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We studied a unified approach with the holographic, new agegraphic, and f (R) dark energy model to construct the form of f (R)
which in general is responsible for the curvature driven explanation of the very early inflation along with presently observed late
time acceleration. We considered the generalized uncertainty principle in our approach which incorporated the corrections in the
entropy-area relation and thereby modified the energy densities for the cosmological dark energy models considered. We found
that holographic and new agegraphic f (R) gravity models can behave like phantom or quintessence models in the spatially flat
FRW universe. We also found a distinct term in the form of f (R) which goes as 𝑅3/2 due to the consideration of the GUP modified
energy densities. Although the presence of this term in the action can be important in explaining the early inflationary scenario,
Capozziello et al. recently showed that f (R) ∼ 𝑅3/2 leads to an accelerated expansion, that is, a negative value for the deceleration
parameter 𝑞 which fits well with SNeIa and WMAP data.

1. Introduction

Observations of type IA supernovae confirm that our present
universe is expanding at an accelerating rate [1]. Present
observational cosmology has provided enough evidence in
favour of the accelerated expansion of the universe [2–4].
Theoretical aid came in the form of exotic dark energy
(DE) which can generate sufficient negative pressure and is
believed to account nearly 70% of present energy of the uni-
verse. Researchers in theoretical physics have proposedmany
DE models but they face problems while incorporating the
history of the universe. The models generally have many free
parameters and face serious constraints from observational
data. Recent reviews [5–9] are useful for a brief knowledge of
DE models.

The holographic DE is one of the promising DE models
and the model is based on the holographic principle [10–14].
Bekenstein’s entropy bound suggests that quantum field
theory breaks down at large volumes. This can be reconciled
by using a relation between UV and IR cut-offs such
that 𝐿3Λ4 ≤ 𝐿𝑚

2

𝑝
, where 𝑚

𝑝
is the reduced Planck Mass

(𝑚−2
𝑝
= 8𝜋𝐺). In this situation an effective local quantum

field theory will give a good approximate description [15].
The holographic DE was first proposed in [16] following the
line of [15] where the infrared cut-off is taken to be the size
of event horizon for DE. The problem of cosmic coincidence
can be resolved by the inflationary paradigmwithminimal e-
foldings in this model. Later this holographic DE was studied
in detail bymany authors [17–26]. Clearly it can bementioned
that black hole entropy bound played an important role in
the interpretation of holographic dark energy model.
Various theories of quantum gravity (e.g., [27–33]) have
predicted the following form for the entropy of a black
hole:

𝑆 =
𝐴

4𝑙2
𝑝

+ 𝑐
0
ln( 𝐴

4𝑙2
𝑝

) + const. (1)

𝑐
0
is a model dependent parameter and 𝑙

𝑝
is the Planck

length. Many researchers have expressed a vested interest
in fixing 𝑐

0
(the coefficient of the subleading logarithmic

term) [27]. Recent rigorous calculations of loop quantum
gravity predict the value of 𝑐

0
to be −1/2 [33]. A entropy

corrected holographic DE model (ECHDE) was proposed
recently in [34] where the inflation was driven by ECHDE.
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The curvature perturbation may be generated through the
curvaton and the only requirement remain as 𝐻 ≃ const
[35, 36].

Another promising DE candidate is the agegraphic DE
and was proposed in [37]. Considering the quantum fluctua-
tions of spacetime Károlyházy and his collaborators [38–40]
argued that inMinkowski spacetime any distance 𝑡 cannot be
known to a better accuracy than 𝛿𝑡 ∼ 𝑡2/3

𝑝
𝑡
1/3, where 𝑡

𝑝
is the

reduced Planck time. Based on the arguments of Károlyházy
it can be shown that for Minkowski spacetime the energy
density of metric fluctuations is given by 𝜌

Λ
∼ 𝑚
2

𝑝
/𝑡
2 [41, 42].

The agegraphic DE model considers spacetime and matter
field fluctuations responsible for DE. If conformal time is
considered in place of the age of the universe the model
can describe the matter dominated epoch [43] with a natural
solution to the coincidence problem [44] and is known as the
new agegraphic DEmodel.The conformal time 𝑒𝑡𝑎 is defined
by 𝑑𝑡 = 𝑎𝑑𝜂, where 𝑡 is the cosmic time and 𝑎 the scale factor.
Many authors did some detailed study of this new agegraphic
DE model [45–48].

Also we have other possible explanations for the cosmic
acceleration, the different being the approach with 𝑓(𝑅)
gravity, where 𝑅 is the scalar curvature. Other forms of 𝑅
along with 𝑅 in the Lagrangian can explain the observed
acceleration without considering other additional compo-
nents (the review [49] is useful). Among other existing
theories 𝑓(𝑅) gravity models can be shown to be compatible
with amatter dominated epoch transiting into an accelerating
phase [50]. Also the forms of 𝑓(𝑅) with positive powers
of curvature support the inflationary epoch and forms with
negative powers of curvature serving as the effective DE
responsible for cosmic acceleration and compatible with solar
system experiments [51]. Also it is worth mentioning that
these models face some challenges in the line of argument
discussed in [52–56].

The idea that the uncertainty principle could be affected
by gravity was given by Mead [57]. In the regime when the
gravity is strong enough, conventional Heisenberg uncer-
tainty relation is no longer satisfactory (though approxi-
mately but perfectly valid in low gravity regimes). Later mod-
ified commutation relations between position and momenta,
commonly known as generalized uncertainty principle
(GUP), were given by candidate theories of quantum gravity
(String Theory, doubly special relativity theory and Black
Hole Physics) with the prediction of a minimum measurable
length [58–67]. Similar kind of commutation relation can also
be found in the context of Polymer Quantization in terms of
polymer mass scale [68]. Importance of the GUP can also
be realized on the basis of simple gedanken experiments
without any reference to a particular fundamental theory
[65, 66]. So we can think of the GUP as a model-independent
concept, ideally perfect for the study of black hole entropy.
The authors in [69] proposed a GUP which is consistent with
DSR theory, string theory, and black hole physics. This is
approximately covariant under DSR transformations but not
Lorentz covariant [67]. With the GUP as proposed by the
authors in [69] we can arrive at the corrected entropy-area

relation for a black hole which can be written in the following
expansive form [70, 71]:

𝑆 ≃
𝐴

4𝑙2
𝑝

+ 𝑎√
𝐴

4𝑙2
𝑝

+ 𝑏 ln( 𝐴
4𝑙2
𝑝

)

+

∞

∑

𝑚=1/2,3/2,...

𝑑
𝑚
(
𝐴

4𝑙2
𝑝

)

−𝑚

+

∞

∑

𝑛=1,2,...

𝑐
𝑛
(
𝐴

4𝑙2
𝑝

)

−𝑛

+ const.

(2)

In this paper we will try to predict the form of 𝑓(𝑅)
in holographic and new agegraphic DE models in the light
of the generalized uncertainty principle. In [72] it has been
argued that the holographic theory does not retain its good
features by considering minimal length in quantum gravity.
But here we will try to avoid the issue and hope to present the
discussion in some future work. We will use (2) to calculate
the energy density for the models. Later we will construct the
form of 𝑓(𝑅) and the equation of state parameter 𝜔 for each
of these DEmodels. Although an earlier attempt is present in
the literature for the reconstruction of 𝑓(𝑅) [73] but we will
later conclude with a brief comparison of the results.

2. 𝑓(𝑅) from Holographic DE Model with GUP

In 𝑓(𝑅) gravity the action is written as [74–76]

𝑆 = ∫√−𝑔𝑑
4
𝑥(
𝑅 + 𝑓 (𝑅)

16𝜋𝐺
+ 𝐿matter) . (3)

The considerations lie in the fact that the higher order
modifications of the Ricci curvature 𝑅 in the form of 𝑅2
or 𝑅
𝜇]𝑅
𝜇] could give rise to inflation at the very early

universe. The term 𝑅
𝜇]𝑅
𝜇] does not lead to any new kind of

inflation different from that produced by the 𝑅2 term since
the combination 𝑅

𝜇]𝑅
𝜇]
− (1/3)𝑅

2 does not contribute to the
de Sitter solution at all. So this leads to a notion that whether
inverse powers in 𝑅 dominant in late time universe can give
an explanation to the recent predicted acceleration of the
universe. But this type of models faces problems of stability
[77]. The variation of the action with respect to the metric
gives the field equations as

𝑅
𝜇] −

1

2
𝑅𝑔
𝜇] = 8𝜋𝐺 (𝑇

(𝑅)

𝜇] + 𝑇
(𝑚)

𝜇] ) , (4)

where

8𝜋𝐺𝑇
(𝑅)

𝜇] =
1

2
𝑔
𝜇]𝑓 (𝑅) − 𝑅𝜇]𝑓


(𝑅)

+ (∇
𝜇
∇] − 𝑔𝜇]◻)𝑓


(𝑅) .

(5)

Here 𝑓(𝑅) = 𝜕𝑓(𝑅)/𝜕𝑅, 𝑅
𝜇] is the Ricci tensor, 𝑇(𝑚)

𝜇] is
the energy momentum tensor of matter, and 𝑅 denotes the
curvature contribution.
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For a spatially flat FRWuniverse themodified Friedmann
equation can be written as

𝐻
2
=
8𝜋𝐺

3
(𝜌
𝑚
+ 𝜌
𝑅
) ,

2�̇� + 3𝐻
2
= −8𝜋𝐺 (𝑝

𝑚
+ 𝑝
𝑅
) ,

(6)

where

𝜌
𝑅
=

1

8𝜋𝐺
[−
1

2
𝑓 (𝑅) + 3 (�̇� + 𝐻

2
) 𝑓

(𝑅)

−18 (4𝐻
2
�̇� + 𝐻�̈�)𝑓


(𝑅) ] ,

(7)

𝑝
𝑅
=

1

8𝜋𝐺
[
1

2
𝑓 (𝑅) − (�̇� + 3𝐻

2
) 𝑓

(𝑅)

+ 6 (8𝐻
2
�̇� + 6𝐻�̈� + 4�̇�

2
+ �⃛�)𝑓


(𝑅)

+ 36(�̈� + 4𝐻�̇�)
2

𝑓

(𝑅) ] ,

(8)

𝑅 = 6 (�̇� + 2𝐻
2
) . (9)

Here the Hubble parameter is 𝐻 = ̇𝑎/𝑎 and the overdot
denotes derivative with respect to cosmic time 𝑡.We can show
that the curvature contribution will have its own equation of
state and it can be written as [78]

𝜔
𝑅
=
𝑝
𝑅

𝜌
𝑅

= 1 − ( (4 [�̇�𝑓

(𝑅) + 3 (3𝐻�̈� − 4𝐻

2
�̇� + 4�̇�

2
+ �⃛�)

× 𝑓

(𝑅) +18(�̈� + 4𝐻�̇�)

2

𝑓

(𝑅)])

× ([𝑓 (𝑅) − 6 (�̇� + 𝐻
2
) 𝑓

(𝑅)

+36 (4𝐻
2
�̇� + 𝐻�̈�)𝑓


(𝑅)])
−1

) .

(10)

In 𝑓(𝑅) gravity theories we usually encounter three types
of scale factors for accelerating and inflationary cosmological
solutions. We will follow the details of [73, 79]. Here we
will study phantom, quintessence, and de Sitter scale factors
which are given by

𝑎 =

{{{

{{{

{

𝑎
0
(𝑡
𝑠
− 𝑡)
−ℎ
, 𝑡 ≤ 𝑡

𝑠
, ℎ > 0 (phantom) ,

𝑎
0
𝑡
ℎ
, ℎ > 0 (quintessence) ,

𝑎
0
𝑒
𝐻𝑡
, 𝐻 = constant (de Sitter).

(11)

With the phantom scale factor and (9) we get

𝐻 = [
ℎ

6 (2ℎ + 1)
𝑅]

1/2

(12)

and also

�̇� =
𝐻
2

2
. (13)

Recent observations constrain the value of ℎ for the
phantom scale factor to be −∞ > ℎ ≥ 7.81 [80]. Similarly
with the quintessence scale factor and (9) we get

𝐻 = [
ℎ

6(2ℎ − 1)
𝑅]

1/2

(14)

and also

�̇� = −
𝐻
2

2
. (15)

For this quintessence scale factor the value of ℎ is very
close to unity [80]. For de Sitter solution we have 𝐻 =

constant. This scale factor is used to describe the early
inflationary scenario. For this case we get

𝐻 = (
𝑅

12
)

1/2

. (16)

Now we will try to evaluate the form of 𝑓(𝑅) for each
of the scale factor mentioned above in the light of the
generalized uncertainty principle (GUP). For our purpose we
need to solve (7) and we borrow the energy density from the
holographic and agegraphic dark energymodels, respectively.

Considering the leading order terms of (2) and following
the arguments of [34, 81] we can write the GUP motivated
energy density for the holographic DE model as

𝜌
Λ
=

3𝑛
2
𝑚
2

𝑝

𝐿2
+

𝑎𝑚
𝑝

𝐿3
+
𝑏

𝐿4
ln (𝐿2𝑚2

𝑝
) +

𝑐

𝐿4
. (17)

Here 𝑛, 𝑎, 𝑏, and 𝑐 are constants and 𝐿 is the future event
horizon. If 𝑎 = 𝑏 = 𝑐 = 0 we get the usual holographic DE
model. Though 𝑛 is a constant, its value can be constrained
from the latest observational data [82]. The future event
horizon is defined as

𝐿 = 𝑎∫

∞

𝑡

𝑑𝑡

𝑎
. (18)

For the phantom scale factor the future event horizon is

𝐿 = 𝑎∫

𝑡
𝑠

𝑡

𝑑𝑡

𝑎
=

1

ℎ + 1

√
6ℎ (2ℎ + 1)

𝑅
. (19)

Putting the value of 𝐿 in (17) we get the form of energy
density as

𝜌
Λ
=

3𝑛
2
𝑚
2

𝑝
(ℎ + 1)

2

6ℎ (2ℎ + 1)
𝑅 +

𝑎𝑚
𝑝
(ℎ + 1)

3

(6ℎ)
3/2
(2ℎ + 1)

3/2
𝑅
3/2

+
(ℎ + 1)

4
𝑅
2

(6ℎ)
2
(2ℎ + 1)

2
[𝑏 ln{

6ℎ (2ℎ + 1)𝑚
2

𝑝

(ℎ + 1)
2
𝑅

} + 𝑐] .

(20)

Now (7) can be written in terms of 𝑅 as

𝑅
2
𝑓

(𝑅) −

(ℎ + 1)

2
𝑅𝑓

(𝑅) +

(2ℎ + 1)

2
𝑓 (𝑅)

= −
𝑛
2
(ℎ + 1)

2

2ℎ
𝑅 −

𝑎

𝑚
𝑝

(ℎ + 1)
3

(6ℎ)
3/2
(2ℎ + 1)

1/2
𝑅
3/2
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+
𝑏

𝑚2
𝑝

(ℎ + 1)
4

(6ℎ)
2
(2ℎ + 1)

𝑅
2 ln [𝑅] − 𝑏

𝑚2
𝑝

(ℎ + 1)
4

(6ℎ)
2
(2ℎ + 1)

× ln[
𝑚
2

𝑝
6ℎ (2ℎ + 1)

(ℎ + 1)
2

]𝑅
2
+
𝑐

𝑚2
𝑝

(ℎ + 1)
4

(6ℎ)
2
(2ℎ + 1)

𝑅
2
,

(21)

where 𝑚2
𝑝
= 1/8𝜋𝐺. This equation is a nonhomogeneous

Euler differential equation and the solution can be written as

𝑓 (𝑅) = 𝐶
1
𝑅
𝑞
+ 𝐶
2
𝑅
𝑟
+ 𝛿𝑅 + 𝛼𝑅

3/2
+ 𝛽𝑅
2
+ 𝛾𝑅
2 ln [𝑅] ,

(22)

where

𝑞 =
1

4
[3 + ℎ + √ℎ2 − 10ℎ + 1] ,

𝑟 =
1

4
[3 + ℎ − √ℎ2 − 10ℎ + 1] ,

𝛿 = −
𝑛
2
(ℎ + 1)

2

ℎ2
,

𝛼 = −
1

𝑚
𝑝

4𝑎(ℎ + 1)
3

(ℎ + 2) (6ℎ)
3/2
(2ℎ + 1)

1/2
,

𝛽 =
1

𝑚2
𝑝

[−

𝑏 (10 + 3ℎ − ℎ
2
) (ℎ + 1)

4

162ℎ2 (ℎ + 2) (2ℎ + 1)
−

𝑏(ℎ + 1)
4

54ℎ2 (2ℎ + 1)

× ln{
𝑚
2

𝑝
6ℎ (2ℎ + 1)

(ℎ + 1)
2

} +
𝑐(ℎ + 1)

4

54ℎ2 (2ℎ + 1)
] ,

𝛾 =
𝑏

𝑚2
𝑝

(ℎ + 1)
4

54ℎ2 (2ℎ + 1)

(23)

with 𝐶
1,2

as integration constants whose value can be pre-
dicted by the boundary conditions.The boundary conditions
are

𝑓 (𝑅) |
𝑅=𝑅
0

= −2𝑅
0
, 𝑓


(𝑅) |
𝑅=𝑅
0

∼ 0, (24)

where 𝑅 = 𝑅
0
is the present value of 𝑅 which is a small

constant. The value of 𝑅
0
is of the order of (10−33 eV)2. If we

apply the boundary conditions we get the values of 𝐶
1,2

as

𝐶
1
=

𝑅
1−𝑞

0

2 (𝑞 − 𝑟)
[2 (2𝑟 − 𝛿 + 𝑟𝛿) − 𝛼√𝑅

0
(3 − 2𝑟)

− 2𝛽𝑅
0
(2 − 𝑟) − 2𝛾𝑅

0

× (1 + 2 ln [𝑅
0
] − 𝑟 ln [𝑅

0
]) ] ,

𝐶
2
= −

𝑅
1−𝑟

0

2 (𝑞 − 𝑟)
[2 (2𝑞 − 𝛿 + 𝑞𝛿) − 𝛼√𝑅

0
(3 − 2𝑞)

− 2𝛽𝑅
0
(2 − 𝑞) − 2𝛾𝑅

0

× (1 + 2 ln [𝑅
0
] − 𝑞 ln [𝑅

0
]) ] .

(25)

In general the equation of state of (10) will be a function
of 𝐻 and hence time in this case and so it can explain the

transition from quintessence (𝜔
𝑅
> −1) to phantom domi-

nated regime (𝜔
𝑅
< −1) as predicted by recent observations

[83–85]. If we see (22) we can infer that there is a contribution
from 𝑅

3/2. This is interesting from the fact that we can have
contributions from fractional powers of 𝑅. We will discuss
this in a later part of this study.

For the quintessence scale factor the future event horizon
is at

𝐿 = 𝑎∫

∞

𝑡

𝑑𝑡

𝑎
=

1

ℎ − 1

√
6ℎ (2ℎ − 1)

𝑅

(26)

with the condition ℎ > 1. Putting the value of 𝐿 from (26) in
(17) we get the form of energy density as

𝜌
Λ
=

𝑛
2
𝑚
2

𝑝
(ℎ − 1)

2

2ℎ (2ℎ − 1)
𝑅 +

𝑎𝑚
𝑝(ℎ − 1)

3

(6ℎ)
3/2
(2ℎ − 1)

3/2
𝑅
3/2

+
(ℎ − 1)

4
𝑅
2

(6ℎ)
2
(2ℎ − 1)

2
[𝑏 ln{

6ℎ (2ℎ − 1)𝑚
2

𝑝

(ℎ − 1)
2
𝑅

} + 𝑐] .

(27)

So for the quintessence scale factor equations (14) and (15)
we can rewrite (7) with (27) as

𝑅
2
𝑓

(𝑅) +

(ℎ − 1)

2
𝑅𝑓

(𝑅) −

(2ℎ − 1)

2
𝑓 (𝑅)

=
𝑛
2
(ℎ − 1)

2

2ℎ
𝑅 +

𝑎

𝑚
𝑝

(ℎ − 1)
3

(6ℎ)
3/2
(2ℎ − 1)

1/2
𝑅
3/2

−
𝑏

𝑚2
𝑝

(ℎ − 1)
4

(6ℎ)
2
(2ℎ − 1)

𝑅
2 ln [𝑅] + 𝑏

𝑚2
𝑝

(ℎ − 1)
4

(6ℎ)
2
(2ℎ − 1)

× ln[
𝑚
2

𝑝
6ℎ (2ℎ − 1)

(ℎ − 1)
2

]𝑅
2
+
𝑐

𝑚2
𝑝

(ℎ − 1)
4

(6ℎ)
2
(2ℎ − 1)

𝑅
2
,

(28)

where 𝑚2
𝑝
= 1/8𝜋𝐺. Similarly like the phantom case the

solution can be written as

𝑓 (𝑅) = 𝐶
1
𝑅
𝑞
+ 𝐶
2
𝑅
𝑟
+ 𝛿𝑅 + 𝛼𝑅

3/2
+ 𝛽𝑅
2
+ 𝛾𝑅
2 ln [𝑅] ,

(29)

where

𝑞 =
1

4
[3 − ℎ + √ℎ2 + 10ℎ + 1] ,

𝑟 =
1

4
[3 − ℎ − √ℎ2 + 10ℎ + 1] ,

𝛿 = −
𝑛
2
(ℎ − 1)

2

ℎ2
,

𝛼 =
2𝑎

3𝑚
𝑝

(ℎ − 1)
3

ℎ (2 − ℎ) (2ℎ − 1)
1/2
,

𝛽 =
1

𝑚2
𝑝

[

𝑏 (10 − 3ℎ − ℎ
2
) (ℎ − 1)

4

162ℎ2 (2 − ℎ) (2ℎ − 1)
+

𝑏(ℎ − 1)
4

54ℎ2 (2ℎ − 1)

× ln{
𝑚
2

𝑝
6ℎ (2ℎ − 1)

(ℎ − 1)
2

} +
𝑐(ℎ − 1)

4

54ℎ2 (2ℎ − 1)
] ,

𝛾 = −
𝑏

𝑚2
𝑝

(ℎ − 1)
4

54ℎ2 (2ℎ − 1)
.

(30)
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The boundary conditions will give

𝐶
1
=

𝑅
1−𝑞

0

2 (𝑞 − 𝑟)
[2 (2𝑟 − 𝛿 + 𝑟𝛿) − 𝛼√𝑅0

× (3 − 2𝑟) − 2𝛽𝑅0 (2 − 𝑟)

−2𝛾𝑅
0
(1 + 2 ln [𝑅

0
] − 𝑟 ln [𝑅

0
]) ] ,

𝐶
2
= −

𝑅
1−𝑟

0

2 (𝑞 − 𝑟)
[2 (2𝑞 − 𝛿 + 𝑞𝛿) − 𝛼√𝑅

0
(3 − 2𝑞)

− 2𝛽𝑅
0
(2 − 𝑞) − 2𝛾𝑅

0

× (1 + 2 ln [𝑅
0
] − 𝑞 ln [𝑅

0
]) ] .

(31)

For the scale factor in de Sitter space 𝐻 is constant. The
future event horizon is located at

𝐿 = 𝑎𝐿 = 𝑎∫

∞

𝑡

𝑑𝑡

𝑎
=
1

𝐻
= √

12

𝑅
, (32)

where𝐻 is given by (16). So we can write the GUPmotivated
energy density from (17) as

𝜌
Λ
=

𝑛
2
𝑚
2

𝑝

4
𝑅 +

𝑎𝑚
𝑝

123/2
𝑅
3/2
+

𝑏

144𝑚2
𝑝

𝑅
2

× ln(
12𝑚
2

𝑝

𝑅
) +

𝑐

144𝑚2
𝑝

𝑅
2
.

(33)

So (7) takes the form

𝑅𝑓

(𝑅) − 2𝑓 (𝑅) =

4𝜌
Λ

𝑚2
𝑝

. (34)

The solution of this equation can be written in the form

𝑓 (𝑅) = −𝑛
2
𝑅 + 𝐶

1
𝑅
2
−

𝑎

3√3𝑚
𝑝

𝑅
3/2

−
𝑏

72𝑚2
𝑝

𝑅
2
{ln(

12𝑚
2

𝑝

𝑅
)}

2

+
𝑐

36𝑚2
𝑝

𝑅
2 ln (𝑅) ,

(35)

where 𝐶
1
is the arbitrary integration constant to be fixed by

boundary conditions. The GUP motivated terms in 𝑓(𝑅) are
important for inflationary scenario.We have instances for the
𝑅
2 term in the literature to explain early time inflation [74] as

a curvature driven phenomenon. Here we have a new term
𝑅
3/2 in 𝑓(𝑅) which can be important for curvature driven

inflation. We will discuss more about this term later in the
Discussion section.

3. 𝑓(𝑅) from New Agegraphic DE
Model with GUP

With the corrections due to the generalized uncertainty
principle to the entropy area relation we can frame the energy
density of the new agegraphic DE model [34, 81] as

𝜌
Λ
=

3𝑛
2
𝑚
2

𝑝

𝜂2
+

𝑎𝑚
𝑝

𝜂3
+
𝑏

𝜂4
ln (𝜂2𝑚2

𝑝
) +

𝑐

𝜂4
,

(36)

where 𝜂 is the conformal time. 𝑎 = 𝑏 = 𝑐 = 0 will give
back the usual new agegraphic DE model. The parameter 𝑛
is constrained by present observations and its best fit value is
around 2.716+0.111

−0.109
with 1𝜎 uncertainty [44]. The numerical

factor 3𝑛2 was introduced for a parameterization of some
uncertainties such as the effect of curved spacetime, (as the
Károlyházy relation considered only the metric quantum
fluctuations of Minkowski spacetime) and the species of
quantum fields in the universe.

For the phantom scale factor the conformal time can be
evaluated as

𝜂 = ∫

𝑡
𝑠

𝑡

𝑑𝑡

𝑎
=

1

𝑎
0
(ℎ + 1)

[
6ℎ (2ℎ + 1)

𝑅
]

(ℎ+1)/2

, ℎ > 0. (37)

Substituting this in (36) we get

𝜌
Λ
=

3𝑛
2
𝑚
2

𝑝
𝑎
2

0
(ℎ + 1)

2

(6ℎ)
ℎ+1
(2ℎ + 1)

ℎ+1
𝑅
ℎ+1

+

𝑎𝑚
𝑝
𝑎
3

0
(ℎ + 1)

3

(6ℎ)
(3ℎ+3)/2

(2ℎ + 1)
(3ℎ+3)/2

𝑅
(3ℎ+3)/2

+ [
𝑏𝑎
4

0
(ℎ + 1)

4

(6ℎ)
2ℎ+2

(2ℎ + 1)
2ℎ+2

× ln
{

{

{

(6ℎ)
ℎ+1
(2ℎ + 1)

ℎ+1
𝑚
2

𝑝

𝑎
2

0
(ℎ + 1)

2

}

}

}

+
𝑐𝑎
4

0
(ℎ + 1)

4

(6ℎ)
2ℎ+2

(2ℎ + 1)
2ℎ+2

]𝑅
2ℎ+2

−
𝑏𝑎
4

0
(ℎ + 1)

4

(6ℎ)
2ℎ+2

(2ℎ + 1)
2ℎ+2

𝑅
2ℎ+2 ln (𝑅ℎ+1) .

(38)

Solving the inhomogeneous Euler differential equation
(7) with (38) we get the form of 𝑓(𝑅) as

𝑓 (𝑅) = 𝐶1𝑅
𝑞
+ 𝐶
2
𝑅
𝑟
+ 𝛿𝑅
ℎ+1

+ 𝛼𝑅
(3/2)(ℎ+1)

+ 𝛽𝑅
2ℎ+2

+ 𝛾𝑅
2ℎ+2 ln𝑅ℎ+1,

(39)
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where
𝑞 =

1

4
[3 + ℎ + √ℎ2 − 10ℎ + 1] ,

𝑟 =
1

4
[3 + ℎ − √ℎ2 − 10ℎ + 1] ,

𝛿 = −
3𝑛
2
𝑎
2

0
(ℎ + 1)

2

ℎ(6ℎ)
ℎ+1
(2ℎ + 1)

ℎ

× [ (288 + 3360ℎ + 14816ℎ
2
+ 31360ℎ

3

+ 33408ℎ
4
+ 17280ℎ

5
+ 3456ℎ

6
)

× (288 + 3504ℎ + 16496ℎ
2
+ 38768ℎ

3
+ 49088ℎ

4

+33984ℎ
5
+ 12096ℎ

6
+ 1728ℎ

7
)
−1

] ,

𝛼 = −
𝑎𝑎
3

0
(ℎ + 1)

3

𝑚
𝑝(6ℎ)
(3ℎ+3)/2

(2ℎ + 1)
(3ℎ+1)/2

× [ (576 + 4128ℎ + 10624ℎ
2

+12032ℎ
3
+ 6144ℎ

4
+ 1152ℎ

5
)

× (288 + 3504ℎ + 16496ℎ
2

+ 38768ℎ
3
+ 49088ℎ

4
+ 33984ℎ

5

+12096ℎ
6
+ 1728ℎ

7
)
−1

] ,

𝛽 =
{

{

{

[

[

𝑏𝑎
4

0
(ℎ + 1)

4

𝑚2
𝑝
(6ℎ)
2ℎ+2

(2ℎ + 1)
2ℎ+1

× ln
{

{

{

(6ℎ)
ℎ+1
(2ℎ + 1)

ℎ+1
𝑚
2

𝑝

𝑎
2

0
(ℎ + 1)

2

}

}

}

+
𝑐𝑎
4

0
(ℎ + 1)

4

𝑚2
𝑝
(6ℎ)
2ℎ+2

(2ℎ + 1)
2ℎ+1

]

]

× [ (320 + 2528ℎ + 6432ℎ
2
+ 7168ℎ

3
+ 3616ℎ

4

+672ℎ
5
) × (288 + 3504ℎ + 16496ℎ

2

+ 38768ℎ
3
+ 49088ℎ

4
+ 33984ℎ

5

+12096ℎ
6
+ 1728ℎ

7
)
−1

]
}

}

}

+
{

{

{

[

[

𝑏𝑎
4

0
(ℎ + 1)

4

𝑚2
𝑝
(6ℎ)
2ℎ+2

(2ℎ + 1)
2ℎ+1

]

]

× [ (192 + 1696ℎ + 4960ℎ
2

+5920ℎ
3
+ 3072ℎ

4
+ 576ℎ

5
)

× (288 + 3504ℎ + 16496ℎ
2

+ 38768ℎ
3
+ 49088ℎ

4
+ 33984ℎ

5

+12096ℎ
6
+ 1728ℎ

7
)
−1

]
}

}

}

,

𝛾 =
𝑏𝑎
4

0
(ℎ + 1)

4

𝑚2
𝑝
(6ℎ)
2ℎ+2

(2ℎ + 1)
2ℎ+1

× [ (192 + 1696ℎ + 4960ℎ
2
+ 5920ℎ

3
+ 3072ℎ

4

+576ℎ
5
) × (288 + 3504ℎ + 16496ℎ

2
+ 38768ℎ

3

+ 49088ℎ
4
+ 33984ℎ

5

+12096ℎ
6
+ 1728ℎ

7
)
−1

] .

(40)

The boundary conditions will give

𝐶
1
=

𝑅
1−𝑞

0

2 (𝑞 − 𝑟)
[4𝑟 − 𝛼 (3 + 3ℎ − 2𝑟) 𝑅

(3ℎ+1)/2

0

− 2 (2𝛽 + 2ℎ𝛽 − 𝑟𝛽 + 𝛾 + ℎ𝛾)

× 𝑅
2ℎ+1

0
− 2𝛿 (1 + ℎ − 2𝑟) 𝑅

ℎ

0

−2𝛾 (2 + 2ℎ − 𝑟) 𝑅
2ℎ+1

0
ln [𝑅ℎ+1
0
] ] ,

𝐶
2
=

𝑅
1−𝑟

0

2 (𝑟 − 𝑞)
[4𝑞 − 𝛼 (3 + 3ℎ − 2𝑞) 𝑅

(3ℎ+1)/2

0

− 2 (2𝛽 + 2ℎ𝛽 − 𝑞𝛽 + 𝛾 + ℎ𝛾)

× 𝑅
2ℎ+1

0
− 2𝛿 (1 + ℎ − 2𝑞) 𝑅

ℎ

0

−2𝛾 (2 + 2ℎ − 𝑞) 𝑅
2ℎ+1

0
ln [𝑅ℎ+1
0
] ] .

(41)

In general the equation of state of (10) will be a function
of𝐻 and hence time in this case and so it can explain the tran-
sition from quintessence (𝜔

𝑅
> −1) to phantom dominated

regime (𝜔
𝑅
< −1) as predicted by recent observations [83–

85]. For the quintessence scale factor (11) the conformal time
can be evaluated with (14) and (15) as

𝜂 = ∫

𝑡

0

𝑑𝑡

𝑎
=

1

𝑎
0 (1 − ℎ)

[
6ℎ (2ℎ − 1)

𝑅
]

(1−ℎ)/2

,
1

2
< ℎ < 1.

(42)

For a real finite conformal time it is necessary to have
1/2 < ℎ < 1. Substituting this in (36) we get

𝜌
Λ

𝑚2
𝑝

=
3𝑛
2
𝑎
2

0
(1 − ℎ)

2

(6ℎ)
1−ℎ
(2ℎ − 1)

1−ℎ
𝑅
1−ℎ

+
𝑎𝑎
3

0
(1 − ℎ)

3

𝑚
𝑝
(6ℎ)
(3−3ℎ)/2

(2ℎ − 1)
(3−3ℎ)/2

𝑅
(3−3ℎ)/2

+
𝑎
4

0
(1 − ℎ)

4

𝑚2
𝑝
(6ℎ)
2−2ℎ

(2ℎ − 1)
2−2ℎ
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× [

[

𝑏 ln
{

{

{

(6ℎ)
1−ℎ
(2ℎ − 1)

1−ℎ
𝑚
2

𝑝

𝑎
2

0
(1 − ℎ)

2

}

}

}

+ 𝑐]

]

× 𝑅
2−2ℎ

−
𝑏𝑎
4

0
(1 − ℎ)

4

𝑚2
𝑝
(6ℎ)
2−2ℎ

(2ℎ − 1)
2−2ℎ

× 𝑅
2−2ℎ ln (𝑅1−ℎ) .

(43)
Solving the inhomogeneous Euler differential equation

(7) with (43), (14), and (15) we get the form of 𝑓(𝑅) as
𝑓 (𝑅) = 𝐶1𝑅

𝑞
+ 𝐶
2
𝑅
𝑟
+ 𝛿𝑅
1−ℎ

+ 𝛼𝑅
(3/2)(1−ℎ)

+ 𝛽𝑅
2−2ℎ

+ 𝛾𝑅
2−2ℎ ln𝑅1−ℎ,

(44)

where
𝑞 =

1

4
[3 − ℎ + √ℎ2 + 10ℎ + 1] ,

𝑟 =
1

4
[3 − ℎ − √ℎ2 + 10ℎ + 1] ,

𝛿 =
3𝑛
2
𝑎
2

0
(1 − ℎ)

2

ℎ(6ℎ)
1−ℎ
(2ℎ − 1)

−ℎ

× [ (288 − 3360ℎ + 14816ℎ
2
− 31360ℎ

3

+ 33408ℎ
4
− 17280ℎ

5
+ 3456ℎ

6
)

× (−288 + 3504ℎ − 16496ℎ
2

+ 38768ℎ
3
− 49088ℎ

4
+ 33984ℎ

5

−12096ℎ
6
+ 1728ℎ

7
)
−1

] ,

𝛼 =
𝑎𝑎
3

0
(1 − ℎ)

3

𝑚
𝑝
(6ℎ)
(3−3ℎ)/2

(2ℎ − 1)
(1−3ℎ)/2

× [ ( − 576 + 4128ℎ − 10624ℎ
2

+12032ℎ
3
− 6144ℎ

4
+ 1152ℎ

5
)

× (−288 + 3504ℎ − 16496ℎ
2

+ 38768ℎ
3
− 49088ℎ

4
+ 33984ℎ

5

−12096ℎ
6
+ 1728ℎ

7
)
−1

] ,

𝛽 =
{

{

{

𝑎
4

0
(1 − ℎ)

4

𝑚2
𝑝
(6ℎ)
2−2ℎ

(2ℎ − 1)
1−2ℎ

× [

[

𝑏 ln
{

{

{

(6ℎ)
1−ℎ
(2ℎ − 1)

1−ℎ
𝑚
2

𝑝

𝑎
2

0
(1 − ℎ)

2

}

}

}

+ 𝑐]

]

× [ (−192 + 1696ℎ − 4960ℎ
2

+ 5920ℎ
3
− 3072ℎ

4
+ 576ℎ

5
)

× (−288 + 3504ℎ − 16496ℎ
2
+ 38768ℎ

3
− 49088ℎ

4

+33984ℎ
5
− 12096ℎ

6
+ 1728ℎ

7
)
−1

]
}

}

}

−
{

{

{

[

[

𝑏𝑎
4

0
(1 − ℎ)

4

𝑚2
𝑝
(6ℎ)
2−2ℎ

(2ℎ − 1)
1−2ℎ

]

]

× [ (320 − 2528ℎ + 6432ℎ
2
− 7168ℎ

3

+3616ℎ
4
− 672ℎ

5
)

× (−288 + 3504ℎ − 16496ℎ
2

+ 38768ℎ
3
− 49088ℎ

4
+ 33984ℎ

5

− 12096ℎ
6
+ 1728ℎ

7
)
−1

]
}

}

}

,

𝛾 =
−𝑏𝑎
4

0
(1 − ℎ)

4

𝑚2
𝑝
(6ℎ)
2−2ℎ

(2ℎ − 1)
1−2ℎ

× [ (−192 + 1696ℎ − 4960ℎ
2

+5920ℎ
3
− 3072ℎ

4
+ 576ℎ

5
)

× (−288 + 3504ℎ − 16496ℎ
2

+ 38768ℎ
3
− 49088ℎ

4
+ 33984ℎ

5

−12096ℎ
6
+ 1728ℎ

7
)
−1

] .

(45)

The boundary conditions 𝑓(𝑅)|
𝑅=𝑅
0

= −2𝑅
0

and
𝑓

(𝑅)|
𝑅=𝑅
0

∼ 0 will give

𝐶
1
=
𝑅
1−2ℎ−𝑞

0

2 (𝑞 − 𝑟)
[4𝑟𝑅
2ℎ

0
− 𝛼 (3 − 3ℎ − 2𝑟) 𝑅

(ℎ+1)/2

0

− 2 (2𝛽 − 2ℎ𝛽 − 𝑟𝛽 + 𝛾 − ℎ𝛾)

× 𝑅
0
− 2𝛿 (1 − ℎ − 𝑟) 𝑅

ℎ

0

−2𝛾 (2 − 2ℎ − 𝑟) 𝑅
0
ln [𝑅1−ℎ
0
] ] ,

𝐶
2
=
𝑅
1−2ℎ−𝑟

0

2 (𝑟 − 𝑞)
[4𝑞𝑅
2ℎ

0
− 𝛼 (3 − 3ℎ − 2𝑞) 𝑅

(ℎ+1)/2

0

− 2 (2𝛽 − 2ℎ𝛽 − 𝑞𝛽 + 𝛾 − ℎ𝛾)

× 𝑅
0
− 2𝛿 (1 − ℎ − 𝑞) 𝑅

ℎ

0

−2𝛾 (2 − 2ℎ − 𝑞) 𝑅
0
ln [𝑅1−ℎ
0
] ] .

(46)

For the scale factor 𝑎(𝑡) = 𝑎
0
𝑒
𝐻𝑡 with 𝐻 = constant (de

Sitter) we write the conformal time as

𝜂 = ∫

∞

0

𝑑𝑡

𝑎
=

1

𝑎
0
𝐻
= √

12

𝑎
2

0
𝑅
. (47)
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Here we have set the upper limit of the integration to 𝑡 →
∞ to express 𝜂 in terms of𝑅.The relevant modification to the
energy density (36) will be

𝜌
Λ
=

3𝑛
2
𝑚
2

𝑝

𝜂2
+

𝑎𝑚
𝑝

𝜂3
+
𝑏

𝜂4
ln (𝜂2𝑚2

𝑝
) +

𝑐

𝜂4
. (48)

The solution of (7) with (47) and (48) yields the form of
𝑓(𝑅) as

𝑓 (𝑅) = −𝑛𝑎
2

0
𝑅 + 𝐶

1
𝑅
2
−

𝑎𝑎
3

0

3√3𝑚
𝑝

𝑅
3/2
−
𝑏𝑎
4

0

72𝑚2
𝑝

𝑅
2

× [ln(
12𝑚
2

𝑝

𝑎
0
𝑅
)]

2

+
𝑐𝑎
4

0

36𝑚2
𝑝

𝑅
2 ln [𝑅] ,

(49)

where 𝐶
1
is the integration constant to be fixed with bound-

ary conditions. Here also like the holographic DE model we
have a new term 𝑅

3/2 in 𝑓(𝑅) which can be important for
curvature driven inflation.

4. Discussion

In this study we considered the generalized uncertainty
principle motivated forms of the holographic and the new
agegraphic DE models to reconstruct the form of 𝑓(𝑅)
suitable to explain the unification of early time inflation
and late time acceleration. The idea that the Heisenberg
uncertainty principle could be affected by gravity was given
by Mead [57]. In the regime when the gravity is strong
enough, conventional Heisenberg uncertainty relation is no
longer satisfactory (though approximately but perfectly valid
in low gravity regimes). Modified commutation relations
between position and momenta, commonly known as the
generalized uncertainty principle (or GUP), were given by
candidate theories of quantum gravity like string theory,
doubly special relativity, and black hole physics with the
prediction of a minimum measurable length. Importance
of the GUP can also be realized on the basis of simple
gedanken experiments without any reference of a particular
fundamental theory [65, 66]. So we can think of the GUP as
a model-independent concept suitable for the study of black
hole entropy at least phenomenologically.

According to the holographic principle the number of
degrees of freedom of a bounded system should be finite and
is related to the area of its boundary. As an application of the
principle the upper bound of the entropy of the universe can
be obtained.The total energy of a system of size 𝐿 should not
exceed the mass of a black hole of the same size, otherwise it
would decay into a black hole.The saturation of the inequality
means 𝜌

Λ
= (3𝑛

2
𝑚
2

𝑝
)/𝐿
2 where 𝑚

𝑝
is the reduced Planck

Mass (𝑚−2
𝑝
= 8𝜋𝐺). The UV cut-off is related to the vacuum

energy and the IR cut-off is related to the large scale of the
universe. The holographic dark energy scenario is viable if
we set the IR cut-off by the future event horizon and also
make a concrete prediction about the equation of state of the
DE [16]. On the other hand the new agegraphic DE model

is based on the Károlyházy relation which considers energy
density of quantum fluctuations of the metric and matter in
the universe. The energy density of the new agegraphic DE
model has the same form as the holographic dark energy
but the conformal time takes care of the IR cut-off instead
of considering the future event horizon of the universe. The
model not only accounts the observed value of DE in the
universe but also predicts an accelerated expansion. Among
various theoretical approaches to explain the present cosmic
accelerated expansion of the universe only the holographic
and the new agegraphic DE model is somehow based on
the entropy-area relation. The entropy-area relation on the
other hand can have quantum corrections through various
approaches of quantum gravity.

As no single theoretical proposal for DE enjoys a pro-
nounced supremacy over the others in terms of having a
strong field theoretic support as well as being able to explain
all the present observational data. This state of art explores
another possibility ofwhether geometry in its own right could
explain the presently observed accelerated expansion. The
idea stems from the fact that higher order modifications of
the Ricci curvature 𝑅 along with 𝑅 in the Einstein-Hilbert
action could generate inflation in the very early universe. As
the curvature is expected to fall off with the cosmic evolution
it is then obvious whether inverse powers of 𝑅 in the action
dominant during the later stages could drive a late time
acceleration. In general this alternative theory is coined as
𝑓(𝑅) gravity.

In this paper we studied a unified approach with the
holographic, new agegraphic, and 𝑓(𝑅) DE model to con-
struct the form of 𝑓(𝑅) which in general is responsible for
the curvature driven explanation of the very early infla-
tion along with presently observed late time acceleration.
We considered the generalized uncertainty principle in our
approach which incorporated the corrections in the entropy
area relation which thereby modified the energy densities for
the cosmological DE models considered here. In the context
of modified theories of gravity we should be cautious with
the Wald entropy [86, 87] and not the Bekenstein-Hawking
entropy. The Wald entropy is defined in terms of quantities
on the Killing horizon and it depends on the variation of
the Lagrangian density of the modified gravity theory with
respect to the Riemann tensor. The Wald entropy is a local
quantity and in 𝑓(𝑅) gravity it is given by 𝑆

𝑊
= 𝐴𝑓

(𝑅)/4𝐺

[88]. However, here we have just reconstructed 𝑓(𝑅) from
the energy densities of other DE models. We found that
the GUP motivated holographic and new agegraphic 𝑓(𝑅)
gravity models can behave like phantom or quintessence
models in the spatially flat FRW universe. A similar study
was also carried out by authors in [73]. We reproduced all the
result and conclusion of [73] but in addition we also found a
distinct term in the formof𝑓(𝑅)which goes as𝑅3/2 due to the
consideration of the GUP modified energy densities. This is
really very interesting if we consider the phenomenological
consequence of our study. Although the presence of this
term in the action can have its importance for inflation,
Capozziello et al. [89, 90] introduced an action with 𝑓(𝑅) ∼
𝑅
𝑚 and showed that it leads to an accelerated expansion,

that is, a negative value for the deceleration parameter 𝑞
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for 𝑚 ≈ 3/2 which fits well with SNeIa and WMAP data.
Apart from the 𝑅3/2 term we also found the other possible
contributions of 𝑅 like 𝑅2 and 𝑅2 ln[𝑅] which also have
importance in the inflationary scenario. We should also
mention here that in the latter case one needs not only quasi-
exponential expansion but a metastable (i.e. slowly rolling)
one. In 𝑓(𝑅) gravity this may occur only if 𝑓(𝑅) is close to 𝑅2
over some range of 𝑅 [91].
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