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Abstract

The development of nanostructured materials relies on the advancement of our
understanding of their properties and behavior at the molecular level. To lever-
age the potential of block-copolymers (BCP) as a cutting-edge technological op-
tion for industrial applications, a deeper understanding of defect formation and
removal in directed self-assembly (DSA) is required. To this end, reliable, fast,
and computationally-efficient modeling techniques able to capture the physics
of the BCP in DSA are needed to provide experts with the ability to test design
ideas and explore unique processing conditions.

Continuum models are suitable to satisfy the latter need; in this work, we
have investigated to what extent these models can be used to describe the or-
dering process of diblock copolymers in the particular context of DSA. Among
these models, the Ohta-Kawasaki free energy functional provides good agree-
ment with SCFT calculations and particle-based simulations regarding the phase
diagram of diblock copolymers, the morphology, and meta-stability of defects,
and the kinetics of DSA.

Herein, we present the fluctuation mode analysis (FMA), an alternative ap-
proach to investigate local composition fluctuations within the Ohta-Kawasaki
model, which is computationally less costly. The FMA allows decoupling the
composition fluctuations that a given meta-stable morphology can exhibit. This
feature has been exploited for the prediction of scattering patterns where spe-
cific fluctuation modes, relevant for the detection of defects via long-wavelength
scattering, were identified and investigated. This finding provides the physical
foundations for the design of an improved defect-metrology procedure that in-
cludes a preliminary screening of an entire wafer and the pre-classification of
defects based on their light scattering footprints.
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Chapter 1

Introduction

Natural and synthetic polymers constitute myriads of materials necessary for
daily life, thereby serving in diverse functions ranging from the DNA and the
keratin in human bodies, the starch in our daily diet, and the polyacrylic acid
in the superabsorbents of diapers to the aramids-aromatic polyamides used in
fire-resistant materials, such as Kevlar. The study of polymers has abiding inter-
est due to the vast variety of properties that can be tailored via their molecular
design, the tunable interaction between the long polymeric chains with them-
selves as well as with the environment, and the diverse processing conditions
available.

In the quest for smart materials with tunable novel properties, synthetic
polymers span a unique exploration space whose limits are still not entirely
unveiled. Polymers can have different architectures that depend on the arrange-
ment and the type of the monomers, i.e., the repeating units forming polymeric
molecules. Advancements in living polymerization techniques [1] have ren-
dered it possible to design complex polymeric molecules, such as dendritic, hy-
brid hyperbranched-linear, and surface-tethered polymer brushes. Materials
exhibiting diverse properties obtained with simpler polymer architectures mo-
tivated the development of such complex molecules. These simple and nowa-
days common molecular designs, shown in Figure 1.1, are still the focus of ac-
tive research for the development of novel materials and applications.

Among the simple molecular designs, diblock copolymers can be highlighted
as one of the simplest architectures. Nevertheless, they offer a rich variety of
microstructures depending on the volume fraction f of the A-component in the
block copolymer (BCP), and the thermodynamic repulsion of the blocks quanti-
fied by the product of the Flory-Huggins parameter and the number of statisti-
cal segments per macromolecule, χN. Figure 1.2 shows the experimental phase
diagram for a specific BCP illustrating the commonly investigated phases in this
type of systems. New ordered phases in BCPs have been predicted by theory
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CHAPTER 1. INTRODUCTION

Figure 1.1: Selection of polymer architectures and self-assembled systems in
solution. Reproduced from reference [2] with permission of the Royal Society
of Chemistry.

Figure 1.2: Block copolymer (BCP) microstructures and the phase diagram for
the polystyrene-polyisoprene diblock copolymer system: spheres (S), cylinder
(C), lammela (L), gyroid (G), perforated lamellar (PL). Reproduced from refer-
ence [3] with permission of the Royal Society of Chemistry.
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and simulation giving rise to new fabrication processes and the engineering of
functional materials, as is the case for ordered crystals of soft ellipsoids [4]

During the course of the structure formation from the disordered state to an
ordered phase, defects form, merge, and annihilate as part of the self-assembly
process. Despite the spontaneous annihilation of most of the defects initially
formed, some will remain to be part of the final meta-stable structure where the
corresponding phase, e.g., lamella, hexagonal cylinders, or others, is predicted
by the phase diagram of the BCP. Therefore, defects are the result of the kinetics
of the ordering process [5] rather than an equilibrium property of the polymer
system. Figure 1.3 illustrates the structure formation process of a lamellar phase
where defects can be observed at intermediate stages of the evolution.

Figure 1.3: SEM images of the kinetic evolution of the guided assembly process
at 190 °C. The brighter domains correspond to polystyrene (PS), and the darker
domains correspond to poly(methyl methacrylate) (PMMA). Defects are even-
tually annihilated to form fully aligned domains. Scale bar represents 200 nm.
Dark wide stripes apparent at t = 5m correspond to the underlying chemical
guiding pattern. Adapted with permission from reference [6]. Copyright 2018
American Chemical Society.

Defects of varying topology stem from the formation of different ordered
phases that block copolymers exhibit. Among them, defects in lamellae- and
cylinder-forming BCP systems are the most investigated; Figure 1.4 presents
the defects that are commonly found in line patterns produced by using this
type of BCP systems.
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CHAPTER 1. INTRODUCTION

Figure 1.4: Topological defect components typically found in BCP thin film
nanopatterns. Each major type of component defect is shown, as exists in ei-
ther the positive (e.g. P2VP) phase or the negative (e.g. PS) phase. For each,
3-branch junctions, terminal points, and dots, examples are given with defects
highlighted by a magenta dot. Reproduced from reference [7] according to the
CC BY license

1.1 Directed self-assembly

The presence of defects in the ordered phases of BCP limits their application;
thus, the use of external fields has been extensively investigated to avoid de-
fect formation during the ordering process [8]. The deployment of short-range
chemical and topological guiding fields, i.e., chemoepitaxy and graphoepitaxy
respectively, has attracted increasing interest due to the possibility of using tra-
ditional lithography technology to produce the required guiding patterns for
directing the self-assembly process of BCP. [5]

Hence, directed self-assembly (DSA) of copolymer materials has emerged
as a promising strategy for templating dense arrays of nanostructures with ex-
tremely low defect density and spatial registration with other device compo-
nents. [5, 8–23] In contrast to conventional lithography techniques used to fab-
ricate patterned structures at the nanoscale, DSA generates the patterns in a
chemical based process by exploiting the thermodynamic interactions between
the domains of the block copolymer and guiding surfaces. Moreover, DSA acts
as a bridge between the top-down and bottom-up lithography process. A typi-
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1.1. DIRECTED SELF-ASSEMBLY

cal flow for DSA using chemical guiding patterns is illustrated in Figure 1.5. At
the outset, the guiding pattern is imprinted by using conventional lithography
and the surface modification is deployed to control the preference of the surface
towards the A or B domains of the BCP or none (neutral surface). Upon finish-
ing the fabrication of the guiding pattern, the surface is coated with the BCP
usually via spin-coating techniques that allow an improved control of the film
thickness. As a result, a BCP film of homogeneous local concentration of A or B
domains is obtained, which corresponds to the disorder state. The micro-phase
separation process is activated by using solvents or modified temperatures in a
procedure known as solvent (or thermal) annealing, thus ordering the two do-
mains of the polymer chains in the film. A final ordered structured is obtained
as a result of the interplay between the design of the guiding pattern, the pro-
cessing conditions and the molecular features of the polymer. These last two
variables are encoded in the product χN and the volume fraction f dictating the
equilibrium structure that can be expected based on the corresponding phase
diagram.

Figure 1.5: Outline of the chemical pattern formation and DSA process. The
fabrication of the guiding pattern involves the modification of the surface to
obtain A− domains attractive stripe patterns of width W located at a distance
Ls from each other. The BCP is coated onto the guiding pattern and annealed
to self-assemble resulting in stripes of a smaller size corresponding to the nat-
ural spacing of the polymer, LO. Adapted with permission from reference [6].
Copyright 2018 American Chemical Society.

To fulfill the exacting demands of technological application, much effort has
been devoted to (i) optimize the copolymer materials, (ii) tailor the guiding pat-
terns, and (iii) devise processes that mitigate defect formation and facilitate
defect annihilation. Defectivity, however, remains one of the main challenges
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CHAPTER 1. INTRODUCTION

delaying the extensive use of DSA in industrial applications, such as the manu-
facture of integrated circuits; see Figure 1.6.

Figure 1.6: Rank of the two most critical areas for insertion of DSA for high
volume integrated-circuits manufacturing. Data from DSA Survey with 48 par-
ticipants at the 4th International Symposium on DSA, November 11-13, 2018,
Sapporo, Japan.

The investigation of DSA is a truly multiscale problem; see Fig.1.7: AB di-
block copolymers are comprised of two, thermodynamically incompatible chain
molecules, A and B, that are linked together into a linear macromolecule. The
covalent bonding of the two blocks prevents macrophase separation, and thus,
the molecules arrange into periodic nanostructures. The symmetry and peri-
odicity are dictated by the balance between the volume fraction f of the A-
component, the interface free-energy between the A and B domains and con-
formational entropy loss due to stretching as the chain molecules uniformly fill
space.[24–27] The interface tension depends on the details of molecular struc-
ture and interactions. The conformational entropy loss is set by the ratio (L/Re)

2

between the periodicity, L, and the polymer’s end-to-end distance, Re; for Gaus-
sian chains, Re = b

√
N− 1 where b is the statistical segment length. The param-

eters, χ and b, are determined by the chemical structure of the two components,
A and B, and their prediction requires an atomistic description. In the following
we assume that both blocks are characterized by the same statistical segment
length, b = bA = bB. Moreover, we consider symmetric systems with f = 1/2
that form lamellae in the bulk unless stated otherwise.

The mean-field description of microphase separation in the standard Gaus-
sian chain model [29] does not involve the individual parameters, b, N, and χ
but only the coarse-grained invariants, Re and χN that quantifies the thermo-
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Figure 1.7: Illustration of the three levels of modeling of DSA materials. Repro-
duced from reference [28] with permission from the Royal Society of Chemistry.

dynamic incompatibility between the blocks, i.e., the description is invariant
under changing the segmentation N of the molecular contour.[30–32] Fluctua-
tion effects that give rise to line-edge roughness (LER) or line-width-roughness
(LWR) in lamellar-forming copolymers,[33–37] are controlled by the invariant
degree of polymerization, N̄ = (ρRe

3/N)2, that quantifies the number of poly-
mers a given chain molecule interacts with, where ρ denotes the number density
of segments. Topographical guiding patterns as well as the free surface of the
copolymer film are often represented by hard, impenetrable walls because the
length of the surface to the vapor, or a solid, boundary is much narrower than
all other length scales of interest. The preference of surfaces towards one of
the copolymer components is often parameterized by the dimensionless differ-
ence of surface tension, ∆γRe

2/
√
N̄kBT . In the standard Gaussian chain model,

copolymer materials that are described by the same coarse-grained invariants,
f, Re, χN, N̄, and ∆γ exhibit the same behavior.[32]

This universality of copolymer behavior allows the use of highly coarse-
grained models where each effective interaction center – bead – corresponds
to a large number of chemical repeating units. The relevant interactions – chain
connectivity, thermodynamic repulsion between unlike blocks, uniform den-
sity, and surface preference – are represented by computationally efficient po-
tentials, e.g., a bead-spring model with harmonic bonds, soft, repulsive inter-
actions between bead, and surface potentials whose range is a small fraction of
Re. We choose the strength of these interactions to reproduce the experimental
values of the coarse-grained invariants, Re, χN, N̄, and ∆γRe

2/
√
N̄kBT . These
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CHAPTER 1. INTRODUCTION

top-down coarse-grained models can be studied by self-consistent field theory
or particle-based simulation.[30–32, 38]

To increase the computational speed even further, one can drop the notion
of individual molecules altogether and describe the system configuration by
collective variables. Two qualitatively different type of approaches have been
employed: (i) interface Hamiltonians where the morphology is characterized
by the spatial location of the internal AB interfaces[25, 26, 33, 39, 40] and (ii)
continuum free-energy functionals where the morphology is described by the
local concentration ofA segments; see Figure 1.8. [41–56]. The former approach
is very useful in the strong-segregation regime, i.e., χN � 10; furthermore, it
has been successfully applied to study LER.[33] Recent applications of DSA,
however, focus on small periodicities, L < 20nm. This requires small N and a
careful choice of the chemical structure – high-χ materials – to bring the invari-
ant χN over the mean-field threshold, χNODT ≈ 10.5. At this value, microphase
separation can be observed, in other words, systems with small L are typically
not in the strong-segregation regime.

Figure 1.8: T-junctions of A-domains (blue) are obtained via computer simu-
lations by using the Ohta-Kawasaky model free-energy functional. Schematic
polymer chains depict the underlying structure of the system represented by the
collective variables leading to a significant reduction in the degrees of freedom
required to describe the system. Adapted from reference [28] with permission
from the Royal Society of Chemistry.
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1.2. OUTLINE OF THIS WORK

Continuum free-energy functionals provide the free energy of the system in
terms of the spatially inhomogeneous, normalized densities, φA(r) and φB(r).
In the technologically important weak-segregation limit, χN ≈ χNODT ≈ 10.5,
the free-energy functional can be derived from the standard Gaussian chain
model.[24, 42, 43, 55]

1.2 Outline of this work

Despite the computational advantages of continuum free-energy functional aris-
ing from the reduced degrees of freedom, the question remains about to what
extent these reduced models can describe the structure formation process in the
context of DSA. In this regard, this dissertation aims at answering this question,
which is accomplished in the following sequence.

Chapter 2 discusses the development of continuum models from an exact
theory to present the assumptions, advantages and limitations behind those
models. Afterwards, we critically assess their ability to capture the equilibrium
and dynamic properties pertinent to DSA by comparing them to self-consistent
field theory (SCFT) and computer simulations of soft, coarse-grained particle
models. [57–59] Based on these findings, we select the model that provides
the most accurate description of the relevant DSA features. This chapter ends
by detailing the implementation of the selected model as well as the mapping
of its parameters to the coarse-grained invariants, χN and f, thus enabling the
quantitative comparison to results obtained with other theories and models.

Chapter 3, is concerned with the study of the kinetics of the ordering pro-
cess. We investigate how the selected continuum model describes the kinetics of
defect motion and annihilation under conditions that mimic the confining effect
of chemical or topographical guiding patterns. Predictions for defect annihila-
tion kinetics via the continuum model are compared to SCFT results to validate
the selected model and discuss its limits. Moreover, we study how topological
confinements, designed to obtain a particular non-periodic structure, affect the
structure formation process in combination with the guiding effect of a chemi-
cal pattern, i.e. graphoepitaxy. Two characteristic length scales are involved in
the formation process in this latter case: the initial periodicity λmax that dictates
the surface-directed spinodal ordering at early stages and the equilibrium do-
main spacing LO driving the final stage of the ordering process. We argue that
the mismatch between those two length scales could be exploited for the design
of DSA process conditions.

Given the importance of defects in DSA, we explore alternatives to predict
the changes in a defective morphology at the onset of the transition pathway
towards the corresponding defect-free state, which involves overcoming a free-
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CHAPTER 1. INTRODUCTION

energy barrier. In that regard, chapter 4 presents an alternative approach for the
study of local-composition fluctuations within a continuum model: the fluctua-
tion mode analysis (FMA). For this approach, we resort to the concept of normal
modes and the study of phonons in crystalline solids to investigate small fluc-
tuations of the local composition. The FMA provides a less computationally-
costly approach to investigate fluctuations compared to solving a stochastic
partial differential equation, specifically, the Cahn-Hilliard-Cook equation. Af-
ter describing its foundations, we compare the predictions of the FMA to local
composition changes at the onset of a transition pathway obtained via a well
established method, the improved string method. Subsequently, we present the
application of the FMA in the investigation of defect annihilation and for the
prediction of scattering patterns. This last application aims to provide insights
for developing an alternative procedure for defect detection and characteriza-
tion from light-scattering data of a self-assembled structured obtained via DSA
that could optimize the efforts in defect characterization by using more expen-
sive and time-consuming techniques, such as SEM, AFM or X-ray scattering.

To conclude, chapter 5 summarizes the findings of our investigations and
presents some perspectives for future work that exploit further the advantages
of the continuum model as well as of the fluctuation mode analysis.

All the simulations referred to in this dissertation were performed in the
CPU High Performance Computing facilities of GWDG Göttingen, the HLRN
Hannover/Berlin, and the John von Neumann Center for Computing (NIC),
Jülich, Germany, by using self-written programs in C with OpenMP paralleliza-
tion as well as scripts in python for post-processing. Customized data visu-
alization via self-written scripts was performed by using Matplotlib [60], Par-
aView [61] and Gnuplot [62]. Some 2D plots were obtained with Grace [63].
The routine LAPACKE dsyev from the Intel®Math Kernel Library is deployed
for solving the eigenvalue problems in Chapter 4 using parallelization and op-
timization via the C Intel compiler. This dissertation was typeset by the author
in LaTeX.

Various materials included in the present chapter have been published as
part of the special collection of papers on the subject, "Advances in Directed
Self-Assembly," with the title "Continuum models for directed self-assembly"
in the journal Molecular Systems Design & Engineering. The content has been
adapted and reproduced from Ref. [28] with permission from the Royal Society
of Chemistry.
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Chapter 2

Theory and methods

This chapter is devoted to the description of the theoretical aspects pertaining
to the continuum models. We discuss how the Ohta-Kawasaky and the Swift-
Hohenberg free energy functionals are derived from self-consistent field theory
(SCFT) as an accurate theory to depict the thermodynamics of block copoly-
mer (BCP) structures. We focus on how these two free-energy functionals can
describe the meta-stability and morphology of defects as key features for struc-
tures obtained via DSA. A comparison of the predictions for these features via
the continuum models and SCFT is performed to highlight the model that pro-
vides the more accurate representation. For that selected model, a mapping of
the model parameters to the coarse-grained invariant is presented. In the final
section, additional details for the numerical implementation of our calculations
are included.

The materials presented in this chapter have been published as part of the
special collection of papers on the subject, "Advances in Directed Self-Assembly,"
with the title "Continuum models for directed self-assembly" in the journal
Molecular Systems Design & Engineering. To facilitate the integration of the pa-
pers’ contents into this dissertation, only the sections of the paper directly re-
lated with the scope of this chapter have been included herein, specifically, sec-
tions 2, 3.1, 3.2, 3.3 and 4. Part of the content of those sections has been omitted
in this chapter and it is indicated by [...], in order to avoid duplication with
other chapters in this dissertation.

In integrating the paper’s content, the cross-references, citations, and figure
numbers used in the paper have been adjusted to be consistent with those in
this dissertation. The content has been adapted and reproduced from Ref. [28]
with permission from the Royal Society of Chemistry. Additional details of the
numerical calculations not included in the published paper are presented in
section 2.2.2.
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CHAPTER 2. THEORY AND METHODS

2.1 Continuum models for microphase separation of
block copolymers

Continuum models [41–56] strike a compromise between retaining some as-
pects of the predictive power of more detailed molecular models and enabling
a computationally screening of the multi-dimensional parameter space and the
reverse design of the DSA process specified by (i) the copolymer materials, (ii)
the geometry and interactions of the guiding pattern, and (iii) the process con-
ditions that control the kinetics of DSA.

Instead of using the molecular degrees of freedom, i.e., positions and mo-
menta of polymer segments, as fundamental descriptors of a microscopic con-
figuration, continuum models operate on a coarser scale and employ a collective
order-parameter,m. Since a dense AB copolymer melt is nearly incompressible
φA(r) + φB(r) = 1, one often describes the two-component system by a sin-
gle, spatially varying order parameter, m(r) ∼ φA(r) − φB(r), that quantifies
the difference in the local density of the two components, A and B. Typically
the order-parameter field, m(r), is evaluated on a collocation grid, whose spa-
tial discretization is set by the smallest relevant length scale, i.e., the width of
the internal AB interfaces. Thus the values of the order parameter at the grid
vertices characterize a configuration, giving rise to a drastic reduction in the
number of degrees of freedom in comparison to a molecular description. This
choice of the order-parameter is common to both continuum models discussed
in the following, and it imposes several limitations from the outset:

• Since the use of a single collective order parameter ignores which molecule
and which part of it contributes to the density at position r, the quanti-
tative description of architectural effects (e.g., polydispersity, chain-end
effects, or homopolymer–copolymer mixtures) is limited.

• The assumption of incompressibility obviously breaks down at the nar-
row surface of the polymer film to the supporting substrate or the free
surface to air/vacuum. More generally, the appropriate formulation of
boundary conditions is challenging because the changes of the molecular
conformations at a sharp inhomogeneity are not explicitly described.

• Like in dynamic SCFT, one assumes that the chain configurations are al-
ways in equilibrium with the instantaneous order-parameter and often
uses approximates to relate the dynamics of the interacting molecules to
the order-parameter kinetics.

Having defined the order parameter, continuum models seek to describe the
equilibrium thermodynamics by a free-energy functional, F[m]. Two different
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continuum models are discussed in literature – (i) the Swift-Hohenberg model
or phase-field crystal model [41–48] and (ii) the Ohta-Kawasaki free-energy
functional [49–56] – to model the structure and thermodynamics of spatially
modulated phases.

In principle, F[m], can be constructed by comparison to SCFT in the weak-
segregation limit (RPA-mapping)[24, 42, 43, 55] or simulations of particle-based
models in conjunction with field-theoretic umbrella sampling.[32, 64] In prac-
tice, however, phenomenological expressions are employed that represent ex-
pansions in terms of powers of the order parameter and its spatial derivatives
supplemented by general symmetry considerations and that match the fluc-
tuation spectrum of a copolymer melt in the disordered state. These symme-
try considerations specify the free-energy functional in the bulk, and F[m] is
augmented by terms that describe the interaction with the guiding pattern and
boundary conditions. The minima of F[m] specify the equilibrium morpholo-
gies and allow for the construction of the equilibrium phase diagram of con-
fined copolymer systems.

The relation between the dynamics of the individual macromolecules in the
course of the ordering process and the collective kinetics of structure forma-
tion, i.e., the time-evolution ofm(r, t) is routinely parameterized by an Onsager
coefficient, Λ. This Onsager coefficient quantifies the order-parameter current,
j(r) that is generated by a gradient of the chemical potential, µ(r) = δF/δm(r).
Formal expressions for Λ can be derived, e.g., Λ ∼ φA(r)φB(r) to account for
incompressibility or Λ ∼ g(r, r ′) where g denotes the intramolecular correla-
tion function, but computing Λ is a formidable task.[65–67] Routinely, drastic
approximations, e.g., ignorance of composition-dependence and non-locality of
Λ, are employed, resulting in:

j(r) = −Λ∇µ(r) (2.1)

This current and the time evolution of the order parameter are connected via
the continuity equation, which the conservation of the species A and B also
imparts onto m, resulting in a conserved Cahn-Hilliard dynamics for the or-
der parameter (model B according to the classification of dynamic universality
classes according to Hohenberg and Halperin [68]).

∂m

∂t
= −∇j = Λ4 δF

δm(r)
(2.2)

In this simple form,Λ is a constant and can be adsorbed as a scale factor of time.
Different numerical schemes have been devised to integrate this partial differ-
ential equation in time. In our exploratory study we use the simple forward
Euler scheme.
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CHAPTER 2. THEORY AND METHODS

2.1.1 Self-consistent field theory (SCFT)

In the limit of large N̄, the thermodynamics of block copolymer structures can
be accurately described by self-consistent field theory (SCFT).[69–73] This ap-
proach has been successfully used to study the phase diagram,[27, 29] defect
properties[5, 23, 59] and the minimum free-energy path of defect annihilation.[57,
74] Within SCFT the statistical mechanics of interacting macromolecules is ap-
proximated by the properties of non-interacting chain molecules in self-consistently
determined, external fields, wA(r) and wB(r), acting on the A blocks and B

blocks, respectively. Given wA(r) and wB(r), the most probable densities of
non-interacting Gaussian chain molecules subjected to the external fields,

φ∗A(r) = −V
δ lnQ[w∗A,w∗B]

δwA(r)
(2.3)

and likewise for φ∗B(r), can be computed via a modified diffusion equation.[69–
73] Here Q[w∗A,w∗B] denotes the single-chain partition function of a diblock copoly-
mer in volume V subjected to the external fields,wA andwB. Inverting this rela-
tion, one obtains the external fields,w∗A[Ψ] andw∗B[Ψ], that correspond to a given
order parameter, Ψ(r) = φA(r) − f and satisfy the incompressibility constraint,
φA(r) +φB(r) = 1. SCFT yields the following estimate for the free-energy func-
tional

F[Ψ]

kBT
=

ρ

N

∫
dr
(
χN
{
f[1 − f] + [1 − 2f]Ψ−Ψ2

}
(2.4)

−w∗A[Ψ+ f] −w∗B[1 − f−Ψ]
)

−
√
N̄
V

Re
3 lnQ[w∗A,w∗B]

Whereas this free-energy functional is accurate, it is computationally much more
demanding than the continuum models discussed in the following because it
requires the solution of the inverse problem for w∗A[Ψ] and w∗B[Ψ].

Here we use the spectral approach [72] to compute the equilibrium proper-
ties of lamellae formed by symmetric diblock copolymers, f = 0.5, that serve as
accurate reference data to gauge the accuracy of the continuum models. Mini-
mizing the free-energy functional, Eq. (2.4), yields the self-consistency condition
for the order parameter

w∗A[Ψ
∗] −w∗B[Ψ

∗] = 1 − 2f− 2Ψ∗ (2.5)

that dictates the order parameter, Ψ∗(r), in the thermodynamic equilibrium.
Back-substituting Ψ∗(r) into Eq. (2.4), we obtain the free energy, F = F[Ψ∗] and,
minimizing the equilibrium free energy, F, with respect to the periodicity, we
estimate the equilibrium domain spacing, L0.
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2.1.2 Random-Phase-Approximation (RPA)

3 4 5 6
qRe
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γ 2/ρ
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SH
OK

2 4 6 8 10
qRe

0

50

100

Figure 2.1: Comparison of the second-order vertex function obtained from the
random-phase approximation (RPA) with the approximations employed in the
Swift-Hohenberg (SH) model and the Ohta-Kawasaki (OK) model.

In principle, an accurate free-energy functional, F, can be numerically ob-
tained by SCFT. If the local A density φA(r) only deviates slightly from its
average f, one can systematically expand the free-energy in terms of the or-
der parameter, Ψ(r) = φA(r) − f. This Random-Phase-Approximation (RPA)
yields for the free-energy difference with respect to the homogeneous state,
Ψ(r) = 0,[24, 42, 43, 55]

F[Ψ]

kBT
= +

1
2!

∫
dq

(2π)3 γ2(q)ΨqΨ−q (2.6)

+
1
3!

∫
dq1 dq2

(2π)6 γ3(q1, q2)Ψq1Ψq2Ψ−q1−q2

+
1
4!

∫
dq1 dq2 dq3

(2π)9 γ4(q1, q2, q3)Ψq1Ψq2Ψq3Ψ−q1−q2−q3

+ · · ·

where Ψq =
∫

dr exp(iqr)Ψ(r) is the Fourier transform of the order parameter.
Both continuum models are based on this fourth-order expansion, Eq. (2.6). The
RPA of Leibler [24] provides explicit expressions for the wavevector-dependent
vertex functions, γi. Both continuum models neglect the wavevector depen-
dence of the vertex functions γ3 and γ4. For the symmetric case, one obtains
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CHAPTER 2. THEORY AND METHODS

v0 = N
ρ γ3 = 0 and u0 = N

ρ γ4 ≈ 156.56. Within mean-field approximation, this
second-order vertex function is directly related to the collective structure factor
in the disordered phase, 1

S(q) ∼ γ2(q), and takes the explicit form

N

ρ
γ2(q) = F(x, f) − 2χN with x =

(qRe)
2

6
(2.7)

F(x, f) =
g(x, 1)

g(x, f)g(x, 1 − f) − 1
4 [g(x, 1) − g(x, f) − g(x, 1 − f)]2

and g(x, f) =
2
x2

[
e−fx − 1 + fx

]
The function F(x, f) describes the influence of the chain conformations on the
collective composition fluctuations, and g(x, f) is the Debye function that de-
scribes the Gaussian conformational statistics of an individual block. For a sym-
metric block copolymer, the vertex function exhibits a minimum at x∗ ≈ 3.7852
or L = 2π/q∗ ≈ 1.32Re and adopts the value

N

ρ
γ2(q

∗) = τ0 ≈ 2(10.495 − χN) (2.8)

The two continuum models differ in the approximation used for the second-
order vertex function. The Swift-Hohenberg model approximates γ2(q) by a
parabola around q∗

N

ρ
γ2−SH(q) = τ0 + ε0

[
(q∗Re)

2 − (qRe)
2
]2

with ε0 =
1

74.81
(2.9)

The Ohta-Kawasaki model [49] additionally captures the asymptotic behavior
for small and large wavevectors

N

ρ
γ2−OK(q) =

(qRe)
2

3
+ 7.1 − 2χN+

144
(qRe)2 (2.10)

The three forms of the wavevector-dependent second-order vertex functions are
depicted in Fig. 2.1. The Swift-Hohenberg model provides an excellent approx-
imation in the ultimate vicinity of the minimum but yields only a poor repre-
sentation of the vertex function for large and small wavevectors. The Ohta-
Kawasaki model, in turn, accurate captures the asymptotic behavior of the ver-
tex function for q → 0 and q → ∞, as well as the value of the vertex function
at its minimum, but it slightly underestimates the position of the minimum,
q∗OKRe = 2 4√33 ≈ 0.957q∗Re.
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2.1.3 Swift-Hohenberg model

Using the parabolic approximation of the vertex function, one obtains the Swift-
Hohenberg model for symmetric block copolymers:[41–48]

F[Ψ]

kBT
=

ρ

N

∫
dr
(

1
2
Ψ

{
τ0 + ε0

[
(q∗Re)

2 − (i∇Re)
2
]2
}
Ψ

+
u0

4!
Ψ4
)

(2.11)

In the following, we introduce units of length ξ0, energy η0, and order parame-
ter Ψ0, and define the dimensionless, rescaled variables

x =
r
ξ0

and FSH[m] =
F[Ψ]

η0
with m =

Ψ

Ψ0
(2.12)

Relating the units of the continuum models to the coarse-grained invariants
via

ξ0 =
1
q∗
≈ 0.21Re (2.13)

Ψ0 =

√
6
u0
ε0(q∗Re)4 ≈ 0.514 (2.14)

η0 =
ρ

N
kBTξ

3
0Ψ

2
0ε0(q

∗Re)
4

= kBT
√

N̄Ψ2
0ε0(q

∗Re) ≈ 0.0168kBT
√

N̄ (2.15)

we arrive at the standard form of the Swift-Hohenberg free-energy functional

FSH[m] =

∫
dx
(

1
2
m
{
−ε̃+ [1 +4]2

}
m+

1
4
m4
)

(2.16)

=

∫
dx
(
−
ε̃

2
m2 +

1
4
m4 +

1
2
{[1 +4]m}2

)
(2.17)

where the spatial derivatives are taken with respect to the rescaled, dimension-
less coordinate, x. The qualitative behavior in the rescaled units only depends
on the parameter

ε̃ = −
τ0

ε0(q∗Re)4 ≈ 0.29(χN− 10.495) (2.18)

The Swift-Hohenberg free-energy functional captures the minimal ingredients
that are relevant for describing spatially modulated phases. It has been em-
ployed to study the universal aspects of structure formation in systems with
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different underlying interactions (Rayleigh-Bénard convection, magnetic gar-
nets, Turing patterns, lipid membranes, diblock copolymers).[46] The model
has also attracted recent interest under the name of phase field crystal (PFC)
model,[45] and it has also been studied in the case that the spatial average of
the order parameter, m̄, does not vanish.

From Eq. (2.17) we calculate the chemical potential and the equation of mo-
tion

µ(r) =
δFSH

δm(r)
= −ε̃m+m3 + [1 +4]2m (2.19)

∂m

∂t
= ∇Λ∇

(
−ε̃m+m3 + [1 +4]2m

)
(2.20)

The Swift-Hohenberg model can reproduce the qualitative phase behavior
of block copolymers in the weak segregation limit and it is the computationally
simplest form to describe spatially modulated phases. The local character of
the free-energy functional enables a rather straightforward computation of the
free energy. These attractive properties have made the model rather popular for
studying the universal, qualitative features of spatially modulated phases and
the kinetics of structure formation.

The parameter ε̃ dictates the equilibrium properties. The disordered struc-
ture, m(r) = m̄, becomes unstable for ε̃ > 3m̄2, i.e., for a symmetric diblock
copolymer with m̄ = 0, for ε̃ > 0. For a symmetric bulk system, m̄ = 0, in the
weak-segregation limit 0 < ε̃� 1, the order-parameter profile can be described
by a single Fourier component (one-mode approximation),

mSH−OMA(x) =

√
4ε̃
3

sin (x) (2.21)

and the free-energy density in a volume V is FSH−OMA = −ε̃2V/(6ξ3).
The phase diagram of the Swift-Hohenberg model exhibits a tricritical point

[48] at ε̃tri = 9/38 and m̄tri =
√

3/38. Beyond this tricritical point, it predicts
a macrophase coexistence between a spatially modulated phase and a homoge-
neous phase separated by a miscibility gap. Obviously such phase coexistence
cannot occur in a pure block copolymer melt. Thus the model can qualitatively
describe pure diblock copolymers only for small ε̃ and compositional asymme-
tries |m̄|.

From the computational perspective, the Swift-Hohenberg model is the sim-
plest free-energy model. The main difficulty is the high-order spatial derivative
in the kinetic equation that enforces a rather small time step, ∆t ∼ ∆x6, for
simple integration schemes to remain numerically stable. In our numerical per-
formance test, we studied the kinetics of structure formation from a disordered
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to a lamellar structure at very weak segregation, ε = 0.02, and rather coarse
spatial discretization, ∆x = 0.3140, with a time step of ∆t = 0.0003.

2.1.4 Ohta-Kawasaki model

Using the asymptotically exact approximation, Eq. (2.10), of the second-order
vertex function, one derives the Ohta-Kawasaki model for a symmetric block
copolymer

F[Ψ]

kBT
=

ρ

N

∫
dr
(

1
2
Ψ

{
(i∇Re)

2

3
+ 7.1 − 2χN (2.22)

+
144
Re

2

∫
dr ′ G(r, r ′)

}
Ψ+

u0

4!
Ψ4
)

The long-range kernel, G(r, r ′), obeys the Poisson equation

−4G(r, r ′) = δ(r − r ′) + const (2.23)

G decays with distance r like 1/r in three spatial dimensions, G ∼ ln(r) in two
dimensions, and G(x, x ′) = −1

2 |x− x
′|+ 1

2L(x− x
′)2 for a one-dimensional vari-

ation of the order parameter,m(x), with period L.
Relating the units of length, order parameter, and energy, defined in Eq. (2.12),

to the coarse-grained invariants according to

ξ0 =
Re√

3(2χN− 7.1)
(2.24)

Ψ0 =

√
6
u0

(2χN− 7.1) (2.25)

η0 =
ρ

N
kBTξ

3
0Ψ

2
0(2χN− 7.1) (2.26)

=
2
√
N̄kBT√
3u0

√
2χN− 7.1 ≈

√
2χN− 7.1
135.58

√
N̄kBT

we arrive at the standard form of the Ohta-Kawasaki free-energy functional

FOK[m] =

∫
dx
(

1
2
m

{
−4− 1 + α̃

∫
dr ′ G(x, x ′)

}
m

+
γ̃

3
m3 +

1
4
m4
)

(2.27)

=

∫
dx
(
−

1
2
m2 +

γ̃

3
m3 +

1
4
m4 +

1
2
[∇m]2

)
+
α̃

2

∫ ∫
dx dx ′ m(x)G(x, x ′)m(x ′) (2.28)
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where, for completeness, we have also restored the third-order term that is only
required for asymmetric copolymers. The qualitative behavior of the model
depends on the two parameters

α̃ =
144

2χN− 7.1
ξ2

0

Re
2 =

48
(2χN− 7.1)2 (2.29)

γ̃ = 0 for symmetric copolymers (2.30)

The calculation of the free energy of a configuration, m(r), can be conve-
niently performed in Fourier space, where the convolution with the long-range
kernel, G, reduces to a multiplication. The model also predicts hexagonal and
spherical phases, and it does not suffer from the spurious macrophase separa-
tion of the Swift-Hohenberg model.

From Eq. (2.28) we calculate the chemical potential and the equation of mo-
tion

δFOK

δm(r)
= −m+ γ̃m2 +m3 −4m+α

∫
dx G(x, x ′)m(x ′) (2.31)

∂m

∂Λt
= 4

(
−m+ γm2 +m3 −4m

)
−αm (2.32)

The use of a local Onsager coefficient and the property, Eq. (2.23), of the non-
local kernel, G, gives rise to a computationally convenient form of the time-
evolution equation that only involves fourth-order spatial derivatives.

For a symmetric bulk system, γ̃ = 0, in the weak-segregation limit 1
4 =

α̃ODT > α̃� 0, the order-parameter profile can be described by a single Fourier
component (single-mode approximation),mOK−OMA(x) = m0 sin(2πx/L0), with
amplitude and periodicity

m2
0 =

4
3

(
1 − 2

√
α̃
)

and
L0

ξ0
=

2π
α̃1/4 (2.33)

and the free-energy density is FOK−OMA = −(1 − 2
√
α̃)2V/(6ξ3

0).
In the opposite limit of strong segregation, α̃ � 1

4 , one can approximate
the order-parameter profile by a sequence of wide, alternating domains that
are separated by narrow AB interfaces. The profile of an individual AB in-
terface is obtained by optimizing the local and square-gradient contribution to
the free-energy functional. This yields the same profile as the corresponding
homopolymer interface, i.e., mOK−SSL(x) = tanh(x/

√
2) (in rescaled units).[49]

The interfaces are characterized by a tension of σξ2
0 = 2

√
2

3 . To evaluate the
long-range contribution, one approximates the interface profile by a sharp-kink

20



2.1. CONTINUUM MODELS FOR MICROPHASE SEPARATION OF BLOCK
COPOLYMERS

profile

m(x) =

∞∑
k=1

4(−1)k

π(2k+ 1)
cos
(

2π
L0

(2k+ 1)x
)

(2.34)

Optimizing the total free energy with respect to the lamellar periodicity, L0, one
obtains [49, 55, 56]

L0

ξ0
=

4 6
√

2
α̃1/3 and

FOK−SSL

V/ξ3
0

= −
1
4
+

(
α̃

4

)1/3

(2.35)

2.1.5 Accuracy of the continuum models in the context of DSA

In the following we consider symmetric diblock copolymers, f = 1/2 (i.e., γ̃ =
0), and compare the description of the two continuum models with the predic-
tion of SCFT.

Free energy and domain spacing

In the vicinity of the order-disorder transition (ODT) the RPA-mapping between
the coarse-grained invariants and the parameters of the continuum models is
supposed to be accurate. A first, crude estimate of the range of validity of the
RPA-mapping can be obtained by requiring that |Ψ| < f = 1/2. Using Eqs. (2.14)
and (2.21) for the Swift-Hohenberg model, we find that ε̃ < 3

16Ψ2
0
≈ 0.71. Using

Eq. (2.18) we obtain the condition χN < 12.9. By the same token, Eqs. (2.25)
and (2.33) also yield the condition χN < u0/64 + 3.55 +

√
48 ≈ 12.9 for the

Ohta-Kawasaki model.
In Fig. 2.2 we quantitatively compare the free-energy difference per copoly-

mer molecule between the lamellar and disordered phases obtained by the two
continuum models and SCFT.

f ≡ ∆F

nkBT
=

F
V
Re

3kBT
√
N̄

=
FOK

V/ξ3
0
· η0

kBT
√
N̄
·
(
Re

ξ0

)3

(2.36)

In the inset of the figure we demonstrate that in the ultimate vicinity of the
ODT, indeed, the predictions of the two continuum models in conjunction with
the RPA mapping quantitatively agree. The free-energy difference quadratically
depends on the distance, χN− 10.5 from the ODT because the transition is of
second-order within the mean-field treatment. As expected from the rational
above, the agreement significantly deteriorates for incompatibilities larger than
χN = 12.9; this limit is indicated by the vertical dashed line.
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Figure 2.2: Comparison of the free energy per chain in units of kBT obtained
by the Swift-Hohenberg model (in one-mode approximation), by the Ohta-
Kawasaki model, and SCFT. The vertical dashed line indicates the validity limit
of the RPA-mapping, χN = 12.9. The inset presents the behavior in the ultimate
vicinity of the order-disorder transition (ODT).

In Fig. 2.3 we compare the preferred lamellar spacing in units of the unper-
turbed end-to-end distance, Re.

L0

Re
=
L0

ξ0
· ξ0

Re
(2.37)

Within the one-mode approximation of the Swift-Hohenberg model, the lamel-
lar spacing does not vary with incompatibility and, by construction, agrees with
the SCFT value at the ODT. The Ohta-Kawasaki model, in turn, slightly overes-
timates the lamellar spacing at the onset of ordering because the location of the
minimum of γ2 is underestimated (cf. Fig. 2.1). Within the one-mode approx-
imation we obtain from Eqs. (2.35) and (2.24) also a χN-independent lamellar
period, L0

Re
= 2π

α̃1/4 × ξ0
Re

= π3−3/4. Beyond the one-mode approximation, the
lamellar spacing increases but the comparison with the SCFT calculation reveals
that the dependence of L0 on incompatibility is significantly different already at
intermediate values of χN.

From this comparison in Figs. 2.2 and 2.3, we conclude that both continuum
models in conjunction with the RPA-mapping provide a quantitative descrip-
tion of lamella-forming diblock copolymers in the ultimate vicinity of the ODT,
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Figure 2.3: Comparison of the equilibrium lamellar spacing, L0 obtained by
the Swift-Hohenberg model, the Ohta-Kawasaki model, and SCFT. The verti-
cal dashed line indicates the validity limit of the RPA-mapping, χN = 12.9.

χN < 12.9, but fail to predict the free energy and domain spacing at intermedi-
ate and large segregation strengths.

Although novel high-χ materials, which are intensely explored to fabricate
structures with the smallest feature sizes, are characterized by small N (and
therefore also small χN), this ultimate vicinity of the ODT is only of limited
practical use because the high-χmaterials are also characterized by small values
of the invariant degree of polymerization, N̄. Thus fluctuation effects become
important. One hallmark of fluctuations is the shift of the ODT [42] to larger
values of incompatibility, χNODT ≈ 10.495 + 41

N̄−1/3 . Thus, for a polymer system
with N̄ < 5000 the ODT is shifted to values larger than χN = 12.9, and there
is no interval of incompatibilities whatsoever, where any of the two continuum
models in conjunction with the RPA-mapping provides an accurate, quantita-
tive description. Using generic values of 1 g/cm3 for the density of the melt,
and a statistical segment of mass 100g/mol and length b = 0.7nm, we extract
the number density, ρ, of segments and obtain

√
N̄ = ρb3

√
N ≈ 2.07 ·

√
N, i.e., a

polymer with N̄ < 5000 is comprised of less than 1167 segments and is charac-
terized by Re < 23.9nm or L0 < 31.5nm.
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Metastability of defects

The previous section demonstrated that the two continuum models in conjunc-
tion with the RPA-mapping quantitatively describe the self-assembly of block
copolymers only in the ultimate vicinity of the ODT, χN < 12.9. Here we ex-
plore whether the two models are able to capture the qualitative behavior at
intermediate and larger segregation.

First, we note that the Swift-Hohenberg model for asymmetric composition
predicts a macroscopic phase separation between a disordered phase and a spa-
tially modulated one that differ in their compositions.[48] Such a macroscopic
phase separation is obviously impossible in diblock melt because the chain con-
nectivity prevents macroscopic fluctuations of the order parameter. The 1/q2-
term in the Ohta-Kawasaki model, in turn, does not allow for macroscopic fluc-
tuations of the order parameter, i.e., the model can only exhibit spatially modu-
lated phases.

Second, SCFT calculations [57] and molecular simulations [58, 59, 75] have
demonstrated that tight pairs of dislocations are only stable above a threshold
of incompatibility, χN∗ ≈ 18. For smaller incompatibilities, these prototyp-
ical defect pairs spontaneously annihilate – providing an important strategy
for defect-free DSA.[57] We have investigated the metastability of a tight dis-
location pair in the Swift-Hohenberg model and the Ohta-Kawasaki model. In
the Swift-Hohenberg model, tight dislocation pairs are metastable for ε̃ > 0.5,
which corresponds to χN ≈ 12.2 according to the RPA mapping, Eq. (2.18).
For values of ε̃ 6 0.4, the defect is unstable. In the Ohta-Kawasaki model,
in turn, the tight dislocation pair becomes unstable for α̃ > 0.80. Using the
RPA-mapping, the model parameter corresponds to χN =15.8, in rather good
agreement with SCFT.

Third, we investigate the ability of continuum models to capture the geom-
etry of the defect morphology. Fig. 2.4 presents the local density of A-segments,
φA(x), of a metastable, tight dislocation pair in the lamellar phase of a symmet-
ric diblock copolymer, obtained by SCFT calculations (a) and the corresponding
equivalent morphology obtained as a local minimum of the free-energy func-
tional of the Ohta-Kawasaki and Swift-Hohenberg models. From the order-
parameter profiles of the morphology in continuum models, the location of the
AB interfaces can be extracted, and we focus on these interface positions in or-
der to compare the description of the geometry within the models.

In the region between the two edge dislocations, the Swift-Hohenberg model
predicts a wider lamella between the defect cores and a larger distance D be-
tween them (cf. blue contour lines in panel b of Fig. 2.4). The low accuracy
in the description of the morphology by the Swift-Hohenberg model is corrob-
orated by the comparison of the interface profiles far away from the defects,
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Ohta-Kawasaki / SCFT Swift-Hohenberg / SCFT

SCFT(a)

(b)

(c)

x / Lo x / Lo

m(r)

Figure 2.4: Comparison of a tight dislocation defect described by SCFT calcu-
lations with morphologies obtained within continuum models. (a) The color
map represents the local density of A-segments obtained in SCFT at χN = 30
and f = 1/2, from which the location of the AB interfaces is extracted (black
lines). (b) Comparison of the location of the AB interfaces as obtained by the
Ohta-Kawasaki model (red lines) and Swift-Hohenberg model (blue) with the
SCFT results. Parameters for continuum models α̃ = 0.0201 and ε̃ = 5.65, re-
spectively, correspond to χN ≈ 30. (c) Composition profile across an internal
AB interface along the dashed line depicted in the morphologies in panel (b).
The order-parameter scale is adjusted such that the maxima and minima of the
profiles coincide with the SCFT values, ±1.

where the model predicts a significantly wider interface with respect to SCFT
calculations. Due to the prediction of a spurious macrophase separation and the
qualitative failure to capture the morphology of prototypical defects, we focus
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the following discussion on the Ohta-Kawasaki model.
The results of the Ohta-Kawasaki model, in contrast, agree significantly bet-

ter with the geometry of the defect predicted by SCFT. Additionally, the com-
position profiles across a lamella are much better reproduced, when measuring
the length scales in units of the preferred lamellar spacing and adjusting the
range of the order parameter.

Previously, we have hypothesized that the metastability of defects at inter-
mediate segregation is related to the separation of the intrinsic width, w, of the
internal AB interfaces between the domains and the periodicity, L0.[57] SCFT at
strong segregation, χN � 10, predicts w

Re
≈ 1√

6χN and L0
Re
≈ 2( 8

3π4 )
1/6(χN)1/6 ≈

1.1(χN)1/6, i.e., the ratio of the two lengths scales like w
L0

∼ (χN)−2/3. In the
Ohta-Kawasaki model, we obtain w

ξ0
=
√

2, i.e., independent from α̃, whereas

the periodicity increases like L0
ξ0

∼ α̃−1/3 for α̃ → 0. Thus, the ratio, wL0
∼ α̃1/3,

of the two length scales of the lamellar profile decreases for strong segregation,
α̃ → 0, and the Ohta-Kawasaki model qualitatively captures the length-scale
separation of the SCFT.

2.2 Detailed implementation of the Ohta-Kawasaki
model

2.2.1 Mapping of model parameters

The failure of the Ohta-Kawasaki model in conjunction with the RPA-mapping
to quantitatively predict the behavior of block copolymers at intermediate and
strong segregations is not unexpected because the description is based on the
truncation of the systematic expansion, Eq. (2.7), and additional approxima-
tions of the wavevector-dependence of the vertex functions. In order to sys-
tematically extend the validity of the continuum models, we have to include
higher-order terms in the expansion. Whereas several authors have improved
the local term in the free-energy functional, to the best of our knowledge, the
wavevector-dependence of higher-order vertex functions have not been consid-
ered. Such wavevector-dependent vertex functions, however, would result in a
rather complex model in real-space representation, and much of the computa-
tional benefit of the continuum models (compared to SCFT or Single-Chain-in-
Mean-Field simulations) would be sacrificed.

Therefore, motivated by the universality of self-assembly phenomena and
the ability of the Ohta-Kawasaki models to qualitatively capture some of the
salient features of block-copolymer self-assembly, we will follow a different
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strategy: Rather than modifying the functional form of the free-energy func-
tional, we merely adjust the mapping of the length scale, ξ0, order-parameter
scale, Ψ0, and the free-energy scale, η0. Thus, we replace the RPA-mapping be-
tween the scales, ξ0, Ψ0, η0, and parameters, α̃, γ̃ of the continuum model by a
phenomenological relation.

The amplitude, Ψ0, of the order parameter at intermediate and strong seg-
regation is chosen so that Ψ0 maxx |m(x)| = f = 1

2 . Rather than obtaining the
scale factors for the free energy and length scales from the RPA-mapping, we
use the data in Figs. 2.2 and 2.3 in conjunction with Eqs. (2.36) and (2.37). By
construction, this procedure eliminates the deviations in Figs. 2.2 and 2.3, i.e.,
the free-energy difference, ∆F, between the lamellar phase and the disordered
structure and the lamellar periodicity, L0, agrees with the results of the SCFT of
the molecular model.

0.000 0.002 0.004 0.006 0.008
1/(χN)2

0.00

0.05

0.10

0.15

0.20

0.25

~ α

1/10.521/1821/302

defect-free-energy mapping
~α=12/(χN-3.55)2 (RPA-mapping)

Figure 2.5: Phenomenological extension of the mapping, α̃(χN), as to repro-
duce the excess free energy of a metastable tight dislocation pair. The result is
compared with the RPA-mapping, Eq. (2.29)

By virtue of symmetry, we expect that γ̃ = 0 for lamella-forming diblock
copolymers with f = 1

2 . In the context of DSA, we choose to adjust the value of
α̃ so that the phenomenological extension of the mapping captures the excess
free energy of a tight dislocation pair. To this end, we have numerically adjusted
α(χ) and the result of this procedure is shown in Fig. 2.5.
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We observe rather good agreement with Eq. (2.29), suggesting that the ad-
hoc rescaling of the free-energy and length scales does not give rise to signifi-
cant artifacts. Thus, we conclude that the Ohta-Kawasaki model in conjunction
with the parameter identification provides an appropriate description of DSA
of symmetric block copolymers.

To obtain a qualitative understanding of this phenomenological extension,
we consider the naive extrapolation of the RPA-mapping to large χN or small
α̃, respectively. Eq. (2.29) and Eq. (2.24) suggest the leading-order behavior
α̃ ≈ 12(χN)−2 and ξ0

Re
≈ (6χN)−1/2. Using these extrapolations, we find w

Re
≈

√
2 ξ
Re
≈ 1√

3χN and L0
Re
≈ 4 6√2

α1/3
ξ
Re
≈ 2 · 3−5/6(χN)1/6 ≈ 0.8(χN)1/6, i.e., the qual-

itative asymptotic scaling behavior of the width of the intrinsic interface and
the domain spacing in the strong segregation limit are reproduced by the Ohta-
Kawasaki model (in conjunction with the extrapolated RPA-mapping). Thus,
the phenomenological extension changes the prefactors but not the leading χN-
dependence of the length scale, ξ0, and the model parameter, α̃.

In the strong-segregation limit, the maximal values of the order parameter,
maxx |m(x)|, are O(1), independent of χN. Thus, in contrast to Eq. (2.25), the
scale factor Ψ0 will adopt a χN-independent value at large segregation. This
scaling behavior will also affect the scale of the free energy. Using Eq. (2.26)
in conjunction with Ψ0 ∼ 1 and ξ0/Re ∼ (χN)−1/2, we obtain η0/kBT

√
N̄ ∼

(χN)−1/2. Using these modified scale factors and the asymptotic behavior of
the Ohta-Kawasaki model in the strong-segregation limit, we obtain for the AB
interface tension, σ, and the excess free energy, ∆flam, of a copolymer in the

lamellar phase, σRe
2

kBT
√
N̄

= 2
√

2
3 ·

η0
kBT
√
N̄
·
(
Re
ξ0

)2
∼
√
χN and ∆flam =

(
α̃
4

)−1/3 ·
η0

kBT
√
N̄
·
(
Re
ξ0

)3
∼ 3
√
χN, which agree with the limit of SCFT for large χN, i.e.,

σRe
2

kBT
√
N̄
≈
√
χN/6 and ∆flam ≈ 1

4
3
√

9π2χN, respectively.[25, 69]

2.2.2 Numerical implementation

Once we have understood how the Ohta-Kawasaki model was derived, we de-
vote this section to describe the numerical approximations and assumptions be-
hind the computational implementation of the standard form of the free energy
functional F[m(x)]. Once we have understood how the Ohta-Kawasaki model
was derived, we devote this section to describe the numerical approximations
and assumptions behind the computational implementation of the standard
form of the free energy functional F[m(x)].

It is important to recall at this point that the units of length, order parameter
and energy in F[m(x)] have been previously rescaled with respect to the coarse-
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grained invariants such that the free energy functional and its parameters are
dimensionless.

To facilitate consistency checks during the implementation and leave room
for the use of different coordinate systems, the Ohta-Kawasaki free energy func-
tional is treated as three separate terms accounting for the contribution of local
order parameter, the energetic cost of forming an interface and the long-range
interactions kernel - the Greens function:

F[m(x)] = FL[m] +FI[m] +FG[m] (2.38)

FL[m] =

∫
dx
(
−
$

2
m2 +

γ

3
m3 +

ϑ

4
m4
)

(2.39)

FI[m] =

∫
dx
(ε

2
[∇m]2

)
(2.40)

FG[m] =
α

2

∫
dx
(∫

dx ′ G(x − x ′)m(x ′)
)
m(x) (2.41)

The chemical potential can then be computed as:

µ(x) =
δF

δm(x)
= µL(x) + µI(x) + µG(x)

µL(x) = −$m+ γm2 + ϑm3 (2.42)
µI(x) = −ε 4m (2.43)

µG(x) = α

∫
dx ′ G(x − x ′)m(x ′) (2.44)

And the Hessian coefficients as:

H(x, x ′) =
δ2F

δm(x ′)δm(x)
= HL +HI +HG

HI =
(
−$+ 2γm+ 3ϑm2

)
δ
(
x − x ′

)
(2.45)

HL = −ε 4
[
δ
(
x − x ′

)]
(2.46)

HG = α G(x − x ′) (2.47)

Details of the mathematical treatment of the terms describing the formation
of the interface and the long-range contribution in the previous expressions are
hereby provided. In particular, the numerical implementation of equation 2.46
is shown in detail on page 34.
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For the chemical potential, the derivation of µI from FI is further described
to include numerical details related to the collocation lattice used for computa-
tion (see equations 2.62 to 2.65). In the case of the long-range contribution in the
chemical potential, the special case of the functional derivative of a function is
required to obtain equation 2.44 from equation 2.41:

δm(x ′)
δm(x)

= δ(x − x ′) (2.48)

and by using the product rule:

µG(x) =
δFG[m]

δm(x)

=
δ

δm(x)

[
α

2

∫
dx ′
∫

dx ′′ m(x ′)G(x ′ − x ′′)m(x ′′)
]

(2.49)

=
α

2

∫
dx ′
∫

dx ′′
[
δm(x ′)
δm(x)

G(x ′ − x ′′)m(x ′′)

+ m(x ′)G(x ′ − x ′′)
δm(x ′′)
δm(x)

]
(2.50)

=
α

2

∫
dx ′′G(x − x ′′)m(x ′′) +

α

2

∫
dx ′G(x ′ − x)m(x ′) (2.51)

= α

∫
dx ′G(x ′ − x)m(x ′) (2.52)

To obtain expressions for the Hessian coefficients, equation 2.46 results from
applying equation 2.48 to equation 2.43. In the case of the long-range term,
equation 2.47 is obtained by the definition of the functional derivative applied
to equation 2.44.

For the computational study, the free energy, the chemical potential and the
Hessian matrix are computed in a collocation lattice, therefore equations 2.39
to 2.47 in discrete space are needed. In the later, the free energy functional
becomes then a multivariate function of mi with i = 0 . . .N, where N is the
number of grid cells in the collocation lattice and N is the size of a grid cell
which in the case of a 2D lattice is N = 4x ∗ 4y. The order parameter m can
then be treated as a vector ofN scalar components during the calculations, even
for three dimensional systems where the collocation grid can be transformed
into a vector to use linear storage during the implementation in C or other pro-
gramming language intended for high performance computing.

Therefore, the numerical approximation of the Ohta-Kawasaki free energy
functional in equations 2.39 to 2.41 is shown below:
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F[m(x)] ' F({m}) = FL({m}) + FI({m}) + FG({m})

FL({m}) =

N∑
i=1

N

(
−
$

2
m2
i +

γ

3
m3
i +

ϑ

4
m4
i

)
(2.53)

FI({m}) =

N∑
i=1

N
(ε

2
[∇ {m}|i]

2
)

(2.54)

FG({m}) =
α

2

N∑
i=1

N mi

 N∑
j=1

N G(i, j)mj

 (2.55)

For the chemical potential, the transformation of the functional derivative in
continuum space to partial derivatives in discrete space is considered:

µ(x) =
δF

δm(x)
' 1

N
∂F

∂mi
= µi (2.56)

µLi ' −$mi + γm
2
i + ϑm

3
i (2.57)

µIi ' −ε (4m)|i (2.58)

µGi ' α

N∑
j=1

N G(i, j)mj (2.59)

The transformation from equation 2.54 to equation 2.58 is shown in detail below
using a 2D lattice where the position i in the lattice is defined by the Cartesian
coordinates (k, l). Using the simple backward finite-differences scheme for the
numerical approximations of the definitions in continuum space, the gradient
vector of the order parameter and the square gradient term in equation 2.54 can
be expressed as:

∇m(x) =

(
∂m

∂x
,
∂m

∂y

)
'

(
mk,l −mk−1,l

4x
,
mk,l −mk,l−1

4y

)
' (∇m)|i (2.60)

(∇m(x))2 = ∇m(x) · ∇m(x)

=

(
∂m

∂x

)2

+

(
∂m

∂y

)2

'
(
(mk,l −mk−1,l)

2

42
x

+
(mk,l −mk,l−1)

2

42
y

)
' [ (∇m)|i]

2 (2.61)
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The first derivative of equation 2.54 is then:

∂FI

∂mi
' Nε

2
∂

∂mi

∑
k,l

[(∇m)i]
2

 (2.62)

' Nε
2

[
2
42
x

(mk,l −mk−1,l) −
2
42
x

(mk+1,l −mk,l) + · · ·
]

' Nε
2

[
2
42
x

(2mk,l −mk−1,l −mk+1,l) +
2
42
y

(2mk,l −mk,l+1 −mk,l+1)

]

' −Nε

[
1
42
x

(mk−1,l +mk+1,l − 2mk,l) +
1
42
y

(mk,l−1 +mk,l+1 − 2mk,l)

]

' −Nε

[
∂2m

∂x2

∣∣∣∣
(k,l)

+
∂2m

∂y2

∣∣∣∣
(k,l)

]
(2.63)

The expression in square brackets in equation 2.63 is the central difference
approximation of the Laplace operator. Considering this and equation 2.56:

∂FI

∂mi
= −Nε (4m)(k,l) (2.64)

δFI

δm(x)
' 1

N
∂FI

∂mi
= − ε (4m)(k,l) (2.65)

Equation 2.65 is the 2D case of equation 2.58. For the implementation of the
Laplace operator in equation 2.65, an extended stencil is used to improve the
accuracy of the numerical approximation, as shown later on page 34.

For the Hessian coefficients, the functional derivative of µ(x) is computed:

H(x, x ′) =
δ2F

δm(x ′)δm(x)
=

δ

δm(x ′)

[
δF

δm(x)

]
=

δµ(x)
δm(x ′)

(2.66)

and the relation between the Dirac delta and the Kronecker delta:

δ(x − x ′) ' δi,j

N
(2.67)

are needed to proceed with the numerical calculations.
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The functional derivative of equations 2.57 to 2.59 provides the expressions
for the numerical approximation of the Hessian coefficients:

HLi,j '
(
−$+ 2γmi + 3ϑm2

i

) δi,j
N

(2.68)

HIi,j ' (−ε 4)
δi,j

N
(2.69)

HGi,j ' α G(i, j) (2.70)

The first term contributes only to values of the diagonal of the Hessian ma-
trix (i.e. i = j). The second term, HIi,j, also modifies values of the diagonal.
However other values of the Hessian matrix are also modified by the calcula-
tion of this term due to the additional cells needed for the numerical computa-
tion of Laplace operator in equation 2.69. The third term, HGi,j, contributes to all
the entries in the Hessian matrix. This last term accounting for the long range
interactions described by the Greens function, explicitly indicates the Hessian
matrix is dense. Also, the Hessian matrix is symmetric due to Hi,j ≡ Hj,i.

For the computational studies, the free energy of the system is computed
using equations 2.53 to 2.55, the chemical potential is computed using equa-
tions 2.57 to 2.59 and the Hessian coefficients using equations 2.68 to 2.70. Com-
plete expressions for F({m}),µi and Hi,j are shown below:

F({m}) = N
N∑
i=1

(
−
$

2
m2
i +

γ

3
m3
i +

ϑ

4
m4
i +

ε

2
[∇mi]

2
)

+
α

2
N2

N∑
i=1

mi

 N∑
j=1

G(i, j)mj

 (2.71)

µi = −$mi + γm
2
i + ϑm

3
i − ε (4m)i + α

N∑
j=1

N G(i, j)mj (2.72)

Hi,j =
1
N

(
−$+ 2γmi + 3ϑm2

i

)
δi,j −

ε

N
4δi,j + α G(i, j) (2.73)

Different numerical schemes to compute the Laplace operator 4 in equa-
tions 2.72 and 2.73 are available, where the central finite-differences is one of
the simplest and most commonly used. In that later scheme, the computation
of the operator is anisotropic: only grid points along the direction of the axes are
included. Due to this directional bias, the Laplace operator is not completely ro-
tational invariant and a discretization error or grid-related artifact is introduced
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by the use of an anisotropic scheme [76–78]. Snapshots of grid-related artifacts
during the phase separation process in binary blends using the Cahn-Hilliard-
Cook equation are shown by Sevink [79], who also highlights the importance
of avoiding this rotational bias to obtain proper structure factors in the study of
block copolymer systems using field-methods like the Ohta-Kawasaky.

Despite providing a greater rotational symmetry for the Laplace operator,
Isotropic stencils involve more grid points in the calculation therefore increas-
ing the computational cost. Patra and Karttunen [77] show that the extra cost
of using an isotropic stencil is usually less than 20%, for matrices with 106 to
108 elements in single-core processors using the maximum optimization level
available by the compiler. The overall extra cost of computing the Laplace oper-
ator with an isotropic stencil can be diminish by the use of parallel computing,
specially for large matrices.

Therefore, I decide to use an isotropic stencil in the computational studies
in order to avoid grid-related artifacts in the simulation results and further con-
clusions. The calculation of the terms in equations 2.72 and 2.73 requiring the
Laplace operator is described below for the 2D case using an isotropic 9-points
stencil (Fig. 2.6) also known as Mehrstellen or D2Q9 stencil.

i

(k, l)

i− 1y

i+ 1y

i− 1y − 1x

i+ 1y + 1x

(k+ 1, l+ 1)

−10
3

1
6

2
3

4x

4y
4x = 4y

Figure 2.6: Square 9-points stencil for the numerical approximation of the
Laplace operator. Coefficients for each grid cell included in stencil are shown.
The cell i = (k, l) where the operator is computed is depicted in black.

In a 2D collocation lattice, a grid cell i can be identified in terms of its Carte-
sian coordinates (x,y) as i = (k, l) to easily locate the neighboring cells consid-
ered by the numerical stencil of the Laplace operator. Nearest neighbors along
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every axis are then the cells i+1x = (k+1, l), i−1x = (k−1, l), i+1y = (k, l+1)
and i − 1y = (k, l − 1). The numerical computation of the term accounting
for the cost of an interface in the chemical potential (cf. equation 2.72) is now
straightforward by applying the stencil shown in figure 2.6 to the order parame-
ter field in the grid cell i. However, the calculation of the corresponding Hessian
coefficients HIi,j might require a more detailed description.

Recalling that for the chosen stencil4x = 4y and N = 42
x, HIi,j is then:

HIi,j = −
ε

N

[
1
42
x

{
−

10
3
δi,j +

2
3
(
δi±1x,j + δi±1y,j

)
+

1
6
(
δi±1x+1y,j + δi±1x−1y,j

)}]
= ε1δi,j + ε2

(
δi±1x,j + δi±1y,j

)
+ ε3

(
δi±1x+1y,j + δi±1x−1y,j

)
(2.74)

with:

ε1 :=
10
3
ε

N2 ε2 := −
2
3
ε

N2 ε3 := −
1
6
ε

N2

An example of the contribution to the Hessian matrix due to the computation
of HIi,j for an order parameter field {m} discretized in a collocation lattice of size
(4, 3) is shown in figure 2.7.

Implementation of the Greens function

The Greens function representing the long range interactions in equation 2.41,
obeys the Poisson’s equation:

4G(x − x ′) = −δ(x − x ′) + ĉ (2.75)

Where the constant ĉ represents the compensating charge uniformly distributed,
using the analogy from electrostatics.

Solutions are known in the case of large system sizes where the effect of
boundary conditions can be negligible [49, 80]:

G(x − x ′) = −
|x − x ′|

2
in 1D (2.76)

G(x − x ′) = −
1

2π
ln(|x − x ′|) in 2D (2.77)

G(x − x ′) =
1

4π
1

|x − x ′|
in 3D (2.78)

However, finite-size systems occur in computer simulations and the choice
of appropriate boundary conditions for the system investigated are required
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Figure 2.7: Example of two HIi,j entries for the corresponding cells in the {m}

grid. Red values in the Hessian matrix correspond to HI5,j, blue correspond to
HI7,j and entries highlighted in gray correspond to nearest neighbors consider-
ing the boundary conditions.

and must be considered to find G(x − x ′). For a finite-size system in a regular
grid with periodic boundary conditions, the constant ĉ in equation 2.75 is:

ĉ =
1
L

in 1D (2.79)

ĉ =
1
A

=
1

LX LY
in 2D (2.80)

ĉ =
1
V

=
1

LX LY LZ
in 3D (2.81)

Finding the Greens function for confined systems or for boundary condi-
tions other than periodic is a challenging task that has been previously studied
in our group [81], mainly because the Ohta-Kawasaky model was developed
for bulk systems and the assumption of a constant monomer density used for
the fitting of the inverse structure factor is no longer valid in a confined system.
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Therefore, the choice of appropriate boundary conditions mimicking the inter-
action of the diblock copolymer system with hard surfaces (i.e. the change in
monomer density in the vicinity of a hard wall and no flux through the confin-
ing surface) is still an open challenge. According to Silverberg’s argument [82],
in the vicinity of a hard wall chain conformations can be described as random
walks reflected at the surface. Therefore, the use of reflective boundary con-
ditions for computer simulations of confined systems is valid. However, in
the case of thin films of very small thickness, the structure of the segments of
a single chain becomes compact changing the monomer density [83]. In this
later case, additional considerations are needed when using the Ohta-Kawasaki
model.

The Fourier transform of the Greens function and the delta function is used
to calculate equation 2.75 for the case of periodic boundary conditions. The cen-
tral difference stencil for the Laplace operator allows an easier calculation of the
left-hand side of the equation, when compared to the extended stencil used for
more accurate and stable calculations. Since the long-range term in the Ohta
Kawasaki free energy functional is a convolution of the order parameter with
the Greens function, this calculation is not the most prone to numerical dis-
cretization errors, therefore the use of a different stencil to ease the calculation
is a reasonable choice.

The calculation mentioned above is now described in detail for a two dimen-
sional system of size A = Lx.Ly, discretized on a collocation grid of N = Nx.Ny
cells, each one of them with size N = 4x ∗ 4y , the Fourier transforms can be
expressed in terms of the variables x , j in real space and qk , k in reciprocal
space:

G(x − x ′) =
1
A

∑
qk

G̃(qk)e
i qk(x−x ′) (2.82)

with:

G̃(qk) =

∫
A

d(x)G(x − x ′)e−i qk(x−x ′) (2.83)

where:

xj = (∆x.jx , ∆y.jy) 0 6 jx,y < Nx,y (2.84)

qk = (
2π
Lx
kx ,

2π
Ly
ky) 0 6 kx,y < Nx,y (2.85)

Using the central difference stencil to calculate the Laplace operator and the
equation 2.82 to compute the Greens function, the left-hand side of equation 2.75
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can then be expressed as:

4G(x − x ′) ' 1
42
x

(
G(x − x ′ +4x) +G(x − x ′ −4x) − 2G(x − x ′)

)
+

1
42
y

(
G(x − x ′ +4y) +G(x − x ′ −4y) − 2G(x − x ′)

)
=

1
A

∑
qk

G̃(qk)e
i qk(x−x ′)

{
1
42
x

[
ei qk4x + e−i qk4x − 2

]
+

1
42
y

[
ei qk4y + e−i qk4y − 2

]}

=
1
A

∑
qk

G̃(qk)e
i qk(x−x ′)

{
2
42
x

[cos (qk4x) − 1] +

2
42
y

[cos (qk4y) − 1]

}

= −
1
A

∑
qk 6=0

G̃(qk) e
i qk(x−x ′)Q̃(qk) (2.86)

with:

Q̃(qk) :=
2
42
x

[1 − cos (qk4x)] +
2
42
y

[1 − cos (qk4y)]

=
2
42
x

[
1 − cos

(
2π
kx

Nx

)]
+

2
42
y

[
1 − cos

(
2π
ky

Ny

)]
(2.87)

and the right-hand side as:

−δ(x − x ′) +
1
A

= −
1
A

∑
qk

ei qk(x−x ′) +
1
A

= −
1
A

∑
qk 6=0

ei qk(x−x
′) (2.88)

A solution to equation 2.75 can be found by requiring equations 2.86 and 2.88
to be equal:

G̃(qk) =
1

Q̃(qk)
∀ qk 6= 0 (2.89)
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Therefore:

G(x − x ′) =
1
A

∑
qk 6=0

ei qk(x−x
′)

Q̃(qk)
(2.90)

Due to the periodicity of qk and the sine function, imaginary terms of the sum-
mation cancel out and equation 2.90 can be expressed only in terms of cosine
functions:

G(x − x ′) =
1
A

Nx−1∑
kx=0

Ny−1∑
ky=0

1
Q̃(qk)

cos

[
2π
(
kx

Nx

(
î− î ′

)
+
ky

Ny

(
ĵ− ĵ ′

))]
(2.91)

where the case kx = ky = 0 is not to be computed, and î , ĵ are integers indicating
the index of the cell in the collocation grid in every dimension such that:

0 6 î < Nx 0 6 ĵ < Ny

For the special case of 4x = 4y (i.e. 42
x = N ) as in the isotropic stencil

for the Laplace operator used for a more accurate calculation of the free energy,
the chemical potential and the Hessian coefficients (c.f. page 34), Q̃(qk) can be
simplified as:

Q̃(qk) =
2
N

[
2 − cos

(
2π
kx

Nx

)
− cos

(
2π
ky

Ny

)]
(2.92)

and using this latter expression, equation 2.91 can be written as:

G(x − x ′) =
1

2 N

Nx−1∑
kx=0

Ny−1∑
ky=0

cos
[
2π kxNx

(
î− î ′

)
+ 2π kyNy

(
ĵ− ĵ ′

)]
[
2 − cos

(
2π kxNx

)
− cos

(
2π kyNy

)] (2.93)

Expressions for the Greens function in 1D and 3D in periodic boundary
conditions can be drawn following the same calculations. For the 1D case,
G(x − x ′) can be obtained from equation 2.91 by setting ky = 0 and redefine
A = L = 4xNx, and N = Nx:

G(x − x ′)1D =
1
L

∑
kx

1
Q̃(qk)

cos

[
2π
kx

Nx

(
î− î ′

)]

=
4x

2 Nx

N∑
kx=1

cos
[
2π kxNx

(
î− î ′

)]
1 − cos

(
2π kxNx

) (2.94)
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The expression forG(x−x ′) in 3D can be drawn from equations 2.82, 2.87, 2.90
and 2.89:

G(x − x ′)3D =
1
V

∑
qk 6=0

ei qk(x−x
′)

Q̃(qk)

=
1
V

Nx−1∑
kx=0

Ny−1∑
ky=0

Nz−1∑
kz=0

cos
[
2π
{
kx
Nx

(
î− î ′

)
+

ky
Ny

(
ĵ− ĵ ′

)
+ kz
Nz

(
k̂− k̂ ′

)}]
Q̃(qk)

(2.95)

where î , ĵ , k̂ are integers indicating the index of the cell in the collocation grid
and:

Q̃(qk) :=
∑
α

2
42
α

[
1 − cos

(
2π
kα

Nα

)]
α ∈ (x,y, z) (2.96)

Here again the case kx = ky = kz = 0 is not to be computed.

2.3 Summary and conclusions

Continuum models have been employed to optimize parameters for the di-
rected self-assembly (DSA) of block copolymers. By comparing the predictions
of two continuum free-energy functionals – the Swift-Hohenberg model and the
Ohta-Kawasaki model – to the predictions of self-consistent field theory (SCFT),
we have evaluated their abilities to predict DSA-relevant properties such as the
excess free energy of metastable dislocation pairs, the shape of the internal AB
interfaces in the vicinity of a defect, and the kinetics of defect motion.

The Swift-Hohenberg model predicts a spurious phase coexistence between
a spatially modulated structure and a homogeneous structure that differs in
composition.[41, 48] Additionally, we show that it only provides a rather poor
prediction of the geometry of a prototypical, metastable defect.

The Ohta-Kawasaki model [49, 55, 56] avoids the prediction of an unphysical
macrophase separation because of the long-range 1/q2-term. We demonstrate
that the model succeeds in predicting the geometry of defects as well as the tran-
sition from metastable dislocation pairs at high incompatibility to unstable ones
in the vicinity of the order-disorder transition (ODT).[57] Whereas the quanti-
tative mapping from the model parameter and scales to the molecular parame-
ters within the random-phase approximation (RPA) is only valid in the ultimate
vicinity of the order-disorder transition (ODT), we have devised a phenomeno-
logical extension by adjusting the length and free-energy scales based on the
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comparison to SCFT. This procedure provides a reasonable agreement for equi-
librium properties, including the excess free energy of dislocation-pair defects.
Thus the Ohta-Kawasaki model has been proven to be a promising continuum
model for studying the directed self-assembly (DSA) of diblock copolymers and
design guiding patterns and geometries for device-oriented structures.

For symmetric diblock copolymers, the third-order term γ̃ vanishes by sym-
metry, Fig. 2.5 suggests that the RPA-mapping, α̃(χN) in Eq. (2.29), remains
rather accurate, and the adjusted free-energy and length scales can be directly
read off Figs. 2.2 and 2.3 as a function of χN. For asymmetric copolymers, to a
first approximation, we expect that γ̃ ∼ (2f− 1) with a χN-dependent constant
of proportionality. In the ultimate vicinity of the ODT, γ̃ can be obtained from
Leibler’s RPA. [24] For intermediate and practically relevant incompatibilities,
we suggest to adjust the long-range and third-order coefficients, α̃(χN, f) and
γ̃(χN, f), as to reproduce (i) the excess free energy of prototypical defects as in
Fig. 2.5 and (ii) the location, flam/hex, of the transition between the lamellar and
hexagonal phase predicted by SCFT.[...]
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Chapter 3

Kinetics of self-assembly of block
copolymers

The Ohta-Kawasaki model has been extensively deployed for studying struc-
ture formation of block copolymers in the bulk[84]. Despite this model’s as-
sumptions and simplifications behind the continuum description of the system,
its use provides realistic dynamics for the structure formation process in con-
junction with the Cahn-Hilliard dynamics.

Nevertheless, the use of this phenomenological model in the context of di-
rected self-assembly (DSA) poses additional challenges related mainly to the
formation and annihilation of defects as part of the ordering process as well
as to the interaction with the guiding patterns and confining surfaces. Conse-
quently, this chapter is devoted to the description, both qualitative and quan-
titative, of DSA in the Ohta-Kawasaki model and to the comparison to self-
consistent field theory and particle-based simulations, illustrating applications
to defect motion and annihilation and the design of guiding patterns for fabri-
cating device-oriented structures. In addition, we discuss the significance of the
disparity between the characteristic length scale of surface-directed spinodal
self-assembly and the equilibrium domain spacing.

The materials presented in this chapter have been published as part of the
special collection of papers on the subject, "Advances in Directed Self-Assembly,"
with the title "Continuum models for directed self-assembly" in the journal
Molecular Systems Design & Engineering. To facilitate the integration of the pa-
per’s contents with this dissertation, only the sections of the paper directly re-
lated with the scope of this chapter have been included herein, specifically, sec-
tions 3.4, 3.5, 3.6 and 4. Part of the content of those sections has been omitted in
this chapter and it is indicated by [...], in order to avoid duplication with other
chapters in this dissertation.

In integrating the paper’s content, the cross-references, citations, and figure
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numbers used in the paper have been adjusted to be consistent with those in
this dissertation. The content has been adapted and reproduced from Ref. [28]
with permission from the Royal Society of Chemistry. Additional ideas and
discussion not included in the published paper are presented in section 3.2.2.

3.1 Defect motion and annihilation

In the following we illustrate applications of the Ohta-Kawasaki model to de-
fect structures and non-bulk morphologies, for a symmetric diblock copolymer
within the technologically relevant, intermediate segregation regime. Model
parameters correspond to χN ≈ 30: α̃ = 0.0172 and γ̃ = 0.

3.1.1 Dynamics of unstable defects

The motion of an isolated dislocation core along the stripe direction of a lamel-
lar structure – dislocation climb – does not involve any free-energy barrier by
virtue of the translation invariance along the stripes. In contrast, the motion
perpendicular to the stripes involves the breaking and reformation of domains.
Since our dynamical simulations ignores thermal noise, the concomitant free-
energy barriers [58, 59] cannot be overcome and, hence, the thermally activated
glide motion does not occur in our Ohta-Kawasaki simulations.

In the following, we study the defect kinetics of apposing dislocations pairs
in a lamella structure using the Ohta-Kawasaki model with Cahn-Hilliard dy-
namics, Eq. (2.32). We focus on the climb motion of a dislocation pair, which
has been studied by experiment [85] and simulation.[59] Dislocations with ap-
posing Burgers vector attract each other. Since the glide motion perpendicular
to the stripes cannot occur in our model, the distance, ∆, perpendicular to the
stripes – the impact parameter – is conserved, whereas the distance, L, along
the stripes decreases in response to the strain-field mediated interaction (Peach-
Koehler forces) between the dislocation cores.

In our study of defect motion we investigate three different values of the im-
pact parameter, ∆, between defect cores: ∆/L0 = 0, 1, and 2, where L0 = 18.28ξ0
is the equilibrium domain spacing of the bulk lamellae. The dimension in the
direction perpendicular to the stripes is set to Ly = NPL0 with NP = 8. Thus,
the defect-free lamellar structure is stress-free. The value Np = 8 is larger than
or comparable to the distance between chemical guiding patterns in chemoepi-
taxy with density multiplication or the distance between topographical features
in graphoepithaxy, respectively. Periodic boundary conditions are used in our
simulations, mimicking the confining effect of chemical or topographical guid-
ing patterns in DSA with Np-fold density multiplication; the pinning of the
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internal AB interfaces of the lamellae at the guiding pattern is not considered.

 = 0,    evaporation climb

 = Lo,   unconstrained climb

 = 2 Lo,   stagnation climb

D = 4 Lo                     D = 1 Lo                     D ~ 0.2 Lo

D

Figure 3.1: Morphology of Ohta-Kawasaki simulations of three dislocation pairs
with impact parameter ∆/L0 = 0, 1, and 2 illustrating the motion of defect cores
towards each other. In all cases, the box size is Lx = 8.9L0 and Ly = 8.0L0,
corresponding to the stress-free lamella in along the y-direction. Contour lines
(black) show the AB interface at different stages of defect collision.

For all three cases, the initial dislocation pair is unstable, and the defect cores
spontaneously approach each other, i.e., D decreases. Fig. 3.1 shows the mor-
phology at different stages during the climb motion. For the cases,∆/L0 = 0 and
1, dislocations collide and annihilate, forming a defect-free lamellar structure.
The morphologies before the annihilation, D ≈ 0.2L0, differ: For ∆/L0 = 0 the
enclosed extra domain continuously shrinks, whereas for ∆/L0 = 1, the two do-
main ends are brought into apposition and join, cf. contour lines for D ≈ 0.2L0
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in Fig. 3.1. In the case of ∆/L0 = 2, a metastable tight dislocation pair is formed,
and a final finite value of D > 0 remains after the two dislocations pass by
each other. We denote this motion as stagnation climb, where the motion stag-
nates and the system reaches a metastable state, in which the force between the
defects vanishes. These observations of the two-dimensional Ohta-Kawasaki
model are in agreement with simulations and SCFT calculations. [59]

In order to study the velocity of the defect motion in the direction parallel
to the lamellae – dislocation climb – we compute the excess free energy, ∆Fd, of
the defect with respect to the defect-free lamella as a function of D. The results
are presented in Fig. 3.2.
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Figure 3.2: Defect motion described by distance, D, between defect cores as a
function of time (Λ = 1, ξ0 = 1) for impact parameters, ∆/L0 = 0, 1, and 2. The
inset shows the excess free energy, ∆Fd, of the defect pair as a function of the
distance, D.

Based on the attractive force between defect cores K = −d∆Fd/dD, two
regimes of defect motion can be identified: an initial stage where the force
is largely independent from the distance, D, between cores, and a final stage
where the magnitude of K increases as D approaches zero. The force, K, is
distance-independent for values of D > 2L0 in all three cases. For the evap-
oration and the stagnation climbs, ∆/L0 = 0 and 2, this regime even extends
to D > L0. The distance-independence of the attractive force and the limiting
value of D > 2L0 for this regime are nicely in agreement with predictions from
the minimum free-energy pathway (MFEP) obtained by SCFT calculations[59]
for the climb motion of dislocation pairs.
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In the constant-force regime, the velocity of defect motion is virtually inde-
pendent from the impact parameter ∆: dD/dt = 1/2930 for the evaporation
climb, dD/dt = 1/2900 for the unconstrained climb and dD/dt = 1/3000 in
the case of the stagnation climb. This observation differs from particle-based
Monte-Carlo simulations,[59] where a factor of 25 is observed between the de-
fect annihilation time for ∆ = 0 and ∆ = L0, the later being faster. We can
rationalize this difference by considering our choice of the Onsager coefficient.
According to Eq. (2.32), the Onsager coefficient is independent of the order-
parameter. This choice does not captures the barrier in the single-chain dynam-
ics, protracting the evaporation of segments from the encircled domain between
the defect cores in the case of ∆ = 0. Such an intrinsically slow process can be
captured by an Onsager coefficient that is proportional to (1 −m)(1 +m), ac-
counting for the incompressibility of the copolymer melt. Unfortunately, this
more appropriate choice of the Onsager coefficient makes the dynamic equa-
tion – the equivalent to Eq. (2.32) – non-local posing a computational burden.

3.1.2 Interaction of dislocations under tension

The distance-independent force between two apposing dislocation cores differs
from the classical Peach-Koehler force,[86] K ∼ − 1

D , of two dislocations in the
bulk. In previous work,[59] we have rationalized this observation by noting
that the lamellae between the apposing dislocation cores – the inner region –
are compressed due to the presence of an additional stripe, i.e., their lamellar
spacing is L ′ = NP

NP+1L < L, where L = LY/NP = L0 is the periodicity of the outer
lamellae. Note that the amount of compression depends on the system size,
LY ∼ NP, perpendicular to the lamellae that, in DSA applications, corresponds
to the distance of chemical or topographical lines of the guiding pattern.

Since the outer lamellae adopt their equilibrium spacing whereas the inner
lamellae are compressed, the free-energy density of the inner lamellae is higher,
and the free energy of the system increases linearly with the length, D, of the
inner lamellae. This rational suggests that the force between apposing disloca-
tion defects and thereby the speed, with which they approach each other (and
annihilate in the case of ∆/L0 = 0 and 1), critically depends on the deviation
of the lamellar periodicity of the inner and outer lamellae from the equilibrium
spacing. In Fig. 3.2 L = L0 and we maximize the free-energy density difference
between the compressed inner and stress-free outer lamellae.

In Fig. 3.3 we investigate the free-energy density, F/A, of defect-free lamellae
as a function of the lamellar spacing. The free-energy density exhibits a min-
imum at L = L0 and is well described by a quadratic form. The curvature is
related to the compression modulus of the lamellae. The crossing of the two

47



CHAPTER 3. KINETICS OF SELF-ASSEMBLY OF BLOCK COPOLYMERS

17 18 19 20 21 22

L

-34.4

-34.0

-33.6

-33.2

F
/A

N
P
 = 8

N
P
+1

Figure 3.3: Free-energy density F/A as a function of the lamellar spacing L =
LY/8 measured in units of the equilibrium periodicity, L0. The free energy is
shown for a system comprised ofNp = 8 (black circles) and 8+1 (blue triangles)
lamellae. The crossing point identifies the distance, L∗Y . For L < L∗Y the apposing
defect cores with opposite Burgers vectors attract each other.

curves, FNp(L)/A with Np = 8 and 8 + 1, identifies the spacing or distance,
LY = NpL, between the guiding stripes where the free-energy density of the in-
ner, compressed,Np = 8+ 1 and outer, expanded lamellae,Np = 8, is equal and
the boundary-induced compression force vanishes. ForNp = 8 this cancellation
of the compression force occurs at a mismatch of about 7%. If Ly increases fur-
ther, the outer lamellae are less favorable than the inner ones, and the defects
move as to eliminate the outer lamellae of higher free-energy density.

The consequence of a mismatch between the periodicity, LY , of a sparse guid-
ing pattern and the appropriate multiple of the lamellar bulk spacing on the
forces between the defect cores is illustrated in Fig. 3.4. We present the excess
free-energy, ∆Fd, as a function of the distanceD between the defect cores for im-
pact parameter, ∆ = L0. At not too small distance, D > 2L0, the free energy lin-
early increases with D. The inset of Fig. 3.4 presents the slope, K = −d∆Fd/dD,
in this linear regime of D as a function of the system size, L in the direction
perpendicular to the lamellae. Clearly as the outer lamellae become stretched
Ly/Np = L > L0, the free-energy difference between the inner and outer lamel-
lae decreases and so does the compression force, K.

The scaling with the perpendicular system size, LY = NpL, can be rational-
ized as follows: The free-energy density of the lamellae in the vicinity of the
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Figure 3.4: Excess free energy ∆Fd of defect morphology for different values of
lamellar period, L, as a function of the distance, D, between defect cores. The
inset presents the slope d∆Fd/dD as a function of L/L0 (cf. Eq. (3.2)).

equilibrium spacing L0, can be approximated by F(L)/A ≈ f0 +
B
2

(
L
L0

− 1
)2

,
where B denotes the compression modulus and L ′ = LY/(Np + 1). Thus the
total free energy of the system can be approximated by

∆Fd ≈ 2Fcore + LYD
B

2

[(
L ′

L0
− 1
)2

−

(
L

L0
− 1
)2
]

= 2Fcore + LYD
B

2

(
L ′ − L
L0

)(
L ′ + L
L0

− 2
)

(3.1)

= 2Fcore +
BLYD

2(Np + 1)2

(
L

L0

)2 [
1 − 2(Np + 1)

(
1 −

L0

L

)]
where the reference state is the system with Np lamellae and Fcore denotes the
excess free energy of the dislocation cores. For the compression force we obtain

K ≈ −
BNpL0

2(Np + 1)2

(
L

L0

)2 [
1 − (2Np + 1)

(
L

L0
− 1
)]

(3.2)

This rational suggest that the compression force decreases as the number,Np of
lamellae increases, K ∼ − 1

Np
for L ≈ L0,[59] and that the compression force de-

creases approximately linearly with L and vanishes if the lamellae are stretched
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to L−L0
L0
≈ 1

2Np+1 . This prediction is corroborated by the inset of Fig. 3.4, high-
lighting that the defect motion is very sensitive to a mismatch between the pe-
riodicity, NpL, of a sparse guiding pattern and the appropriate multiple of the
lamellar bulk spacing, NpL0.

3.2 Understanding DSA using a continuum model

3.2.1 Stages of directed structure formation

In section 3.1, we have studied lamellar structures as well as the properties of
prototypical defects. A different interesting case for DSA is the design of device-
oriented structures like dots, isolated lines, T-junctions, swirls and others.[5, 7,
14, 87] Continuum models can be used to investigate the role of guiding pat-
terns for the fabrication of copolymer structures that do not resemble equi-
librium bulk morphologies. By virtue of the computational ease, the Ohta-
Kawasaki model can be utilized to systematically explore the geometry and
strength of the chemical or topographical guiding patterns in order to obtain the
targeted structure and design the guiding pattern to avoid undesired metastable
states in the course of DSA. For instance, this strategy has been used for the op-
timization of grapho-epitaxy-DSA integrated into a conventional lithography
process for the case of a contact hole.[88] In the following, we employ two-
dimensional calculations of the Ohta-Kawasaki model to illustrate the design
of geometric confinement and guiding fields to fabricate T-junctions.

Interactions between the guiding pattern and the copolymer material can be
straightforwardly incorporated in continuum models by augmenting the free-
energy functional by an additional surface contribution, which describes the
wetting behavior [89]

∆Fwall =

∫
dx
(
h(x)m(x) +

1
2
g(x)m2(x)

)
(3.3)

where the first term, h, quantifies the preference of the local substrate as a func-
tion of the spatial position, and the second term, g, represents the change of the
interactions inside the copolymer material in the vicinity of the surface (“miss-
ing neighbor effect”). The latter term accounts inter alia for the reduction of
the density at the surface that is not explicitly described within the single order-
parameter description. In the following, we ignore the latter effect and set g = 0.

We start from a perfectly homogeneous state, m(x) ≡ 0, at time, t = 0.
Since our calculations ignore thermal fluctuations, the kinetics of structure for-
mation is deterministic. Therefore our calculations highlight how the guiding

50



3.2. UNDERSTANDING DSA USING A CONTINUUM MODEL

fields direct the self-assembly. Similar to surface-directed spinodal decomposi-
tion [90, 91] in blends, different stages in the kinetics of structure formation can
be distinguished:

1. surface-directed spinodal self-assembly

• linear growth of composition variation driven by surface fields

• exponential amplification of composition fluctuations

2. changes of the domain topology

In the first stage, the surface fields induce the enrichment of the preferred
segment species at the location of the guiding field. Including the surface con-
tribution and settingm(x) ≡ 0, we obtain from Eq. (2.32)

m(x, t) = 4h(x) ·Λt (3.4)

for the very initial regime. These guiding-pattern induced composition varia-
tions are exponentially amplified by the spinodal kinetics of self-assembly. Lin-
earizing Eq. (2.32), we obtain for the wavevector-dependent growth rate, r(q)

r(q) ∼ (qξ0)
2
[
1 − (qξ0)

2
]
+α (3.5)

Composition variations with the wavevector qmaxξ0 = 1√
2

grow the fastest.
Thus, in the course of the surface-directed spinodal self-assembly, a lamellar
structure emerges that is registered and aligned with the guiding pattern and is
characterized by the periodicity, λmax

λmax = 2
√

2πξ0 (3.6)

Since the linearized form of the SCFT is the RPA, SCFT predicts the growth
rate, r(q) ∼ −q2γ2(q). Fig. 2.1 demonstrates that the Ohta-Kawasaki model,
Eq. (2.10), provides a rather accurate approximation for the second-order vertex
function. Therefore we expect that the estimate for the periodicity, λmax, of the
initial lamellar structure also is accurate.

At the order-disorder transition, α̃c = 1
4 , the periodicity of the spinodal

structure coincides with the equilibrium lamellar spacing, L0. Upon increas-
ing the incompatibility, however, we observe that λmax remains unaltered when
measured in the natural length unit, ξ0, of the Ohta-Kawasaki model (or de-
creases when measured in units of Re), whereas the equilibrium lamellar spac-
ing, L0, increases. Using the one-mode approximation that is appropriate for
weak segregation, we obtain for the ratio

λmax

L0
≈ 4√4α̃ (3.7)
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Also within the SCFT, the ratio λmax
L0

decreases as we increase the incompatibility,
χN. Thus, the lamellar structure that is templated by the surface-directed self-
assembly differs from the equilibrium structure. For α̃ = 0.0172, i.e., χN ≈ 30
the ratio of length scales is about 0.5.
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Figure 3.5: Geometric confinement in combination with a guiding pattern (black
lines) is used to fabricate device-oriented structures. The width, LX, of the con-
finement and the geometry, LW , guiding pattern is adjusted to obtain an isolated
T-junction.

In order to illustrate the fabrication of T-junctions, we employ a two-dimensional
system with reflecting boundary conditions in all directions that mimic confin-
ing walls. At the boundaries there acts a guiding field, h(x,y), according to
Eq. (3.3) that attracts the A-component with strength −0.3 or that adopts the
neutral, non-preferential value 0. The system geometry is sketched in Fig. 3.5.
The height of the system is LY = 4L0, the top horizontal boundary attracts the
A-component, whereas the bottom horizontal boundary is neutral. In the fol-
lowing, we aim at identifying a parameter region where the formation of the tar-
geted structure is promoted by systematically optimizing the length, LW , of the
neutral portion of the vertical side wall and the width, LX, of the confinement.
The design space is restricted to the interval 1.9 6 LX/L0 6 2.16, illustrating
the role of the mismatch between the width of the confinement and the equilib-
rium lamellar periodicity, and 1

2 6 LW/L0 6 2. The latter quantity controls the
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number and location of horizontal lamellae at the top.
The final morphology, into which the dynamics converges according to Eq. (2.32),

sensitively depends on the geometry of the confinement and the guiding pat-
tern. The outcome of the simulations of the Ohta-Kawasaki model in this two-
dimensional design space are compiled in Fig. 3.6. The metastable structures
encompass a variety of structures including T-junctions of A and B domains.
Some general trends can be straightforwardly identified: (i) The larger LW is
the larger is the number of horizontal lamellae at the top. Note that half an
A domain of thickness L0/4 is formed at the A-attracting guiding pattern at
the top. For LW/L0 6 1 we often observe the formation of 1.5 horizontal A
domains at the top, whereas for 1.25 6 LW/L0 the number of horizontal A do-
mains increases to 2.5. (ii) For LW/L0 ≈ 0.75 and 1.75, the horizontal lamellae
are rather straight because the surface pattern registers the AB interface of the
lowest, horizontalA domain at a position, y, that is compatible with the equilib-
rium lamellar spacing. For other values of LW the lowest, horizontal A domain
bulges upwards, LW/L0 = 1, or is bent downwards, LW/L0 = 1.25 and 1.5. (iii)
In the range of widths, LX/L0 ≈ 2, typically half a vertical A domains forms at
the left and right, A-attractive, vertical boundaries, and an additional vertical
A domain is located at the center. The horizontal domains at the top and the
vertical domains at the bottom join in a grain-boundary-like structure.

For a wide parameter range we observe a U-shaped B domain, formed by
connecting the two neighboring, vertical B domains at the top, where they meet
the horizontal lamellae.

The A domains form the desired single T-junction at the center in the rather
narrow parameter regime, LW/L0 = 1.75 and 2.06 6 LX/L0 6 2.10. The mor-
phologies are indicated by green frames in Fig. 3.6. Apparently, the slightly
wider system size, LX/L0 > 2, allows for the bulging at the ends of the A do-
mains, which are located at the vertical boundaries, without pinching-off the
central, vertical A-domain of the T-junction.

Another type of T-junction of A domains involves the two vertical A do-
mains at the boundary (black frames in Fig. 3.6), and it is observed for 1.25 6
LW/L0 6 1.5 at LX/L0 = 1.96 and 1.75 6 LW/L0 6 2 at Lx/L0 = 2.

T-junctions of B domains are fabricated at LW/L0 = 0.5 at Lx/L0 = 2 and
LW/L0 = 1.75 at Lx/L0 = 2.16. These morphologies are indicated by yellow
frames in Fig. 3.6.

At the extreme parameter values, more complex morphologies are formed.
For LX/L0 > 2.06 and LW/L0 6 1.25 there is the possibility that the vertical
A domain at the center breaks up into two circular domains and for LX/L0 6
1.96 and LW/L0 > 1.75 highly bent structures or morphologies with additional
horizontal A domains are formed.
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Figure 3.6: Representative set of final, metastable morphologies obtained by
DSA from the disordered state as a function of the two design parameters, the
width LX of the confinement and the geometry, LW , of the guiding pattern. A
domains are colored red, whereas B domains are depicted in blue. The geom-
etry of the A-attractive guiding pattern at the boundaries is indicated by black
lines. Green frames indicate the desired single T-junctions of the A species. T-
junction of A domains involving the two vertical A domains at the boundary
are highlighted by black frames. T-junctions of B domains are marked by yel-
low frames.
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In Fig. 3.7 we illustrate the kinetics of structure formation after a quench
from the disordered state, m(x) ≡ 0, for the formation of a U-shaped B domain
that occurs at LW = 0.75L0 and LX = 2.0L0. The evolution of self-assembly is
directed by the guiding fields.
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Figure 3.7: Snapshots of the evolution of structure formation of a U-shaped B
domain for LW = 0.75L0 and commensurate system width, LX = 2.0L0. The
color map indicates the order-parameter field,m(x). A domains are depicted in
red, B domains are colored blue. The A-attractive guiding pattern is indicated
by black lines.

At t = 10 we observe the initial stage – surface-directed spinodal self-assembly.
The guiding pattern has given rise to the formation of weakly segregated A
enrichment layers at the preferential portions of the boundaries according to
Eq. (3.4). These low-amplitude composition variations are exponentially am-
plified by the self-assembly process in the unstable homogeneous state. This
surface-directed spinodal self-assembly results in the formation of lamellar do-
mains or order-parameter waves parallel aligned with the preferential bound-
aries, i.e., from the horizontal top and the two vertical sides, lamellae propagate
towards the center of the system. Importantly the characteristic periodicity is set
by the wavelength, λmax, of the fastest growing composition mode, cf. Eq. (3.5),
and it is significantly smaller than the equilibrium domain spacing, L0, i.e., in a
system of width LX = 2L0 we observe the initial formation of 5 vertical lamellae
with rather small amplitude of the order parameter.

Subsequently, at the end of the surface-directed spinodal self-assembly t =
40, the composition inside the domains attains it saturation value. Note also that
the two central, vertical A domains have already merged so that only 4 vertical
A domains remain – twice than in the final, metastable state at LX = 2L0.

In the later stage, t > 160, the domain morphology changes as to obtain
a stress-free morphology with a near-equilibrium spacing. The snapshots at
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t = 160, 320 and 640 illustrate that this process is rather complex, involving
the merging of domains and motion of the internal AB interfaces that resem-
bles the motion of apposing dislocation defects with impact parameter, ∆ = 0
(evaporation mechanism). The details of these domain changes depend how
the order-parameter waves emanating from the A−attractive boundaries inter-
fere. This interference, in turn, is dictated by the design parameters, LW and LX.
Whereas the spinodal stage lasts for 40 time units of the Ohta-Kawasaki model
(using Λ = 1), the subsequent changes of the morphology take about 32 times
longer.

Only at t = 1280 the final domain topology is achieved and the subsequent
kinetics merely optimizes the detailed position of the internal AB interfaces.
Thus, a significant fraction of the time it takes to obtain the final morphol-
ogy is devoted to the changes of the domain morphology required by the mis-
match of the initial periodicity, λmax, and the equilibrium domain spacing, L0.
Given the use of a composition-independent Onsager coefficient, we expect that
the kinetics of structure changes would be even slower if we duly accounted
for the intrinsically slow “tunneling” of blocks across domains of the opposite
species.[64]

In order to illustrate the qualitative universality of the different stages and
the complexity of the changes of domain topology, we investigate in Fig. 3.8 the
case, where the width, LX = 1.9L0, is not commensurate with the equilibrium
domain spacing, using two different values of LW .

For LW = 1.5L0, the surface-directed, spinodal self-assembly at the bottom
is similar to Fig. 3.7. Short-wavelength order-parameter waves emanate from
the two vertical, A-attractive guiding patterns, yielding 4 vertical A domains
at the end of the spinodal self-assembly, t = 40. Since the neutral portion,
LW at the top of the vertical boundaries is larger than in Fig. 3.7 the horizontal
domain structure directed by the top boundary propagates farther downwards.
Thus the transient morphology at the end of the spinodal self-assembly, t =
40, features one more horizontal A domain than in Fig. 3.7, and the grain
boundary where the vertical and horizontal domains meet differs, resulting in
an alternate sequence of domain changes in the subsequent ordering, 160 6 t 6
22 000. Again, the domain topology changes in order to establish domains of
the preferred dimension, L0. These changes involve the downward expansion
of the two horizontalA domains at the top and the evaporation-like elimination
of a vertical B domain at the center. The final structure consists of a T-junction
of A domains that involves the two vertical A domains at the boundary. Note
that the second stage – changes of the domain topology – takes about an order
of magnitude longer than in the example of Fig. 3.7, before the final metastable
morphology is attained.
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Figure 3.8: Comparison of the evolution of structure formation for two different
values of LW/L0 = 1.5 and 2 in a confinement of incommensurate width, LX =
1.90L0. The color map indicates the order-parameter field,m(x). A domains are
depicted in red, B domains are colored blue. The A-attractive guiding pattern
is indicated by black lines.

For LW = 2L0, an additional horizontalA domain is generated by the surface-
directed spinodal self-assembly at t = 40 and, concomitantly, the vertical A do-
mains at the bottom are less extended upwards. The subsequent changes of
the domain topology, involving highly curved AB interfaces, completely elim-
inate the vertical domains (without any barrier). Presumably, the free-energy
costs of (i) slightly compressing the vertical lamellae for LX < 2L0 and of (ii) the
grain boundary between vertical and horizontal domains outweigh the cost of
deforming the left and right ends of the two horizontal domains in contact with
the A-attractive boundaries at the lower part of the vertical boundaries. As for
LW = 1.5L0, the stage of changing the domain topology is protracted.

In all these examples, most of the time is spent on the stage of changing
the domain topology after the surface-directed spinodal self-assembly has tem-
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plated the initial morphology. The change of the domain topology is chiefly re-
quired because the initial morphology that is templated by the surface-directed
spinodal self-assembly differs in characteristic length scale, λmax, from the do-
mains spacing, L0, in equilibrium. Since the ratio between the two length scales
differs from unity the more, the stronger the segregation strength is, cf. Eq. (3.7),
DSA at weak segregation, 10.5 < χN < 20, appears to be advantageous for
rapid self-assembly directed by guiding patterns into device-oriented struc-
tures.

3.2.2 Spinodal length scale

In the previous section we presented how the ordering process is influenced by
two characteristic periodicities in DSA: the wave-length of the fastest growing
mode λmax = 8.886 (see Eqn. 3.6) and the equilibrium domain spacing LO. Three
stages during the ordering process were identified: (i) an surface-directed spin-
odal self-assembly which results in an initial morphology templated by the peri-
odicity λmax, (ii) an intermediate domain-merging stage that results in the final
topology and (iii) a final equilibration stage where the internal interfaces of the
established final topology optimize their detailed positions. The intermediate
domain-merging process is the result of the mismatch between the periodicities
λmax and L0.

It is intuitive to design a confinement commensurate to the equilibrium
lamellar period L0, however, using λmax as a design scale length we can con-
trol and tailor the kinetics of structure formation. If the size of the confinement
and the process conditions can be tuned such that the ordered structure formed
at early times becomes metastable, the domain-merging stage can be omitted or
reduced such that a faster structure formation takes place. On the other hand,
if the mismatch between the two length scales λmax and L0 is reduced, the do-
mains formed after the initial step do not need to undergo substantial changes,
hence a structure formation with no merging process could be obtained as well.

The domain-merging stage not only protracts the time required to obtain
the final structure but also determines how prone is the system to the formation
of undesired domains with respect to the targeted structure. Therefore reduc-
ing or eliminating the merging stage could reduce the defectivity of the final
metastable structures fabricated via DSA.

This section is devoted to explore these ideas in more detail. Here we in-
vestigate how the mismatch between those length scales can be exploited to
control the guided self-assemble process in two cases: the structure formation
of a thin film between two guiding walls and the control of the formation of the
intermediate checkerboard structure in thin films as well.
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DSA of thin films via symmetric guiding walls

For the first case, the structure formation between two guiding walls, we em-
ploy a two-dimensional system with reflective boundary conditions in the X
direction mimicking confining walls and periodic boundary conditions in the
Y direction representing a periodic thin-film. As in previous calculations, we
ignore thermal fluctuations by starting from a perfectly homogeneous state,
m(x) ≡ 0, and in our deterministic kinetics we focus on how the guiding sur-
faces direct the self-assemble process. Snapshots of the system are presented in
Figure 3.9.

t = 0.01 t = 2.5 t = 840

D = 2 LO

Figure 3.9: 2D calculations via the Ohta-Kawasaki model to investigate the final
morphology and the different stages of the surface-directed structure forma-
tion. The guiding pattern consists of A- attractive vertical boundaries at the
two sides of the film of thickness D, which attract the A-component with the
same strength of h(0,y) = h(D,y) = −0.3. Snapshots correspond to D = 2LO
at χN = 30 (λmax/LO = 0.51). Red and blue correspond to A- and B-domains
respectively.

In the following, we aim to compare the final morphology obtained for dif-
ferent values of the mismatch ratio, λmax/LO, as well as to describe the differ-
ences in the structure formation process. To this end, two values of χN are
selected to tune the mismatch ratio: χN = 30 for which α̃ = 0.0172, LO = 18.280
and λmax/LO = 0.49, i.e., significant mismatch where about two wavelentghs
of the fastest growing mode can be allocated in the length given by one equi-
librium domain spacing, and χN = 11 for which α̃ = 0.2080, LO = 9.362 and
λmax/LO = 0.95, i.e., virtually no mismatch. We study values of the film thick-
ness commensurate to the natural domain spacingD/LO = 2, 3, 4. In every case,
the height of the system if fixed as LY = LO deployed in 20 grid cells.

In Figure 3.10 we present the order-parameter profile of the final morphol-
ogy for every value of the film-thickness and the mismatch ratio. Regardless of
the film-thickness, equilibrium morphologies commensurate to the film-thickness
are obtained when the mismatch ratio is virtually 1, n = D/LO = 2, 3, 4. Given
the similarity between the two periodicities, the lamellar structure formed at the
end of the initial surface-directed spinodal self-assembly is virtually the same
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as the final equilibrium configuration templated by LO, and the subsequent ki-
netics merely optimizes the detailed position of the internal AB interfaces.
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Figure 3.10: Equilibrium lamellar topology at two different values of λmax/LO.
At virtually no mismatch, λmax/LO ≈ 1, the number of lamellar domains in
the final morphology, n, is commensurate to the film-thickness, n = D/LO =
2, 3, 4 (blue). In contrast, additional domains are obtained when the mismatch
is significant λmax/LO = 0.49, n = 3, 4, 6 (red) for D/LO = 2, 3, 4 respectively.

In contrast, when the mismatch ratio is 0.49, χN = 30, the formation of
additional lamellar domains indicates the final configuration corresponds to
a metastable structure. In this case, several domains need to merge in the
course of the ordering process, as a consequence of the mismatch between the
two periodicities, changing the number and position of the internal AB inter-
faces. During this merging process, the system can find a local minimum in
the free-energy landscape that corresponds to a different number of domains
as can be expected by conmmensurability of the film-thickness with respect to
the equilibrium periodicity LO. This is the case for the final states obtained
for λmax/LO = 0.49 where the domains are compressed, and hence, the system
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does not correspond to the global minimum of the free energy. This can be il-
lustrated by the comparison of the free energy of the final state for D/LO = 4,
which contains 6 lamellar domains, with a fabricated state that contains 4 lamel-
lar domains commensurate to that value of D. The free-energy density for the
state with 6 domains is f = −0.0806, whereas for the state with 4 domains is
f = −0.1025, confirming the final configuration depicted in Fig. 3.10 (see bot-
tom red plot) corresponds to a metastable state resulting from the mismatch
ratio.

In addition, the duration of the initial spinodal stage and the time to achieve
the final topology differs as the mismatch ratio changes. The surface-directed
spinodal stage ends once the two composition waves, prompted by the lateral
guiding patterns, interfere and give rise to an initial lamellar pattern. The sub-
sequent kinetics are determined by the mismatch ratio and the film thickness.
For the case of a mismatch ratio of 0.95, the final topology is obtained at t = 100
in time units of the Ohta-Kawasaki model (using Λ = 1) and the spinodal stage
ends at t = 75, i.e, the formation of the final topology takes 1.3 longer. For the
mismatch ratio of 0.49 those times are t = 270 and t = 50 respectively and thus
the formation of the final structure is protracted to 5.4 times the duration of
spinodal stage. The faster spinodal stage for the higher incompatibility can be
analyzed by means of the dynamics of the micro-phase separation in Eqn. 2.32

∂m

∂Λt
= 4

(
−m+ γm2 +m3 −4m

)
−αm

At higher incompatibility, lower value of α, changes in local composition
occur faster in comparison to lower values of χN. Therefore, is reasonable to
expect a shorter spinodal stage at χN = 30, mismatch ratio of 0.49, compared to
the value at χN = 11, mismatch ratio of 0.95, as shown in our findings.

In order to describe the ordering process in more detail, including the afore-
mentioned merging stage, we analyze the evolution of the composition profile
along the formation process for a larger film,D = 12LO, under the same guiding
fields and the same initial homogeneous state. In the initial stage, composition
changes are promoted by the guiding effect of the lateral surfaces until a sat-
urated lamellar domain is formed, i.e., surface-directed self-assembly. During
this stage, the maximum composition is located at the vicinity of the guiding
surface and it grows linearly in time, as shown in Figure 3.11. In contrast to the
exponential composition changes during spinodal decomposition in the bulk,
the kinetics of the structure formation in DSA is dictated by the interplay be-
tween the linear composition growth prompted by the guiding surface and the
exponential composition growth taking place in the bulk. The present calcula-
tions do not consider the exponential composition changes given the choice to
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omit order-parameter fluctuations in the initial state to focus on the effect of the
guiding pattern in the ordering process.
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Figure 3.11: Growth of the maximum composition m(x) during the surface-
directed spinodal self-assembly from a disorder statem(x) ≡ 0.

After the initial linear composition growth at side wall, the newly formed
domain at time t = 10 acts as a guiding surface promoting composition changes
in the neighboring block copolymers, leading to the formation of the next satu-
rated domain and the propagation of the interface between a lamellar domain
at the guiding surface and a disordered domain in the bulk. Given the sym-
metry of the guiding pattern composed of two lateral surfaces with the same
A-preference strength, the two composition undulations are expected to have
the same profile and to propagate at the same speed until they interfere. In
Figure 3.12 we present the composition profiles at different times during the or-
dering process, where the expected symmetry in the profiles shows the proper
accuracy of the numerical calculations. As the surface-directed spinodal de-
composition stage ends, t = 100, a lamellar topology with 26 domains is estab-
lished, that corresponds to more than 2 times the number of domains with the
natural spacing expected from the film thickness of D = 12LO. This indicates
that the lamellar domains are compressed and the free energy of the system is
higher than the corresponding value at the equilibrium state with 12 domains,
hence, this difference drives the following changes. The 26 domains in this ini-
tial lamellar structure have slight changes in the saturation values; beside the
domains at the vicinity of the surface, the domain in the middle of the film
(X/LO = 6) possesses the maximum composition amplitude which remains un-
altered after its formation at t > 100. Therefore, this middle domain can be
conceived as a neutral wall.

To decrease the free energy of the system, changes in the compressed lamel-
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Figure 3.12: Evolution of the order-parameter profile during the structure for-
mation at χN = 30 (λmax/LO = 0.49) for a film thickness, D = 12LO. The num-
ber of lamellar domains evolves from n = 26, at the end of the surface-directed
spinodal self-assembly at t = 100, to n = 18 when the final topology is achieved
at t = 400. Profiles at t = 210, 260, 335, 380 illustrate the merging of domains
and the motion of the AB interfaces driven by the mismatch between the two
periodicities λmax = 2

√
2π and LO.
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lae start at t = 210 when two lamella next to the guiding surface merge reduc-
ing the number of domains located at 10 6 X/LO 6 12 from 4 at t = 100 to 3 at
t = 260. At t = 260, a similar process takes place next to the middle domain,
6 6 X/LO 6 8, reducing the number of domains in that region from 4 at t = 210
to 3 at t = 300. As a result, a new intermediate topology with 22 domains
is formed at t = 300. Four domains merge in the following stages, t = 210
and t = 300, in the region between the guiding field and the middle domain,
8 6 X/LO 6 10, giving rise to a final structure with 18 domains at t = 400. Af-
ter this time, the kinetics merely optimizes the detailed position of the internal
interfaces and no further merging of domains leading to the predicted lamella
with 12 domains occur. As previously mentioned, the mismatch ratio far from
the value of 1 gives rise to a final metastable state with additional domains with
respect to the prediction based on the value of the film thickness commensurate
to the natural spacing.

Control of the checkerboard-structure formation

When the assembly of lamellae-forming block copolymers is guided by a pat-
tern of stripes, the formation of an undesired intermediate structure known as
checkerboard is a typical problem. Therefore, we investigate how the mismatch
between the length-scales of spinodal decomposition and final structure can be
exploited in order to promote or suppress the formation of the checkerboard
structure at intermediate times.

To this end, we performed simulations with two different values of the film
thickness and study if the initial composition variations can be altered in order
to influence the formation of the undesired intermediate morphology. In our
2D calculations we use a symmetric guiding pattern of width LX = 2.0L0 con-
sisting of alternating A- and B- attractive stripes of widthsW = L0/2. The initial
configuration is a perfectly homogeneous state, m(x) ≡ 0, at time, t = 0, and
we use α̃ = 0.0817 corresponding to χN ≈ 16. We optimize the domain spacing
with respect to the free energy of the system, therefore L0 slightly differs from
the one-mode approximation. The periodicity, λmax, set by the wavevector cor-
responding to the maximal growth rate qmax and the equilibrium domain spac-
ing, L0, obeys λmax/L0 ≈ 0.75. We consider film thicknesses D = 0.75L0 = λmax
andD = L0 = 1.33̄λmax and the corresponding kinetics of structure formation is
shown in Figure 3.13.

During the initial stages, t 6 10, the spinodal wave templates the forma-
tion of two horizontal grain boundaries, i.e., checkerboard morphology with 3
cells in the vertical direction is formed. The composition inside each cell has
not reached its equilibrium saturation value. If this initial composition wave
reached saturation, a checkerboard morphology with periodicity λmax would
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Figure 3.13: Comparison of the checkerboard structure formation at two val-
ues of the film thickness D/L0 = 0.75 and 1.0 using 2D calculations with the
Ohta-Kawasaki model. Snapshots of the morphology show the formation of
the horizontal grain boundary at the onset of the surface-directed spinodal de-
composition, t = 5. This grain boundary gradually moves upward away from
the bottom patterned surface, t 6 20. A coarser intermediate checkerboard
structure is formed and shortly lives for 200 6 t 6 450. For the case ofD/L0 = 1
this period of time is slightly shorter than for D/L0 = 0.75. The final lamellar
structure arises after the domains merge diagonally and the top grain is shifted
to align with the bottom domain.
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form, potentially leading to a metastable, highly undesired state. However,
both horizontal grain boundaries gradually move upwards away from the bot-
tom patterned surface, and the second one, which is closer to the top of the film,
vanishes. An intermediate checkerboard with only one horizontal grain bound-
ary is formed at t = 20. In fact the thickness of the bottom cell grows even larger
than the equilibrium value L0/4, indicating that the aligned and registered grain
wets the guiding pattern. This observation is in accord with particle-based sim-
ulations [92]. The saturation of the order parameter inside the checkerboard
cells is reached in this coarser morphology – an undesired structure that delays
the formation of defect-free, standing lamellae. Since the spinodal wave does
not directly template the formation of this intermediate checkerboard, we can-
not immediately take advantage of the fastest growing mode, λmax, to tailor the
morphology at intermediate times.

Regardless of the film thickness, the checkerboard structure evolves into the
standing lamella. At t = 450 the horizontal grain boundary remains mainly
unaltered for D/L0 = 0.75 but A-domains connect in the diagonal direction,
giving rise to the formation of standing lamella in the case of D/L0 = 1 via
the shifting of the top grain to align with the bottom grain, see snapshot at
t = 580. The same diagonal merging of the top and bottom grain occurs for
D/L0 = 0.75 at a slightly later time such that at t = 580 both systems evolve
into an intermediate diagonal lamellar structure previous to the formation of
the final morphology. For D/L0 = 1, the intermediate checkerboard annihilates
faster compared to the commonly used value ofD/L0 = 0.75, which maximally
frustrates lying structures in equilibrium.

Although there is an interplay between the spinodal structure formation and
the morphology at intermediate times, the simulations indicate that there is no
one-to-one correspondence. Since the surface fields drive the initial kinetics,
the segregation is earlier reached at the bottom. Thus, the bottom part prefers a
larger spacing that is closer to the equilibrium value.

The findings from the two cases presented above are in agreement with our
results from the previous section, suggesting that values of χN close to the ODT
may facilitate defect-free DSA structures. Complementary insights supporting
the choice of low incompatibility values for DSA are provided from the investi-
gation of the effect of the mismatch ratio, λmax/LO, on the kinetics of the order-
ing process. Faster structure formation and a system less prone to the formation
of defects can be promoted by tuning the DSA characteristic dimensions to λmax
via a mismatch ratio close to the unity.
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3.3 Summary and conclusions

[...] We have evaluated to what extent the Ohta-Kawasaki model can capture (i)
the kinetics of defect motion and (ii) the surface-directed self-assembly driven
by guiding patterns. The ability of the model to describe the metastability of
defects and to provide insights into the kinetics of structure formation is of
special relevance to DSA applications. The computational speed allows for a
systematic exploration of parameter spaces – as illustrated here for a special
case of a device-oriented structure. Generally, good agreement with previous
SCFT calculations and particle-based simulations is obtained, apart from the fol-
lowing exceptions: (i) The model commonly uses a composition-independent
Onsager coefficient, Λ. Computationally, this choice is very convenient for it
makes the time evolution, Eq. (2.32), local. Whereas it generally captures the
qualitative features of diffusive kinetics, it grossly speeds up intrinsically slow
evaporation-like events where blocks have to “tunnel” through a domain of the
opposite species.[64] In principle, one can account for this deficiency by using
Λ ∼ φAφB, imparting however, a considerable computational burden. (ii) Our
study does not include thermal fluctuations. Thermal fluctuation effects can be
included but, again, an accurate numerical implementation of the concomitant
stochastic partial differential equation is computationally costly.[93] Due to the
absence of thermal fluctuations the kinetics of self-assembly cannot overcome
free-energy barriers. Therefore the calculations highlight barrier-free ordering
processes that are preferred for rapid and reliable DSA. (iii) The long-range ker-
nel, G, encodes the Gaussian chain conformations. In the vicinity of impenetra-
ble surfaces, these chain conformations are perturbed [94, 95] and it remains to
be investigated to what extent the Ohta-Kawasaki model can account for impli-
cations of perturbed chain conformations at spatial inhomogeneities.[96]

In spite of these caveats, the Ohta-Kawasaki model provides valuable in-
sights into the kinetics of self-assembly and defect motion. This model can
be used in combination with more sophisticated techniques [97–99] to opti-
mize confinements suitable to fabricate device-oriented copolymer structures
and limit the design space to the most promising parameter combination. Once
prospective parameters for the geometry of the confinement and the guiding
pattern are identified by the Ohta-Kawasaki model, more detailed simulation
techniques like particle-based simulations or SCFT can be used to validate the
predictions of this continuum model. This complementary use of continuum
and more detailed models, enables us to gain a better understanding of the
structure formation process, reducing the computational cost compared to more
detailed simulation techniques.

One particularly important finding of our present study of DSA is the mis-
match of the characteristic length scale of the initial surface-directed spinodal
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self-assembly and the equilibrium domain spacing that necessitates protracted
changes of the domain morphology. This difficulty is reduced in the vicinity of
the order-disorder transition, providing an additional motivation for using not
too large values of the incompatibility, χN.
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Chapter 4

Defect annihilation pathways

This chapter deals with the study of free-energy barriers within a continuum
model, specifically, the Ohta-Kawasaky free-energy functional and the use of
an alternative approach to investigate fluctuations. This model can adequately
describe the collective barrier-free dynamics of a block-copolymer system as
previously discussed.

The strength of thermal fluctuations is dictated by the fluctuation-dissipation
relation provided that the free-energy functional of the system, F, is known. By
considering an additional term, ξ, originating from the thermal fluctuations, we
arrive at the familiar Cahn-Hilliard-Cook equation given by

∂m(x)
∂t

= ∇ ·
[
M ∇ δF

δm(x)

]
+ ξ (4.1)

where M is the mobility coefficient and ξ satisfies the fluctuation-dissipation
theorem,[100] 〈ξ(x, t)〉 = 0 and 〈ξ(x, t)ξ(x ′, t ′)〉 = −2M∇2δ(x − x ′)δ(t − t ′).
Thus, equation 4.1 is a stochastic partial differential equation (SPDE) whose
solution describes the dynamics of the block-copolymer system. Nevertheless,
both the analytic and numerical solutions of this equation require approxima-
tions or a high computational effort. In this regard, Bosse [100] obtained an ap-
proximate analytic expression for the structure factor of ordered lamellar phases
in equilibrium using the Ohta-Kawasaky free-energy functional in equation 4.1.
Recently, de la Torre et al.[101] presented a rigorous numerical method to solve
the SPDE under consideration; their method, however, requires significant com-
putational effort.

We resort to the concept of normal modes as an alternative approach for in-
vestigating small fluctuations instead of dealing with the SPDE given by equa-
tion 4.1. Our approach involves the solution of a non-stochastic partial differ-
ential equation, the Cahn-Hilliard equation, coupled with matrix operations,
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which is less computationally costly than the solution of the SPDE (section 4.1).
To study small fluctuations around a state of interest, we can use a harmonic

approximation as an accurate description of the free-energy basin of the given
state mo(x) that corresponds to a local minimum in the free-energy landscape.
Within that description, the normal modes are the basis, or axes, of this har-
monic free-energy well and they represent the directions of change of the state
mo(x) due to fluctuations in that well. The normal modes provide us with a
simplified method to study the various configurations arising from the fluctua-
tions of mo(x). Any possible fluctuation around the free-energy minimum is a
linear combination of its normal modes, or a subset of them, which we can now
also refer to as fluctuation modes. In this regard, we explore how these fluctu-
ation modes modify a configuration of interest and provide insights about the
transition towards a different state in the free-energy landscape near an energy
barrier.

Furthermore, we introduce the physical background as well as the compu-
tational details required for the calculation of the fluctuation modes of a given
configuration described by a continuum model. Our findings from this ap-
proach are compared with the evolution of the configuration along the mini-
mum free-energy path obtained with a well-known technique: the string method
(section 4.2).

At the end of this chapter, we exploit the features of the fluctuation modes
in two applications: the identification of dominant modes in defect annihila-
tion (section 4.3) and the prediction of the defect scattering pattern for its use
in a faster initial scanning of defects in metrology (section 4.4). In the first case,
local fluctuation modes describing the onset of defect annihilation are identi-
fied as the free energy landscape changes. In the second case, we identify the
long-range wavevectors of the defect scattering pattern which can be observed
using light scattering instead of more demanding techniques like X-ray scatter-
ing of AFM. Fluctuations modes of the lamella compete with those long-range
wavevectors mask the scattering pattern of the defect. Therefore, we identify
the lamellar fluctuations that contribute the most to this masking effect and pre-
dict the limiting values of N̄ where fluctuations augment that masking-effect.

4.1 Fluctuation Mode Analysis

In our study, we consider block-copolymer systems in the NVT ensemble and
we investigate their dynamics in terms of the corresponding Helmholtz free-
energy landscape. The access to the free-energy functional, representing the
relevant features of our specific block copolymer system, allows us to determine
when a given configuration is a metastable, stable or unstable state.
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Free-energy fluctuations around a given metastable or stable state, mo(x),
can be studied by observing the response of that equilibrium configuration to
perturbations, δm(x) = m(x) −mo(x). In this regard, the free energy of a con-
figuration m(x), i.e., F[m(x)], whose free-energy fluctuates around the corre-
sponding metastable state can be expressed as the following Taylor expansion.

F[m(x)] = F[mo] +

∫
dx

(
δF

δm(x)

∣∣∣∣
mo

δm(x)

)

+
1
2

∫
dx dx ′

(
δ2F

δm(x)δm(x ′)

∣∣∣∣
mo

δm(x)δm(x ′)

)
+ · · · (4.2)

Provided that we deploy conserved Cahn-Hilliard dynamics, or model B, to
compute the equilibrium configurations via the continuum model, this imposes
a constraint on the perturbations,

∫
dx δm(x) = 0, such that the concentration

is conserved.
For a system in thermal equilibrium, the concentration current jm = −M∇µ,

must be zero, where M denotes the transport coefficient. Consequently, the
gradient of the chemical potential must be constant, i.e.,

µ|mo =
∂F

∂m

∣∣∣∣
mo

= ĉ

Therefore, the first-order term in the expansion vanishes due to concentration
conservation as: ∫

dx
δF

δm(x)

∣∣∣∣
mo

δm(x) = ĉ
∫

dx δm(x) = 0

When small perturbations δm(x) are considered, the higher-order terms can
be assumed to be negligible; thus, the free-energy difference, ∆F = F[m] −
F[mo], can be estimated as follows:

∆F ' 1
2

∫
dx dx ′

δ2F

δm(x)δm(x ′)

∣∣∣∣
mo

δm(x)δm(x ′) (4.3)

The second-order derivative of the free-energy functional in the above equa-
tion corresponds to a component of the Hessian matrix of F, H; thus,

H(x, x ′) =
δ2F

δm(x)δm(x ′)

∣∣∣∣
mo

(4.4)
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H describes the shape of the potential well corresponding to statemo(x) via a
harmonic approximation; as a result, H is positive semi-definite and symmetric.
Therefore, we can decompose it as H = ET D E where E is a square matrix with
the eigenvectors of H, ek’s, and D is a diagonal matrix of the corresponding
eigenvalues, λk’s. Each eigenvector ek and its eigenvalue λk are related via the
eigenvalue equation, H ek = λk ek, which can also be expressed in terms of the
components of the eigenvector as∫

dx ′ H(x, x ′) ek(x ′) = λk ek(x)

As a result, the harmonic approximation of the potential well provides us
with a simple description of the free-energy landscape around the state mo.
Such a description is given by D and the corresponding orthogonal set of eigen-
vectors, ek’s, representing the independent directions of change of mo due to
fluctuations of the order parameter, i.e., the normal modes of motion of that
configuration.

By expressing the perturbation, δm(x), in terms of each normal mode as
δm(x) ≡ εek(x) where ε is a real number accounting for the magnitude of the
perturbation, equation 4.3 can be rewritten as

∆F ' 1
2
ε2
∫

dx
(∫

dx ′H(x, x ′)ek(x ′)
)
ek(x)

' 1
2
ε2λk

∫
dx ek(x) · ek(x)

∆F ' 1
2
ε2λk |ek|

2 V (4.5)

where V = LX.LY .LZ is the size of the simulation box, and the norm of the eigen-
vector is defined as

|ek|
2 =

1
V

∫
dx ek(x) · ek(x)

In light of this equation, the free-energy change, ∆F, can be explicitly un-
derstood as the result of the motion of the configuration mo along a particular
normal mode; in addition, the corresponding eigenvalue, λk, describes the free-
energy cost of that motion.

The sign of ∆F depends solely on the value of λk. When λk > 0, the potential
has a positive curvature in the direction of the kth eigenvector and the larger
the value of λk, the larger the free-energy cost associated with a change in the
configuration in that direction. When λk = 0, ek describes a change with no
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free-energy cost as is the case of translation or rotational modes related to the
symmetry of the free-energy functional. For λk < 0, the potential has a negative
curvature in the direction of ek, hence, the system is unstable.

Upon computing the free energy of the system, we can proceed to construct
the Hessian matrix whose eigenvectors and eigenvalues will provide informa-
tion about the associated composition fluctuations.

λk < 0 ∆F < 0 unstable configuration due to mode k
λk = 0 ∆F = 0 symmetry-related modes
λk > 0 ∆F > 0 configuration unconditionally stable,

k is a fluctuation mode

Considering normalized eigenvectors, ∆F can be estimated as

∆f =
∆F

V
' 1

2
ε2λk (4.6)

4.1.1 Numerical computation of fluctuation modes

In the case of a block-copolymer system described by a continuum model, the
straightforward access to the calculation of the free energy provides a significant
advantage for the study of fluctuation modes.

The Hessian coefficients in equation 4.4 are to be computed from the dis-
crete order parameter mi, therefore we deploy the numerical approximation of
the second-order derivative of the free-energy functional as described in detail
in chapter 2 (cf. page 33).

Hij '
1
N

(
−$+ 2γmi + 3ϑm2

i

)
δi,j −

ε

N
4δi,j + α G(i, j) (2.73 revisited)

The Hessian matrix obtained from the Ohta-Kawasaki free-energy functional
is a symmetric-dense, real matrix; consequently, the spectrum of eigenvalues
contains no complex entries. As mentioned earlier, the free-energy change in-
duced by perturbing a given configuration can be estimated via equation 4.3
by using each of the eigenvectors. By comparing this approximation to the
exact free-energy change computed from the corresponding order parameter,
∆F = F[m] − F[mo], it is possible to test the calculation of the Hessian matrix
and of its spectrum and eigenvectors.

As indicated by equation 4.6, the change in the free-energy density, ∆f =
∆F/V , linearly increases with ε2 for a given eigenvector. If eigenvectors are
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normalized and ∆f is rescaled by λk, the rate of that linear increase is the same
regardless of the eigenvector selected, i.e.,

∆f

λk
' 1

2
ε2 (4.7)

To test this relationship in our numerical calculations, we deploy a lamella
phase of a symmetric block copolymer in a 2D system of dimensions LX =
23.4883 ξo and LY = 19.4512 ξo, where ξo is the unit of length of the contin-
uum model. The system size in the direction perpendicular to the lamella, X, is
commensurate to the equilibrium lamellar spacing LO = 11.7441 ξo in order to
obtain a stress-free system, LX/LO = 2. The collocation lattice utilized to com-
pute the minimum of the Ohta-Kawasaki free-energy functional at α = 0.0845
includes N=3392 cells, where one LO corresponds to 32 cells. This configuration
is shown in figure 4.1

0 1
LX/LO

0

1

L Y
/L

O

-1

0

1

m(x)

Figure 4.1: Lamella phase of a symmetric block copolymer represented as the
order parameter fieldmo. The configuration correspond to the minimum of the
Ohta-Kawasaki free-energy functional at α = 0.0845.

For comparison, figure 4.2 presents the values predicted by equation 4.7 as
well as the free-energy change due to the perturbation of the lamella phase
mo(x) with the eigenvectors of its corresponding Hessian Matrix for the low-
est part of the spectrum of eigenvalues. Eigenvectors ek(x) are normalized and
used to compute the modified configurations m(x) = mo(x) + εek(x). The free-
energy change is computed using the Ohta-Kawasaki free-energy functional
with the perturbed configurations as ∆F = F[m(x)] −F[mo(x)]. The free-energy
density is computed as ∆f = ∆F/A, where A = LX ∗ LY = 456.876ξ2

o.
The second-order approximation described by equations 4.2 and 4.3 only

holds for small free-energy changes around the equilibrium configurationmo(x)
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where ∆F can be described as a parabolic function of the magnitude of the
perturbation ε. This is the case in our numerical calculations for values of
ε2 . 0.025 where regardless of the eigenmode, the free-energy change follows
the linear behavior described by equation 4.7 (dashed black line).
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Figure 4.2: The eigenvectors ek of the Hessian matrix of mo(x) are used as a
perturbation: m(x) = mo(x) + εek(x). The plot shows the corresponding free-
energy density change ∆f = (F[m] − F[mo])/A as a function of ε2. The dashed
line shows the prediction of the second-order approximation of ∆f.

Beyond ε2 & 0.025, i.e, ε & 0.16, deviations become more important and
only some modes follow the predicted linear behavior. These deviations can be
expected given the approximation of small free-energy changes around mo(x)
and our numerical calculations provide a reference to establish the limits of this
second-order approximation.

Two modes deviating from the linear behavior are highlighted in figure 4.2:
k = 2 (red line) and k = 28 (blue line). The first mode, k = 2, corresponds to
the smallest significant change in the free energy with an associated eigenvalue
of λ2 = 0.0036. When λk → 0, ∆f→ 0 as expected from equation 4.6; moreover,
∆f/λk deviates more strikingly due to the rapid increase of higher order terms.
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The later is more clear when one considers the Taylor expansion in terms of ε

∆f ' 1
2
λkε

2 +
1
3!
ηε3 + . . .

∆f

λk
' 1

2
ε2 +

1
3!
η

λk
ε3 + . . . (4.8)

where we can observe the third and higher order terms diverge as λk → 0.
Therefore, for mode k = 2 the ratio ∆f/λk rapidly increases and deviates from
the linear approximation given the small value of λ2. For the limiting case of
λk = 0, corresponding to the mode k = 1, in figure 4.3 we can observe the
free-energy change due to the fluctuation of this mode is negligible.
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Figure 4.3: Free-energy change for the soft modes corresponding to the first 4
non-negative eigenvalues. The free energy change for mode k = 1 is negligi-
ble whereas, at the limit of the harmonic approximation ε2 ' 0.025, fluctua-
tions due to mode 4 posses a free energy of about 2% less than the unperturbed
lamella.

For the second mode, k = 28, λ28 = 0.1059, the source of the deviation is a
different one. As shown in the inset of figure 4.2, the free-energy change cor-
responding to the perturbation due to this mode does not follow a parabolic
form at large values of ε̃ The asymmetry in the relation, ∆f/λk vs. ε, for this
mode implies that higher-order terms of the Taylor expansion (cf. equation 4.2)
approximating ∆F are required for an accurate description. The latter can also
be understood via equation 4.8, where for both modes deviating from the lin-
ear behaviour the ratio η/λk in the third order term is large. however, for the
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asymmetric mode k = 28 that ratio is large due to large values of η. Thus,
the deviation from the linear behavior reveals the mismatch between the free-
energy change computed via the free-energy functional for the block copolymer
system and the approximation neglecting the terms of third and higher orders
in the Taylor expansion.

One more interesting feature from the results shown in figure 4.2, which has
not been analyzed yet in detailed, is the existence of a negative eigenvalue in the
spectrum λk = −0.05. As previously stated, a negative eigenvalue indicates that
the configuration is not (meta)stable. Fluctuations due to the mode correspond-
ing to λk < 0 would decrease the free energy of the configuration, thus leading
towards a more stable state. Because the configuration mo(x) corresponds to
a lamellar phase obtained using Cahn-Hilliard dynamics (Model B), we know
this represents an equilibrium state at the values of the model parameters used.
Therefore, we proceed to analyze this eigenmode more in detail. To start this
task, we revisit the requisites and features that the spectrum of eigenvalues and
its corresponding eigenvectors must satisfy from the mathematical and physical
standpoints for the block-copolymer system of our interest.

As mentioned earlier, the Hessian is a symmetric and dense-real matrix
whose eigenvalues must be all real. This condition holds in our numerical calcu-
lations, and hence, it is reasonable to expect negative values of λk. Nevertheless,
no mathematical condition is imposed on the eigenvectors or their correspond-
ing elements, their norm or their properties, other than they should be real vec-
tors of the same dimension as that of the Hessian matrix. Therefore, from the
standpoint of the mathematics underlying our calculations, we are left with no
conditions to discard the eigenvector corresponding to λk < 0.

Provided that composition perturbations are constrained by the conserved
dynamics we deploy,

∫
dxδm(x) = 0, the eigenvectors must satisfy

∫
dxek(x) =

0; consequently their average must be zero because of our choice of δm =
εek(x). To verify that this condition holds in our numerical results, figure 4.4
shows the average of every eigenvector together with the corresponding spec-
trum of eigenvalues.

Two modes, however, fail to satisfy the mass conservation constraint. The
first of them, k = 0, corresponds to the mode with a negative eigenvalue ob-
served in the results of figure 4.2. Because this mode is not satisfying neither
the stability condition nor mass conservation, perturbations of the equilibrium
configuration, mo(x), possess no physical meaning and should not be included
in the analysis. Nevertheless, the second mode that violates mass conservation,
k = 46 and

∑
i

{
eki
}
= 4460.0, belongs to the positive part of the spectrum.

At this juncture, it is useful to express the free-energy change in terms of the
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Figure 4.4: Average of every eigenvector (red) and the corresponding eigenval-
ues (blue) of the Hessian matrix H. The average is rescaled as

∑
i {ek,i} /200 to

facilitate visualization.

Hessian matrix H by resorting to the matrix form of equation 4.5 given below

∆F ' 1
2
eTk H ek (4.9)

In view of the mass-conservation constraint, we know that ∆F must be ex-
pressed in terms of a (N− 1) vector sub-space where N is the dimension of H.
This reduction by one dimension constitutes the mathematical expression of the
physical constraint that the system must satisfy. Therefore, the N-dimensional
space containing the current representation of H must be transformed into a
space with one known vector and (N− 1) unknown vectors with zero-average,
thus satisfying mass conservation. One trivial educated guess for that known
vector is a uniform change of the composition δm(x) = c. Clearly, this constant
vector has a non-zero average of

∑N
i e

k
i /N = cN/N = c.

For all the other (N− 1) vectors to satisfy mass conservation, a transforma-
tion must be performed. Such a transformation is defined in terms of the dif-
ference between each vector and its average; by definition, the resulting vector
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satisfies mass conservation. The proposed transformation can be expressed as:

ẽk = ek −
1
N
ek1 (4.10)

= P ek (4.11)

where N is the dimension of the eigenvector ek and 1 is the unit N x N matrix;
moreover, the linear operator P is defined as

P =

(
I−

1
N

1
)

(4.12)

where I is the identity matrix, thus indicating that P is a symmetric, real matrix.
Matrix P acts as a projection of the vectors ek onto the subspace of vectors

with zero average. Thus, this linear operator must fulfill the properties of a
projector matrix: PT = P and P2 = P. The first condition should be clear because
P is symmetric. Herein, it is useful to recall that 12 = N 1 where 1 is a N
x N matrix. Thus, we can prove the second condition holds so P is indeed a
projector:

P2 =

(
I−

1
N

1
)(

I−
1
N

1
)

=

(
I−

1
N

1
)
I−

(
I−

1
N

1
)

1
N

1

= I−
1
N

1 −
1
N

1 +
1
N2 12

= I−
1
N

1 −
1
N

1 +
1
N

1

=

(
I−

1
N

1
)

= P

As a result, the approximation for ∆F in equation 4.9 can only be valid once the
vector space of the Hessian matrix H is projected using P in order to satisfy the
constraint:

∆F ' 1
2

(ek P)
T H (P ek) (4.13)

' 1
2
vk G vk (4.14)

where G =
(
PT H P

)
is a transformed Hessian matrix and vk denotes its corre-

sponding eigenvectors with eigenvalues λGk .
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For all the vectors satisfying Pek = ek, i.e., the sum over the entries of ek
is zero, the free-energy change can be expressed by using the Hessian matrix,
with or without the transformation, as follows:

∆F ' 1
2
ek H ek =

1
2
vk G vk (4.15)

therefore vk = ek and for this subset of vectors, we have

Gvk = λ
G
k vk

=
(
PT H P

)
vk

= PT H vk

= λHk (Pvk)

= λHk vk

λGk = λHk

Moreover, we have suggested that the constant vector, δm(x) = c, should
be an eigenvector of G; to prove this, we select vk = ~c = ~1. For this particular
vector, P vk = 0 leading to Gvk = 0. The value of λk for which the eigenvector
equation holds with this vector is λk = 0. Therefore, a constant vector vk = ~c is
an eigenvector of G with a corresponding eigenvalue of λk = 0.

We can conclude now that the transformed Hessian matrix G is the projec-
tion of H onto the N− 1 subspace of vectors with zero average fulfilling mass
conservation. That subspace, is the orthogonal complement to the 1D subspace
spanned by ~1 where the vector defined by the physical constraint of our system
belongs, which has a non-zero average and a zero eigenvalue. Consequently,
we use G instead of H for the calculation of the fluctuation modes.

Figure 4.5 shows the spectrum of eigenvalues and the average of the eigen-
vectors of G for the same lamella system previously considered. As expected,
the average of all the eigenvectors is zero except for k = 1. This eigenvector
corresponds to the one with a predicted constant value.

Regarding the eigenvalues, all the values are non-negative which fulfill the
stability condition of a positive spectrum, i.e. a positive Hessian matrix. Modes
with a zero eigenvalue do not violate the stability condition. As expected for
those eigenvectors of H with zero average, i.e., the majority of vectors as shown
in figure 4.5, the spectrum of eigenvalues of the matrix H agrees with that of G
because we proved that λGk = λHk for that set of eigenvectors.
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Figure 4.5: Average of every eigenvector (red) and the corresponding eigenval-
ues (gray) of the transformed Hessian matrix G. The eigenvector average is
rescaled as

∑
i

{
vki
}
/2000 to facilitate visualization.

4.1.2 Fluctuation modes of defect-free structures

With a valid set of eigenvectors representing the local changes of the order pa-
rameter, it is possible to describe the local fluctuations associated with every
eigenvector of that space.

It has been previously shown that fluctuations associated to modes with
λk = 0 do not change the free-energy of the corresponding stable state, which
is the case for modes k = 0 and k = 1 (see figure 4.6). Mode k = 0 is discarded
from the analysis since the associated fluctuations violate mass conservation.

To understand the nature of mode k = 1, it is useful to recall that fluctua-
tions where ∆F = 0 are related to the continuous symmetries of the free-energy
functional. The Ohta-Kawasaki model is translational and rotational invariant;
however, the translation, F[m(x)] = F[m(x+ ε)], is the only continuous symme-
try. For a given system size, only certain rotations ofm(x) leave the free energy
unchanged. That is the case for 90-degree rotations, and multiples of it, in a
square 2D system commensurate to the equilibrium spacing LO, i.e., a system
with LY = LX = n LO. Therefore rotation is not a continuous symmetry of the
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Figure 4.6: First two eigenvectors (color map) of the transformed Hessian ma-
trix G associated with no change in the free energy during a perturbation. The
mode k = 0 corresponds to constant change of the local composition and fails
to satisfy mass conservation. Therefore, changes in the configuration due to this
mode provide no physical insights. Black lines signify the AB interfaces ofmo.

free-energy functional.
Provided that a fluctuation mode corresponding to the translational symme-

try exists, the following expression must be satisfied.

m(x + ε) = m(x) + εek(x)

ek(x) =
m(x + ε) −m(x)

ε

This expression corresponds to a simple numerical approximation for the first-
order derivative, dm/dx. Figure 4.7 confirms that mode k = 1 corresponds to
the first-order derivative of the lamella configuration mo by comparing their
profiles along the X direction. Moreover, provided that translation is a contin-
uous symmetry of this model, the eigenvalue of such mode must be zero. This
is the case for mode k = 1 and therefore this eigenvector corresponds to the
translation mode of the lamella configuration.

We now proceed to investigate other fluctuation modes that can be expected
due to broken symmetries. The formation of ordered phases of block-copolymers
from the disordered state resembles the crystallization process observed in hard
crystals. This trait has been exploited to draw parallels and investigate these
soft matter systems building on the extensive knowledge of atomic crystals [102].
An important difference, however, must be highlighted: in self-assembled phases
of block copolymers, it is the collective density what undergoes a crystallization-
type ordering and not the coordinates of individual particlesi. This is evident

iWe refer to particles recalling that the collective density description in a continuum model
correspond to the underlying particle based description of a block copolymer chain.
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Figure 4.7: Comparison of the composition profile along X for the lamella con-
figuration (red line), shown in figure 4.1, with the eigenvector profile corre-
sponding to the mode k = 1 (blue line), shown in figure 4.6. The profile of the
eigenvector, ek(x), corresponds to the first derivative of the composition profile,
m(x), thus confirming that this vector describes a translation mode.

in the choice of the order parameter: for the soft matter system of our inter-
est, the order parameter is the local densities of the A or B blocks of the poly-
mer chains, whereas in crystals it is the local displacements of atoms from their
lowest-energy lattice positions. Nevertheless, a useful parallel can be drawn be-
tween the fluctuation modes of our system (i.e., the eigenvectors of the Hessian
matrix of the free energy of the block-copolymer system) and the phonons (i.e.,
the eigenvectors of the potential energy) representing the elementary energetic
fluctuations in crystals.

Phonons and the broken symmetries in crystals are related via the Goldstone
theorem; due to the spontaneous breaking of the continuous translational sym-
metry, the system exhibits low-energy excitations which have low-frequencies,
i.e., Goldstone modes [103, 104]. Thus, the low-frequency phonons in crystals
correspond to the Goldstone modes for the translations; whose associated en-
ergy cost vanishes in the limit of infinite wavelength [105, 106]

The free-energy cost associated to the deformation of the AB interfaces,∆F,
has been previously described for the case of small-amplitude undulations as [107]

∆F = F− Fo '
∫

dr
{
γ

2
[∇δx(y)]2 + K

2
[4δx(y)]2

}
+

∫
dr
B

2
[δx(y)]2 (4.16)

where Fo corresponds to the free energy of the lamella without deformation,
δx(y) is the amplitude of the undulation along the interface, and K and B are the
bending and compression moduli, respectively. The first term on the right-hand
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side of the above equation accounts for the energy of the capillary waves where
the lamellar structure undergoes a collective bending, i.e., the undulation waves
are in-phase. In Fourier space, this first term has the form, ∆F ∼ γq2

Y + Kq
4
Y ,

where qY is the wave vector in the direction parallel to the interfaces. When the
undulation waves are out of phase, the domains will be compressed or stretched
and the corresponding free-energy cost will be described by the second term on
the right-hand side of Eq. 4.16.

In this regard, we investigate the variations of the lowest energy fluctuation
modes due to changes in the wave vector, qY(k) = 2πk/LY . The smallest non-
zero eigenvalues λk in the spectrum correspond to the modes with the lowest
frequencies, i.e., the longest wavelength; therefore, we investigate modes 2 6
k 6 7 (cf. figure 4.5). These modes are degenerate such that we express the
changes of λk as a function of LY only for modes k = 2, 4, 7.

Figure 4.8 confirms that as the wave vector qY(k) tends to zero, i.e., LY tends
to infinity, the frequency of modes k = 2, 4 approaches zero as well and their ex-
cess free energy vanishes (cf. eq. 4.6). In that limit, these two fluctuation modes
approach the translation mode of the configuration, which has an excess free
energy of zero as previously discussed. Thus, modes k = 2, 4 are the Goldstone
excitations of the lamella due to the spontaneous breaking of the translational
symmetry. In contrast, the peristaltic fluctuation due to mode k = 6 requires the
compression of the lamellar phase with an associated excess free energy ∆F > 0
regardless of the wave vector qY(k).

Furthermore, by resorting to the capillary wave theory of interfaces [108],
these Goldstone modes identified in the continuum description of the block-
copolymer system of our work, k = 2, 4, correspond to the thermally excited
capillary waves that strongly influence the interface width in block copolymer
systems [105, 109, 110].

Fluctuations of the configurations corresponding to a given mode are better
described by computing directly the perturbed configurations m(x) = mo(x) +
εek(x) where ε can take any real value. In figure 4.9, therefore, we consider
fluctuations of the same magnitude but opposite sign to show snapshots of the
perturbation of the lamella phase with four different modes.

We corroborate that mode k = 0 corresponds to the translation of the config-
uration in the direction perpendicular to the lamella, which is natural in view
of the symmetry of the system. It is clear now that no free-energy change is as-
sociated with this fluctuation. Furthermore, the soft mode k = 2 corresponds to
an undulation of the AB interfaces and the same type of fluctuation is observed
with the corresponding degenerate mode k = 3, but the undulation wave has
a different phase in this case. These three first normal modes correspond to
fluctuations arising from the collective motion of the lamella.

84



4.1. FLUCTUATION MODE ANALYSIS

(a)

0
LX/LO

0

L Y
/L

O

k = 2 λk = 1.816e-03

0
LX/LO

0

2

4

6

L Y
/L

O

k = 2 λk = 2.067e-06

(b)

k = 6k = 4k = 2

(c)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.2  0.4  0.6  0.8  1

λ
k

1 / (LY/LO)
2

k = 2
k = 4
k = 6

Figure 4.8: Goldstone modes in lamellar phase mo. (a) The wavelength of the
undulation increases as the wave vector, qY(k) = 2πk/LY , decays. (b) Low-
energy fluctuation modes (color map) corresponding to the lowest non-zero
eigenvalues. The deformation of the AB interfaces (red contour line) arising
from the perturbation of the lamellar phase in equilibrium (black contour line)
allows to differentiate the peristaltic motion from the lamellar undulations. (c)
The frequency of the peristaltic motion remains constant regardless of wave
vector qY(k). In contrast, the frequency vanishes as qY(k) → 0 for the low-line
undulations, k = 2, 4. The later indicate that these modes correspond to the
Goldstone excitations originated by the broken translational symmetry.

85



CHAPTER 4. DEFECT ANNIHILATION PATHWAYS

Figure 4.9: Fluctuations of the lamellar phase due to four different modes. (a) A
fluctuation mode describes the changes in the local composition, δm(x), which
in the case of a soft mode (color map) will cause fluctuations of the AB interfaces
of the corresponding unperturbed lamella mo (black contour lines). (b) Mode
k = 1 depicts changes associated with the translation of the configuration mo.
Modes k = 2, 3 are degenerate soft modes associated to the lowest free-energy
change. Mode k = 3000, at the last part of the spectrum of eigenvalues, depicts
high-frequency local fluctuations. (c) Perturbations of the same magnitude but
opposite sign, where white represents the AB interfaces. A value of |ε| = 1 is
used for better visualization.
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In contrast, as the eigenvalue increases and thus the spatial frequency of the
undulations increases the fluctuations correspond to more localized changes.
Mode k = 3000 corresponds to a much higher fluctuation, close to the end of the
spectrum, where undulations do not correspond to a displacement of internal
AB interfaces but rather to local composition fluctuations inside the domains.

It is worth pointing out that in the course of the transition of the lamella
configurationmo towards another given stable state, the key changes will occur
on the AB interfaces. Therefore, we focus our attention on the behavior of such
interfaces to investigate the various fluctuation modes.

The lowest fluctuation modes in our study, e.g., k = 9, 13, 15, correspond to
capillary waves in 2D as depicted in red contour lines in figure 4.10. Despite of
having rather close eigenvalues, i.e., a similar wavelength of the undulations,
the coupling of the fluctuation of each AB interface in the lamellar phase is dif-
ferent in every mode, thus indicating that they are not degenerate. The smallest
difference between their values suggests that two given eigenvalues, λi and λj
will be degenerate if ∆λ 6 4x10−5 for the collocation grid deployed in these
calculations.

In this regard, the fluctuation modes offer a complementary description of
the AB interfaces in the continuum model, provided that such modes agree with
the capillary wave description of interfaces and satisfy the constraints imposed
by the symmetry of the free energy functional: the existence of modes describ-
ing Goldstone-type excitations and a mode related to the translation of the con-
figuration.

4.1.3 Fluctuation modes of topological defects

Hitherto, we have described the physical insights derived from the fluctuation
modes in an ordered phase of a block-copolymer system, and we have high-
lighted the changes that AB interfaces undergo. In the ordering process of such
structures, topological defects are formed and their presence in the structure
gives rise to a different class of fluctuations.

The analytical description of various topological defects poses a significant
challenge that can be conveniently circumvented via numerical simulation of
such configurations in real space. This contrasts with the study of the fluctu-
ation modes of defect-free structures, which can be performed analytically in
reciprocal space exploiting the symmetries of these ordered phases.

In this regard, we consider a prototypical dislocation defect in a lamellar
phase to study the modes of a defective configuration. We deploy the metastable
defect in a lamellar phase of a symmetric block copolymer in a 2D system of
dimensions LX/LO = 13 and LY/LO = 9.5 where the equilibrium lamellar spac-
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(a) ek(x)

(b)m(x) = mo + εek(x) with ε = 1

Figure 4.10: Undulations of the AB interfaces due to modes with higher fre-
quencies. (a) Three modes with close values of λ describe changes inm(x) with
similar periodicity, LO, but different symmetries. (b) Fluctuations of the AB in-
terfaces of the lamellar phase (black lines) due to the modes depicted in (a). The
three modes produce different fluctuation patterns, but the undulation waves
(red lines) have almost the same wavelength. A high value of ε above the limit
of the harmonic approximation is used for a better visualization of fluctuations.

ing, LO, is equal to 13.775ξo. The collocation lattice utilized to compute the
minimum of the Ohta-Kawasaki free-energy functional at α = 0.04638 includes
N=17,784 cells where LO corresponds to 12 cells. This configuration is shown in
figure 4.11

Among all the defect fluctuation modes, the subset that mainly alters the
local composition around the defect, i.e., local modes, is of particular interest.
Figure 4.12 shows how these two types of fluctuation modes alter the AB inter-
faces of the structure. Changes in the AB interfaces of the defect and the neigh-
boring lamellae can lead to the merging of the interfaces of the defect cores and
further defect annihilation. In addition, as shown with modes k = 2, 8, fluctua-
tions of the defect cores and interfaces of the neighboring lamellae give rise to
changes in the long-range strain field created by the presence of the defect in the
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Figure 4.11: Dislocation pair with defect cores of opposed A and B domains.

lamellar phase. The later strain field gives rise to the Peach-Koeler force acting
on the pair of dislocations, which are non-local and decay as ∼ 1/Lwith L being
the distance between the defect cores [59, 86, 111].

4.2 Fluctuation modes and minimum free-energy
paths (MFEP)

As we have shown, fluctuations of a configuration around a local minimum,
mo, can be described by means of the fluctuation modes derived from a har-
monic approximation of the corresponding free-energy basin. If there is another
basin in the free-energy landscape, e.g., F[m∗o] < F[mo], the most probable tran-
sition pathway between the two corresponding states is described by the mini-
mum free-energy path (MFEP), which is a family of configurations along which
the thermodynamic force is everywhere parallel to the path [112, 113]. That set
of configurations is described as m(x, s) where s ∈ [0, 1] denotes the contour
length along the path andm(x, s = 0) = mo andm(x, s = 1) = m∗o [113, 114].

There are several methods to find the minimum free-energy path and among
them the improved string method provides a simple, stable and accurate pro-
cedure [112]. The original string method [115] employs the projection of the
potential force onto the direction normal to the path as the actual force of the
calculation. This requires the calculation of the tangent vector along the path in
order to project the potential force and find the perpendicular component of the
potential. This step is eliminated in the improved string method, where the full
force is used in the iterative procedure to findm(x, s) [112].

The MFEP allows us to compute the free-energy barriers along the path as
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Figure 4.12: Fluctuation modes of the defective configuration can be classified
into local and non-local composition changes with respect to the defect. Lo-
cal modes, e.g., k = 2, 8, promote changes of AB interfaces localized around
the defect cores as well as the neighboring AB interfaces enhancing the strain
field imposed by the defect on the lamellar structure. Non-local modes, e.g.,
k = 56, give rise to changes across the entire structure. Color maps describe
local composition changes due to each fluctuation mode, black contour lines
represent the AB interfaces of the mean-field defect configuration, mo, and red
contour lines depict the fluctuating defect due to the mode k with ε = 1, i.e.,
m(x) = mo + ek(x).
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well as the changes the morphology undergoes in the corresponding transition.
In the limit of a vanishing small free-energy barrier, the string method and the
fluctuation mode analysis provide the same description of the changes in local
composition that the initial configuration, m(x, s = 0) = mo, undergoes at the
onset of the corresponding transition.

In the present section we exploit the latter fact and compare the transition
pathway of a defective configuration towards the defect-free lamella with the
fluctuation mode analysis of the defect. Such comparison is performed at the
limit of meta-stability when the free-energy barrier approaches zero.

4.2.1 String Method and MFEP

Given the continuum description of the system in our studies, the configura-
tions along the string are represented by the order parameter field m(x) and
the corresponding free energy is computed via the Ohta-Kawasaki free energy
functional.

The improved string method consists of a two-steps iterative process: first
the energy of the configurations is minimized to compute the evolution of the
string, i.e, solving ∂m(x, s)/∂t, afterwards, the configurations along the string
are redistributed such that the chosen parametrization is fulfilled again. In
this case, we use the equal arc-length parametrization described by Weinan et
al. [112].

To start the iteration procedure, an initial guess for the string must be de-
fined. We construct this initial guess using linear interpolation between the two
end-states to obtain the values ofm(x) for the configurations along the string at
equally spaced distances, si = i.∆Ŝ, as

m(x, si) = (1 − si).m(x, s = 0) + si.m(x, s = 1) 1 < i < M

where∆Ŝ = 1/M andM is the number of configurations in the string (including
the end states).

Besides the linear interpolation, a different starting set of configurations can
be defined if additional information about the transition pathway is available
and can be used to set the initial guess closer to the MFEP, reducing the number
of iterations. However, the string method is a local optimization procedure and
the choice of a particular initial string biases the calculation towards one of the
possible pathways [114].

Once an initial path is set, we proceed with the minimization of the free
energy of the string (first step in the iteration process, also referred to as the
string update) where we deploy the simple forward Euler scheme to solve the
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partial differential equation defined by the Cahn-Hilliard dynamics

∂m(x, s)
∂t

= 4 δF

δm(x, s)
≡ µeff(x, s)

The choice of the Cahn-Hilliard dynamics is based on the interest of inves-
tigating paths that correspond to possible physical time-evolutions of the DSA
process. Obviously, the diffusive dynamics of the polymers locally conserves
the order parameter. Therefore, the driving force for the time-evolution of ev-
ery configuration is the effective chemical potential, µeff.

After the update, the distance between neighboring configurations along the
string ∆s̃i is computed as

∆s̃i = |m(x, si) −m(x, si−1)| for 1 < i 6M

'

√√√√ N∑
j=0

(
m(j, si) −m(j, si−1)

)2

and the total arc-length of the string, S =
∑
i∆s̃i, is used to normalize those

distances as

si =
1
S

i∑
k=2

∆s̃k for 1 < i 6M thus 0 < si 6 1

For the study of transition paths where one of the end states is not metastable,
the corresponding unstable end point of the string should not be included in the
update, thus its free energy remains unchanged and the pathway away from
that unstable state can be investigated via this method. Note that the path from
an unstable state to the nearest metastable state can simply be obtained by the
Cahn-Hilliard dynamics starting from the unstable state.

The updated string with the corresponding distances si is the input for the
third-order spline interpolation deployed to reestablish the equal arc-length
parametrization, i.e., |m(x, si) −m(x, si−1)| = ∆Ŝ = const. This reparametriza-
tion of the configurations along the string is the second step in the iteration
process.

Inaccuracies due to the interpolation of the order parameter can cause devia-
tions from the mass conservation constraint imposed by the conserved dynam-
ics, i.e.,

∫
dxδm(x) =

∫
dxm(x, si) −

∫
dxm(x, sj) = 0. In order to minimize these

deviations due to interpolation, the string is discretized using a high number of
configurations, i.e., Ns = 118 and we use again the linear operator P described
in section 4.1.1 (cf. Eqn 4.12), P = (I− 1/N) whereN is the dimension ofm(x, s).
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Thus, after the redistribution every configuration is projected using the afore-
mentioned operator m̂s(x) = m(x)P and the iteration process is performed until
the condition that defines the MFEP is fulfilled.

(
∇
[
m(x, s)∇ δF

δm(x, s)

])⊥
= 0 for all points, x (4.17)

That condition is equivalent to requiring that the perpendicular component
of the aforementioned effective chemical potential vanishes [113]

(µeff(x, s))⊥ = 0 for all points, x (4.18)

If the procedure converges, i.e., m(x, s) does no longer change with itera-
tions, the converged string fulfills the previous conditions, Eqs. 4.17 and 4.18.
Therefore, instead of monitoring Eq. 4.17 or the convergence of m(x, s) we em-
ploy the simpler criterion that the free-energy along the path no longer changes.

Once the MFEP is obtained, we can compute the free energy barriers and
access the mechanism of the transition between the states at the end points of
the string. The computation of the free energy and the chemical potential using
the Ohta-Kawasaki model is not required in any of the two steps of the iteration
process, therefore its calculation can be performed at the end of the procedure
or for a particular string of interest, which reduces the computational cost of
the string method using the continuum model. As a consequence, using µeff
instead of µ as the driving force during the update of the string is not only
computationally simpler but also is more physically because the path follows a
realistic dynamics.

4.2.2 Numerical computation of MFEP

We investigate the annihilation pathway of a dislocation dipole towards a defect-
free lamella via the string method using the Ohta-Kawasaki model to describe
the block copolymer system and model-B dynamics to update each one of the
configurations along the path towards the minimum free-energy path (MFEP).
For the latter investigation, we select values of the model parameter that cor-
respond to the intermediate and weak segregation regimes. Previous data is
available for MFEP of this very same defect at such values that enable us to
compare our findings [57, 74, 116]. Here, we consider a 2D system with peri-
odic boundary conditions of dimensions LX/LO = 7 and LY/LO = 5.3 where the
equilibrium lamellar spacing, LO, corresponds to 36 grid cells of a collocation
lattice with N = 48.384 cells.
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Figure 4.13 presents the converged path for different values of χN and the
corresponding values of the model parameter α̃. The path shows the free-
energy difference of the configurations along the path with respect to the ini-
tial configuration of the string, i.e., F[m(s = 0)] = −1081.45 for the case of
χN = 28.0. Given this choice of the reference state for the free-energy differ-
ences, the highest free energy barrier is simply ∆F at the corresponding maxi-
mum of the path, i.e., ∆Fb = 0.9075 at s = 0.179 for χN = 28. For the excess
free-energy of the defect, ∆Fd = F[m(s = 0)] − F[m(s = 1)], the path shows the
corresponding negative values that nevertheless allow a straightforward com-
parison as the segregation degree changes, i.e., F[m(s = 1)] = −1088.16 and
thus ∆Fb = 6.708 for χN = 28.

ΔFb

ΔFd

Figure 4.13: Minimum free-energy path (MFEP) between defective structure,
s = 0, and lamellar phase, s = 1 obtained via the Ohta-Kawasaki model. As
the segregation decreases, the MFEP changes from a two-barrier pathway as for
χN = 28 towards a one-barrier path as for χN = 16. Defect excess free energy
∆Fd = F[m(s = 0)] − F[m(s = 1)] and the highest free-energy barrier ∆Fb, both
in energy units of the continuum model, are indicated for χN = 28.

Different barriers along the pathway are observed as χN decreases and the
free energy landscape becomes more smooth. Two barriers characterize the
MFEP at χN = 28 and 25.5, whereas for χN = 18 and 16 only one barrier of
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smaller free energy hinders the transition of the defect towards the lamellar
phase.

We will analyze these results as follows: first, we exploit the available re-
sults to compare the annihilation pathway at χN = 28 as well as the decay of
the free-energy barrier when χN approaches the limit of defect meta-stability,
i.e. χN∗ or the corresponding α̃∗. Afterwards, we study the changes that the de-
fect configuration undergoes in the vicinity of the meta-stability limit, χN∗ and
compare how the annihilation mechanism changes and discuss to what extend
the results can be related to the findings of the fluctuation mode analysis.

The MFEP for this transition has been previously described as a path with
two barriers and one shoulder in 3D calculations at χN = 28 and 30 using Self-
Consistent Field Theory (SCFT) and at χN = 25 using Monte Carlo simulations
and a soft, coarse-grained model [116]ii. Our findings of Figure 4.13 correspond
to a pathway with the same features and the intermediate configurations depict
the same changes in the morphologies along the path.

In addition, Takahashi et al. [74] have obtained the transition pathway be-
tween a dislocation dipole with defect cores of opposed A-B domains and a
lamellar phase, in 2D calculations via SCFT at χN = 25 describing a path with
one barrier and one shoulder. Such dislocation dipole corresponds to the in-
termediate meta-stable state between the two barriers of our calculations, i.e.,
the configuration at s ' 0.35 in Fig. 4.13, therefore the MFEP obtained with
the Ohta-Kawasaki model is in qualitative agreement with previous 2D SCFT
calculations as well.

For a more detailed comparison of our findings with the results from SCFT
calculations of Li et al. [57], we consider a film of thickness D = 0.8LO and we
extend our 2D calculations to compute the dimensionless free-energy difference
along the pathway per film thickness, i.e.,∆f = ReO∆F/DkBT

√
N̄. In this extrap-

olation of our purely 2D calculations to a thin film, we assume top and bottom
surfaces of the thin film are identical and all the configurations are transitional
invariant in the z direction, as considered by Li et al. However, in a 3D thin film
these assumptions may not always hold, particularly if the substrate has any
preference towards the A- or B-domains of the block copolymer.

The energy and length scales of the continuum model are used for consis-
tency of units, η0 and ξo respectively

iiThis model, known by the acronym TICG, relies on a particle based description of the poly-
mer chains but adopts the Hamiltonian used in Self-Consistent Field Theory
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η0√
N̄kBT

=

√
2χN− 7.1
135.58

=
1

135.58

(
48
α̃

) 1
4

ξo

ReO
=

1√
3 (2χN− 7.1)

=
1√
3

(
α̃

48

) 1
4

For χN = 28, i.e.,α̃ = 0.0201, the equilibrium spacing is LO = 17.45ξo and
the energy and length scales are η0 = 0.0516

√
N̄kBT and ξo = 0.08256 ReO,

therefore the film thickness D = 0.8LO = 1.15256 ReO. Hence, considering
the aforementioned values of ∆Fb = 0.9075 and ∆Fb = 6.708, we obtain the
dimensionless free-energy differences per film thickness

∆fb = ∆Fb
η0/
√
N̄kBT

D/ReO
= 0.04063 and ∆fd = ∆Fd

η0/
√
N̄kBT

D/ReO
= 0.3003

Considering the latter mapping between the units of the Ohta-Kawasaki
model and the coarse-grained invariants, the MFEPs obtained can be re-expressed.
It is important to mention the aforementioned mapping requires further modi-
fications for more accurate results at the values of the segregation degree inves-
tigated herein.

Figure 4.14 presents the pathways obtained via Ohta-Kawasaki in dimen-
sionless free-energy units. Data for the pathway at χN = 28 obtained from the
continuum model as well as from SCFT calculations is available and serves as a
reference for comparison. To highlight the merging of domains as the morphol-
ogy changes along the path, only B domains in the configuration (blue) are de-
picted in Figure 4.14a. A two-barriers pathway is described in both cases where
four configurations characterize the annihilation mechanism: the highest free-
energy barrier, see Fig. 4.14b (a) s ' 0.178, corresponds to the removal of one
defect core via the connection of the corresponding A domains. A metastable
configuration between the two barriers, s ' 0.339 in Fig. 4.14b (b), corresponds
to dislocation of an opposing A-B defect cores where the remaining A defect
core (white) vanishes at the next saddle point at, s ' 0.466 in Fig. 4.14b (c). Af-
ter that last saddle point, a configuration with two B defect cores remains and
is presented in Fig. 4.14b (d) which corresponds to the shoulder in the pathway
at s ' 0.585. The latter four configurations describing the annihilation mecha-
nism, are in qualitative agreement with the prediction of SCFT calculations.

On the other hand, in Figure 4.15 we present the change of the highest free-
energy barrier ∆fb for different values of χN as well as of the defect excess free
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(a) Dislocation dipole defect investigated via MFEP using Ohta-Kawasaki, s = 0

(b) MFEP via Ohta-Kawasaki
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(c) MFEP via SCFT

Figure 4.14: Minimum free-energy path (MFEP) between defective structure,
s = 0, and lamellar phase, s = 1. (a)A central portion indicated by the dashed
box is used to depict changes of the defect along the path. (b) Characteristic
configurations along the path are indicated by numbered arrows and the cor-
responding snapshots are shown below. Defect excess free energy ∆fd and the
highest free-energy barrier ∆fb are indicated for this pathway as well. Dimen-
sionless free-energy differences ∆f = ReO∆F/DkBT

√
N̄ are per film thickness

D/ReO. (c) The annihilation path described by the MFEP via the continuum
model is in agreement with 2D-MFEP results from SCFT. Figure reproduced
with permission from [57].
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energy ∆fd. Both free-energy differences decrease as the segregation degree
decreases but ∆fb vanishes at χN∗ = 16 , i.e., the limit of defect meta-stability
predicted via the Ohta-Kawasaki model, whereas ∆fd remains large and finite
at that limit. This observation is in agreement with the results obtained via
SCFT [57] confirming that defects do not form due to thermal fluctuations. The
value of χN∗ = 16 predicted via the Ohta-Kawasaki model is very close to the
value of χN∗ ' 18 predicted via SCFT, given the differences in the models and
deviations due to the extrapolaton used in SCFT with values far from χN∗ for
that prediction.

Besides the qualitative agreement between the two pathways, an important
difference should be highlighted regarding the model used for the kinetics of
the configurations along the path. Although SCFT provides a more accurate
prediction of the free energy, the minimum free energy pathway presented in
Figure 4.14c has been computed using Allen-Cahn dynamics (model A) on the
chemical potential fields along the string and thus, the corresponding config-
urations do not satisfy the mass conservation constraint. On the contrary, the
pathways presented herein are obtained via Cahn-Hilliard dynamics (model
B) deployed to minimize the Ohta-Kawasaki free-energy functional for every
configuration along the string, hence, all the configurations satisfy the mass
conservation constraint providing a more precise description of the changes of
the morphology along the pathway and not only at local extrema and saddle
points of the string where the same configuration is obtained via both models,
i.e., Allen-Cahn and Cahn-Hilliard.

The agreement between the MFEP and the configurations describing the an-
nihilation mechanism obtained via the continuum model, SCFT and particle-
based simulations, serves to conclude that single-chain dynamics do not give
rise to additional bottlenecks in the transition pathway and therefore the choice
of a collective variable to describe the transition states, i.e, the order parameter,
is a valid choice in combination with the Ohta-Kawasaki free-energy functional
to investigate this transition.

4.2.3 Results and comparison

So far we have shown the Ohta-Kawasaki model can be used together with
the string method to describe the defect-removal pathway, in agreement with
a more accurate free-energy functional for the block copolymer system. Now,
we use the string method and the continuum model to describe the changes
in the local composition of the defective morphology at the vicinity of defect
meta-stability, i.e., for χN ' χN∗.

The MFEP for values of χN around that spinodal limit, are presented in Fig-
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Figure 4.15: Defect excess free energy ∆fd and highest free-energy barrier ∆fb.
(a) As the segregation decreases, the free-energy barrier decreases and vanishes
at the limit of defect meta stability predicted via the Ohta-Kawasaki model:
χN∗ = 16. Defect excess free energy ∆fd decreases as well but remains large
and finite at that limit. (b) This results are in qualitative agreement with SCFT
calculations for the same defect topology at ΛN = 0 representing a neutral sur-
face preference for A-B domains where the predicted value of χN∗ ' 18 is close
to the prediction of the continuum model. Figure reproduced with permission
from [57]. (c) The ratio between the defect free energy and the free-energy bar-
rier provides a quantitative comparison of the prediction of both models.

99



CHAPTER 4. DEFECT ANNIHILATION PATHWAYS

ure 4.16 where the model parameter α̃ is used instead of χN to identify each
string. For this calculations, the configurations at the extremes of the string, i.e.,
s = 0 and s = 1, are not updated via the Cahn-Hilliard model as the MFEP is
computed. The free-energy change at the start of the string, i.e., ∆f/∆s at s = 0
is positive for α̃ = 0.0786 indicating the starting configuration is metastable at
this value of α̃. On the contrary, the negative slope for α̃ = 0.0788 at s = 0
implies the configuration is no longer stable and would spontaneously evolve
to the defect-free lamella.

The change in local composition, δm(x)|s=0 = ∂m(x)/∂s|s=0 ∆s, is com-
puted using the first derivative from the third-order spline interpolation, i.e.,
∂m(x)/∂s, used during the string calculations. In Figure 4.16a we present δm(x)|s=0
for the three values of α̃ around the spinodal limit and how this local changes
affect the defect configuration s = 0. The factor ∆s has been arbitrarily cho-
sen as ∆s ' 0.43 = 50 ds, for a better graphical representation of the changes
in the defect, where ds is given by the discretization of the string Ns = 118 as
ds = 1/(Ns − 1).

In the case of the unstable defect α̃ = 0.0788, the major changes in the lo-
cal composition occur between the defect cores and the intermediate defective
lamella. As a result, interfaces break and merge resulting in defect annihila-
tion. In contrast, local composition changes in the meta-stable configuration
α̃ = 0.0786, are not localized around the AB interfaces of the structure at s = 0
(depicted by the black contour lines) and do not promote significant changes of
the defect cores but an undulation of all the structure.

This local changes of the defective configuration at the onset of the annihi-
lation pathway, can be also predicted via the aforementioned fluctuation mode
analysis. At the limit of the metastability, the local composition changes that
lead to defect annihilation, i.e., δm(x)|s=0 for α > α∗ in Fig. 4.16a, should
be also described by the low-lying fluctuations (or soft modes) of the corre-
sponding meta-stable configuration. To prove this, we compute the fluctuation
modes for the defect configuration at the last value where the defect is stable
α ' α∗ = 0.0787 and study how those fluctuations change the AB interfaces
of the defect. Three soft modes promote defect removal and Figure 4.17 shows
these annihilation modes. Among them, the one associated with the lowest
free-energy change, i.e., with the smaller value of λk thus k = 2, corresponds to
a soft mode of the lamellar structure. This can be confirmed by a comparison of
the fluctuating AB interfaces due to the mode k = 2 in Figure 4.17 (red contour
lines) with respect to the interface fluctuations in the lamellar modes (see mode
k = 2 in Figs. 4.9 and 4.8). Considering mode k = 2 is a fluctuation character-
istic of the defect-free structure, we discard this mode for our comparison and
focus on the remaining two modes.
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Figure 4.16: Minimum free-energy pathway in the limit of defect meta stability.
Pathways in the vicinity of that limit and beyond, i.e., α < α∗ and α > α∗ re-
spectively, are computed to obtain the local composition changes that the defect
configuration, i.e., s = 0 undergoes at the onset of the annihilation pathway.
Color maps (top row) depict those local changes, i.e., δm(x) = ∂m(x)/∂s|s=0∆s,
for the limiting values of α investigated. Major changes are located near the AB
interfaces of the defect configuration (black contour lines). With the resulting
configuration due to those local changes, i.e., m(x) = m|s=0 + δm(x), (bottom
row) changes in the topology of the defect can observed.
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Figure 4.17: Annihilation modes describing local composition changes δm(x)
obtained via the fluctuation mode analysis. Among the low-line fluctuation
modes of the defect at the limit of meta stability, i.e., α = 0.0787, the modes
k = 2, 5, 6 lead to defect annihilation. Changes in the AB interfaces due to fluc-
tuations (red contour lines) show how defect cores merge and connect promot-
ing the formation of lamellar phase, as indicated by the black dotted circles.
Same sign in the local composition changes at the apex of the defect cores (blue
for k = 5 and red for k = 6) is consistent with the A-domains defect cores in the
structure. These modes are referred to as symmetric annihilation modes. Black
contour lines depict AB interfaces of the unperturbed defect at α = 0.0787.
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The more localized annihilation modes, k = 5 and k = 6, affect the interfaces
of the defect cores in a similar fashion. However, mode 6 cause the undulation
of the AB interfaces of the entire structure with a higher frequency than mode 5,
with the associated higher free-energy cost. Therefore, we compare mode 5 to
the local composition changes observed with the string method, i.e., δm(x)|s=0
for α = 0.0788 in Fig. 4.16a, and we confirm they provide the same descrip-
tion of the local composition changes around the defect cores that lead to the
merging of AB interfaces and the consequent annihilation of the defect.

Based on the latter findings, we confirm that the fluctuation mode analysis
(FMA) can describe the local composition changes that will take place at the
onset of defect annihilation at the spinodal value of χN∗ representing the limit
of defect meta-stability, or the corresponding values of the model parameters
α̃ in the case of a symmetric block copolymer. The following criteria can be
highlighted to identify the fluctuation mode promoting defect annihilation: the
mode involves mayor composition changes localized around the interfaces of
the defect, the mode does not correspond to the fluctuations of the lamellar
structure and the mode is part of the soft modes of the defect, therefore has the
lowest possible free energy change among all the possible localized modes in
the space of eigenvectors of the Hessian matrix of the defect.

In comparison to the string method, the fluctuation mode analysis is only
valid for meta-stable states where the harmonic approximation holds as a valid
estimation for the free-energy basin whereas the string method enables us to de-
scribe transition pathways between two states regardless of their stability. How-
ever, the computational effort required to deploy the fluctuation mode analysis
is lower compared to the calculations required for the string method. The later
involves solving the partial differential equation for the Cahn-Hilliard dynamic
of Ns configurations during the entire iteration process and computing the free
energy for the Ns configurations for at least one iteration step, among other
less expensive calculations. Even when the use of parallel programming can
significantly increase the performance and efficiency of those calculations, the
implementation of the string method implies more effort. On the contrary, the
FMA involves solving the Cahn-Hilliard equation for one configuration, the
calculation of the Hessian matrix (which is of the same complexity as the calcu-
lation of the free energy) and perform the matrix decomposition to obtain the
corresponding eigenvalues and eigenvectors. A variety of optimized linear al-
gebra libraries are available for this latter task, making the FMA more readily
available.

On the other hand, we have only identified the fluctuation mode that can
be used to predict how the changes in the local composition of the meta-stable
defect will be at the onset of the defect annihilation close to the spinodal tran-
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sition, i.e., for α̃ ' α̃∗. The question remains if we can use the same approach
to identify that fluctuation mode in defective configurations far from the limit
of metastability, which is a common case for experimental conditions in the di-
rected self-assemble of block copolymers. We address that open question in the
next section.

4.3 Dominant modes in defect annihilation

We have identified several annihilation modes at the limit of defect meta-stability,
χN∗. The agreement between the local composition changes predicted via the
minimum free-energy pathway (MFEP) and one of those annihilation modes
enables us to label which mode describes the changes that the configuration
undergoes at the onset of the defect annihilation process at that value of χN∗.
This mode is referred to as the dominant annihilation mode.

In this section we address the question of how those identified modes evolve
as the segregation degree of the block-copolymer approaches the region of meta-
stability of the defect, i.e. as χN > χN∗. The evolution of the eigenvalue of the
most unstable mode has been previously used to predict the spinodal limit of
the ordered phases of diblock copolymer in the bulk [117–120], exploiting the
symmetries of those phases and performing an analysis of the eigenmodes and
eigenvalues in reciprocal space. The same approach could be used to predict
the limit of the defect meta-stability via the decay of the eigenvalue associated
to the dominant annihilation mode. Therefore, the goal of our numerical cal-
culations is to identify the region of χN where the eigenvalue of the dominant
annihilation mode follows a linear behavior and how the eigenvalue of the other
annihilation modes evolve as χN changes.

In this regard, we consider a prototypical dislocation defect of opposed A-
B domain defect cores in a lamellar phase to study the modes of a defective
configuration. This configuration is shown in figure 4.18. The fluctuation mode
analysis is deployed for this defect at the corresponding value of χN∗ = 19.61
and in figure 4.19 we present the three annihilation modes identified.

Among these modes, k = 1 corresponds to composition changes that are
the most localized at the apex of the defect cores and to the lowest free-energy
cost due to the lowest value of λk. Following the comparison in the previous
section, this composition changes are in agreement with the changes of the con-
figuration along the MFEP at χN∗, from which we confirm mode k = 1 is the
dominant annihilation mode.

To study the evolution of the annihilation modes, including k = 1, we iden-
tify the eigenvectors associated to this modes in the new eigenspace of fluctua-
tions modes that arises as χN changes. If the fluctuation modes are normalized
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Figure 4.18: Dislocation pair with defect cores of opposed A and B domains
of a symmetric block copolymer. The configuration corresponds to the local
minimum at α̃ = 0.042 equivalent to χN = 20.45. LO = 14.15 is discretized with
12 grid cells in a 2D lattice of dimensions LX/LO = 7 and LY/LO = 3.5.

Figure 4.19: Annihilation modes (color map) at the limit of meta-stability of the
defect, χN∗ = 19.612, equivalent to α∗ = 0.046512. Changes in the AB interfaces
due to the corresponding fluctuations (red contour lines) show how defect cores
merge and connect promoting the formation of the lamellar phase, as indicated
by the black dotted circles. Color map depicts every mode ek = δm(x) where
red and blue correspond to positive and negative values, respectively. Black
contour lines depict AB interfaces of the unperturbed defect.

eigenvectors, the projection of a given mode ek onto another ej, i.e., the dot
product between them, has a value of one when the two eigenvectors are the
same, i.e., ek · ej = 1 for ek = ej and |ek| = |ej| = 1.
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Therefore, the associated mode at χNi = χN∗ + δχN is identified as the
eigenvector in the new space with a projection of one (or the closest to one)
and the corresponding change in the eigenvalue of that annihilation mode is
obtained. With the same approach, the mode at χNi+1 can be identified us-
ing the eigenvector at χNi and the eigenvalue of each annihilation mode can
be obtained far away from the limit of meta-stability. Figure 4.20 presents the
eigenvalue, λk, for the three annihilation modes k = 1, 4, 5 as a function of χN.

χN = 20.76

k = 2 λk = 0.02204

k = 4 λk = 0.03711

k = 6 λk = 0.05371

χN = 19.61

k = 5 λk = 0.02913

k = 4 λk = 0.01914

Figure 4.20: Eigenvalue of the annihilation modes as χN approaches the defect
meta-stability region. Two linear regimes describe the change of those eigenval-
ues as the free-energy landscape gradually changes: a high-slope regime close
to the spinodal limit, χN→ χN∗, and a low-slope regime in the region of defect
meta-stability, χN > χN∗. The eigenvalue of the dominant mode, λk=1, exhibits
the highest slope in the first regime (dashed line) which extends over a very
narrow interval of χN. k-labels in the plot correspond to the eigenvector index
at the spinodal.

The decay of λ implies a decrease in the free energy cost of the correspond-
ing composition changes in the meta-stable configuration, ∆F = F[mo ± ek] −
F[mo] ∼ λk. Therefore, the fluctuation mode for which the free-energy cost
approaches zero faster as χN comes closer to the spinodal limit is the mode
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leading the transition out of the free-energy basin where the configuration lies.
This fast decay of λ is observed for k = 1 confirming this is the dominant an-
nihilation mode, which is consistent with the agreement observed with MFEP
calculations. Thus, this linear decay of λ1 (see dashed line in Figure 4.20) can be
the one used to predict the value of χN at the spinodal limit.

However, the change of the slope from the fast- to a slow-decay regime of
λ1 occurs very close to the spinodal limit and this high-slope linear regime only
extends over a very narrow interval of χN. The extrapolation using the linear
regime in the meta-stable region, i.e., χN > 20.2 in Fig. 4.20, does not yield to
a valid prediction of χN given the significant difference in the slope of the two
linear regimes.

As the segregation degree of the block-copolymer approaches the spinodal
limit, every eigenvalue decays following two linear regimes: a slow-decay regime
in the meta-stable region and a faster-decay regime in the vicinity of the spin-
odal. The two regimes are observed in every case, despite the slopes of every
linear region differ among the three annihilation modes.

The same two-linear regimes and a narrow high-slope linear interval of χN
are observed for the eigenvalue of annihilation modes of the dislocation dipole
studied in the previous section. For that defect, we observed that the decay of
the free energy barrier as a function of χN has a different slope close to the spin-
odal limit compared to that in the meta-stability region (see Figure 4.15a). This
change implies different annihilation mechanisms: a simultaneous merging of
the two defect cores for χN → χN∗ and a sequential merging for χN > χN∗

(see Figs 4.14 and 4.16). Therefore, considering the rate of change of the highest
free-energy barrier with respect to χN is not constant, it is reasonable to obtain
a limited interval of χN for the high-slope linear decay of λ.

On the other hand, as the segregation increases the annihilation modes be-
come more stiff as sharper interfaces hinder the defect to annihilate and local
composition changes promoting interface merging have a higher free-energy
cost. In this regard, figure 4.21 shows the local composition changes for the
dominant annihilation mode in the two linear regimes. Composition changes
highly localized between the apex of the defect cores and the intermediate AB
interface are the characteristic feature of the annihilation mode in the high-slope
regime (top row, Fig. 4.21). On the contrary, in the low-slope regime (bottom
row), the composition changes are located along the AB interfaces instead of
at the apex of the defect cores. This localized alternating composition changes
along the interfaces correspond to a rotation of the defect pinned to the lamellar
structure (see top row, Fig. 4.22).

Figure 4.22 presents the fluctuations of the AB interfaces due to the eigen-
vector in the meta-stable region that corresponds to the annihilation modes of
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Figure 4.21: Changes in the first annihilation mode as χN approaches the defect
meta-stability region. Local composition changes are very localized around the
apex of the defect cores at χN ' χN∗ = 19.612, where the different sign in the
local composition changes (red/blue) is consistent with the opposed-domains
defect cores in the structure. Thus, this is referred to as an anti-symmetric an-
nihilation mode. As χN increases, local composition changes occur along the
interfaces of the defect cores and the interface between them.

the defect. We observe that no merging of the interfaces leading to defect anni-
hilation takes place at values of χN > χN∗ due to fluctuations associated with
the annihilation modes.

An analogy of the two linear regimes for the eigenvalue of the unstable
modes to the eigenvalue bands described by Laradji et al. [117–120] and Ran-
jan et al. [121] can be made, in order to provide a complementary explanation
for the change of the slope of the eigenvalue as a function of χN. The analogy
exploits the idea of the mixing of eigenmodes as the slope changes in a similar
way as the electronic energy states mix at the band gaps in cristaline solids. The
similarity between the annihilation mode k = 4 at χN∗ and the mode k = 2
at χN = 20.76 in figure 4.20, suggests that the mix of the first two annihilation
modes give rise to the change in the slope observed, and the corresponding
changes in the eigenvector presented in figure 4.21. Further analysis and dis-
cussions, that fall beyond the scope of the present work, are required to fully
exploit this analogy for a complementary understanding of the numerical re-
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Figure 4.22: The successive projection of the annihilation modes identified at
χN∗ leads to modes k = 2, 4, 6 at χN = 20.76 far inside the defect meta-stability
region. Fluctuations of the AB interfaces due to the those modes (red contour
lines) do not promote the formation of a lamellar phase. However, fluctuations
of mode k = 2 deform the AB interfaces bringing the apex of the defect cores
close to merging, as indicated by the black dotted circles. Black contour lines
depict AB interfaces of the unperturbed defect.

sults.
The results of our numerical study show that although λ behaves linearly

with respect to χN in the vicinity of the spinodal, it is not feasible to predict
the limit of the metastability of the defect based on the behaviour of the corre-
sponding eigenvalue in the metastable region. This is due to the change in the
annihilation mechanism as χN and the different slope of the linear behaviour
of λ in the two regimes observed. Another important aspect to consider in the
interpretation of the two linear regimes observed, is the limit of validity of the
harmonic approximation to describe the free-energy basin as the free-energy
landscape changes. It is expected that for χN >> χN∗ deviations from the har-
monic approximation arises and higher order modes in the Taylor expansion
of the free energy around the metastable state are required for a more accurate
approximation of the free energy changes.
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4.4 Fluctuation modes in defect metrology in DSA

Defect detection and characterization are open challenges that must be over-
come to meet the requirements of industry and enable directed self-assembly
(DSA) of block copolymers as a reliable manufacturing process in the semi-
conductor industry. Scattering techniques allow the screening of large areas
of material, as opposed to Scanning Electron Microscopy (SEM) and Atomic
Force Microscopy (AFM), and they provide information about the orientational
order and preferred length scales in the material. AFM allows incredible spa-
tial resolution ranging from 1 nm [122, 123] to individual atoms in a single
molecule [123]; however, its field of view is usually below 100 µm. Given this
limitation, scanning a wafer for defect identification by using this technique re-
quires several hours considering the typical size of an entire silicon wafer of 450
mm nowadays. SEM has a field of view of 1 mm maximum [124], thus pro-
viding a larger scan area than that of AFM, and a spatial resolution of 1 nm as
of 2017 [122]. In contrast, optical techniques such as light scattering topogra-
phy enable the rapid inspection of an entire silicon wafer [125] in the order of
minutes or even seconds. The maximum theoretical resolution of optical sys-
tems is dictated by the diffraction limit given by d = 0.5λ/NA. By considering
typical values of the numerical aperture, i.e., 1.0 6 NA 6 1.35 [126] and the
minimum wavelenght of visible light (380 nm), a resolution of d ' 140 nm can
be attained [127]. In practice, however, the resolution achieved ranges from 200
nm to 500 nm [126].

The results obtained from scattering experiments are complemented by the-
oretical predictions of scattering data for improved understanding of the ma-
terial structure as well as a comprehensive interpretation of the experimental
data. In this regard, a theoretical prediction of the scattering pattern of a lamel-
lar structure’s thin film of a specific block copolymer has been previously com-
pared to X-ray experimental data [128]. Such a theoretical prediction exempli-
fies that physics-based models can provide superior analysis of the thermody-
namic information behind the complex behaviour of the material under various
process conditions.

In this section, we provide theoretical predictions for the structure factor
of a defective lamellar structure obtained via the Ohta-Kawasaky model and
we compare these predictions with the corresponding defect-free lamella. Sub-
sequently, we study the influence of the fluctuation modes of the defect-free
lamella on the structure factor of the mean-field configuration. This informa-
tion allows us to study the influence of thermal fluctuations on the scattering
of the defect and provides insights to develop an alternative procedure for de-
fect detection and characterization from the scattering data of a self-assembled
structured obtained via DSA.
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We consider again a dislocation defect with opposed A and B cores as the
prototypical metastable defect in our continuum model confined in a 2D con-
figuration. We study the collective scattering from fluctuations of the composi-
tion in this polymer melt, which are fluctuations of the electron density as well.
Thus, the scattering intensity I(q) can be conceived as the structure factor of the
system S(q) and both terms are equivalent and interchangeable in what follows.

For the computation of I(q), the order parameterm(x) is defined in terms of
the collective local densities of the block copolymer, and that the amplitude of
the scattered wave is proportional to the Fourier transform of those densities.
Hence, the complex scattering amplitude m̂(q) and I(q) are computed as

m̂(q) = F[m(x)]

I(q) = |m̂(q)|2

The experimentally-observable scattering intensity is composed of the main
scattering Im, describing the Bragg peaks of the material, and the diffuse scat-
tering Id, accounting for thermal fluctuations, i.e., I(q) = Im(q) + Id(q). We
consider fluctuations in the continuum model by means of each normal mode
m(x) = mo(x)+

∑
k εkek(x), and I(q) corresponds to the average over all fluctu-

ations. In this description, only the values of εk fluctuate, and thus, an integral
over each mode is deployed to compute that average, thereby yielding expres-
sions for Im and Id

I(q) = 〈|m̂(q)|2〉

=
1
Z

∫
dεk

(
|m̂o(q)|

2 + 2εk|m̂o(q)m̄k(q)|+ ε
2
k|m̂k(q)|

2
)
e−F(εk)/kT

= |m̂o(q)|
2 +

1
Z

∫
(2εk|m̂o(q)m̂k(q)|) +

1
Z

∫ (
ε2
k|m̂k(q)|

2
)

(4.19)

= |m̂o(q)|
2 +
∑
k

〈ε2
k〉|m̂k(q)|

2 (4.20)

= Im(q) + Id(q)

where Z denotes the partition function accounting for all the possible fluctua-
tions, and m̂o(q) and m̂k(q) are the complex scattering amplitudes of the mean-
field structure and of the k−th fluctuation mode ek, respectively. εk is a real
value with a zero-average Gaussian probability distribution therefore the sec-
ond term in equation 4.19 vanishes.

To investigate the scattering pattern of the defect, we first study the main
scattering of the defective and defect-free structures; subsequently, we analyze
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the interference of lamella fluctuations on the scattering of the defect by consid-
ering the diffusive scattering term Id(q).

Figure 4.23 depicts the main scattering pattern for the perfect lamella and
that for the defect, S(q)LAM and S(q)DEF respectively, where periodic peaks
along qy = 0 correspond to Bragg peaks of the lamellar structure. In the lamel-
lar phase, changes in local composition are only normal to the AB interfaces,
i.e., the X direction in Figure 4.23 top-left, therefore the scattering pattern for the
lamella is a rather simple one which can be easily predicted and understood.

In contrast to S(q)LAM, the defect scattering pattern, S(q)LAM, is an intricate
continuous spectrum of wave vectors (see Figure 4.23 bottom-right). This intri-
cate scattering pattern contains the reciprocal-space description of the topology
of the defect, which is characterized by the distance between the defect cores
and the angle between the line connecting both cores and the horizontal axis
(see Figure 4.23 top-right). The symmetries of the configuration are another
important aspect to consider in the study of the scattering pattern. As shown
in Figure 4.23 top, the defect considered in our study is invariant under point
inversion and the exchange of the A-B domains of the symmetric block copoly-
mer. The exchange of AB domains does not affect the scattering patterniii; there-
fore, those symmetries of the configuration imply that the scattering of the de-
fect must be symmetric with respect to point inversion. This can be verified
in the scattering pattern of the defect, which respect the 180 degree rotational
symmetry, i.e., point inversion.

To facilitate the understanding of this complicated pattern, we compare the
profile along qy = 0 for the defective and the lamellar scattering patterns in
Figure 4.24. The relevant length scales of the system can be easily located in
this scattering profile: the length of the periodic system LX, corresponding to
|qL/qo| = LO/LX = 1/13 ' 0.0056, the equilibrium domain spacing LO, corre-
sponding to |qO/qo| = 1, and the length of a grid cell in the collocation lattice
dx, corresponding to |qdx/qo| = 6.

In the weak segregation limit, the lamellar composition profile can be ap-
proximated by using only the first Bragg peak whose wavevector is |qo| =
2π/LO. In this one-mode approximation, the composition profile of the lamellar
phase of a symmetric block copolymer is described by a cosine function whose
Fourier transform consists of only one peak at the frequency |qo|, i.e., the fun-
damental harmonic of that wave. As the degree of segregation increases, devi-
ations from that one-mode description are represented by higher order modes
with odd wave vectors, i.e., |qx| = nqo where n is an odd natural number given

iiigiven S(q) = |m̂(q)|2 and m̂(q) = F[m(x)], S(q) is the same for m(x) and −m(x), i.e., the
exchange of A-B domains in the lamellar phase of a symmetric block copolymer, which can be
explained by the Babinet’s principle [129, 130]
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Figure 4.23: Dislocation-pair investigated in defect scattering simulation. The
configuration corresponds to the local minimum of the Ohta-Kawasaki model
at α = 0.04638, i.e., χN ' 19.6, confined in a system with periodic boundary
conditions of dimensions LX = LY = 13LO, where LO = 13.775ξo corresponds
to 12 grid cells (top left). The exchange of A-B domains does not affect defect
topology; thus, the defect is invariant to point inversion (yellow lines). The
distance between defect cores and the angle between their connecting line and
the axes are characteristic features of the defect (top right). The main scattering
pattern (bottom right) is an intricate spectrum of wave vectors extending in all
directions that describes the topology of the defect. This pattern includes the
Bragg peaks of the lamellar structure (bottom left). Values of S(q) < 10−4 are
considered negligible in all the calculations of the present section.
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(a) Scattering profile along qy = 0
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(c) Defect scattering footprint

000-2 2-4 4-6
qx/qo

000

-2

2

-4

4

-6

q y
/
q o

S(q)DEF − S(q)LAM > 500

103

lo
g[

S(
q)

]

Figure 4.24: (a) A scattering profile facilitates the identification of character-
istic wave vectors of the defect and the comparison with the corresponding
lamellar profile. (b) Defect wave vectors with the largest S(q) are located in
the vicinity of the lamellar Bragg peaks. The scattering intensity at long-range
wave vectors of the defect, i.e., |q| → 0, obeys a power law. (c) The scat-
tering footprint includes the largest characteristic wave vectors of the defect,
i.e. S(q)DEF − S(q)LAM > 500. The ratio between the scattering of the lamel-
lar Bragg peaks is S(|qo|)/S(3|qo|) = 64.3 and S(|qo|)/S(5|qo|) = 1163.8 where
S(|qo|) = 1.24x108.
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the symmetry of that fundamental harmonic.
The Bragg peaks at odd multiples of qo observed in Figures 4.23 and 4.24a

describe that same symmetry in the composition profile of our configuration at
an intermediate segregation regime. The ratio of the amplitude of the first to the
higher order modes required for an accurate representation of the composition
profile, provides a measure of the segregation degree of the block-copolymer.
By considering the first two Bragg peaks, the ratio S(qo)/S(3qo) is maximum in
the limit of the weak segregation regime.

In the strong segregation limit (SSL), the composition profile is described
by a square wave whose Fourier transform contains only odd harmonics given
the symmetry of the cosine wave as the fundamental harmonic required to con-
struct such a sharp symmetric wave. In this limiting case, the decay of the corre-
sponding Fourier amplitudes is ∼ 4/(π n) ; thus, S(nqo) ∼ 1/n2 and the ratio be-
tween the Bragg peak follows S(qo)/S(nqo) > n2, e.g., S(|qo|)/S(3|qo|) > 6 and
S(|qo|)/S(5|qo|) > 25. The corresponding scattering ratios of the lamellar struc-
ture in our calculations are S(|qo|)/S(3|qo|) = 64.3 and S(|qo|)/S(5|qo|) = 1163.8,
which satisfy the latter prediction and confirm the configuration represents a
lamella in the intermediate segregation regime.

In a similar fashion, one can proceed with the study of the defect pattern
using the most dominant wave vectors, i.e., q with S(|q|) > S(3qo). To lo-
cate those wave vectors, we discard the Bragg peaks of the lamellar phase and
analyze only the scattering intensities associated with the presence of the de-
fect in the structure, i.e, we study S(q)DEF − S(q)LAM as shown in Figure 4.24
top. The second largest peak characteristic of the defect in the scattering profile
is S(qx) = 500 and is located in the vicinity of the second Bragg peak of the
lamella, i.e., |qx| < 3qo. Therefore, wave vectors with S(q) > 500 correspond
to the maximum scattering values characteristic of the defect. Figure 4.24 bot-
tom presents the scattering pattern corresponding to those characteristic wave
vectors, in other words., the defect scattering footprint.

This footprint corresponds to a simplified description of the corresponding
defect. Such a description can be obtained by taking the inverse Fourier trans-
form of the complex scattering amplitudes of the defect footprint. In this re-
gard, Figure 4.25 shows the real-space reconstruction of the defect scattering
footprint, which captures the essential topological features of the investigated
defect presented in Figure 4.23 top-right).

Another important region of the scattering pattern of the defect, is composed
by the wave vectors in the region |q| < qo, which describe features of dimen-
sions larger than the natural domain spacing of the block copolymer, LO, and
up to the system size LX. The long-range strain field created by the defect in
the structure is included in that long-range region of wave vectors which can
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Figure 4.25: First characteristic region: Defect scattering footprint. This region
comprises the wave vectors present in the scattering pattern due to the defect
and which have the largest S(q). Thus, the footprint (left) can be used for a
simplified representation of defect topology (right) together with the first Bragg
peak of the lamellar phase.

be detected using light scattering. The latter can be exploited to scan the entire
silicon wafer using light scattering performing a pre-identification of regions in
the lamellar structure that may contain defects. Those potentially defective re-
gions can be further analyzed with the more precise X-ray scattering technique
which has been used to characterize defects [128].

Therefore, we extract the wave vectors |q| < qo from the scattering pattern
of the defect (cf. Fig 4.23 bottom-right) and proceed with the corresponding
real-space reconstruction. In Figure 4.26 we present the long-range scattering
pattern of the defect and the corresponding real-space representation, which
could be observed with longer-wavelength scattering techniques in comparison
with the commonly used X-rays scattering. From the scattering pattern |q| < qo
and the corresponding real-space reconstruction (cf. Fig 4.26a), a power law is
obtained describing both decays, i.e., S(qx) ∼ q6.16

x andm(X) ∼ X−8.21. These ex-
ponents are characteristics of each defect topology and can be used for compar-
ison with the displacement field of the corresponding defect providing insights
for defect classification. For this latter task, previous results for liquid crys-
tals systems can be used [111, 131–133], but additional information and further
analyses that fall out of the scope of the present work are required.

Hitherto, we have discussed the main scattering Im(q) of the defect-free and
defective structures. The diffusive scattering Id(q) of the lamellar structure,
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Figure 4.26: Second characteristic region: defect long-range wave vectors (left)
provide a description of features of the configuration with dimensions between
the natural domain spacing LO and the system size LX. A real-space pattern
(right) is obtained via the inverse Fourier transform of the complex scattering
amplitude m̂(q) truncated to include only those long-range wave vectors. (a)
For |q| < qo, a power law describes the decay of the structure factor (left) S(qx) ∼
q6.16
x (see Fig. 4.24b) as well as the corresponding decay in real space (right)
m(X) ∼ X−8.21
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due to its fluctuations, can mask the scattering of the defect hindering its detec-
tion. By allowing the study of each mode independently, the fluctuation modes
approach enables us to investigate which specific modes of the lamella would
contribute most to such masking due to Id.

We investigate this fluctuation-masking effect in a two-steps procedure: first,
we identify the fluctuation modes of the lamella that exhibit scattering ampli-
tudes within the two characteristic regions of the defect scattering pattern. Con-
sequently, we analyze the influence of the magnitude of those fluctuations on
the interference with the scattering of the defect, by predicting the limit of the
invariant degree of polymerization, N̄, for which the masking will occur.

To scout every lamellar fluctuation mode, we discard the Bragg peaks cor-
responding to Im and consider ε = 1 in order to identify wave vectors of the
fluctuation mode that are located inside the defect footprint and the defect
long-range pattern. By doing so, the equation 4.20 is transformed into I(q) =
|m̂k(q)|

2, namely the structure factor of every fluctuation mode.
The lamellar fluctuation modes with wave vectors in the two aforemen-

tioned regions and with the largest values of S(q) are presented in Figure 4.27:
modes k = 28, 80, 143 for the long-range region |qx| < qo, and modes k =
134, 136 around the maximum of the defect scattering footprint located at |qx| =
0.9qo and |qy| = 0.5qo, i.e., |q| = 1.03.

All the identified lamellar fluctuation modes posses peaks located inside de-
fect scattering footprint, i.e., S(q) > 500. A 2D representation of selected over-
lapping fluctuation modes, their corresponding scattering pattern and the over-
lap with the defect scattering footprint is presented in Figure 4.28. A better un-
derstanding of these fluctuations is achieved by investigating the undulations
and displacements that AB interfaces undergo due to each mode. In Figure 4.29
we present the displacement of the interfaces (red contour lines) with respect
to the unperturbed lamella (black contour lines) for the four fluctuation modes
identified. As can be observed by the deviation from the natural spacing LO, the
compression or stretching of some of the lamellae in the structure is induced by
all of those fluctuations modes. Therefore, each one of those fluctuation modes
has an associated compression wave in the X direction with a different period.

Furthermore, to address the question if the lamellar fluctuation modes could
hinder the detection of the defect we must consider these fluctuations in the case
of an infinitely large system.

As we have previously shown (cf. Fig. 4.8), the free energy of a compression
mode remains unchanged when the wave vector in the direction parallel to the
AB interfaces approaches zero, i.e., the system size in the Y direction approaches
the thermodynamic limit. We now address the question of how the compression
wave of the identified fluctuation modes, cf. Fig. 4.29, changes in the limit of
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Figure 4.27: Scattering peaks of lamellar fluctuations modes (triangles) inter-
fere with characteristic wave vectors of the defect scattering (red line). (a) The
peaks of modes k = 28, 80, 143, located in the vicinity of the first Bragg peak
of the lamella, were identified via scouting the long-range region of the defect
scattering. (b) Peaks of modes 134 to 137 are in the vicinity of the maximum
of the defect footprint located at |qx|, |qy| = (0.9, 0.5)qo, i.e., |q| = 1.03. Modes
(28, 29), (80, 81), (134, 135), (136, 137) are degenerate pairs.
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Figure 4.28: Selected fluctuation modes of the lamella that overlap the defect
scattering footprint: the compression mode with the lowest eigenvalue k = 28
and fluctuation with a scattering peak near the characteristic maximum S(q) of
the defect, k = 134. White bands in the real-space representation of the modes
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white band. The scattering pattern of each fluctuation mode |m̂k(q)|

2 (bottom)
includes the peaks (white) that overlap the defect foot print (cyan contour).
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Figure 4.29: Fluctuations of the lamellar structure due to the modes that over-
lap the defect scattering footprint. All of the fluctuations cause compression,
stretching of both in one or more lamellae. Modes k = 28, 80, 143 describe the
uniform displacement of the AB interfaces where the difference in the direc-
tion of the displacement causes the compression and stretching, e.g., lamellae
located at X/LO = 6 for mode 28 and at X/LO = 8 for modes 80 and 143. Mode
134 describes undulations of the AB interfaces where some of those are in phase
and will vanish in the thermodynamic limit, but some others create peristaltic
motion and will remain, e.g., undulations at X/LO = 3, 6.5 and 10.
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qx → 0.

The energy of those longitudinal phonons can be described by a harmonic
approximation in terms of the position of the interfaces, i.e. xi, the deviation
of the lamellar spacing from the equilibrium value, i.e., ∆L = (xi+1 − xi) − LO,
and the compression modulus B. The position of the interface i is described as
xi = iLO + ui, where ui is the displacement from the equilibrium position that
can be expanded as a sum of plane waves and used to calculate ∆L

ui =
∑
k

ak e
2πi jNx k where ak is real, thus ak = a−k

∆L = ui+1 − ui =
∑
k

ak e
2πi jNx k

(
e

2πi
Nx
k − 1

)

Hence, the free energy of the longitudinal compression or stretching is given by

F =
1
2
B

Nx−1∑
i

(∆L)2 =
1
2
B

Nx−1∑
i

(ui+1 − ui)
2

where

∑
j

(uj+1 − uj)
2 =
∑
j

∑
k

ak e
2πi jNx k

(
e

2πi
Nx
k − 1

)∑
l

al e
2πi jNx l

(
e

2πi
Nx
l − 1

)
=
∑
kl

akal

(
e

2πi
Nx
k − 1

)(
e

2πi
Nx
l − 1

)∑
j

e
2πi
Nx

(k+l)j
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for the case k = −l, the last sum results in Nxδk=−l, thus

= Nx
∑
k

aka−k

∣∣∣e 2πi
Nx
k − 1

∣∣∣2
= Nx

∑
k

|ak|
2

((
cos

(
2π
Nx
k

)
− 1
)2

+ sin2
(

2π
Nx
k

))

= Nx
∑
k

|ak|
22
(

1 − cos

(
2π
Nx
k

))

= Nx
∑
k

|ak|
22

(
1 − 1 +

1
2!

(
2π
Nx
k

)2

−
1
4!

(
2π
Nx
k

)4

+ . . .

)

' Nx
∑
k

|ak|
2
(

2π
Nx
k

)2

∑
j

(uj+1 − uj)
2 ' 4π2

Nx

∑
k

|ak|
2k2

Therefore, the free energy is given by

F ' 2π2

Nx

∑
k

|ak|
2k2

The latter is proportional to the longitudinal wavevector, i.e., F ∼ q2
x for the

system described herein which implies that in the limit of k → 0,i.e., for the
case or large systems, the energy cost of the compression modes of the lamella
decays and those fluctuations will be present in a real size lamellar structure.

Therefore, the identified fluctuation modes of the lamella are to be detected
via scattering and its final role in masking the scattering of the defect will be
dictated by the magnitude of thermal fluctuations, i.e., the influence of 〈ε2〉 in
equation 4.20 on the balance between the scattering intensities of the fluctuating
lamella and the intensity of the defect scattering footprint.

In this regard, the scattering of the fluctuating lamella due to a given fluctu-
ation mode k, i.e., I(q)L+k, must be smaller than the scattering intensity of the
defect to facilitate the detection. Thus, considering only the main scattering of
the defect, we investigate the limit Im(q)D > I(q)L+k.

Im(q)D > Im(q)L + Id(q)L

> Id(q)L

|m̂o(q)D|
2 > 〈ε2

k〉|m̂k(q)|
2 (4.21)
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where Im(q)L corresponds to the Bragg peaks of the lamellar structure which do
not contribute to the overlap with the scattering pattern of the defect, therefore
is discarded, and m̂o(q)D, m̂k(q) correspond to the complex scattering ampli-
tude of the mean-field description of the defect and of the lamellar fluctuation
mode k, respectively.

Considering the free energy of the fluctuating lamella F[mk] = F[mo] +
ε2λ/2 and resorting to the mapping between the free energy computed in the
continuum model and the one obtained via SCFT, 〈ε2

k〉 can be expressed in terms
of the invariant degree of polymerization N̄, which controls fluctuation effects
in the coarse-grained description of the block copolymer system.

〈ε2
k〉 =

1
Z

∫
dε ε2

ke
−F[mk]/kBT with Z =

∫
dε e−F[mk]/kBT

=
kBT

λ̂k

where λ̂k, the eigenvalue in units of kBT , can be obtained considering a thin film
of thickness D and the eigenvalue computed with the continuum model λk as
follows

λ̂k
kBT

=

(
D

Re

η0√
N̄

)√
N̄λk with η0 =

FSCFT [Ψ]

FOK[m]

that yields to the expression

〈ε2
k〉 =

1√
N̄λk

√
N̄

η0

Re

D
(4.22)

Fluctuations of the lamellar phase would hinder, i.e., 〈ε2
k〉 < 1, or facilitate,

i.e., 〈ε2
k〉 > 1, the detection of the defect via scattering according to equation 4.21

and the later expression enables us to calculate the limiting value of N̄∗, for
which 〈ε2

k〉 = 1. Thus, large values of N̄ will damp fluctuations and facilitate
the use of scattering in defect detection, i.e., the condition N̄ > N̄∗ must be
satisfied.

The free energy scale, η0, can be expressed in terms of the parameters of
the continuum model, where for the case of the symmetric copolymer α̃ =
48/(2χN− 7.1)2 and γ̃ = 0, yielding to

η0√
N̄

=

√
2χN− 7.1
135.58

=
1

135.58

(
48
α̃

) 1
4
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and

N̄∗ =
α̃

1
2

λ2
k

(
Re

D

)2

2653.28

Considering the case of a small film thickness, e.g., D/Re = 1, the limiting
value for the lowest fluctuation mode of the lamella previously identified (k =
28 in Fig. 4.29) is N̄∗ = 1.462 x 105. Typical values of the invariant degree of
polymerization, of the order of ∼ 104 [5], are below that limit. A small N̄, i.e.
N̄ < N̄∗, will enhance fluctuations and thus the scattering of the compression
modes of the lamella will mask the defect scattering.

For a thicker film ofD/Re = 10, N̄∗ drops two orders of magnitude leading to
N̄ > N̄∗ satisfying the aforementioned condition. Hence, an increase of the film
thickness reduces N̄∗ and thus fluctuations will be damped facilitating the de-
tection of the defect via scattering. The nowadays demand of block copolymers
with smaller values of their natural domain spacing draws special attention to
this case where films with D/Re >> 1 become experimentally relevant. In this
latter case, the condition N̄ > N̄∗ is easier to satisfy.

The previous prediction for the limit of N̄ considers only the main scattering
of the defect, Im(q). Considering the additional positive diffusive term Id(q),
the scattering intensity of the defect footprint is augmented by its thermal fluc-
tuations as described by the scattering of the corresponding fluctuation modes,
Figure 4.30. Thus, defect fluctuations enhance its scattering pattern and facili-
tate defect detection.

The herein prediction provides valuable insights to study defect detection
using scattering, where we have identified the type of fluctuations that con-
tribute most to the scattering of the lamellar phase in the range of length scales
longer than LO that could be detected using light scattering, i.e., |q| < qo, like
the strain field created by the defect on the lamellar structure. In addition, we
have identified the limit of N̄ where the scattering of the defect is stronger than
that of the thermal fluctuations of the defect-free structure, therefore facilitating
defect detection via light scattering.

In this section we have presented how a continuum description of the block
copolymer system, in particular via the Ohta-Kawasaki model, can be used to
investigate the diffraction pattern of topological defects that can be present in
a DSA experimental setting. We have deployed a dislocation pair defect to de-
scribe the particular aspects of the scattering pattern and to investigate the char-
acteristic wave vectors of the defective structure. This analysis can be extended
to other prototypical defects in order to construct a library of long-range pat-
terns, that can be observed using optical techniques, and of defect footprints as
the input for developing a procedure for the pre-identification of defective re-
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Figure 4.30: Defect fluctuations modes (triangles) amplify the main scattering
the defect Sm(q) (red line). Several modes scatter in the region of long-range
wave vectors, i.e, |q| < qo (a) , as well as around the maximum value of the
scattering footprint (b). Some modes scatter in wave vectors comparable to the
system size LX, e.g, k = 150. Fluctuations shown correspond to modes with
largest scattering intensities in the two regions of interest.

gions in silicon wafers using light scattering. The comparison and investigation
of the long-range patterns of various defects could allow their classification, as
part of the preliminary screening of the entire wafer using light scattering. This
pre-classification step could optimize the efforts in defect characterization using
most expensive and time consuming techniques like SEM, AFM or X-ray scat-
tering. However, further investigation of typical defects found in DSA, their
symmetries and its effect on the scattering pattern, the scattering of structures
with multiple neighboring defects as well as other aspects must be performed
to develop the pre-identification and pre-characterization procedure, which is
out of the scope of the present work.
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Final remarks and Outlook

The development of nanostructured materials relies on the advancement of our
understanding of their properties and behavior at the molecular level. To lever-
age the potential of block-copolymers (BCP) as a cutting-edge technological
option for industrial applications, a deeper understanding of defect formation
and removal in DSA is required. To this end, reliable and fast computationally
efficient modeling techniques that capture the physics of the BCP in DSA are
needed to provide experts with the ability to test design ideas and explore new
processing conditions.

Continuum models are suitable to fulfill that last need, and in this work, we
have investigated to what extent these models can be used to describe the or-
dering process of diblock copolymers in the particular context of DSA. Among
these models, the Ohta-Kawasaki free energy functional provides a better de-
scription of the phase diagram of diblock copolymers and the morphology and
meta-stability of defects, compared to the Swift-Hohenberg model. Besides, the
predictions of the Ohta-Kawasaky model for the kinetics of DSA are in good
agreement with SCFT calculations and particle-based simulations. Besides the
advantages mentioned above, the use of local collective densities in a contin-
uum model drastically reduces the degrees of freedom required to describe the
BCP system, and thus, the Ohta-Kawasaki model is computationally more ef-
ficient than particle-based simulations. Continuum models are also computa-
tionally more efficient than SCFT calculations due to the relatively straightfor-
ward solution of the partial differential equation that stems from the use of the
free-energy functional together with the Cahn-Hilliard equation.

Due to common simplifications deployed during the implementation of the
Ohta-Kasawaky model and the assumptions behind its development, some lim-
itations can be highlighted: (i) the use of a composition-independent Onsager
coefficient, Λ, hinders the accurate description of the events where the kinetic
is determined by single-chain dynamics and therefore speeds up intrinsically
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slow diffusive processes. (ii) The absence of thermal fluctuations is advanta-
geous given that solving the Cahn-Hilliard-Cook stochastic partial differential
equation is a formidable task. However, no free-energy barriers can be over-
come in this model due to this fact. (iii) Gaussian chain conformations are as-
sumed by the model and encoded in the long-range kernel G. The presence of
confinements in DSA alters the chain confirmations at these walls and how the
model can account for these chain alterations has not been yet investigated.

One particularly interesting finding in our deterministic study of DSA ki-
netics is the influence of two periodicities in the control of the defectivity: the
wavelength of the fastest growing mode λmax and the equilibrium domain spac-
ing LO. The structure formation process can be divided into three stages: the
surface-directed spinodal decomposition that prompts the formation of an ini-
tial ordered structure templated by λmax, the intermediate domain-merging stage
where the periodicity of the domains changes to approach the natural value
of LO, and the final equilibration stage where the detailed position of the in-
ternal AB interfaces is optimized. As the mismatch ratio differs from unity,
λmax/LO < 1, the intermediate stage spans for a longer period increasing the
probability of the formation of undesired domains. Faster structure formation
and a system less prone to defects can be promoted by tuning the DSA char-
acteristic dimensions to λmax, such as the spacing of the guiding pattern of the
size of confinement. This is achieved at low values of χN when the mismatch
ratio is close to unity and the design based on the natural spacing LO is closer
to the use of λmax as the design length scale.

Also, we have presented the fluctuation mode analysis (FMA) as an alterna-
tive, and computationally less costly, approach to investigate local composition
fluctuations within the continuum model. Beyond avoiding the efforts of solv-
ing the Cahn-Hilliard-Cook equation, the FMA allows decoupling the composi-
tion fluctuations that a given meta-stable morphology can exhibit. This feature
has been exploited for the prediction of scattering patterns where specific fluc-
tuation modes, relevant for the detection of defects via long-wavelength scatter-
ing, were identified and investigated. This finding provides the physical foun-
dations for the design of an improved defect-metrology procedure including
a preliminary screening of an entire wafer using light scattering and the pre-
classification of defects based on their long-range scattering footprints.

An obvious continuation of this work is to study other defect topologies
commonly found in DSA to build a library of defect-scattering footprints re-
quired for the development of the aforementioned improved metrology pro-
cedure. The fabrication of line-stripe patterns via chemically-guided DSA is
leading the research efforts in the next three years i, therefore defect topologies

iAccording to results from the DSA Survey at the 4th International Symposium on DSA,
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in this systems might be a reasonable target for the continuation of this work.
Extending our findings to 3D calculations would allow the investigation of

the effect of the guiding patterns on the defect removal and formation mecha-
nism. Previous SCFT calculations have addressed this questions, and further
investigations can be deployed for larger systems and unexplored topologi-
cal defects to unveil their transition pathways using the FMA and the string
method. Beyond the industrial interest, the computational advantages of the
Ohta-Kawasaki model can be exploited to perform similar studies on the topo-
logical defects of other phases like hexagonal cylinders or gyroid aiming to
draw more general conclusions for the kinetics of defect formation and anni-
hilation.

Our work has been devoted to the study of symmetric BCP, however, the use
of asymmetric diblock-copolymers is not unusual in experimental conditions
and the use of the Ohta-Kawasaki model can be extended to those systems via
the extension of the phenomenological mapping that relates both model param-
eters, α̃ and γ̃, to the coarse-grained invariants f and χN. The extension of the
Ohta-Kawasaki model to more complex molecular architectures, e.g., triblock
copolymers of blends of copolymers and homopolymers is another challenge.

An important open question related to the long-range kernel,G, of the Ohta-
Kawasaki model is how to consider boundary conditions for more complex ge-
ometries than planar surfaces. Strategies to overcome this limitation are needed
to investigate topological confinements in DSA where intricate shapes can be
required for the fabrication of device-oriented structures.

November 11-13, 2018, Sapporo, Japan.
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