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Abstract 

 

Considering the advantages of floating films transfer method (FTM), we have investigated 

the optical and electronic characteristics of PBTTT-C14 thin-films prepared by the static and 

the dynamic casting on liquid substrate. It has been demonstrated that judicious selection of 

solvents during FTM switches the casting mode from the static casting (S-FTM) using high 

boiling point solvent to the dynamic casting (D-FTM) from low boiling point solvent. 

Although both of the methods provide the edge-on oriented structure of PBTTT-C14 by 

XRD, the structural and the optical analyses reveal relatively extended -conjugation length 

in parallel D-FTM film as compared to that of S-FTM. A high field-effect mobility () of 

0.11 cm2V-1s-1
 was exhibited by OFETs fabricated by parallel D-FTM film even without any 

high temperature post-annealing up to the liquid crystalline phase transition. This observed 

value of  for parallel D-FTM is 4.7 and 12.8 times higher than the isotropic S-FTM and the 

perpendicular D-FTM films, respectively.  

 

Keywords: casting procedure, static, dynamic, floating film, liquid substrate, anisotropy  
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1. Introduction 

Advent of solution processable conjugated polymers (CPs) has witnessed the tremendous 

growth in their utilization as active semiconducting materials owing to their low cost 

manufacturing [1–6] and realization of flexible electronics [7-8]. It is well known that 

morphology of CPs in thin films plays a prominent role in governing the charge transport.   

Enhancing the device performance of solution processable organic thin film transistors to 

the level of amorphous silicon is undoubtedly necessary for their practical realization [2]. 

Thin film morphology of CPs plays a crucial role for achieving the high carrier mobility 

() which in-turn is highly dependent on the thin film processing conditions [9]. Improving 

the  using high molecular weight CPs, high boiling point solvents [9,10], dielectric 

surface treatment [11,12], deposition method [13] and orientation techniques [14] have 

been widely discussed in the recent past [15]. Although spin coating is most preferred 

method for the fabrication of thin films of CPs but still existing bottle-necks like high 

material wastage and surface roughness limits their usage at industrial scale [16]. In the 

meantime, several new thin film fabrication techniques such as solution flow [17], flow 

coating [18], solution shearing [19], capillary action [17], slide coating [20] etc. have also 

been proposed to circumvent problems of the spin coating. Intriguing challenges like 

simple fabrication process, thickness uniformity and capability for multilayer thin film 

fabrication are yet to be solved for large scale production of organic electronic devices. 

One of the plausible solution might be the possibility of large area thin film fabrication on 

liquid substrates followed by their transfer on the desired solid substrates. Such method are 

capable of solving both of the existing issues like logical selection of the suitable solvent 

not only for the preparation of CP solution but also the liquid substrate from which the 

solid-state thin films are transferred to the desired substrate. At the same time, thickness 
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and uniformity of the film can be easily controlled by adopting the multi-layer coatings. 

 

In order to provide an amicable solution for problems existing in the spin-coating 

method, our group has developed a novel thin film fabrication technique, namely 

floating-film transfer method (FTM). Casting CPs from the low boiling point (BP) solvent 

like chloroform on an orthogonal liquid substrate, we have demonstrated that there is not 

only improvement in the device performance for the films prepared by FTM [21,22] but 

also it has been utilized to achieve molecular orientation for a number of CPs having 

potential application for the anisotropic optoelectronics [23–25]. Improvement in the 

field-effect mobility of CPs by spin-coating their thin films from high boiling solvents has 

also been reported. This was attributed to the slow solvent evaporation leading to 

thermodynamically favorable molecular arrangement in the thin films, where alkyl chains 

lie standing with respect to the substrate [9,10,26]. On the other hand, fast solvent 

evaporation during the formation of thin films leads to kinetically favored structures where 

alkyl chains lie in the plane of the substrate [10,26]. In the recent past efforts have also 

been directed towards casting thin films of CPs utilizing high boiling solvent like 

chlorobenzene (BP 131°C) on liquid substrate in order to enhance the device performance 

along with the demonstration of multilayer thin film fabrication [27,28]. Enhancement in 

the device performance was explained by considering the fact that for chlorobenzene 

solution of CPs, solvent evaporates very slowly giving enough time for the 

self-organization of macromolecules on the liquid substrate. This process can be being 

expressed as static mode of FTM (S-FTM). 

 

In contrast, casting CPs with low boiling solvent such as chloroform (BP 61°C) 

and dichloromethane (BP 40°C), there is a dynamic equilibrium between spreading of the 

solution on the liquid substrate, formation of the thin film by rapid solvent evaporation and 
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dragging viscous force offered by the orthogonal liquid substrate. This process can be 

expressed as dynamic FTM (D-FTM). We have already demonstrated that through the 

systematic control of casting conditions such as temperature, concentration of solution and 

viscosity of the liquid substrate, strong uniaxial orientation can be induced in floating-films 

under D-FTM [24,29]. Recently, other groups have also spotlighted the importance of the 

casting methodology of conjugated polymers on liquid substrates and their effect on the 

device performances in various devices like solar cells and phototransistors 

[23,27,28,30,31]. Owing to the versatile features of floating film, choice of the suitable 

solvent (high or low BP) during preparation of the solution of CPs is one of decisive steps 

and plays an important role in the growth mechanism of the thin films. In this study, 

investigations pertaining to the optical and structural characterization of thin films 

prepared by both of the S-FTM and D-FTM and their implication on electronic 

characteristics after the fabrication of the organic field effect transistors (OFETs) have been 

carried out. 

 

2. Experimental Section 

2.1 Thin Film Preparation 

A thiophene based CP, poly[2,5-bis(3- tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] 

(PBTTT-C14) was employed to compare the performance of carrier transport in this study 

[32]. PBTTT-C14 was purchased from Sigma-Aldrich and used without any further 

purification. Super dehydrated chlorobenzene and chloroform were purchased from 

WAKO pure chemicals. PBTTT-C14 solutions were prepared by 1% and 0.5% (wt/wt) in 

chloroform and chlorobenzene, respectively. These polymer solutions were then heated at 

55°C with continuous stirring to prepare the solutions. For S-FTM 

PBTTT-C14/chlorobenzene solution was dropped on a distilled water filled in a 15 cm 

diameter petri-dish as liquid substrate, then it was left for several hours to obtain a thin 
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floating-film as per the literature report [27]. For D-FTM, PBTTT-C14/chloroform 

solution was dropped on a viscous liquid substrate consisting of ethylene glycol and 

glycerol mixture as per our earlier publication [24,33]. In this case, floating films were 

immediately formed on the liquid substrate with spreading the solution. Both of the 

floating films were transferred on to the desired substrate by stamping.  

 

2.2 Thin Film Characterization 

Thickness of floating-film coated on a flat Si substrate was about 25 nm as measured by 

interference microscopy (Nikon Eclipse LV150). Several pieces of white-glass (2.5 cm x   

1.0 cm) were used as the substrates for polarized electronic absorption spectroscopic and 

optical texture measurements. Polarized spectra were measured by a spectrophotometer, 

JASCO V570, equipped with a Glan-Thompson prism. Optical textures were taken using 

Olympus BX50 polarizing optical microscope (POM). Thick films of PBTTT-C14 were 

prepared by multiple stamping via each FTM (both S-FTM and D-FTM) to get thicker 

films (about 700-800 nm), which were used for out-of-plane X-ray diffraction (XRD) 

measured by Rigaku X-ray diffractometer with Cu Kα radiation at 20 KV and 20 mA. 

Si-wafer and white glass surfaces were made hydrophobic using hexamethyldisilazane by a 

similar manner as per our earlier report [34]. 

 

2.3 Device Fabrication 

Top contact bottom gate OFETs were fabricated to evaluate carrier transport characteristics 

for both types of FTM films. Highly doped silicon wafer substrates having 300 nm thick 

SiO2 insular were used to spin coat CYTOPTM at 3000 rpm on SiO2 for 120 seconds and 

annealed at 150°C for 1 hour to increase the surface hydrophobicity. The resultant insulator 

capacitance was estimated to be about 8 nF/cm2. FTM films were then transferred on this 

hydrophobic surface followed by washing with methanol to remove residual hydrophilic 
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liquid substrate materials. Gold was utilized for source and drain electrodes to deposit by 

thermal deposition at a base pressure of 10-6 Torr through a nickel shadow mask having 

channel length (L) of 20 μm and channel width (W) of 2 mm. To ensure the electrical 

isolation in OFETs, semiconductor layer was electrically isolated around the device by 

wiping with cotton bud dipped in chloroform. Electrical parameters were measured with 

computer-controlled source meter Keithley-2612. 

 

3. Results and discussion 

Photographs of the floating-films on liquid substrate are shown in Fig. 1. It can be seen 

from the Fig.1(a) that for S-FTM with PBTTT-C14/chlorobenzene solution, spreading of 

the solution takes place throughout the entire surface of the liquid substrate (water) 

followed by the formation of floating-film after the slow evaporation of chlorobenzene. In 

contrast, when PBTTT-C14/CHCl3 solution was subjected to film casting on liquid 

substrate consisted of an ethylene glycol/glycerol mixture (3:1) at 55°C, it spreads in all of 

the direction in branched form like a star-fish followed by simultaneous solidification 

leading to the formation of oriented floating-films owing to relatively quick evaporation of 

chloroform as shown in Fig. 1(b) for D-FTM. In this case, viscosity of the liquid substrate 

and temperature for casting play important roles for controlling the orientation [29]. It 

should be noted that the orientation direction in the floating-films can be easily seen by 

necked eye through a polarizer film. The plausible mechanism for the origin of orientation 

under D-FTM is schematically shown in the Fig.1(c). 
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Fig. 1. Photograph of the thin films formed at liquid substrate using S-FTM (a) and D-FTM 

(b), and schematic for possible mechanism for macroscopic orientation in D-FTM (c). 

 

For D-FTM, PBTTT-C14 macromolecules move randomly due to the weak 

inter-molecular interactions in the solution state. Continuous concentration of the solution 

on liquid substrate assisted by simultaneous solvent evaporation leads to the short time 

induction of lyotropic liquid crystalline (LC) phase transition as transient state in the 

solution before reaching to the solid state [35]. The continuous spreading of the solution on 

liquid substrate drives the solidifying macromolecules into the same direction as the 

expansive and the compressive forces assisting towards lyotropic LC phase transition 

[33,34]. The balance between the evaporation and the spreading speeds in this process 

specify the length of transient time for the orientation of macromolecules perpendicular to 

the propagation direction. In contrast, such color change was not observed through the 

polarized film in the floating-film prepared by S-FTM unlikely to that by D-FTM.  
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Fig. 2. (a) Chemical structure of PBTTT-C14, (b) Photograph of oriented thin films 

stamped on glass substrate (2.5 cm × 1 cm) obtained by D-FTM with polarizer rotated 

parallel and perpendicular to the orientation direction. Floating film was casted from 

branch of star-fish like floating film, where red arrow represent the film expansion 

direction and double sided blue arrow represents the orientation direction of main chain  

and (c) POM images of oriented PBTTT-C14 thin film prepared by D-FTM. Single green 

arrow represents the direction of oriented PBTTT-C14 films whereas white double arrow 

represents the polarization of the incident light. 

 

 

PBTTT-C14 thin films stamped on the glass slide have clearly distinguishable color 

change when seen through polarized film due to the macroscopic orientation of the 

polymeric assemblies in D-FTM as shown in the Fig. 2 (b). This high orientation of 

PBTTT-C14 macromolecules in fabricated thin films is further supported by the polarized 

optical microscopic images as shown in Fig. 2 (c). A perusal of the Fig. 2 (c) reveals a 

remarkable color change when the polarization angle of incident light was changed from 0° 

to 90° along with the contrasting color changes of the texture from dark to almost colorless 

in the POM images. 
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Fig. 3 (a). Polarized absorption spectra of PBTTT-C14 thin film prepared by S-FTM and 

D-FTM. (b). Enlarged view of the marked area with square. 

 

In order to visualize this strong optical dichroism of D-FTM films quantitatively, 

polarized electronic absorption spectroscopic investigations were also carried out which 

have been shown in the Fig. 3. Strength of molecular orientation was indexed by the 

quantitative estimation optical dichroic ratio (DR) calculated by the Eq. (1) which was found 

to be 6.5. It is important to note that such a high DR value for the PBTTT-C14 has been only 

achieved at elevated temperatures (> 100°C) by other research groups through mechanical 

rubbing and film compression on ionic liquid substrates by utilizing formation of their LC 

mesophases [30,36]. 

 
𝐷𝑅 =  

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑎𝑡 (𝜆𝑚𝑎𝑥‖)

𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟  𝑎𝑡 (𝜆𝑚𝑎𝑥‖)
 (1) 

 

 Considering the differences between the electronic absorption spectra of D-FTM 

(Parallel) and S-FTM films, there was a slightly red-shift in the main absorption peak along 

with the pronounced vibronic shoulders appearing at 544 nm and 600 nm, respectively 

[24,37]. The red shift represents the increased effective π-conjugation length in D-FTM film 

and pronounced shoulder indicates the improvement in the π-orbital delocalization [12]. 
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Fig. 4. Out-of-plane XRD pattern of the PBTTT-C14 films prepared by S-FTM (black) and 

D-FTM (red) (a) and the schematic representation of edge-on orientation of the polymeric 

backbone in the films with their unit cell axis (b).  

 

 Out of plane X-ray diffraction patterns of the films prepared by both of the S-FTM 

and D-FTM are shown in the Fig. 4. The preferential orientation of the backbone when 

a-axis lies (alky-chain direction) out of the plane (Edge-on orientation) is preferred due to 

high in-plane transport as both the b-axis (π-π stacking direction) and c-axis (main-chain 

direction) lies in the same plane. This edge-on orientation having facile in-plane charge 

transport is highly beneficial for fabricating in-plane organic electronic devices like OFETs 

[14,38]. On the other hand opposite face-on orientation is preferred where b-axis lies out of 

the plane for devices with out of plane vertical charge transport such as solar cells and light 

emitting diodes. X-ray diffraction patterns of the films prepared by both of the S-FTM and 

D-FTM are compared in Fig. 4. A series of diffraction peaks corresponding to the lamellar 

d-spacing (a-axis) is calculated from the average of the peak positions and was found to be 

22.2 Å, indicating the edge-on structure perpendicular to the substrate as schematically 

shown in Fig. 4 (b). The peak intensities are more pronounced up to 4th order in the D-FTM 

as compared to that of S-FTM film. At the same time, 100 peak in D-FTM is relatively 
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intense and sharp as compared to S-FTM representing that films prepared by D-FTM are 

more crystalline with relatively larger grain size [30,39]. Interestingly, there is a peak-shift 

of the lamella d-spacing for D-FTM films towards the lower angle as compared to those in 

S-FTM films indicating that the lamella-layer structure is highly stretched along with the 

edge-on orientation on the substrate. It is worth to mention that such a well-defined and 

sharp diffraction peaks and lamella d-spacing in the PBTTT-C14 films have been only 

reported by the thermal annealing up to the thermotropic LC phase transition temperature of 

about 180°C [14, 18]. This result represents that the developed D-FTM provides the growth 

of films with well-oriented domains without high temperature thermal treatment. The 

in-plane orientation in the domain should be discussed with the in-plane GIXD 

measurements, which is still under investigation. 

 

 

Fig. 5. Device configuration of the fabricated OFET (a) and output OFET characteristics of 

PBTTT-C14 films prepared by D-FTM parallel (b), D-FTM perpendicular (c) and S-FTM 

(d). 
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OFETs were fabricated in the three different device configurations in order to 

delineate the implication of nature of fabricated thin films on the charge transport properties.  

Two types of parallel and perpendicular OFETs for D-FTM were fabricated due to the 

observation of high optical anisotropy while third type of device was fabricated utilizing 

isotropic films prepared by S-FTM. Results obtained after the measurement of I-V 

characteristics for the respective OFETs are shown in the Fig. 5. All of the OFETs under 

investigation exhibited well known p-type transport characteristics. Relatively large drain 

currents were observed for the OFETs fabricated with D-FTM films in parallel orientation 

compared to that prepared by both of the S-FTM and perpendicular D-FTM films. These 

results are in well agreement considering the fact that -conjugated backbones are highly 

aligned in single direction (D-FTM parallel) with respect to source and drain leading to the  

high drain currents as compared to films of S-FTM films owing to the random 

macromolecular arrangement in the channel region and one with conjugated backbone 

aligned in perpendicular direction of the channel [24,40].   

 

 

Fig. 6. (a) Transfer characteristics of PBTTT-C14 films prepared with different methods 

(VDS= -80 V) and (b) Variation of saturation field-effect mobility of the OFETs fabricated 

with different PBTTT-C14 films. 
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Transfer characteristics of the fabricated FETs are shown in the Fig. 6 and 

parameters like field effect mobility (μ) and threshold voltage (Vth) were calculated at the 

saturation regime in the transfer characteristics using the Equation (2). 

 
𝐼𝐷𝑆 =

𝑊

2𝐿
𝜇𝐶𝑖(𝑉𝐺𝑆 − 𝑉𝑡ℎ)2 (2) 

 

The calculated μ for S-FTM, D-FTM parallel and D-FTM perpendicular were 

found to be 2.3×10-2, 1.1×10-2 and 8.6×10-3 cm2/V.s respectively (Fig. 6 (b)). Mobility in 

parallel oriented films of D-FTM is found to be 4.7 times higher as compared to the isotropic 

films of S-FTM and 12.8 times higher than perpendicular D-FTM films. This provides a 

clear evidence of highly anisotropic transport in D-FTM owing to the one directional 

alignment of the main chains. This observed anisotropy in the oriented PBTTT-C14 films is 

much higher as compared to the previous report where the same film was subjected to the 

orientation by high temperature rubbing [36]. It is also worth to note here that such a high μ 

in PBTTT-C14 films has only been achieved by spin coating with high boiling solvents 

followed by its annealing above to their thermotropic LC phase transition temperatures 

[30,32,39]. Herein once again we would like to emphasize that D-FTM utilized in this work 

not only offers a simple and quick preparation of oriented thin films but also leads to 

enhanced device performance of the polymeric OFETs. 

 

Table 1. Summary of device characteristics in OFET fabricated through S-FTM and 

D-FTM    

 

 

 
Mobility 

(cm2/V.s) 

Vth 

(V) 

On/off 

ratio 

Optical 

Anisotropy 

Mobility 

Anisotropy 

S-FTM 2.3×10-2 -30 7.4×104 - - 

D-FTM 
Parallel 1.1×10-1 -13 2.8×105 

6.5 12.8 
Perpendicular 8.6×10-3 -10 1.2×104 
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4. Conclusion 

We have investigated the differences in the optical and electronic characteristics of 

floating-films of PBTTT-C14 prepared by static mode (S-FTM) and dynamic mode 

(D-FTM) of casting. Macroscopic orientation can be easily seen in the D-FTM films of 

PBTTT-C14 having a fairly good molecular orientation leading to the attainment of a high 

optical DR of 6.5. In contrast, isotropic floating-films were obtained when S-FTM was 

implemented for thin film fabrication. Absorption spectroscopic results support the increase 

in -conjugation length in parallel D-FTM film as compared to S-FTM Film. Out-of-plane 

XRD pattern indicated that D-FTM films promote the more stretched lamella-layer structure 

with the edge-on orientation as compared to S-FTM films. Field-effect mobility estimated 

after OFET fabrication utilizing thin films fabricated by various method follows the order 

parallel D-FTM > S-FTM > perpendicular D-FTM. Interestingly, a high of 0.11 cm2/V.s 

was found for the thin films of PBTTT-C14 fabricated by parallel D-FTM without any 

post-thermal annealing to its thermotropic LC temperature. It has been demonstrated that 

unlikely to known spin-coating and drop casting method preparation of thin films of CPs 

utilizing low boiling point solvents (D-FTM) serves as better strategy of film fabrication as 

compared to high boiling point solvent (S-FTM) especially for planer devices like OFETs. 
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