16: forward (SA07) 59-TTCTTCGCTTTTGCAAACCT-39

reverse (SA08) 59-AAAGGCATTTTGTCAGCAGAA-39

Pfg377: forward (SA09) 59-CCCCATTTCCTCCTAAAG-

TACC-39

reverse (SA10) 59-CTGGTTCTGCTTCTGGTTCC-39

The cycling conditions for a-tubulin II (SA05+SA06) were 95uC
for 6 minutes, 95uC for 5 seconds, 58uC for 1 minute, 70uC for 30

seconds (40 cycles). The cycling conditions for Pfs16 (SA07+SA08)

were 94uC for 6 minutes, 94uC for 5 seconds, 53uC for 1 minute,

70uC for 30 seconds (40 cycles). The cycling conditions for Pfg377

(SA09–SA10) were 96uC for 6 minutes, 96uC for 5 seconds, 59uC
for 1 minute, 70uC for 30 seconds (40 cycles).

cDNA and DNA amplification products were fractionated on

1.2% (0.56TBE) agarose gels (Sigma-Aldrich), containing 2.5 ml

of ethidium bromide (10 mg/l) at 100 V for 1 to 1.5 hours, and

visualised over UV light.

Sex discrimination in Giemsa-stained gametocytes
Asexual parasites and gametocytes were monitored daily by

preparing thin films of approximately 10 ml of the culture at 50%

haematocrit. Preparations were methanol fixed for 10 seconds and

stained in 10% Improved R66 Giemsa (BDH) in phosphate buffer

(pH 7.4), applied with a syringe containing a 0.45 mm pore size

filter (Millex) to remove particulate matter. The preparations were

examined at 61000 magnification and the sex of the mature

gametocytes was identified based on the five characters described

by Carter et al. [7]. The sex ratio was then calculated by dividing

the total number of male gametocytes observed, by the total

number of male and female gametocytes observed. This

denominator comprised all gametocytes where at least 4 out of

the 5 discriminatory characters could be identified; the number of

undetermined parasites was also noted.

Immuno Fluorescent Antibody Test
After considerable trouble-shooting to obtain reliable double-

staining results consistent between experiments, we adopted the

following modification of standard protocols. Slides were removed

from the freezer, air dried in a ‘dry box’ containing silica gel for 15

minutes, and then fixed in ice cold anhydrous acetone (BDH) for

30 minutes. The slides were washed with PBS (Sigma Aldrich) and

excess fluid between the wells removed. PBS-1% BSA, 0.1%

TweenH20 was added to each well to prevent non-specific binding

of the antibodies. Slides remained for 30 minutes in a humid

sealed box, containing moist paper towels to prevent the wells

from drying out.

Slides were washed in PBS and the primary polyclonal antibody

for a-tubulin II (1:7000 dilution in PBS-1% BSA, 0.1%

TweenH20) was added to the wells and incubated at room

temperature for 1 hour. The slides were washed with PBS and the

fluorescent secondary antibody (1:400 dilution in PBS) rhodamine-

conjugated donkey anti-rabbit IgG (Jackson Immuno Research)

was added for 30 minutes. The slide was washed again and the

second primary monoclonal antibody Pfg377 (1:400 dilution in

PBS-1% BSA) was added for 1 hour. Slides were washed and the

fluoroscein-conjugated secondary antibody donkey anti-rat IgG

(Jackson Immuno Research) was added for 45 minutes. Antibodies

were added sequentially, due to the differential sensitivity and

incubation time needed. Primary and secondary antibodies were

incubated at room temperature.

Following antibody incubations, the slides were washed with

PBS and 40 ml of VectashieldH containing DAPI (Vector

Laboratories) was added to the slide, a coverslip was mounted

and slides were sealed with nail varnish and stored at 4uC for a

maximum of 2 days until visualized and photographed by confocal

microscopy (Zeiss Axioplan LSM510). Parasites were magnified

61000 under the 6100 immersion oil objective, and fluorescent

signals detected at 488 nm for fluoroscein (Pfg377-female

gametocytes), 543 nm for rhodamine (a-tubulin II-male gameto-

cytes), and 403 nm for DAPI (staining the nuclear material), using

Zeiss LSM software. The anti-Pfg377 antibody (anti-rat) was a

kind gift of Pietro Alano. Anti-a-tubulin II (anti-rabbit) was

obtained from the MR4 (MRA-37 MR4, Manassas, VA.).

Application of Image ProPlus 6.3 for sexing gametocytes
using IFAT

IFAT images were analyzed with the Image-ProPlus 6.3

software, which allowed tagging individual gametocytes according

to stage and colour. Parasites staining only red (a-tubulin II) were

tagged as males, whereas parasites staining with red and green

(Pfg377 and a-tubulin II) were tagged as females. Gametocytes

that only stained with DAPI were also noted.

Results

Sex-specific mRNA in preparations of developing
gametocytes

RT-PCR of mRNA from stage-specific preparations of

synchronised developing gametocytes demonstrated that a-tubII

transcripts were abundant throughout development (Fig. 1, 2nd

panel), whereas pfg377 transcripts were barely detectable in stage

I/IIa gametocytes, becoming very abundant in later stage

preparations (Fig. 1, 3rd panel). Transcripts of pfs16 were abundant

throughout gametocyte development as expected from previous

studies [29], confirming the integrity and specificity of the RNA

preparations. This lack of coordination between the two genes of

interest suggests that quantitative measurements of a-tubII and

pfg377 transcript accumulation during development would not

provide stable estimates of sex ratio; other transcripts may be more

suited to this purpose.

Sex ratios established using light microscopy
Giemsa-stained stage V (day 11) purified parasites were sexed

based on the five characters of Carter et al. [7]. Magnetic

purification ensured high densities of mature gametocytes on a

single slide which facilitated sex ratio quantification (Fig. 2). Three

independent gametocyte cultures were evaluated, contributing

110, 114 and 116 mature gametocytes respectively, with 92–96%

of these able to be scored for 4 of the 5 characters. P. falciparum

clone 3D7 was confirmed as female biased, having sex ratios of

0.140 (S.E. 0.009), 0.125 (S.E. 0.008) and 0.120 (S.E. 0.008),

respectively, in three separate cultures, giving an average estimate

of gametocyte sex ratio by light microscopy of 0.128, which

approximates to seven females per male gametocyte.

Pfg377 and a-tubulin II expression during gametocyte
development

Evidence of Pfg377 expression was observed from early stage III

gametocytes onwards (day 4–5). In these immature gametocytes,

Pfg377 antibodies recognised granular clusters at the tips of the
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gametocytes and in the centre of the cell (figure 3A, 3B). From

stage IV onwards, staining generated by Pfg377 antibodies

remained punctuate but was found throughout each parasite,

suggesting that the protein was more homogenously distributed in

later stages (Fig. 3C, 3D). Once the gametocytes were activated,

Pfg377 clusters reappeared near the circumference of the

parasitophorous vacuole in some gametocytes (Fig. 3E, 3F), as

previously reported by Severini et al. [13].

Expression of a-tubulin II was detected as early as stage I, the

fluorescent signal appearing to increase in intensity in a subset of

(presumably male) gametocytes as they matured (Fig. 4A–E). From

stage II to III, a -tubulin II was found to be concentrated

longitudinally at the edges of the parasite, and striations were seen

throughout the cell (Fig. 3A, B, C). From stage I to III, a -tubulin

II fluorescent intensity was similar among all gametocytes at the

same stage of maturity, yet stage IV and stage V gametocytes that

reacted with anti-Pfg377 revealed much lower expression levels of

a-tubulin II than those gametocytes not expressing Pfg377 (Fig. 4C,

D, E). Particularly striking was the strong fluorescence in activated

gametocytes that only reacted with anti-a-tubulin II antibodies

and not Pfg377 antibodies (presumably male), whereas the

activated gametocytes also reacting with Pfg377 (presumably

female) showed very low expression levels of a-tubulin II (Fig. 4E).

These antibody-staining results suggest discrimination between

fully mature and/or activated male and female gametocytes, prior

to induction of ex-flagellation and female gamete emergence, can

be readily achieved with this procedure. Discrimination can be

made on the basis that Pfg377 staining, together with a reduced

anti-a-tubulin II signal, is characteristic of female parasites in the

later stages of development. Reliable specific staining of emergent

microgametes was not achieved.

Discrimination between the males and females was not possible

at stages I–III of gametocyte development, when all gametocytes

stain strongly with anti-a-tubulin II antibodies, and females do not

express sufficient Pfg377 protein to produce a definitive pattern

(Fig. 4 A–D). Counting of the gametocytes recognised by one or

both antibodies clearly demonstrate that changes in relative

expression of both proteins occur during development (Table 1).

In stages II and III, 55% and 43% of gametocytes, respectively,

did not react with either of the antibodies, partly due to the

presence of damaged DAPI-stained parasites. After activation,

only 12% of the gametocytes were not recognised by either

antibody. The proportion staining with anti-PfG377 antibodies

increased dramatically in stages IV and V, indicating a likely

female-bias of the sex ratio, which was obscured earlier in

development by the lack of Pfg377 expression. These findings are

in broad agreement with the pattern of abundance of the two

transcripts encoding these two proteins during development

(Fig. 1).

Distinguishing mature male and female mature
gametocytes using IFAT

Based on the results shown in Figures 3 and 4, sex ratios were

estimated in preparations of late stage IV and stage V (non-

activated) gametocytes. The primary marker used was Pfg377,

assumed to be a female-specific protein, and anti-a-tubulin II,

which reacts with both sexes, albeit at different intensities, was

Figure 1. RT-PCR of sexual stage and sex specific proteins
during gametocytogenesis. Transcripts of Pfs16, a-tubulin II and
Pfg377 were amplified from preparations of stage I–V gametocytes. Gel
electrophoresis of amplified products; + and 2 refer to presence or
absence of reverse-transcriptase in the cDNA reaction prior to
amplification. PC: positive control; NC: negative control. Cultures were
not 100% synchronous. All samples (including positive controls) were
run on a single gel at the same time. Lower bands (,100 bp) in each
panel, particularly prominent in the absence of cDNA amplification, are
primer dimers. Minor contamination of pfg377 DNA is visible in lanes 4,
8 and NC, lower panel.
doi:10.1371/journal.pone.0014470.g001

Figure 2. Sex ratios established using light microscopy. Purified stage V gametocytes stained with Giemsa. A.) 3D7 magnet-purified
gametocytes magnified61000. B.) (Detail) The cytoplasm of male gametocytes (MG) can be seen to stain pink and that of female gametocytes (FG) to
stain purple; male gametocytes are smaller than females, the nucleus is bigger in males than in females, the granules of the malaria pigment are
centrally located in female gametocytes and more widely scattered in males gametocytes The other 4 discriminatory characters can also be
discerned.
doi:10.1371/journal.pone.0014470.g002
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taken as a secondary marker to provide a denominator of viable,

intact gametocytes of both sexes. The use of a secondary marker in

addition to DAPI nuclear staining prevents over-estimation of the

total number of gametocytes, caused by nuclear remnants from

gametocytes damaged in the preparation process (Fig. 4B). On this

basis, sex ratios were estimated from preparations of mature, non-

activated gametocytes (Fig. 5), in three independent cultures, two

of which were among those evaluated by light microscopy. These

estimates were 0.108 (S.E. 0.041), 0.210 (S.E. 0.118) and 0.119

(S.E. 0.041), and were thus in agreement with the female-biased

estimates of sex ratio obtained by light microscopy.

Discussion

In this study, systematic stage-specific preparations of P.

falciparum gametocytes developing in vitro were examined by IFAT

for expression of two proteins, a-tubulin II and PfG377, previously

used as male- and female-specific gametocyte markers, respective-

ly. We show, in contrast to previous studies, that a-tubulin II is

expressed by both sexes of P. falciparum gametocytes, but that from

stage IV onwards was markedly reduced in abundance in female

gametocytes. This is consistent with studies of the rodent parasite

P. berghei, demonstrating a-tubulin II expression in both sexes

[19,20]. With Pfg377 as a primary marker recognising only female

gametocytes, and a-tubulin II as a secondary marker for

accurately enumerating the denominator of viable gametocytes,

robust sex ratios could be derived for preparations of gametocytes

at stage IV or later. These estimates agreed with the sex ratio

obtained by light microscopic examination of Giemsa-stained

mature 3D7a gametocyte preparations, and are similar to those

obtained by others for this parasite clone [14]. However, following

activation by xanthurenic acid, rapid changes in protein

localisation and abundance occurred, and stable sex ratios could

no longer be derived from IFAT studies. RNA-based studies

demonstrated that pfg377 and a-tubII transcripts did not

accumulate in a coordinated fashion during development. This

suggests that quantitative cDNA amplification methods for

estimating sex ratios with these two markers would be affected

by even quite small differences in gametocyte maturity among the

preparations being compared, as maturity is expected to confound

relative transcript abundance prior to stage V.

Three different functional classes of microtubules have been

identified in Plasmodium; axonemal and flagellar microtubules,

involved in the movement of the male gamete; subpellicular

microtubules, involved in the cell structure and motility, and

spindle – associated microtubules, which play a role in cell division

[30]. Scanning electron microscopy (SEM) and IFAT images have

reported that male gametocytes contain all classes of microtubules,

whereas female gametocytes have been reported to have only

subpellicular microtubules [8]. After emergence from the eryth-

rocyte, female gametes do not contain any microtubules whereas

male gametes are reported to contain only axonemal microtubules

[8,30]. In Plasmodium, two a-tubulins, I and II, which share 95%

sequence identity, and one b-tubulin are present [31–33]. Pfg377

is confined to P. falciparum female gametocytes, the only protein

that has been associated with osmiophilic bodies, intracellular

membrane-bound vesicles found beneath the subpellicular mem-

brane from stage III gametocytes onwards [13]. In clones of P.

falciparum 3D7 with the pfg377 gene knocked out, female gamete

emergence was severely impaired, and infectiousness of gameto-

cytes to mosquitoes greatly reduced, although not entirely ablated

[16].

The results of our IFAT studies are broadly consistent with the

known biology of a-tubulin II and Pfg377, described in the

preceding paragraph, but do show for the first time that the former

is not a male-specific protein in P. falciparum, in contrast to the

Figure 3. Stage III and later gametocytes visualized with anti-Pfg377 and anti-a-tubulin II antibodies. Fluorescent staining of a-tubuIin
(red) generated a characteristic striated pattern, particularly in earlier gametocytes. Expression of Pfg377 (green) was not seen prior to stage III. A)
stage III; B) late stage III; C) stage IV; D) late stage IV; E) stage V; F) activated female gametocyte. Nuclear material was stained with DAPI, appearing
blue in colour. Parasites were magnified 61000.
doi:10.1371/journal.pone.0014470.g003

Figure 4. Differential staining of gametocytes during gametocytogenesis. Pfg377 and a-tubulin II double-stained IFAT slides prepared on:
A) day 2 (stage II); B) day 5 (stage III); C) day 7 (stage IV); D) day 11 (stage V); E) after gametocyte activation (AG). Parasites were magnified 61000.
Early stage parasites were more likely to be damaged during the purification process, and appear as stained with DAPI alone (panels A, B).
doi:10.1371/journal.pone.0014470.g004
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findings of Rawlings et al. [12]. Of additional significance is the

lack of expression of Pfg377 transcripts (Fig. 1) and protein (Fig. 4)

prior to Stage IV of gametocyte development. Thus any technique

which estimated sex ratio based on Pfg377 transcript or protein

abundance would deliver an ‘‘apparent’’ sex ratio that was

extremely male biased prior to stage IV. As commitment of any

particular P. falciparum parasite to male or female gametocyte

development occurs in the parental asexual parasite (Bruce et al.,

1990), this apparent ratio is an artefact of the markers chosen, as

a-tubulin II is expressed by both sexes in these early stages, and

female gametocytes do not produce reliably detectable levels of

Pfg377 until they reach stage IV. Further, any contamination of

mature gametocyte preparations with earlier stages, due to

inadequate synchronisation, will also produce artefactually male-

biased sex ratio estimates. The development of antibody-based

fluorescent staining protocols for male- and female-specific

proteins expressed earlier in gametocyte development would

overcome this problem. Drew and Reece [34] developed a

qRT-PCR assay for the quantification of sex ratios in P. chabaudi,

however the extended maturation of P. falciparum gametocytes over

many days means the relative abundance of sex-specific mRNA

through development must be characterised prior to calibration of

Table 1. ‘Apparent’ sex ratio during gametocytogenesis.

Stage II III IV V AG

DAPI 129 611 207 1916 350

% sexed 45.0 57.1 72.9 81.7 88.6

Alapha-tub.II + 58 342 26 221 12

Pfg377/A.tub. II + 0 7 125 1344 298

% Alpha-tub. II + 45 56 13 12 3

% Pfg377 + 0 1.1 60.4 70.15 85.1

Sex ratio 1 0.980 0.17 0.128 0.039

Standard error 0 0.011 0.06 0.056 0.021

IFAT counts were performed on gametocyte preparations of stage II, stage III,
stage IV, stage V, and 30 minutes after induction of activation (AG). Standard
error is estimated for the ratio based on error calculated for the mean estimates
of the proportion of males across the three independent cultures analysed.
% Alpha-tub. II+, % Pfg377+: indicate the percentage of gametocytes reacting
with the given a-tubulin II and Pfg377 antibodies respectively.
doi:10.1371/journal.pone.0014470.t001

Figure 5. Distinguishing between male and female gametocytes. A) IFAT image of stage V gametocytes showing all fluorophores from the
secondary antibodies and DAPI (red, green and blue). B) Rhodamine (red) is visualized, which reacts with anti-a-tubulin II antibodies. C) DAPI (blue) is
visualized, reacting with the nuclear material. D) FITC (green) is visualized, reacting with anti-Pfg377 antibodies. The white dotted circle shows
gametocytes staining with anti-Pfg377 and anti-a-tubulin II (females), whereas the yellow dotted circle reveals one gametocyte that only reacts with
anti-a-tubulin II antibodies (male). It can be seen that gametocytes which reacted with anti-Pfg377 antibodies, also reacted with anti-a-tubulin II
antibodies, when comparing B) and D). Parasites were magnified 61000.
doi:10.1371/journal.pone.0014470.g005
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such assays against microscopic data. Indeed, it may be necessary

to quantify transcript abundance of more than one male- and

female-specific gene in order to correct for maturity in estimating

sex-ratio. This important effect of maturity is unique to

gametocyte development in P. falciparum, among the malaria

parasite species that can be studied in the laboratory.

The ability to rapidly and accurately derive estimates of

gametocyte sex ratio provides a valuable additional phenotype

for studies of the in vitro effect of antimalarial compounds on

parasite transmission potential. Enumeration of gametocytes in toto

may fail to recognise important transmission-blocking effects

which only affect one sex, particularly if these were male

gametocytes; loss of all males would completely prevent transmis-

sion to mosquitoes, but cause only a small decrease in total

gametocyte numbers if females were unaffected. The ideal method

for routine evaluation of drug effects is unlikely to be IFAT, as it is

difficult to scale-up for high-throughput assays, but our antibody-

based methods could be adapted to flow cytometrics. Further, we

suggest that the approach we have described is ideal for

comparative studies of different gametocyte-producing lines,

phenotypic studies of transgenic gametocyte lines following

targeted gene-disruption, and, most importantly, for validation

of high-throughput methods such as quantitative reverse-tran-

scriptase PCR sex ratio assays, currently in development for P.

falciparum in our laboratory.
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