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The MHD flow due to the nonlinear stretching of a porous sheet is investigated. A closed form solution is obtained when the
stretching rate is inversely proportional to the distance from the origin. Otherwise a uniformly valid asymptotic expansion, for
largemagnetic interaction number 𝛽 ∼ ∞, is developed. It coincides with a homotopy perturbation expansion for the problem.The
asymptotic/homotopy perturbation expansion gives results in excellent agreement with accurate numerical results, for large as well
as small values of 𝛽. For large 𝛽, the expansion, being asymptotic, needs a small number of terms, regardless of the mass transfer
rate or the degree of nonlinearity. For small 𝛽, the expansion is a homotopy perturbation one. It needs considerably increasing
number of terms with higher injection rates and/or with stretching rates approaching the inverse proportionality. It may even fail.

1. Introduction

Theproblemof theMHDflowdue to the nonlinear stretching
of a nonporous sheet was first formulated and analyzed by
Chiam [1]. He chose a special magnetic field that allowed the
problem to be cast in a self-similar form. He also explored the
asymptotic solution for large magnetic interaction number 𝛽
and obtained a three-term expansion for the stream function
that was marred by the presence of secular terms.

The problem has recently come under extensive study.
The aim has been to construct approximate expansion solu-
tions through newly developed analytical methods, with the
help of computer symbolic manipulation software facilities.
Hayat et al. [2] has used Adomian’s decompositionmethod to
construct an expansion in powers of the similarity coordinate
𝜂. Yildirim and Sezer [3], Fathizadeh et al. [4], and Sushila
et al. [5] have arrived at the same power expansion through
variants of the homotopy perturbation method. The power
expansion has given accurate results only at a narrow range
of 𝜂. This range has been extended through the use of Padé
approximants in [2, 3].

Raftari et al. [6] have constructed a different homotopy
problem, onwhich they have imposed anunnecessary restric-
tion, and have obtained a two-term homotopy perturbation
expansion involving secular terms.

In this paper, the problem of the MHD flow due to the
nonlinear stretching, according to a power law of index 𝛼,
of a porous sheet is studied. When 𝛼 = −1, a closed form
solution is obtained. When 𝛼 ̸= −1, a uniformly valid
asymptotic expansion as 𝛽 ∼ ∞ is obtained and is shown
to be identical to a homotopy perturbation expansion of
the problem.The present asymptotic/homotopy perturbation
expansion alleviates problems facing previous works on
Chiam’s problem [1–6]. Consequences of the expansion being
asymptotic or a homotopy perturbation one are assessed with
regard to the number of terms retained, and the accuracy
achieved.

2. Formulation of the Problem

An electrically conducting fluid is driven by a symmetri-
cally stretching insulated sheet, lying along the 𝑥-axis. The
stretching rate is proportional to |𝑥|𝛼. The sheet is porous
allowing fluid flow of rate proportional to |𝑥|(𝛼−1)/2 in the
normal 𝑦-direction, along which a magnetic field of strength
proportional to |𝑥|(𝛼−1)/2 is applied. The power law index 𝛼
may be positive or negative.
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For 𝑥 > 0, the boundary layer equations write [1]

𝜕𝑢

𝜕𝑥
+
𝜕V
𝜕𝑦
= 0, (1a)

𝑢
𝜕𝑢

𝜕𝑥
+ V
𝜕𝑢

𝜕𝑦
= ]
𝜕2𝑢

𝜕𝑦2
−
𝜎𝐵2𝑥𝛼−1

𝜌
𝑢, (1b)

with the boundary conditions

𝑦 = 0 : 𝑢 = 𝜔𝑥𝛼, (1c)

V = −Γ𝑥(𝛼−1)/2, (1d)

𝑦 󳨀→ ∞ : 𝑢 󳨀→ 0. (1e)

(𝑢, V) are the velocity components in the (𝑥, 𝑦) directions,
(𝜔 > 0, Γ, 𝐵) are (stretching, suction, and magnetic field)
coefficients, (𝜌, ], 𝜎) are the fluid (density, kinematic viscos-
ity, and electric conductivity), respectively.

The following self-similar problems can be formulated,
with 𝜓 denoting the stream function.

3. Case of 𝛼 = −1

We introduce the following similarity variables and parame-
ters:

𝜂 = 𝑥−1√
𝜔

]
𝑦, (2a)

𝜓 = √]𝜔𝑓 (𝜂) , (2b)

𝑢 = 𝜔𝑥−1
𝑑𝑓

𝑑𝜂
, (2c)

V = √]𝜔𝑥−1𝜂
𝑑𝑓

𝑑𝜂
, (2d)

Γ = 0, (2e)

𝛽 =
𝜎𝐵2

𝜌𝜔
. (2f)

The problem takes the form

𝑑3𝑓

𝑑𝜂3
+ (

𝑑𝑓

𝑑𝜂
)
2

− 𝛽
𝑑𝑓

𝑑𝜂
= 0, (3a)

𝑑𝑓

𝑑𝜂
(0) = 1, (3b)

𝑑𝑓

𝑑𝜂
(∞) = 0, (3c)

𝑓 (0) = 0. (3d)

The last condition corresponds to 𝜓 = 0 at the sheet.

The problem admits the following solution:

𝑓 = 6𝛽1/2𝑏2 (
1

𝑏2 + (2/3𝛽) 𝑒−𝛽
1/2
𝜂

−
1

𝑏2 + 2/3𝛽
) , (4a)

𝑏 = 1 + √1 −
2

3𝛽
. (4b)

Thus, no such self-similar solution is possible, when 𝛽 < 2/3.
Differentiation gives

𝑑𝑓

𝑑𝜂
=

4𝑏2𝑒−𝛽
1/2
𝜂

(𝑏2 + (2/3𝛽) 𝑒−𝛽
1/2
𝜂)
2
, (4c)

𝑑2𝑓

𝑑𝜂2
=
−4𝑏2𝛽1/2𝑒−𝛽

1/2
𝜂 (𝑏2 − (2/3𝛽) 𝑒−𝛽

1/2
𝜂)

(𝑏2 + (2/3𝛽) 𝑒−𝛽
1/2
𝜂)
3

. (4d)

The surface shear is represented by

𝑑2𝑓

𝑑𝜂2
(0) = −

1

2
𝛽1/2𝑏 (1 −

2

3𝛽𝑏2
) . (4e)

The flow is of a source type. The stream lines are lines of
constant 𝜂, that is, rays emanating from the origin.The source
strength measured by the rate of fluid discharge (to the first
quadrant) is represented by

𝑓 (∞) =
2

𝛽1/2𝑏
. (4f)

This discharge must come from a slit at the origin.

4. Case of 𝛼 ≠ −1

We introduce the following similarity variables and parame-
ters:

𝜂 = √
|𝛼 + 1| 𝜔

2]
𝑥(𝛼−1)/2𝑦, (5a)

𝜓 = √
2]𝜔
|𝛼 + 1|

𝑥(𝛼−1)/2𝑓 (𝜂) , (5b)

𝑢 = 𝜔𝑥𝛼
𝑑𝑓

𝑑𝜂
, (5c)

V = −Γ𝑥(𝛼−1)/2 (𝑓 +
𝛼 − 1

𝛼 + 1
𝜂
𝑑𝑓

𝑑𝜂
) , (5d)

Γ = 𝛾
𝛼 + 1

2
√
2]𝜔
|𝛼 + 1|

, (5e)

𝛽 =
2𝜎𝐵2
0

|𝛼 + 1| 𝜌𝜔
, (5f)

𝜆 =
2𝛼

1 + 𝛼
, (5g)

𝛿 = sgn (𝛼 + 1) . (5h)
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The problem takes the form

𝑑3𝑓

𝑑𝜂3
+ 𝛿[𝑓

𝑑2𝑓

𝑑𝜂2
− 𝜆(

𝑑𝑓

𝑑𝜂
)
2

] − 𝛽
𝑑𝑓

𝑑𝜂
= 0, (6a)

𝑑𝑓

𝑑𝜂
(0) = 1, (6b)

𝑑𝑓

𝑑𝜂
(∞) = 0, (6c)

𝑓 (0) = 𝛾. (6d)

Chiam’s nonporous sheet problem [1] corresponds to 𝛾 = 0
and 𝛿 = +1.

The case of 𝜆 = 1 (𝛼 = 1 and 𝛿 = +1) admits the exact
solution

𝑓 = 𝛾 +
(1 − 𝑒−𝑐𝜂)

𝑐
, (7a)

where 𝑐 is the positive root of the quadratic equation

𝑐2 − 𝛾𝑐 − (1 + 𝛽) = 0. (7b)

This solution was obtained by Chakrabarti and Gupta [7]. It
degenerates to that of Andersson [8] for a nonporous sheet
𝛾 = 0, to that of P. S. Gupta and A. S. Gupta [9] in the absence
of the magnetic field 𝛽 = 0, and to that of Crane [10] when
𝛽 = 𝛾 = 0.

4.1. Asymptotic Limit as 𝛽 ∼ ∞. We are interested in the
limiting behavior of the flow as the magnetic interaction
number 𝛽 grows indefinitely. In the limit as 𝛽 ∼ ∞, 𝑓 = 𝑂(1)
having the fixed value 𝛾 at 𝜂 = 0. The electromagnetic force
term 𝛽(𝑑𝑓/𝑑𝜂) is, thus, of leading order. It can be balanced
by the viscous term 𝑑3𝑓/𝑑𝜂3 in a contracting region in which
𝜂 = 𝑂(𝛽−1/2).

Introducing the stretched variable 𝜁 = 𝛽1/2𝜂, the problem
becomes

𝑓󸀠󸀠󸀠 − 𝑓󸀠 = 𝛽−1/2𝛿 (𝜆𝑓󸀠
2

− 𝑓𝑓󸀠󸀠) , (8a)

𝑓 (0) = 𝛾, (8b)

𝑓󸀠 (0) = 𝛽
−1/2, (8c)

𝑓󸀠 (∞) = 0, (8d)

where primes denote differentiation with respect to 𝜁.
The straightforward expansions of 𝑓 would involve secu-

lar terms. To overcome this difficulty we follow the lead of He
[11] and strain the coefficient 1 of 𝑓󸀠. To put this in effect, we
rewrite (8a) as

𝑓󸀠󸀠󸀠 − 𝑎2𝑓󸀠 = 𝛽−1/2𝛿 (𝜆𝑓󸀠
2

− 𝑓𝑓󸀠󸀠) , (9a)

𝑎2 = 1. (9b)

Introducing the asymptotic expansions

𝑓 ∼ ∑
𝑘=0

𝛽−𝑘/2𝑓
𝑘
, (10a)

𝑎 ∼ ∑
𝑘=0

𝛽−𝑘/2𝑎
𝑘 (10b)

and equating like powers of 𝛽−1/2, we arrive at problems for
𝑓
𝑘
, 𝑘 ≥ 0. The problem for 𝑓

0
is

𝑓󸀠󸀠󸀠
0
− 𝑎2
0
𝑓󸀠
0
= 0, (11a)

𝑓
0
(0) = 𝛾, (11b)

𝑓󸀠
0
(0) = 0, (11c)

𝑓󸀠
0
(∞) = 0 (11d)

with the solution

𝑓
0
= 𝛾. (12)

The problem for 𝑓
1
is, then,

𝑓󸀠󸀠󸀠
1
− 𝑎2
0
𝑓󸀠
1
= 0, (13a)

𝑓
1
(0) = 0, (13b)

𝑓󸀠
1
(0) = 1, (13c)

𝑓󸀠
1
(∞) = 0 (13d)

with the solution

𝑓
1
=
(1 − 𝐸)

𝑎
0

, (14a)

𝐸 = 𝑒−𝑎0𝜁. (14b)

The problem for 𝑓
2
is

𝑓󸀠󸀠󸀠
2
− 𝑎2
0
𝑓󸀠
2
= (𝛿𝛾𝑎

0
+ 2𝑎
0
𝑎
1
) 𝐸, (15a)

𝑓
2
(0) = 0, (15b)

𝑓󸀠
2
(0) = 0, (15c)

𝑓󸀠
2
(∞) = 0. (15d)

The right hand side of (15a) produces a secular term, the
removal of which requires the regularity condition

𝛿𝛾𝑎
0
+
1

∑
𝑗=0

𝑎
𝑗
𝑎
1−𝑗
= 0 (16a)

leading to the solution

𝑓
2
= 0. (16b)

Likewise, the problem for 𝑓
3
gives the regularity condition

𝛿 +
2

∑
𝑗=0

𝑎
𝑗
𝑎
2−𝑗
= 0 (17a)
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and the solution

𝑓
3
=
𝛿 (1 − 𝜆) (1 − 2𝐸 + 𝐸2)

6𝑎3
0

. (17b)

The problem for 𝑓
𝑘
, 𝑘 ≥ 2, is

𝑓󸀠󸀠󸀠
𝑘
− 𝑎2
0
𝑓󸀠
𝑘

=
𝑘−1

∑
𝑖=0

[

[

𝛿 (𝜆𝑓󸀠
𝑖
𝑓󸀠
𝑘−1−𝑖

− 𝑓
𝑖
𝑓󸀠󸀠
𝑘−1−𝑖

) + 𝑓󸀠
𝑖

𝑘−𝑖

∑
𝑗=0

𝑎
𝑗
𝑎
𝑘−𝑖−𝑗

]

]

,
(18a)

𝑓
𝑘
(0) = 0, (18b)

𝑓󸀠
𝑘
(0) = 0, (18c)

𝑓󸀠
𝑘
(∞) = 0. (18d)

In general, the solution for 𝑓
𝑘
, 𝑘 ≥ 0, is of the form

𝑓
𝑘
=
(𝑘+1)|2

∑
𝑛=0

𝑓
𝑘𝑛
𝐸𝑛, (19a)

(𝑘 + 1) | 2 = int [(𝑘 + 1)
2

] . (19b)

Expressions to determine 𝑓
𝑘𝑛
’s are given in Appendix. It is

noted that, of all 𝑎
𝑘
’s, only 𝑎

0
appears in the expressions

for 𝑓
𝑘𝑛
’s. Moreover, the following properties of 𝑓

𝑘𝑛
’s can be

proved by induction:

(a) for 𝑘 ≥ 3, 𝑓
𝑘𝑛
has (1 − 𝜆) as a factor,

(b) for even 𝑘 ≥ 0, 𝑓
𝑘𝑛
has 𝛾 as a factor,

(c) for 𝑘 ≥ 0, 𝑓
𝑘𝑛
is inversely proportional to 𝑎𝑘

0
; that is,

𝑓
𝑘𝑛
=
ℎ
𝑘𝑛

𝑎𝑘
0

, (20)

where ℎ
𝑘𝑛
’s are given by the same expressions in Appendix for

𝑓
𝑘𝑛
’s but with 𝑎

0
set equal to unity.

For 𝑘 ≥ 1, the regularity condition is

𝛿𝑎
0
𝑓
𝑘−10

+
𝑘

∑
𝑗=0

𝑎
𝑗
𝑎
𝑘−𝑗
= 0, (21)

which combines with (9b) and (10b) to give the following
equation for 𝑎

0
:

𝑎2
0
− 𝛿𝑎
0
∑
𝑘=1

𝛽−𝑘/2𝑓
𝑘−10

− 1 = 0. (22)

In the case of 𝜆 = 1 (𝛼 = 1 ⇒ 𝛿 = +1), 𝑓
𝑘
= 0 for 𝑘 ≥ 2 due

to property (a) of 𝑓
𝑘𝑛
. Therefore,

𝑓 = 𝛾 +
𝛽−1/2 (1 − 𝐸)

𝑎
0

, (23a)

𝛽𝑎2
0
− 𝛾𝛽1/2𝑎

0
− (1 + 𝛽) = 0. (23b)

Equations (23a) and (23b) are identical to the exact solution
expressed by (7a) and (7b), as we set 𝛽1/2𝑎

0
= 𝑐.

4.2. Homotopy Perturbation Solution. We now seek a homo-
topy perturbation solution to the problem described by (8a),
(8b), (8c), and (8d). To that end, we formulate an associated
homotopy problem

𝑓󸀠󸀠󸀠 − 𝑓󸀠 = 𝑝𝛽−1/2𝛿 (𝜆𝑓󸀠
2

− 𝑓𝑓󸀠󸀠) , (24a)

𝑓 (0) = 𝛾, (24b)

𝑓󸀠 (0) = 𝑝𝛽
−1/2, (24c)

𝑓󸀠 (∞) = 0, (24d)

where 𝑝 is the embedding parameter, varying from 0 to 1.
Setting 𝑝𝛽−1/2 = 𝛽

−1/2

, the homotopy problem (24a),
(24b), (24c), and (24d) acquires the same form as the physical
problem (8a), (8b), (8c), and (8d) and coincides with it at the
final step of the homotopy perturbation procedure, when we
set 𝑝 = 1.

As both problems are treated as perturbation problems,
the resulting expansions will be identical.

The present homotopy perturbation expansion is free
from secular terms and may involve as many terms as one
chooses. Allowing a secular term, Raftari et al. [6] obtained
a two-term homotopy perturbation expansion, for the case
of 𝛾 = 0, that imposed a restriction on 𝜆 and 𝛽, namely,
3𝛽 + 2𝜆 + 1 > 0, and that could not be extended to include
further terms.

Through variants of the homotopy perturbation method,
Yildirim and Sezer [3], Fathizadeh et al. [4], and Sushila et
al. [5] obtained the same polynomial solution to the case of
𝛾 = 0 that had been obtained earlier by Hayat et al. [2]
via Adomian’s decomposition method. Results presented in
[4, 5] showed deviation from numerically calculated results,
beyond a narrow range of 𝜂.This range was extended through
the use of Padé approximants in [2, 3]. In contrast, the
present homotopy perturbation solution, involving negative
exponentials, is valid for all values of 𝜂 ∈ [0,∞).

Keeping enough terms of the present homotopy pertur-
bation expansion, it is expected to get accurate results for all
values of 𝛽. However, the expansion, being an asymptotic one
as 𝛽 ∼ ∞ as well, should require few terms to give accurate
results for large 𝛽.

5. Numerical Procedures

To put the above expansions into use, we cut short the
summations in (10a) and (21) to the same finite upper limit
𝐾 > 0. The following iterative procedure is then adopted.

(1) For the given 𝜆 and 𝛾, determine all ℎ
𝑘𝑛
’s using the

formulas in Appendix.

(2) Choose a starting value for 𝑎
0
.

(3) Calculate 𝑓
𝑘𝑛
’s using (20).

(4) Introduce 𝑓
𝑘0
’s into (22) and solve it for a new 𝑎

0
.
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(5) If convergence of 𝑎
0
is not reached, that is, |𝑎new

0
−

𝑎old
0
| ≥ 10−10, go to step (3).

(6) Otherwise, evaluate𝑓 and its derivatives for the given
𝛽.

Using (20), we can transfer (22) to an algebraic equation of
degree𝐾 in 𝑎

0
and can derive a Newton iterative formula for

𝑎
0
to be used in step (4); namely,

𝑎new
0

= 𝑎old
0
−
(𝑎old
0
)
2

− 𝛿 (𝑎old
0
)∑
𝐾

𝑘=1
𝛽−𝑘/2𝑓

𝑘−10
− 1

2 (𝑎old
0
) − 𝛿∑

𝐾

𝑘=1
𝛽−𝑘/2 (2 − 𝑘) 𝑓

𝑘−10

. (25)

The two quantities of physical significance are the surface
shear represented by

𝑑2𝑓

𝑑𝜂2
(0) = 𝛽𝑎

2

0

𝐾

∑
𝑘=0

𝛽−𝑘/2
(𝑘+1)|2

∑
𝑛=1

𝑛2𝑓
𝑘𝑛

(26a)

and the rate of flow entrainment represented by

𝑓 (∞) =
𝐾

∑
𝑘=0

𝛽−𝑘/2𝑓
𝑘0
. (26b)

These two quantities, together with 𝑎
0
, will be the focus of our

calculations.
The results of the abovementioned procedure are tested

against corresponding numerical results. The problem
described by (6a), (6b), (6c), and (6d) is solved numerically
using Keller’s two-point, second-order-accurate, finite-
difference scheme [12]. A uniform step size Δ𝜂 = 0.01 is
used on a finite domain 0 ≤ 𝜂 ≤ 𝜂

∞
. The value of 𝜂

∞
= 70

is chosen sufficiently large in order to insure the asymptotic
satisfaction of the far-field condition (6d). The nonlinear
terms are quasi-linearized, and an iterative procedure is
implemented, terminating when the maximum error in
(𝑑2𝑓/𝑑𝜂2)(0) and 𝑓(𝜂

∞
) becomes less than 10−10.

The accuracy of the numerical procedure was established
by comparisonwith the exact solution for 𝜆 = 1with different
combinations of 𝛾 and 𝛽, both producing identical results to,
at least, the tenth significant figure.

The numerical solution calculates 𝑎
0
as the positive

solution of the quadratic equation

𝑎2
0
− 𝛿𝑎
0
𝛽−1/2𝑓 (𝜂

∞
) − 1 = 0, (27)

which is the result of substitution of (26b) into (22). This
guides the choice of a suitable starting value for 𝑎

0
, in step (2)

of the iterative procedure described above.

6. Results

In the results presented below for the expansion solutions,
two factors are of concern: the choice of the cutoff number𝐾
and the accuracy in comparison to the numerical solutions.

First, it should be noted that 𝐾 has to be ≥3 for the effect
of 𝜆 to be retained. As 𝐾 increases, progressive “saturation”
in the significant figures of 𝑎

0
is achieved. Where to stop

depends on the flow parameters 𝛽, 𝜆, and 𝛾. To illustrate

Table 1: Dependence of𝐾 on 𝛽 [𝜆 = 1.5 (𝛼 = 3), 𝛾 = 0].

𝛽 𝐾 𝑎
0

𝑑2𝑓

𝑑𝜂2
(0) 𝑓(𝜂

∞
)

100

5 1.00498 3457 −10.0664 3912 0.0994219 5793
7 1.00498 3454 −10.0664 3909 0.0994219 5832
9 1.00498 3454 −10.0664 3909 0.0994219 5832

Numerical 1.00498 3447 −10.0664 2517 0.0994218 2036

1

9 1.39844 8416 −1.52527 1655 0.683382 0804
11 1.39845 4500 −1.52527 4499 0.683379 5495
13 1.39845 4580 −1.52527 4777 0.683379 4078

Numerical 1.39845 3909 −1.52527 3038 0.683378 5009

0.01

19 9.54667 9245 −1.15300 4023 0.944193 2777
21 9.54668 0372 −1.15300 4063 0.944193 1944
23 9.54668 0386 −1.15300 4075 0.944193 1820

Numerical 9.54666 8853 −1.15300 3010 0.944192 0274

the dependence on𝛽, consider the case of 𝜆 = 1.5 (𝛼 = 3), 𝛾 =
0. Table 1 presents results at consecutive𝐾’s for𝛽 = 100, 1, and
0.01. (We proceed in odd values of 𝐾, to avoid programming
complexities.) It is noted that, for the larger 𝛽, saturation in 6
significant figures is attained at 𝐾 = 5. The intermediate and
smaller 𝛽’s achieve the same level of saturation at𝐾 = 11 and
21, respectively.

Also presented in Table 1 are the corresponding numer-
ical results. As expected, for the larger 𝛽, few terms of the
expansion, which is asymptotic, give excellent agreement
with the numerical solution. For the smaller 𝛽’s, the expan-
sion is no longer asymptotic but should be considered a
homotopy perturbation one. Its agreement with the numer-
ical solution is as excellent.

Does this agreement extend to other values of 𝛾 and 𝜆?
The answer is given in Tables 2, 3, and 4, in which, for each
indicated value of 𝛾 or 𝜆, the first line gives the expansion
solution and, if possible, the value of 𝐾 for saturation in 6
significant figures, while the second line gives the numerical
solution.

Table 2 includes cases of suction 𝛾 > 0 and injection
𝛾 < 0. Agreement with the numerical solutions to at
least five significant figures is observed. At the larger 𝛽, the
asymptotic nature of the expansions allows a fixed small
value of 𝐾, regardless of the value of 𝛾. At the smaller 𝛽’s,
the homotopy perturbation expansions are aided by suction
and progressively hurt by injection, to the extent that no
solution is possible as indicated by the void entries. Either
saturation in enough significant figures could not be attained,
or convergence of the iterative process for 𝑎

0
could not be

reached. As an illustration, consider the case of 𝛽 = 1.0 and
𝛾 = −2. The following are some 𝑎

0
{𝐾} results that show no

tendency toward saturation: 0.7282{5}, 0.7291{7}, 0.7254{9},
0.716{11}, 0.700{13}, . . ., 0.687{19}, 0.723{21}, 0.736{23},
0.741{25}, 0.737{27}, 0.714{29}, . . ., 0.749{39}, 0.75914{41},
0.75953{43}, 0.747{45}, . . ., 0.756{55}, 0.7723{57}, 0.7757{59},
0.7717{61}, . . ., 0.780{73}. The ellipses indicate 𝐾-ranges of
no convergence to a positive 𝑎

0
. When 𝐾 = 35, 51, and

62, 𝑎
0
converges to the same negative value −2.7277089043.
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Table 2: Validity of the expansion solution at different values of 𝛽 and 𝛾, 𝜆 = 1.5 (𝛼 = 3).

𝛽 100 1.0 0.01

𝛾
𝑑2𝑓

𝑑𝜂2
(0) 𝐾 𝑓 (𝜂

∞
)

𝑑2𝑓

𝑑𝜂2
(0) 𝐾 𝑓 (𝜂

∞
)

𝑑2𝑓

𝑑𝜂2
(0) 𝐾 𝑓(𝜂

∞
)

−2 −9.11655 5 −1.89021 — — — —
−9.11654 −1.89021 −0.844839 −0.714243 −0.558696 0.249190

−1 −9.57913 5 −0.895514 −1.11742 29 −0.0471147 — —
−9.57911 −0.895515 −1.11742 −0.0471154 −0.778042 0.504566

0 −10.0664 5 0.0994220 −1.52527 13 0.683379 −1.15300 17 0.944193
−10.0664 0.0994218 −1.52527 0.683379 −1.15300 0.944192

1 −10.5786 5 1.09460 −2.09551 9 1.48920 −1.74219 11 1.59722
−10.5786 1.09460 −2.09551 1.48920 −1.74219 1.59721

2 −11.1155 5 2.09003 −2.81024 11 2.36110 −2.50877 11 2.40646
−11.1154 2.09003 −2.81023 2.36110 −2.50877 2.40646

Table 3: Validity of the expansion solution at different values of 𝛽 and 𝜆 < 2, 𝛾 = 0.

𝛽 100 1 0.01

𝜆
𝑑2𝑓

𝑑𝜂2
(0) 𝐾 𝑓 (𝜂

∞
)

𝑑2𝑓

𝑑𝜂2
(0) 𝐾 𝑓 (𝜂

∞
)

𝑑2𝑓

𝑑𝜂2
(0) 𝐾 𝑓(𝜂

∞
)

−1.5 −9.96665 5 0.0999166 −0.652972 269 0.912433 — —
−9.96672 0.0999173 −0.652978 0.912440 0.696751 1.70859

−1 −9.98335 5 0.0998335 −0.851110 113 0.851110 — —
−9.98340 0.0998340 −0.851114 0.851114 −0.0140447 1.40447

−0.5 −10.0000 5 0.0997506 −1.01756 53 0.804077 — — —
−10.0001 0.0997510 −1.01756 0.804080 −0.379674 1.24358

0 −10.0167 5 0.0996680 −1.16333 33 0.766078 −0.634631 147 1.13644
−10.0167 0.0996683 −1.16333 0.766080 −0.634630 1.13645

0.5 −10.0333 5 0.0995857 −1.29435 19 0.734312 −0.835754 55 1.05725
−10.0333 0.0995859 −1.29435 0.734313 −0.835755 1.05725

1 −10.0499 3 0.0995037 −1.41421 3 0.707107 −1.004988 3 0.995037
−10.0499 0.0995037 −1.41421 0.707107 −1.004988 0.995037

1.5 −10.0664 5 0.0994220 −1.52527 13 0.683379 −1.15300 17 0.944193
−10.0664 0.0994218 −1.52527 0.683379 −1.15300 0.944192

Table 4: Least possible 𝛽 (in whole numbers) for 𝜆 > 2, 𝛾 = 0.

𝜆 𝛽
𝑑2𝑓

𝑑𝜂2
(0) 𝐾 𝑓(𝜂

∞
)

2.5 3 −0.984756 17 0.850785
−0.984762 0.850788

5 4 −0.439138 69 0.990757
−0.439173 0.990754

7.5 6 −0.742926 81 0.694277
−0.742974 0.694285

10 8 −0.944398 93 0.569562
−0.944470 0.569572

Otherwise, the left hand side of (22) drawn versus 𝑎
0
, in the

range indicated by the numerical solution, does not cross the
zero line.

Table 3 includes cases of stretching sheets with progres-
sively increasing rate 𝛼 > 0 (0 < 𝜆 < 2) and progressively
decreasing rate −1 < 𝛼 ≤ 0 (𝜆 ≤ 0), which are associated
with 𝛿 = +1. At the larger 𝛽, the asymptotic expansions allow
a fixed small value of 𝐾, regardless of the value of 𝜆. At the
smaller 𝛽’s, the homotopy perturbation expansions saturate
readily when 𝜆 > 0. However, as 𝜆 decreases negatively
they tend toward saturation with painful slowness, hence the
void entries. As for accuracy, the expansion and numerical
solutions are in excellent agreement, differing, at worst, by 1
in the fifth significant figure.

Other cases of progressively decreasing stretching rate
𝛼 < −1 (𝜆 > 2), which are associatedwith𝛿 = −1, are given in
Table 4.The indicated values of 𝛽 are the least whole numbers
below which no solution was possible either numerically or
through the expansions. As 𝛼 gets closer to −1 (𝜆 increases),
the least 𝛽’s get higher, the homotopy perturbation solutions
require more terms for saturation, and their agreement with
the numerical solutions deteriorates.
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(It should be noted that the results presented in [1–4]
for the case of 𝜆 = 5 are incorrect, as they were associated
wrongly with 𝛿 = +1.)

7. Conclusion

Theproblem of theMHDflow due to a nonlinearly stretching
porous sheet has been investigated. A closed form solution
has been obtained when the stretching rate is inversely
proportional to distance (the power law index 𝛼 = −1).
Otherwise, uniformly valid asymptotic expansion, for large
magnetic interaction numbers 𝛽 ∼ ∞, has been developed.
This expansion has been shown to coincide with a homotopy
perturbation expansion for the problem. The expansion
gives results in excellent agreement with accurate numerical
results, for large as well as small values of 𝛽. For large 𝛽,
the expansion being asymptotic, a small number of terms
are needed regardless of the value of 𝛼 or the suction rate 𝛾.
For small 𝛽, the expansion is a homotopy perturbation one.
It needs considerably increasing number of terms as 𝛼 or 𝛾
grows negatively and may even fail.

The problem belongs to the class of problems identified
below, whose asymptotic expansions and homotopy per-
turbation expansions are identical. The study helps realize
the potential and limitations of asymptotic and homotopy
perturbation methods.

Let 𝑢 be a sought after vector functionwhich is defined on
a domain𝐷 with boundaryΩ and governed by the following
physical problem

𝐿
𝐷
(𝑢) = 𝜀𝑅

𝐷
(𝑢) in 𝐷, (28a)

𝐿
Ω
(𝑢) = 𝜀𝑅

Ω
(𝑢)

or 𝐿
Ω
(𝑢) = 𝑅

Ω
(𝑢)

on Ω,

(28b)

where 𝜀 is a small parameter and 𝐿
𝐷
and 𝐿

Ω
are left hand side

operators, while 𝑅
𝐷
and 𝑅

Ω
are right hand side operators.

We form the associated homotopy problem

𝐿
𝐷
(𝑢) = 𝑝𝜀𝑅

𝐷
(𝑢) in 𝐷, (29a)

𝐿
Ω
(𝑢) = 𝑝𝜀𝑅

Ω
(𝑢)

or 𝐿
Ω
(𝑢) = 𝑅

Ω
(𝑢)

on Ω,

(29b)

where 𝑝 is the embedding parameter, varying from 0 to 1.
Setting 𝜀 = 𝑝𝜀, the homotopy problem acquires the same

form as the physical problem and coincides with it at the final
step of the homotopy perturbation method, when we set 𝑝 =
1.

As both problems are treated as perturbation problems,
the resulting expansions will be identical.

Appendix

The following expressions determine the coefficients 𝑓
𝑘𝑛

in
𝑓
𝑘
= ∑
(𝑘+1)|2

𝑛=0
𝑓
𝑘𝑛
𝐸𝑛, 𝑘 > 3. They involve summations,

the limits of which may contain the forms 𝑟 | 2 = int(𝑟/2),
𝑝 ∨ 𝑞 = min(𝑝, 𝑞), 𝑝 ∧ 𝑞 = max(𝑝, 𝑞), 𝑠𝑒 = even 𝑠, or
𝑠𝑜 = odd 𝑠 where 𝑝, 𝑞, 𝑟, and 𝑠 are integers. When the
upper limit is less than the lower limit, the summation is to
be zeroed.

Given

𝑓
00
= 𝛾,

𝑓
10
= −𝑓
11
=
1

𝑎
0

,

𝑓
20
= 𝑓
21
= 0,

𝑓
30
= −

1

2
𝑓
31
= 𝑓
32
=
𝛿 (1 − 𝜆)

6𝑎3
0

,

(A.1)

then for even 𝑘 ≥ 4 and 𝑛 = 2 → 𝑘/2

𝛿𝑎
0
(𝑛3 − 𝑛)𝑓

𝑘𝑛

= 𝑛2𝑓
00
𝑓
𝑘−1𝑛

− 𝑛
𝑘−1

∑
𝑖=2𝑛−1

𝑓
𝑘−1−𝑖0

𝑓
𝑖𝑛

− 𝜆
𝑘−1

∑
𝑖=1

𝑘|2−(𝑖+1)|2∨𝑛−1

∑
𝑚=1∧𝑛−(𝑖+1)|2

(𝑛 − 𝑚)𝑚𝑓
𝑖𝑛−𝑚

𝑓
𝑘−1−𝑖𝑚

+
𝑘−1

∑
𝑖=1

𝑘|2−(𝑖+1)|2∨𝑛

∑
𝑚=1∧𝑛−(𝑖+1)|2

𝑚2𝑓
𝑖𝑛−𝑚

𝑓
𝑘−1−𝑖𝑚

(A.2)

and for odd 𝑘 ≥ 5 and 𝑛 = 2 → (𝑘 − 1)/2

𝛿𝑎
0
(𝑛3 − 𝑛)𝑓

𝑘𝑛
= 𝑛2𝑓

00
𝑓
𝑘−1𝑛

− 𝑛
𝑘−1

∑
𝑖=2𝑛−1

𝑓
𝑘−1−𝑖0

𝑓
𝑖𝑛

− 𝜆[
𝑘−1

∑
𝑖𝑒=2

(𝑘−1−𝑖)|2∨𝑛−1

∑
𝑚=1∧𝑛−𝑖|2

(𝑛 − 𝑚)𝑚𝑓
𝑖𝑛−𝑚

𝑓
𝑘−1−𝑖𝑚

+
𝑘−2

∑
𝑖𝑜=1

(𝑘−𝑖)|2∨𝑛−1

∑
𝑚=1∧𝑛−(𝑖+1)|2

(𝑛 − 𝑚)𝑚𝑓
𝑖𝑛−𝑚

𝑓
𝑘−1−𝑖𝑚

]

+
𝑘−1

∑
𝑖𝑒=2

(𝑘−1−𝑖)|2∨𝑛

∑
𝑚=1∧𝑛−𝑖|2

𝑚2𝑓
𝑖𝑛−𝑚

𝑓
𝑘−1−𝑖𝑚

+
𝑘−2

∑
𝑖𝑜=1

(𝑘−𝑖)|2∨𝑛

∑
𝑚=1∧𝑛−(𝑖+1)|2

𝑚2𝑓
𝑖𝑛−𝑚

𝑓
𝑘−1−𝑖𝑚

(A.3a)

with

𝛿𝑎
0
[(
𝑘 + 1

2
)
3

− (
𝑘 + 1

2
)]𝑓
𝑘((𝑘+1)/2)

=
𝑘−2

∑
𝑖𝑜=1

[(
𝑘 − 𝑖

2
) − 𝜆(

𝑖 + 1

2
)](

𝑘 − 𝑖

2
)

⋅ 𝑓
𝑖((𝑖+1)/2)

𝑓
𝑘−1−𝑖((𝑘−𝑖)/2)

.

(A.3b)
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The boundary conditions (18c) and then (18b) determine
𝑓
𝑘1
= −∑

(𝑘+1)|2

𝑛=2
𝑛𝑓
𝑘𝑛

and then 𝑓
𝑘0
= −∑

(𝑘+1)|2

𝑛=1
𝑓
𝑘𝑛
.

The expressions for ℎ
𝑘𝑛
’s are identical to those for𝑓

𝑘𝑛
’s but

with 𝑎
0
= 1.
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für Naturforschung, vol. 65, no. 12, pp. 1106–1110, 2010.

[4] M. Fathizadeh, M. Madani, Y. Khan, N. Faraz, A. Yildirim,
and S. Tutkun, “An effective modification of the homotopy
perturbation method for MHD viscous flow over a stretching
sheet,” Journal of King Saud University—Science, vol. 25, no. 2,
pp. 107–113, 2013.

[5] Sushila, J. Singh, and Y. S. Shishodia, “An efficient analytical
approach for MHD viscous flow over a stretching sheet via
homotopy perturbation sumudu transformmethod,”Ain Shams
Engineering Journal, vol. 4, no. 3, pp. 549–555, 2013.

[6] B. Raftari, S. T. Mohyud-Din, and A. Yildirim, “Solution to
the MHD flow over a non-linear stretching sheet by homotopy
perturbation method,” Science China: Physics, Mechanics and
Astronomy, vol. 54, no. 2, pp. 342–345, 2011.

[7] A. Chakrabarti and A. S. Gupta, “Hydromagnetic flow and
heat transfer over a stretching sheet,” Quarterly of Applied
Mathematics, vol. 37, no. 1, pp. 73–78, 1979.

[8] H. I. Andersson, “An exact solution of the Navier-Stokes
equations for magnetohydrodynamic flow,” Acta Mechanica,
vol. 113, no. 1–4, pp. 241–244, 1995.

[9] P. S. Gupta and A. S. Gupta, “Heat and mass transfer on
a stretching sheet with suction and blowing,” The Canadian
Journal of Chemical Engineering, vol. 55, no. 6, pp. 744–746, 1977.

[10] L. J. Crane, “Flow past a stretching plate,” Journal of Applied
Mathematics and Physics, vol. 21, no. 4, pp. 645–647, 1970.

[11] J.-H. He, “Addendum: new interpretation of homotopy pertur-
bation method,” International Journal of Modern Physics B, vol.
20, no. 18, pp. 2561–2568, 2006.

[12] H. B. Keller, “Accurate difference methods for linear ordinary
differential systems subject to linear constraints,” SIAM Journal
on Numerical Analysis, vol. 6, pp. 8–30, 1969.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


