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Abstract 

 

Eucalyptus nitens is one of the most important fast growing plantation species in Chile. 

Currently it is mostly used for pulp and paper, but in recent years there has been a growing 

market for solid wood products to increase the economic returns, and an increasing interest on 

producing high quality materials from this species. Thermal modification technologies show 

potential to produce high quality material and have been used for other eucalypt species. 

Temperatures vary between 150 and 240°C and the limitation of oxygen content in the process 

is the most common feature of the thermal modifications currently available on the market. 

Main differences are the shielding gases used (steam or nitrogen for example) and the pressure 

applied to open or closed processes. Open processes work under atmospheric pressure, mostly 

use superheated steam, and are considered “dry processes”, as the wood moisture content (MC) 

decreases considerably during the process. Closed systems enable elevated pressure levels 

during the modification, which makes the modification process faster. They are considered 

“wet/moist processes”, as the MC during the process is higher than in the closed system. The 

elevated MC, in conjunction with the accumulation of carboxylic acids in the wood, has been 

suggested as the main cause of the accelerated degradation of the wood during these processes. 

However, it still remains unclear if the properties of thermally modified wood from open and 

closed processes are significantly different. These differences need to be explored to avoid the 

use of thermally modified wood with properties that do not fit for specific products or 

applications. 

 

To further understand the mechanism and the differences between these two types of 

modifications and to analyse the potential of E. nitens as thermally modified wood, the material 

was modified in a closed system under elevated pressure generated by steam and controlled 

relative humidity (30 and 100% RH) at temperatures between 150 and 170°C, and in an open 

system with a standard thermal modification procedure under saturated steam between 160 and 

230°C. The chemical composition (hemicelluloses, cellulose, lignin, extractives, acetic acid, 

formic acid, total phenols, cellulose degree of polymerization and degree of crystallinity) was 

measured. Selected mechanical properties (modulus of elasticity (MOE), modulus of rupture 

(MOR), resistance to impact milling (RIM) and deflection and work in bending) were assessed 

and the influence of the chemical changes on these properties was analysed. Changes in wood 

anatomy during modification were examined and the reversible and irreversible effects of the 

hygroscopicity were investigated. All these properties were compared using the corrected mass 
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loss (CML), which is the oven dry mass loss of extractive free wood, to analyse the 

differences/similarities between both thermal modification processes. 

 

The chemical changes made it possible to differentiate between open and closed system 

modifications, as the strongest differences between the modifications were specifically the 

hemicelluloses (xyloses), acid content and cellulose degree of polymerization. Even if the 

mechanical and anatomical properties showed no significant differences between the open and 

closed processes, MOR showed a strong correlation with those chemical changes, influencing 

the deflection and work in bending. These differences could be clearly be seen when comparing 

open and closed system modifications with similar CML. The differences between open and 

closed systems were also noticeable in the reversible changes in equilibrium moisture content 

(EMC) and volumetric swelling (Smax) after continuous water soaking cycles. These cycles 

partially lessened the reduction in EMC and Smax after the modification processes. This is 

related in the open system modification to the removal of the drying related effects of 

amorphous polymers, while the removal of the cell wall bulking effect was the main effect in 

the closed system modifications at high RH. These effects also influence the mechanical and 

chemical properties of the modified wood. 

 

It was shown in an experimental run that thermally modified E. nitens wood has the potential 

to be used for decking material, as it fulfils all the requirements regarding the surface hardness, 

anti-swelling efficiency (ASE), EMC, volumetric swelling, and abrasion resistance to be used 

as decking material. Overall, the results obtained in this study can be used as guidelines for the 

selection of the type of modification to be used for this species, which will depend on the desired 

properties of the final product and the quantity of material to be produced. 
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Zusammenfassung 

 

Eucalyptus nitens ist eine der wichtigsten schnell wachsenden Plantagenbaumarten in Chile. 

Sein Holz wird hauptsächlich für Zellstoff und Papier verwendet, seit einigen Jahren gibt es 

jedoch, durch ein steigendes Interesse an hochwertigen Produkten aus dieser Holzart, einen 

wachsenden Markt für Massivholzprodukte, wodurch finanzielle Erträge erhöht werden. 

Thermische Modifizierungstechnologien haben ihr Potenzial bei der Herstellung von qualitativ 

hochwertigem Material bereits unter Beweis gestellt und wurden schon für andere 

Eukalyptusarten (zum Beispiel Eucalyptus globulus) verwendet. 

 

Temperaturen zwischen 150 und 240 °C und die Begrenzung des Sauerstoffgehalts im Prozess 

sind die Charakteristika der thermischen Modifizierungen, die aktuell auf dem Markt verfügbar 

sind. Die Prozesse unterscheiden sich durch die verwendeten Arbeitsgase (zum Beispiel 

Wasserdampf oder Stickstoff) und den Druck, der in offenen oder geschlossenen Prozessen 

herrscht. Offene Verfahren arbeiten unter Atmosphärendruck und verwenden häufig 

überhitzten Wasserdampf. Diese Verfahren gelten als „Trockenprozesse“, da die Holzfeuchte 

während des Prozesses stark abnimmt. Geschlossene Systeme arbeiten mit Überdruck während 

der Modifikation, wodurch die Modifikationsdauer reduziert wird. Sie gelten als „Feucht-

Prozesse“, da die Holzfeuchte während und nach des Prozesses höher ist als beim offenen 

Prozessen. Die erhöhte Holzfeuchte bei die geschlossene Prozessen, in Verbindung mit der 

Akkumulation von Carbonsäuren im Holz, wird als Hauptursachen für die beschleunigte 

Degradation des Holzes angesehen. Es ist jedoch ungeklärt, ob sich Eigenschaften von 

thermisch modifiziertem Holz aus offenen und geschlossenen Prozessen signifikant 

unterscheiden. Diese Unterschiede sollen in der vorliegenden Arbeit untersucht werden, um 

eine den Eigenschaften entsprechende Verwendung und Anwendung von thermisch 

modifiziertem E. nitens Holz zukünftig zu gewährleisten. 

 

Um die Mechanismen und die Unterschiede zwischen diesen beiden Modifizierungssystemen 

besser zu verstehen, und das Potential von E. nitens als thermisch modifiziertes Holz zu 

analysieren, wurde das Material in einem geschlossenen und einem offenen System modifiziert. 

Beim geschlossenen Verfahren fand die Modifizierung unter hohem Druck, der durch Dampf 

erzeugt wurde, kontrollierter relativer Feuchtigkeit (30 und 100 % RH), und bei Temperaturen 

zwischen 150 und 170 °C statt; im offenen System erfolgte sie unter Sattdampf zwischen 160 

und 230 °C. Die chemische Zusammensetzung (Hemicellulosen, Cellulose, Lignin, 
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Extraktstoffe, Essigsäure, Ameisensäure, Phenole, Polymerisationsgrad der Cellulose und 

Kristallinitätsgrad) wurden analysiert. Ausgewählte mechanische Eigenschaften 

(Elastizitätsmodul (MOE), Biegefestigkeit (MOR), strukturelle Integrität und Durchbiegung 

und Biegearbeit) wurden bestimmt und der Einfluss chemischer Veränderungen auf diese 

Eigenschaften diskutiert. Veränderungen in der Holzanatomie nach der Modifikation wurden 

untersucht und die reversiblen und irreversiblen Effekte auf die Hygroskopizität näher 

betrachtet. Die so für beide Modifizierungsprozesse erhaltenen Materialkennwerte wurden 

unter Verwendung des korrigierten Massenverlusts (CML), der dem Masseverlust von 

extraktfreien Holz entspricht, verglichen. 

 

Chemischen Veränderungen zeigten am deutlichsten den Unterschied zwischen dem offenen 

und geschlossenen Prozess. Die Hemicellulosen (z.B. Xylose), der Säuregehalt und der 

Polymerisationsgrad der Cellulose unterschieden sich am stärksten. Auch wenn die 

mechanischen und anatomischen Eigenschaften keine signifikanten Unterschiede zwischen den 

beiden Systemen aufwiesen, zeigte der Elastizitätsmodul eine Korrelation mit den chemischen 

Veränderungen, was die Durchbiegung und Biegearbeit beeinflusst und auf ein spröderes Holz 

nach Modifizierung im geschlossenen System hindeutet. Diese Unterschiede waren beim 

Vergleich offener und geschlossener Systemmodifikationen mit ähnlicher CML deutlich zu 

erkennen. Auch bei den reversiblen Änderungen der Gleichgewichtsfeuchte (EMC) und der 

volumetrischen Quellung (Smax) nach Wassersättigung und Trockungszyklen zeigten sich 

Unterschiede. Diese Zyklen verringerten teilweise den Einfluss der Modifizierung auf die EMC 

und Smax. Dies ist im offenen System bedingt durch die Entfernung der trocknungsbedingten 

Effekte von amorphen Polymeren, und beim geschlossenen Systen durch die  Beseitigung des 

Zellwandfülleffekts bei hohem Druck. Die beschriebenen Effekte beeinflussen auch die 

mechanischen und chemischen Eigenschaften des modifizierten Holzes.  

 

Weiterhin wurde gezeigt, dass thermisch modifiziertes Holz von E. nitens das Potenzial hat, für 

Terrassendielen verwendet zu werden. Die Ergebnisse zeigten, dass dieses Material alle 

Anforderungen hinsichtlich Oberflächenhärte, Anti-Schwellungseffizienz (ASE), 

Gleichgewichtsfeuchtigkeitsgehalt, Volumenquellung und Abriebfestigkeit erfüllt. Es lässt sich 

somit sagen, dass sich die in dieser Studie erhaltenen Ergebnisse als Richtlinien für die Auswahl 

des Modifizierungssystems benutzen lassen, die von den gewünschten Eigenschaften des 

Endprodukts und der Menge des herzustellenden Materials abhängt. 
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1  Chapter 1: General introduction 

 

1.1 Background 

There is interest in Chile to widen the use of solid wood products, especially from fast growing 

plantation species such as Eucalyptus nitens (Shining Gum), which is a species with great 

adaptability to the climate conditions in the southern part of the country. The plantation of this 

species has grown in importance in recent years due to its excellent growth rates, positioning it 

into the second fastest growing species in Chile, after Pinus radiata, and better cold and frost 

resistance than Eucalyptus globulus (Blue Gum), the most used hardwood plantation species 

(INFOR 2014). For the time being, most of the plantations are used for the production of wood 

for cellulose, but there is an increasing amount of plantations of this species being planted, 

which means that there will be more raw material available in the coming years. Some of the 

plantations aim to be used for solid wood products by seeking to produce logs that are free of 

knots, known as clear wood. This opens the possibility to study the potential uses of this 

material as a viable alternative to the most used wood species in Chile (P. radiata). 

 

Currently, there are still some drawbacks regarding solid wood from E. nitens, such as low 

dimensional stability, variation in color and relatively low resistance against microorganisms, 

which could potentially limit its use for solid wood products. That is why thermal modification 

is a possible good alternative to solve some of these drawbacks and to add value to the wood, 

as it can be used as an alternative to natural wood for decking, façade cladding, window 

scantlings, garden furniture, fences, poles, flooring and paneling (Scheiding 2018). 

 

Thermal modification has been used as a commercially viable technology for over two decades. 

There are several different types of processes, with temperature ranging between 160° and 

240°C. They can be differentiated by the operating conditions, either steam, vacuum, nitrogen 

or other conditions that limit the presence of oxygen and can be separated in open systems, 

under atmospheric pressure, or closed systems, processes under pressure or vacuum to name a 

few (Militz and Altgen 2014). The changes that occur due to thermal modification are gradual 

and depend on the process conditions. In general, there is a decrease in mass, swelling, 

equilibrium moisture content (EMC), mechanical properties and an increase in durability (Hill 

2006). However, it remains unclear whether the properties of thermally modified wood from 

open and closed systems differ significantly. Currently, there are no general quality control 
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systems for thermally modified wood products that are available on the market (Willems et al. 

2015b), thus there is a need to analyze the differences between modifications to avoid the use 

of thermally modified wood with properties that are inappropriate for a specific use or product. 

 

1.2 State of the art 

 History of eucalypt plantations in Chile 

In Chile, plantations are producing almost all the wood needed for industrial purposes, covering 

the national market and the exportations. Thanks to this, the use of native forest has been strictly 

limited and regulated, so that it can regrow under a recovery and management program. 

Plantations in Chile are composed of fast growing species, mainly P. radiata, a species that 

originates from California, USA. It was introduced by the end of the 19th century, but the big 

boom of plantations started in the mid-sixties. As of 2014, there are 1.4 million hectares 

plantations of this species. The second species of importance is E. globulus, originally from 

southern Australia and also introduced in the late 19th century. It was used for firewood and 

poles, until the amount of plantations started to grow in the eighties due to its potential as 

material for pulp and paper. Nowadays, there are about 570,000 hectares planted. The third 

species of importance is E. nitens, also originally from southern Australia and introduced in the 

sixties by the Instituto Forestal (INFOR), which is part of the Agriculture Ministry of the 

Chilean government, as part of program to introduce new species to repopulate large areas that 

were available for afforestation. This species also started to grow exponentially in the eighties 

for the same uses as E. globulus. As of 2014, there are about 250,000 hectares plantations, 

which amounts to 10.5% of the total plantations in Chile, for an overall 840,000 hectares of 

eucalypt species, including smaller ones like E. regnans. As for the rest of the plantation 

species, there are about 200,000 hectares, covering Acacia, Atriplex, Populus, Pseudotsuga and 

other smaller eucalypt species (INFOR 2014; INFOR 2015). 

 

There was an increase on the research of genetics in many eucalypt species in the late 1980s by 

intensifying the selection of seeds from species that maximize the use of the wood. This 

research was not only based on having better growth and higher volumetric yield, but a better 

response to low quality soils, scarce water availability and frost, and in terms of what products 

to obtain, a better pulp yield, solid wood and high quality veneer sheets (INFOR 2014). 

Preliminary tests in selected zones with low temperatures in southern Chile from the early 1970s 

to the mid-1980s showed that E. nitens, E. regnans and E. delegatensis had volumetric rates 
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above 50 m3 per hectare per year, exceeding the volumetric rates of E. globulus and P. radiata, 

mostly due to the higher survival rate of those species to lower temperatures and frost (Prado 

et al. 1986). At the same time INFOR started trials incorporating the origin of the seeds, 

something that was previously not considered, due to the limited number of provenances which 

were available at the beginning of the program. Trials were established with several 

provenances for the most outstanding species and this later resulted in tests of complete 

collections of provenances of seeds in which progenies were also considered. This gave rise to 

the genetic improvement programs that started in 1991, establishing the bases for the genetic 

improvement of eucalyptus in the country (Infante et al. 1991). Since then, the eucalyptus trees 

have strongly increased their participation in forest plantations from about 33,000 in 1980 to 

the current 840,000 hectares in 2014, mostly E. globulus and E. nitens (INFOR 2015). 

 

The recent increase of E. nitens plantations is a good example of the incorporation of a species 

to zones with low temperatures for repopulation, replacing the species that were normally used 

(E. globulus). Besides the excellent growth, E. nitens presents higher cold resistance than the 

E. globulus. Even with a lower density, this is compensated with a greater growth. Thanks to 

those qualities, it has reached the third most planted species in Chile (INFOR 2014; INFOR 

2015). 

 

 Use of E. nitens plantations in Chile 

Today, most of the eucalypt plantations are set up for short rotations, between 11 and 16 years, 

and mostly for pulpwood production. In comparison of the initial tests, these plantations have 

growing rates that vary between 13 to 26 m3 per hectare and 14 to 37 m3 per hectare for 

E. globulus and E. nitens respectively (Cabrera et al. 2013). 

 

For other products, such as sawlogs and veneers, trials have been done, testing the intensity of 

pruning and thinning, with some plantations presenting growing rates up to 48 m3 per hectare 

and year. This kind of plantations have been multiplying over the years, as the market started 

to require high quality wood and greater economic returns from eucalypt plantations (Muñoz et 

al. 2005). The age of the plantations (as of 2015) are in its majority under 10 years (Figure 1.1), 

that is because most of the interest of E. nitens plantations was for pulp and paper, but in the 

future the plantations will tend to be used for solid wood (Muñoz et al. 2005), so there is a huge 

market potential in the following years for this wood species. The last couple of years a 
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percentage of the E. nitens plantations has been managed with the objective to obtain high 

quality solid wood products, generating logs that are free of knots (clear wood), taking 

advantage of the excellent growth and large diameter that this species can achieve in short term 

rotations, shorter than the ones required by radiata pine. This leads to a great potential of the 

species to produce in relatively short rotations (between 15 and 19 years), so that it is possible 

to obtain, from the same tree, logs for sawn wood, pulp and plywood (Valencia and Cabrera 

2007). At the moment INFOR estimates that 18,000 hectares of E. nitens show a certain degree 

of management for high quality logs (INFOR 2014). 

 

 

Figure 1.1: Age and hectares of E. nitens plantations in Chile as of 2014 (INFOR 2015). 

 

Most of the wood from the plantation eucalypts is used for pulp (Table 1.1), about 58 % of the 

total consumption. Wood chips are also very important, as they represent about 39 % of the use 

of the wood, with 90 % of the production exported. All the other products are still not so 

relevant, but there has been 46 % increase in the quantity of sawn wood from 2014 to 2015 

(INFOR 2015), which is a positive tendency for the market and shows that there is an interest 

to use this eucalypt wood for high end products. 
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Table 1.1: Consumption of eucalyptus wood in the Chilean industry in 2015. 

Product Thousands of m3 

Pulp 6,996 

Sawnwood 26 

Panels and veneers 278 

Sawlogs for exports 21 

Wood chips 4,772 

Posts and poles 3 

 

 

Oriented strand board (OSB) is one of the main uses for the wood chips, but most of it is 

exported to cellulose plants in Asia. In some cases, E.nitens wood is used in plywood, as it has 

advantages over other species, thanks to the large diameter pieces free of knots. They are mostly 

mixed with P. radiata, but there were also test with 100 % E. nitens panels (Poblete and Burgos 

2010). There is also big demand for fire wood, as the availability of this species is higher than 

the most common native species usually used, the proximity of plantations to distribution 

centers and the price. As for the sawn wood, the production is mostly used for furniture, decking 

and flooring.  

 

 Challenges with the use of E.nitens solid wood 

The rate of use of a plantation E. nitens logs for solid wood depends on the following aspects: 

those associated with the formation of longitudinal splitting and torsions, which happen because 

of the growth stresses in the wood, and those associated with aspects of dimensional stability 

(contractions, internal collapse and cracks), which are mostly caused by differences in the speed 

of drying (moisture differences in the pieces of wood), generally appearing when the drying 

process is too fast. These drawbacks are related with various wood characteristics, decreasing 

the rate of use of the logs. The growth stresses are related to tension wood happening in the 

stem periphery in eucalypt species (Washusen et al. 2003), causing log splitting and excessive 

distortion, which in turn causes very poor sawing accuracy and further board splitting. Tension 

wood in form of bands also causes collapse and variable transverse and longitudinal shrinkage 

during drying (Touza Vázquez 2001; Washusen 2009), reducing the recovery and value of dried 

sawn products. 

 

For the production of high quality logs, harvesting is the first step to obtain the desired product. 

The biggest challenge is the degree of growth tension of the tree, which is manifested in cracks 

at the ends of the log. The magnitude of the cracks can disqualify the log for solid wood 
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production, so a proper management of the tree in the plantation is very important to minimize 

the crack formation. To process the logs that have cracks at the ends, the orientation of the cuts 

in the sawmill have to be selected according to the cracks, limiting the possible final products 

that could be obtained from the log. There are also models to avoid other drawbacks, like the 

growth tension, but they require slower sawn times, as the cuts have to be applied separately 

for each log to decrease the levels of tension (Touza Vázquez 2001). 

 

The drying of E. nitens wood is a very complex process. At industrial level, air pre-drying is 

carried out for two to three months, depending on the atmospheric conditions of the area. 

Afterwards, a pre-drying process in the drying chamber is needed, then, the wood is 

reconditioned and then the final drying process can start. This complexity of the drying process 

has limited the use of this species to obtain solid wood products for smaller industries, because 

the process has to be slow, with low gradients of moisture loss, which also translates into a 

longer processing time than that required by radiata pine, the most used material in Chilean 

sawmills. The drying process is characterized by a rapid loss of water contained in the surface 

of the wood, which generates high moisture gradients, surface shrinkage and drying stresses 

that in turn cause surface and internal cracks that disqualifies the product for certain uses. 

However, when doing a proper classification of the wood, separating lateral and central tables, 

applying drying protocols of low gradients suitable for the species, and constantly monitoring 

this process, it is possible to obtain good material at the end of the process (INFOR 2014). 

 

In summary, there are some technical challenges for obtaining good quality solid wood out of 

E. nitens plantations, but in the last couple of years there has been a steady research to solve 

them, starting from the plantations itself and their management to how to properly dry the wood 

avoiding the inherent characteristics of a relatively young tree. 

 

 Characteristics of E. nitens wood 

The dry solid wood presents the following characteristics: Brownish yellow to almost white in 

some cases (Figure 1.2) and a notorious growth ring (Paz and Pérez 1999). It presents a low 

natural durability in ground contact, classified as class IV as per the Australian Standard 5604-

2005 (2005) (standard still in use in Chile for eucalypt species), which means that it has a low 

resistance to decay fungi and termite attacks. The basic density of plantation E. nitens is 

dependent of age, the site of the plantation and if the plantation management (pruning, thinning, 
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final product objective). For example, plantations without any particular management: 460 

kg/m3, 478 kg/m3 and 554 kg/m3 for 15, 24 and 29 year old plantations respectively in Australia 

(Yang and Waugh 1996), 429 kg/m3, 433 kg/m3 and 472 kg/m3 for 7, 10 and 13 year old 

plantations respectively in Chile (Peredo 1999). In general, the density of plantation E. nitens 

wood is lower than the other most used eucalypt plantations, E. globulus and E. grandis (INFOR 

2014). It has to be noted that most of the general information of eucalypt species characteristics 

are derived from Australian publications, which are based on native trees, thus they tend to 

show higher values than what is presented by plantation wood, and are not recommended to be 

used when working with plantation wood. 

 

 

Figure 1.2: Color variations of E. nitens natural wood. 

 

 Current E nitens market  

The current tendency in Chile shows that eucalypt plantations are increasing while P. radiata 

plantations have started to slightly decrease in the last couple of years (Figure 1.3). Long term 

invest in managed plantations destined for high quality logs for sawn timber could mean higher 

returns than in plantations destined for pulpwood. This also could bring benefits to smaller 

independent industries all over Chile (Valencia and Cabrera 2007).  
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Figure 1.3: Plantations in hectares from the year 2000 to 2014. Grey, P. radiata, black, eucalypt 

species (INFOR 2015). 

 

The domestic market prices for pulpwood logs in 2015 are about 26 US$ for E. nitens and about 

21 US$ for P. radiata, but the P. radiata sawn logs cost about 46 US$, more than double than 

pulpwood logs. There are no prices for sawn log out of eucalypt species, because there is still 

no market for it. Nonetheless, there are information about the nominal average export prices for 

E. nitens sawn wood, which is 225 US$ free on board (FOB)/m3, the same as radiata pine and 

lower than E. globulus (246 US$ FOB/m3) (INFOR 2015). Even with the competitive price, 

there are currently difficulties to enter the national and international markets, because of some 

of the characteristics of the E. nitens wood (low dimensional stability, variation in color and 

durability) and the dominance of P. radiata as main raw material for almost all wood based 

products in Chile. This means that, for a better use of this wood species, the aim for future uses 

of this species should be used for alternative or high end products to open its own niche in the 

market. That is why is important to research for alternative uses of the material and ways to 

improve its characteristics. This can be achieved by wood modification, either chemical or 

thermal. 
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 Chemical modification treatments 

Traditionally, biocides are used to impregnate the wood to increase the resistance against wood 

decay to extend the service life of the material. As an example, inorganic biocides, such as 

chromated copper arsenate (CCA), creosotes or ammonium based organic biocides, are used, 

as they are toxic for fungi, insects or a combination of both. The use of these chemicals can 

cause health and environmental related issues (Schultz and Nicholas 2008), as they have a 

tendency to leach from the treated wood when in service (Townsend et al. 2005). There are also 

difficulties related to how it has to be disposed after use (Voss and Willeitner 1993). The current 

tendency is to lower the use of these chemicals, so alternatives have been developed. One of 

those alternatives is the use of non-biocidal chemicals that aim to change the basic chemistry 

of the wood cell wall by penetrating it via impregnation, reacting when exposed to elevated 

temperatures during a curing step, and becoming immobilized inside the wood cell wall (Hill 

2006). The acetylation of wood with acetic anhydride (Rowell 2014), or impregnation with 

furfuryl alcohol (furfurylation) (Lande et al. 2008), which are cell filling agents, or the use of 

N-methylol compounds, like 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU), which 

penetrate the cell wood wall and reacts with the hydroxyl groups (Xie et al. 2014; Emmerich et 

al. 2017), are examples of these kinds of modifications. Due to the necessity for a full volume 

impregnation of these reactants to produce the modification, there are limitations of what kind 

of wood species to use. Eucalypt species tend to have a low permeability to liquids, as they tend 

to have permeable sapwood and impermeable heartwood due to tylosis formation and the 

occlusion of pores (da Silva et al. 2010), thus making eucalypt not particularly ideal for these 

kind of modifications. On the other hand, thermal wood modification requires no addition of 

chemicals, thus making it a more viable alternative. 

 

 Thermal modification  

 

It has been known for a long time that elevated temperatures alter the properties of the wood, 

with experiments as far as hundred years ago (Tiemann 1915). The main effects are the changes 

in color (Tiemann 1917; Morita and Yamazumi 1987; Bekhta and Niemz 2003), reduction in 

hygroscopicity (Tiemann 1917; Seborg et al. 1953; Burmester 1975), an improved dimensional 

stability (Stamm and Hansen 1937; Burmester 1973; Giebeler 1983) and an elevated resistance 

against degradation but with a decrease in the mechanical strength (Stamm et al. 1946). The 

processes use treatment temperatures between 160°C and 240°C, but under different operating 
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conditions, either steam, vacuum, nitrogen or other elements that limit the presence of oxygen 

in the process (Esteves and Pereira 2009; Militz and Altgen 2014; Sandberg and Kutnar 2016). 

The current total annual production of thermally modified timber in Europe was estimated to 

be about 400,000 m3 (Scheiding 2018). Data for South America is not available, as currently 

there are not many industries working with this kind of modifications. 

 

The types of thermal modifications that have been developed in the last decades can be seen in 

Table 1.2. The differences vary from the type of heat transfer; fluid contact means that the wood 

is in direct contact with the element that limits the presence of the oxygen, convective is the 

transfer of the heat by the movement of fluids or gases using heating plates or tubes made of 

steel, condensing is when steam is directly injected to the system and it is in contact with the 

wood during the heating process and plate contact is the direct contact of the wood to a heated 

plate, like the ones used to produce plywood. The reactor type used for thermal modification 

varies from a standard kiln used for drying but modified for the thermal modification, an 

immersion tank were the selected modification fluid and the wood are placed together for the 

modification, and an adapted autoclave, similar to the ones used for chemical modifications. 

The type of process can be separated into two groups: open systems, which work under 

atmospheric pressure, and closed system processes, such as processes using vacuum or steam 

pressure to control the atmosphere during the modification. The wood moisture state during 

process is also an important way to differentiate the modification processes, as it influences the 

properties of the material after the modification. There are processes were the wood is 

practically oven dry during the modification, where the wood is in a wet state or where it is in 

a moist state, with low moisture content during the modification. 
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A short introduction of a selection of commercially available processes: 

 

ThermoWood: The most used and common thermal modification. This process is done under 

atmospheric pressure and steam as the heat transferring element. It is separated in three main 

phases. It can use green or kiln dried wood. The first phase consists of drying the wood at high 

temperature using heat and steam by rapidly raising the temperature to 100°C inside the kiln, 

and the slowly increasing it to 130°C to reduce the moisture content to about 0 %. The 

temperature inside the kiln is then increased between 185°C and 215°C for 2 or 3 hours (the 

temperature and time varies depending on the end product properties). The final phase consists 

of cooling the wood and to bring the moisture content up to 4 to 6 % (Mayes and Oksanen 

2002). The overheated steam atmosphere helps to prevent and avoid cracks while also inducing 

thermohydrolysis reactions. 

 

FirmoLin: This process uses pre-dried wood and is performed in pressurized reactors, which 

allows to lower the treatment temperature and to shorten the production time. It has an active 

control on total pressure and the water vapor pressure as well. The process parameters of partial 

water vapor pressure and temperature of the reactor are set to a high relative humidity (high 

pressure) during hydrolysis in the first steps of the thermal treatment, and then gradually lower 

the relative humidity to allow the dehydration and cross-linking reactions (Boonstra et al. 1998) 

while also avoiding excessive drying. A process usually consists of four steps, a pre-vacuum 

process to assist reaching the desired pressure, following with a temperature increase between 

10 to 12°C per hour until peak temperature is reached (between 150 to 180°C). Finally, a 

holding step at the peak temperature for 2 to 3 hours, finishing with and cooling down step 

decreasing the temperature between 15 to 20°C per hour until it reaches 65°C (Willems 2009). 

 

Wood Treatment Technology (WTT): This process uses pre-dried wood and is carried out in 

a pressurized autoclave cylinder of stainless steel to have a high energy and heat transfer system. 

The heat used in the process is produced by a gas- or oil-fired boiler that heats thermal oil. This 

is used as heat transfer medium for both the heating and the cooling phase, where the heat is 

ejected in a dry cooler. It can reach a pressure between 7 and 10 bar and the modification 

temperature can be set between 160°C to 210°C (Dagbro et al. 2010). 

 

TERMOVUOTO: The process uses a reconstructed conventional vacuum kiln that can reach 

temperatures up to 250°C. It is heated up with diathermic oil that circulates between the double 
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layered steel of the kiln. When in vacuum, the heat is distributed with fans moved by external 

motors and the speed is proportional to the internal air pressure. It uses wood that is dried to 

about 0 % moisture content. The process consists of a heating phase from 100°C to the peak 

modification temperature (between 160 and 220°C), maintaining the temperature for a defined 

time (between 0.75 and 18 hours) and then a cooling process until the wood reaches 100°C. 

The average vacuum pressure is also controlled during the process (Allegretti et al. 2012). 

 

Plato Wood: This process uses green wood or conventional dried wood with moisture content 

of 14 o 18 %. This process has 4 main steps. It starts with a hydrothermolysis that has a duration 

of 4 to 5 hours at temperatures between 150 and 190°C in humid conditions using saturated 

steam as the heating medium. It is followed by drying the wood to 9-10 % moisture content in 

a conventional industrial kiln. The third step is realized in a special stainless steel kiln heating 

the wood up to 150-190°C under dry conditions until it reaches moisture content close to 0 %. 

The final stage raises the moisture content to 4-6 % by conditioning it. The time of treatment 

depends on the species, shape, thickness and final use of the modified wood (Boonstra et al. 

1998). 

 

Vacu3 (Timura): This method uses the advantages of fast wood moisture transport at a vacuum 

of 150 mbar (85% vacuum) that decreases the boiling point of water accelerating the drying of 

the wood, in conjunction with a well-regulated and efficient contact heat transfer (175 to 230 ° 

C) using heating plates A special airbag system is used, which can reach a pressure up to 70 

tons on the wood during the process, thus the deformation of the material is greatly reduced It 

can be used with wood at any initial moisture content and thicknesses (Wetzig et al. 2012). As 

a result of using the vacuum, the by products are condensed at the drying chamber wall and are 

taken out of the system. (Hofmann et al. 2013). 

 

Retification process: This process is performed using wood with a 12 % moisture content in a 

kiln under an inert atmosphere constituted from either nitrogen or carbon dioxide, producing a 

mild pyrolysis of the wood. The modification temperatures depend on the species used and can 

reach up to 240°C (Gerardin 2016). 
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1.3 Effects of thermal modifications in wood 

 Changes in the chemical structure 

The changes in the chemical composition of the wood start to be significant and can be 

quantified at modifications starting at peak temperatures of 120°C (Kollmann et al. 1969). 

There are many reactions happening simultaneously during the modification in all the wood 

components. Furthermore, the configuration of the constituents within the cell walls, their 

chemical bonds and intermediates that are derived from other reactions also influence the 

chemical changes (Fengel 1966; Kollmann et al. 1969). This makes the analysis of the chemical 

changes during the process itself rather difficult, so the analysis are mostly done after the 

process, using either wet chemistry to measure the relative contents the wood constituents 

(hemicelluloses, celluloses, lignin, extractives) (Alen et al. 2002; Esteves et al. 2008a), or 

proximate analysis such as analyzing spectra obtained from the CP-MAS 13C NMR technique 

(Tjeerdsma et al. 1998; Mburu et al. 2007), infrared absorption (FTIR) spectra (Nuopponen et 

al. 2005; Tjeerdsma and Militz 2005; Esteves et al. 2013) or Raman scattering data (Nuopponen 

et al. 2005; Özgenç et al. 2017). 

 

The first structural compounds to be thermally affected are the hemicelluloses, with their 

degradation starting by a deacetylation by a hydrolytic cleavage of the acetyl groups, which is 

released as acetic acid (Garrote et al. 1999; Garrote et al. 2001; Sundqvist et al. 2006). Besides 

acetic acid, formic acid and other organic acids also form during the thermal modification 

(Sundqvist et al. 2006). The acid catalyzation also forms furfural, formaldehyde and other 

aldehydes (Tjeerdsma et al. 1998). This increases the decomposition of the polysaccharides that 

form the hemicellulose (Tjeerdsma et al. 1998; Sivonen et al. 2002; Nuopponen et al. 2005). 

There is a loss in hydrogen bonds and a certain hydrolysis of the polymer chains into monomers 

and oligomers (Tjeerdsma et al. 1998; Garrote et al. 1999) which form degradation products, 

such as furfural and hydroxymethylfurfural from pentoses and hexoses respectively (Kotilainen 

et al. 2000; Nuopponen et al. 2005; Peters et al. 2009). Xylose, arabinose, galactose and 

mannose all decrease as the temperature of the thermal modification increases. The rate in 

which the carbohydrates degrade depends on the duration of the treatment, the severity of it, 

the type of the modification process (open or closed) and also which species is being used 

(Esteves and Pereira 2009). 
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Cellulose is not as strongly affected as the hemicelluloses by the thermal modification process 

(Fengel 1967; Tjeerdsma et al. 1998; Tjeerdsma and Militz 2005). Nonetheless, there is 

hydrolytic cleveage in the less ordered amorphous regions of the cellulose microfibrils, which 

increases the degree of crystallinity (Bhuiyan et al. 2000; Bhuiyan et al. 2001; Sivonen et al. 

2002), resulting in a decreasing accessibility of hydroxyl groups to water molecules (Bhuiyan 

and Hirai 2005; Boonstra and Tjeerdsma 2006), and produces changes in the degree of 

polymerization (DP) (Fengel 1967; Sweet and Winandy 1999). 

 

Lignin is the most thermally stable component. This leads to a relative increase in its percentage 

after the thermal modification (Kollmann and Fengel 1965; Tjeerdsma and Militz 2005; Esteves 

et al. 2008a), but despite this increase, there are still chemical changes in the lignin composition. 

There is an increase in carbonyl groups (Kotilainen et al. 2000; Tjeerdsma and Militz 2005) and 

the ether linkages are cleaved, producing new free phenolic hydroxyl groups (Tjeerdsma et al. 

1998; Nuopponen et al. 2005; Tjeerdsma and Militz 2005). There are also condensation 

reactions that, besides lignin, involve furfural and other degradation products (Tjeerdsma et al. 

1998; Garrote et al. 1999). 

 

Most of the natural wood extractives tend to be degraded, especially the most volatile ones, but 

new compounds are formed due to the degradation of wood cell wall components. Even despite 

that most of the original extractives of the wood disappear after the thermal modification, 

thermal degradation products may still remain inside the wood as new extractives (Esteves et 

al. 2008a; Poncsak et al. 2009). The amounts of the newly produced extractives will depend on 

the type of modification and the process conditions. The extractive content also tends to 

increase with mass loss, followed by a decrease at higher temperatures. This increase is a result 

of the formation of water and ethanol extractives due to the polysaccharide degradation (Esteves 

et al. 2008a). 

 

 Mass loss 

The mass loss is usually used to check the severity of the thermal modification and the impact 

of the process conditions as it is strongly correlated to the changes in the wood properties during 

the thermal modification process (Metsä-Kortelainen et al. 2006; Brischke et al. 2007; 

Welzbacher et al. 2007; Esteves and Pereira 2009). It is also used to quantify the degradation 

effects of the thermal modifications (Zaman et al. 2000). There are also differences by the type 
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of modification and wood, as open systems and softwoods present lower rates of mass loss than 

closed systems and hardwoods (Hill 2006). Using mass loss to compare between different 

processes is difficult, mostly because of the influence of the time, type, temperature, species 

and initial moisture content (Esteves and Pereira 2009). The mass loss is related to the 

depolymerization of cell wall constituents and the formation of degradation products, such as 

acids or furfurals, all of which vaporize at high temperatures causing losses in wood material 

(Fengel 1966; Alen et al. 2002). This can lead to some issues, as the majority of the natural 

extractives are removed the wood during the modification, causing a loss in dry mass even in 

cases where there is no degradation of wood cell wall components. This can be seen in the 

difference of mass loss between heartwood and sapwood of thermally modified Pinus sylvestris 

(Scots pine) in a similar modification, because the heartwood contains higher amounts of 

extractives that are emitted at elevated temperatures (Metsä-Kortelainen 2011). Some of the 

thermal degradation products can accumulate and be fixed to the wood cell wall at high 

temperatures (Altgen et al. 2016b). Obataya et al (2002) have recommended that the ML should 

be measured after the extraction of all water soluble degradation products. By deducing the 

extractives from the dry mass before and after modification a more precise calculation of the 

mass loss is achieved, which could also be used to compare between different modifications 

(Altgen et al. 2016b). 

 

 Mechanical properties 

The resistance to bending in static tests, also known as modulus of rupture (MOR), is affected 

by the thermal modification. Several reports (Tjeerdsma et al. 1998; Poncsák et al. 2006; 

Esteves et al. 2007b; Borrega and Kärenlampi 2008b) show reduced MOR, depending on 

treatment conditions, up to 50%. The decrease of the MOR is a consequence of reduced tensile 

strength and reduced compression strength (Boonstra et al. 2007b). There have been cases 

where there was a slight increase in MOR after a mild thermal modification with minor mass 

losses (Kubojima et al. 2000; Shi et al. 2007b). However, the decrease in dynamic strength 

(often measured as impact bending strength) is more severe. This is related to the loss in 

flexibility because of the changes in the composition of hemicelluloses and lignin (Kubojima 

et al. 2000; Boonstra et al. 2007b). The work to maximum load in bending is also strongly 

reduced by the thermal modification (LeVan et al. 1990; Poncsák et al. 2006; Borrega and 

Kärenlampi 2008b; Altgen and Militz 2016). The reduction is higher in the inelastic region 

above the proportional limit than in the elastic region of the load deflection curve (Kubojima et 
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al. 2000; Phuong et al. 2007; Borrega and Kärenlampi 2008b). The decrease of these properties 

is related to the brittleness of the modified wood, as it is higher than in the unmodified wood 

(Phuong et al. 2007; Weigl et al. 2012). 

 

On the other hand, the effect of the thermal modification on the modulus of elasticity (MOE) 

tends to be more limited even at thermal modification at higher temperatures (Tjeerdsma et al. 

1998; Kubojima et al. 2000; Boonstra et al. 2007b). In some cases the MOE can be even higher 

than the unmodified wood (Kubojima et al. 2000; Santos 2000; Borrega and Kärenlampi 2008b; 

Lekounougou et al. 2011; Rautkari et al. 2014). 

 

Hardness also tends to reduce after thermal modification in the radial and tangential directions 

at high temperatures. This reduction can be related to the lower mass and lower density after 

the thermal modification process (Brischke et al. 2005; Sundqvist et al. 2006) and to the 

increasing temperatures and treatment times (Korkut et al. 2008; Meyer et al. 2011), but it has 

been shown that at lower temperatures a slight increase could be measured (Kocaefe et al. 

2008b). The increase could be related to the condensation process in hemicelluloses and lignin 

while they are being degraded to form new chemical bonds (Tjeerdsma et al. 1998; Sivonen et 

al. 2002; Sundqvist et al. 2006). 

 

The reason of the decrease in the mechanical properties can be related to the changes in the cell 

wall chemistry, such as the degradation of hemicelluloses, changes in the lignin composition 

causing cross-links and the increased crystallinity and depolymerization of the hemicelluloses 

(Winandy and Rowell 1984; Tjeerdsma et al. 1998; Kubojima et al. 2000; Boonstra et al. 2007b; 

Kocaefe et al. 2008a; Windeisen et al. 2009). Small variations in the linear backbone chain of 

the hemicelluloses (xylose, mannose, arabinose and galactose) can have a large impact on the 

overall strength (Sjostrom 1981). The cleavage of these side groups, between the lignin and 

hemicelluloses, releases the linkage by which one microfibril of a wood fiber shares the load 

with another microfibril (LeVan et al. 1990). Cellulose and hemicelluloses are linked between 

themselves and lignin, with lignin holding the microfibrils formed by cellulose chains that are 

covered by hemicelluloses. Removing the hemicelluloses increases the crystalline part in wood 

material, which in turn relatively increases the cellulose component. This replaces the flexible 

hemicellulose-cellulose-hemicellulose bond with the more rigid cellulose-cellulose bond, 

decreasing the flexibility of the material (Kocaefe et al. 2008a). Physical changes in the wood 

cell wall, such as an increased hydrogen-bonding between polymers caused by the drying of 



   Chapter 1: General introduction 

18 

 

the wood during modification, can increase the stiffness on the wood cell matrix (Suchy et al. 

2010), thus influencing some mechanical properties. The extension on how much the properties 

are changed depends on the process conditions and the species used. 

 

 Hygroscopicity 

Hygroscopicity is usually measured by the equilibrium moisture content (EMC). The decrease 

of EMC is the main effect of the thermal modification. This was already reported by Tiemann 

(1917), who showed that drying at high temperatures reduced the hygroscopicity of the wood. 

This has been confirmed in a number of studies using different species and thermal modification 

processes (Seborg et al. 1953; Tjeerdsma et al. 1998; Kamden et al. 2002; Esteves et al. 2007a; 

Esteves et al. 2007b; Jalaludin et al. 2010), as the EMC decreases in relation to the conditions 

of the modification process, such as the peak temperature and duration. The decrease of EMC 

is correlated to the mass loss during the modification process. 

 

The wood water relations have still many aspects that are not completely understood (Engelund 

et al. 2013). One of the reasons of a decrease of the EMC is that less water is absorbed by the 

wood cell walls after a thermal modification due to a chemical change that reduce the water 

accessible hydroxyl groups. As the hemicelluloses contain far more water-accessible OH 

groups within the wood (Runkel 1954; Runkel and Lüthgens 1956), and tend to degrade faster 

during the modification (Alen et al. 2002), thus reducing the total amount of OH groups in the 

wood. The hemicelluloses that have the highest mobility and reactivity tend to be removed 

during the thermal modification (Borrega and Kärenlampi 2008a), therefore the water 

accessible hydroxyl groups are mostly eliminated (Willems 2014b). The increase of cellulose 

crystallinity (Bhuiyan and Hirai 2005; Boonstra and Tjeerdsma 2006) and the polycondensation 

reactions of lignin that result in further cross-linking (Tjeerdsma and Militz 2005; Boonstra and 

Tjeerdsma 2006; Esteves et al. 2008a) can also contribute to the increase of inaccessibility of 

the hydroxyl groups. Other mechanisms may also contribute to this effect, such as the formation 

of irreversible hydrogen bonds and a more tightly bonded wood structure as a result of wetting 

and re-drying at elevated temperatures, known as hornification (Borrega and Kärenlampi 2010), 

or a hindered expansion of nanopores, which can be interpreted as increased cell wall stiffness 

(Hill et al. 2012; Ringman et al. 2014; Altgen et al. 2016a). 
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As with the EMC, the wettability also changes during the thermal modification in dependence 

of the process conditions (Petrissans et al. 2003; Gerardin et al. 2007; Kocaefe et al. 2008a). 

The reduction of the accessible hydroxyl groups is also likely the reason for the decrease of 

wettability after the thermal modification (Gerardin et al. 2007). 

 

 Dimensional stability 

The decrease of the EMC due to thermal modification leads to an improvement of the 

dimensional stability of the wood. This is related to the swelling, as it is reduced by the thermal 

modification in relation to the intensity of the modification (Burmester 1973; Giebeler 1983; 

Dirol and Guyonnet 1993). Swelling is measured by the difference of wet and dry dimensions 

of the wood before and after water soaking. The reduction of swelling can be related to the 

closure of voids that were created by the removal of wood cell wall component during the 

thermal modification, resulting in the reduction of the dry dimensions (Burmester 1975; 

Gonzalez-Peña et al. 2009). The closing of voids can be caused by annealing and a 

rearrangement of the amorphous wood cell wall polymers due to the elevated temperatures 

(Obataya and Tomita 2002). 

 

Anti-swelling efficiency (ASE) is used to quantify the improvement of the dimensional stability 

of the thermally modified wood, as it represents the difference between the swelling of modified 

and unmodified wood. This increase is dependent on the direction of the wood (tangential, 

radial, longitudinal) as the tangential direction is where a more substantial improvement can be 

seen (Esteves et al. 2007a; Esteves et al. 2007b; Esteves et al. 2008b). 

 

The increase of wood dimensional stability is closely related to the decrease of hygroscopicity 

due to the chemical changes, such and the formation of polymers from sugars that are less 

hygroscopic than the ones before the modification (Dirol and Guyonnet 1993), although the 

preferential removal of hemicelluloses was not the main factor of the improvement of 

dimensional stability (Repellin and Guyonnet 2005). The loss of methyl radicals that leads to 

the increase of phenolic groups, which in turn lead to a higher lignin reactivity forming 

crosslinks (Tjeerdsma et al. 1998) can also be considered as part of the improvement of the 

dimensional stability. Other mechanisms are also part of the improvement of dimensional 

stability, such as thermal degradation products within the wood cell wall that can cause a cell 

wall bulking effect. These degradation products occupy the nanopores, which then cannot be 
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fully filled with water, thus contributing to the improvement of the dimension stability. These 

degradation products can be removed by extraction, thus decreasing the dimensional stability 

of the thermally modified wood (Biziks et al. 2015; Altgen et al. 2016a). 

 

 Macrostructural and anatomical changes 

The development of cracks and other defects can be usually related to the raw material used, 

such as growth stresses or drying related issues. Thermal modifications work under high 

temperatures, which influence the increase of moisture gradients that lead to high internal 

stresses that can be released as cracks (Oltean et al. 2007). If the material was carefully selected, 

the crack development can be minimized, although issues such as non-visible micro-cracks can 

develop into more severe cracks (Hanhijärvi et al. 2003). Nonetheless, it is difficult to 

differentiate if the defects were already present in the material or occurred because of the 

thermal modification. The changes in the anatomical structure could also be related to the 

formation of cracks and other defects, such as cell collapse and surface deformation (Boonstra 

et al. 2006a; Boonstra et al. 2006b). The typical anatomical defects include micro-cracks that 

start in the middle lamella and damage to the pits, the axial tracheid walls and the parenchyma 

cells in wood rays and resin canals (Boonstra et al. 2006a; Boonstra et al. 2006b; Awoyemi and 

Jones 2011; Biziks et al. 2013), micro-cracks between the S1 and the S2 layers in the corners 

in the cells (Fengel and Wegener 1984) and also a reduction of the wood cell wall thickness 

(Bernabei and Salvatici 2016). These defects can also appear because of the decomposition of 

the wood cell wall constituents due to the elevated temperatures (Cheng et al. 2007). These 

anatomical changes, in combination to the stress related to elevated temperatures caused during 

the thermal modification, can also be one of the causes of the formation of cracks.  

 

It is important to be aware of the changes at the anatomical level of the modified wood, but the 

actual impact is not as important and influential as the changes in the chemistry of the material 

(Awoyemi and Jones 2011; Militz and Altgen 2014). 

 

 Durability 

Thermal modification processes increase the resistance against rot caused by decay fungi, with 

the reduction depending on the mass loss caused by the treatment temperature (Hakkou et al. 

2006; Boonstra et al. 2007a; Welzbacher et al. 2007; Mohareb et al. 2012). The efficacy of this 

effect is strongly correlated to the wood species used, the type of fungus and the thermal 
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modification conditions (Militz and Altgen 2014). Welzbacher and Rapp (2002) compared the 

durability of different thermal modification processes (Thermowood, OHT, Plato and 

Rectified) using a selection of fungi. They showed a high resistance to brown rot (Coniophora 

puteana) and white rot (Coriolus versicolor) and a slightly lower improvement against 

Oligoporus placenta, but they all showed less mass loss than the untreated wood, increasing 

the durability class of the woods used. Nonetheless, is important to mention that to achieve 

higher durability classes using low quality woods, strong reduction of mechanical properties 

are to be expected (Welzbacher and Rapp 2007). Mold growth was not affected by the thermal 

modification, mostly due to the formation of hemicellulose degradation products (Boonstra et 

al. 2007a). On the other hand, the resistance in contact to the soil does not improve with the 

thermal modifications (Kamden et al. 2002), which was also shown for modified eucalypt 

species (Knapic et al. 2018). 

 

The enhanced durability can be explained by the changes in the chemical composition of the 

wood cell wall, such as the removal of the hemicelluloses, which are one of the main nutrients 

for the development of fungi (Hakkou et al. 2006), stable free radicals that may act as 

antioxidants limiting the spread of the fungi at the initial stages of decay (Willems et al. 2010) 

or the modification of the wood polymers (Weiland and Guyonnet 2003; Hakkou et al. 2006). 

 

As for termite attacks, it was shown that the modified wood of Pinus pinaster was still highly 

degraded by them in a non-choice feeding test (Surini et al. 2012). It was also shown that in 

some cases the wood can even become less durable to termite attacks due to the removal of 

some termite inhibiting compounds, as shown by Shi et al.(2007a) in modified Pinus sylvestris 

at 215°C. 

 

 Color 

The modified wood tends to get browner as the modification intensifies. These color changes 

are related to the treatment intensity (Bekhta and Niemz 2003; Johansson and Moren 2006; 

Esteves et al. 2008b; de Cademartori et al. 2013). It can be used as an indicator of the thermal 

modification strength, as there was a good linear correlation with the treatment intensity 

(Brischke et al. 2007). Thermally modified wood color turns grey after natural or artificial 

weathering, as the surface color is not stable due to a low resistance of the new formed polymers 

towards degradation against UV light (Jämsä et al. 2000; Huang et al. 2012). It is recommended 
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to treat the surface with coatings or light stabilizers. Jämsä et al. (2000) reported that the 

substrate for the tested coating systems was comparable to unmodified wood and no alterations 

for the coatings were needed, but on the other hand, de Moura et al. (2013) showed poor 

performances of the selected coating systems used in their report. The selection of the coating 

systems is related to the wood species used and the modification conditions.  

 

Biological durability and the change in color were considered outside of the scope of this 

dissertation and were not measured, because from literature (Hakkou et al. 2006; Boonstra et 

al. 2007a; Welzbacher et al. 2007; Mohareb et al. 2012) and recent reports on other eucalypt 

(Calonego et al. 2010) and hardwood species (Lekounougou and Kocaefe 2012; Chaouch et al. 

2013) on decay resistance and color changes in modified eucalypt species (Esteves et al. 2008b; 

de Cademartori et al. 2013; Griebeler et al. 2018), it can be expected that the modified E. nitens 

behaves in comparable ways as earlier tested wood species. 
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1.4 Objectives 

There is interest to use plantation grown E. nitens wood for solid wood products. Adding value 

by using thermal modification processes would open new market possibilities for this species. 

Two modifications were selected in my research for this purpose: Thermowood (open), which 

is currently the most used process in the market, and WTT (closed), which is a relatively new 

technology with market potential and shorter process times. However, there is a need for a better 

understanding of the effects of the processes on the quality of the wood, as it is still unclear 

whether the properties of thermally modified wood from open and closed systems present 

significant differences. Therefore, the main objective of the thesis was to evaluate and compare 

the open and closed system modifications by analyzing the chemical, mechanical, physical and 

anatomical changes of thermally modified E. nitens. To achieve this, the following specific 

objectives were established: 

 

 The overall effects that the thermal modifications have on the properties of the modified 

E. nitens wood. 

 The changes in the wood properties influenced by each other (chemical, mechanical, 

physical, anatomical). 

 The similarities/differences of the resulting properties from the diverse thermal 

modification processes and a comparison between modifications with the same 

corrected mass loss. 

 The effects on the long term dimensional stability of the thermally modified wood from 

open or closed systems. 

 Comparing the results from both modifications with similar modified eucalypt species. 

 Analyzing the potential to use thermally modified wood from E. nitens for producing 

high end or alternative products for the Chilean and international markets. 

 

The carried out investigations were separated in a general overview of the modified wood 

properties and how they influence each other (Publications I to III), the anatomical properties 

of the modified wood (Publications II and VI), the long term effects of the thermal 

modifications based on the reversible changes in hygroscopicity (Publication IV), the analysis 

of the corrected mass loss as a potential indicator of the thermal modification effect 

(Publications I to IV) and an experimental study on the potential of thermally modified E. nitens 

wood as a material for high end or alternative products (Publication V). 
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Abstract: In the present work Eucalyptus nitens was thermally modified in an open 

(atmospheric pressure) and a closed (under pressure) reactor system. The effect of the changes 

of the chemical composition on the mechanical properties was investigated. Hemicelluloses, 

cellulose, lignin, extractives, acetic acid, formic acid, total phenols and the cellulose degree of 

polymerization (DP) as well as modulus of elasticity (MOE) and modulus of rupture (MOR) 

were measured for each modification. The results indicated that the closed system modification, 

particularly at high pressure, presented stronger variations on the chemical structure of the 

modified wood than the modifications in the open system. In both modifications MOR showed 

a better correlation with the chemical changes than the MOE, especially xylose, cellulose DP, 

lignin and total phenols. These correlations suggest a tendency of a more brittle wood in the 

closed system modification at high pressure than in the modifications in the open system. 

Results can be used as a reference for future applications of thermally modified E. nitens wood. 

 

Keywords: Eucalypt, thermal modification, extractives, structural polymers, mechanical 

properties  

 

2.1 Introduction 

There are about 250,000 ha of Eucalyptus nitens (Shining Gum) plantations in Chile, which 

amount to 10.5% of the total plantations in Chile in 2014 (INFOR 2015). Its primary use is for 

pulpwood production, but in recent years there has been an interest to widen the use from this 

fast growing tree species for solid wood products to increase economic returns (Muñoz et al. 

2005; INFOR 2014). Thermal modifications offer a good alternative to produce high quality 

material from this species that could be used for deckings, claddings, windows, doors, flooring, 

garden products and even saunas or bathrooms (Militz and Altgen 2014). 

 

In the last decades thermal modifications have been commercially used, with processes such as 

ThermoWood (Mayes and Oksanen 2002), Plato Wood (Boonstra et al. 1998), FirmoLin 

(Willems 2009; Willems 2014a), WTT (Dagbro et al. 2010) or TERMOVUOTO (Allegretti et 

al. 2012) to name a few. All the processes use treatment temperatures between 150°C and 240°C 

and use different operating conditions to limit the presence of oxygen in the process, such as 

presence of a shield gas (either steam, nitrogen or other elements), a dry or humid environment 

and how the heat is transferred (convection or conduction). There are open system processes, 

which work under atmospheric pressure, and closed system processes, such as processes using 

vacuum or steam pressure (Hill 2006; Militz and Altgen 2014). 
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Strong chemical changes occur during the modification process, starting with a degradation of 

the hemicelluloses by deacetylation followed by a depolymerisation caused by the released 

carboxylic acids, such as formic and acetic acid (Boonstra and Tjeerdsma 2006; Sundqvist et 

al. 2006), and a reduction of the acetyl content (Tjeerdsma et al. 1998; Tjeerdsma and Militz 

2005). The lignin polymer network is also modified, as the ether linkages are cleaved and new 

free phenolic hydroxyl groups are formed (Tjeerdsma et al. 1998; Nuopponen et al. 2005; 

Tjeerdsma and Militz 2005). Cellulose is the wood constituent that is least transformed, but at 

higher temperatures there are changes in the amorphous region of the cellulose (Tjeerdsma et 

al. 1998; Tjeerdsma and Militz 2005) which increase the degree of crystallinity (Bhuiyan et al. 

2000), and produces changes in the degree of polymerization (DP) of cellulose (Sweet and 

Winandy 1999). There is also a decrease of mass after thermal modification processes 

(Kollmann and Schneider 1963; Esteves et al. 2007a), which varies depending on the species 

and the intensity of the modification, a loss in mechanical strength (Boonstra et al. 1998; 

Tjeerdsma et al. 1998; Kubojima et al. 2000) and higher brittleness (Phuong et al. 2007) that 

can lead to limitations of its use.  

 

Results have been published that relate chemical changes, such as the influences of the variation 

of cellulose, hemicellulose and extractives (Windeisen et al. 2009), the degradation of 

hemicelluloses, crystallization of cellulose and variation of lignin structure (Kocaefe et al. 

2008a), the DP of cellulose and content of hemicelluloses (Kačíková et al. 2013), with the 

mechanical wood properties of the modified species. However, the impact of the process 

conditions should also be taken into consideration, as it is an indispensable knowledge for the 

requirements for the end use of the modified wood. There are differences between open and 

closed system modifications, as modifying under high pressure and under controlled relative 

humidity the oven dry state of the wood can be avoided even at high temperatures (Altgen et 

al. 2016b), while an open system the moisture content reaches almost 0% at the pre-drying step, 

which could cause shrinkage stresses. Also, by increasing the pressure in the closed system, it 

prevents excessive vaporization of the degradation products. This affects the chemical 

properties during the different thermal modifications and its relation to the mechanical 

properties. Therefore it is crucial to know the impact of the different thermal modification 

processes in order to assure the quality of the modified wood and fulfil the requirements of the 

end products and applications. 
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The aim of the present study was to analyse the effect of changes in the chemical composition 

on the mechanical properties under open and closed system modifications of E. nitens wood. 

Results were compared and statistically evaluated to unveil relationships between modification 

conditions and changes in chemical and mechanical properties. Results can contribute to the 

efficient and economic use of E. nitens wood as a thermally modified material. 

 

2.2 Materials and methods 

 Material 

E. nitens wood that comes from 19 year old plantations in the Región del Bío-Bío in Chile was 

used. Slats with dimensions of 20 × 50 × 650 mm3 (radial x tangential x longitudinal) with an 

average density of 663 kg/m3were prepared from conventionally kiln-dried mature wood with 

an average moisture content (MC) of 12% (±0.85%), avoiding major defects and large knots. 

This was done to minimize effects such as cracks during the process. For each modification 

process 10 slats were used. 

 

 Thermal modification 

Thermal modification processes were performed in a laboratory-scale treatment reactor. A 

stainless steel vessel with a volume of 65 l was used to place the samples. This can be heated 

up to 260°C with electric heating cables and was cooled down to room temperature with a 

system of water cooling coils. The water vapour was produced by heating an external water 

reservoir that is directly connected to the vessel. Exhaust valves were used for the release of 

excess pressure (Willems 2009). This reactor can be used as either an open or as a closed 

system. 

 

The open system was a process similar to a Thermowood procedure (Mayes and Oksanen 

2002). It starts with raising the temperature inside the vessel at 12°C per hour up to 100°C, 

followed by a pre-drying at a heating rate of 2C per hour up to 130°C. Afterwards the 

temperature ramps up at 12°C per hour1 to the desired modification temperature presented in 

Table I, where it is hold up for 3 hours. Finally the temperature decreases at a rate of -20°C per 

hour per hour until it reaches 65°C. 

 

In the case of he closed system modification, the WTT process (Willems 2009) was used. It is 

separated in four steps: a 50 min holding step at pre-vacuum at <14 kPa, temperature increase 
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in a rate of 12°C per hour per hour until modification temperature (Table 2.1), a holding step at 

the peak temperature for 3 hours and a temperature decrease in a rate of 20°C per hour 1 per 

hour up to 65°C. It is important to note that the complete duration of the modification processes 

is shorter in the closed system than in the open system (Table 2.1). 

 

Table 2.1: Peak temperature, maximum pressure, peak duration, total process duration of both 

modifications (open and closed) and the RH applied in the thermal modifications in the closed 

systems as well as the final moisture content (MC) after each modification process and the 

standard deviation of the peak temperature, max pressure and final MC. The hold time at peak 

temperature was 3 hours for all processes. 

Closed System 

Peak temperature 

(C°) 

Max pressure 

(MPa) 
RH (%) 

Final MC 

(%) 

Total 

process 

duration (h) 

150 ±1.00 0.14 ± 0.007 30 4.50 ± 0.49 16.5 

160 ±1.14 0.18 ± 0.007 30 3.85 ± 0.46 18 

170 ± 0.95 0.23 ± 0.003 30 3.20 ± 0.36 19 

150 ± 2.65 0.47 ± 0.008 100 5.27 ± 0.88 16.5 

160 ± 2.51 0.61 ± 0.012 100 4.94 ± 0.87 18 

170 ± 1.36 0.77 ± 0.034 100 4.62 ± 0.77 19 

     
Open System 

Peak temperature 

(C°) 

Max pressure 

(MPa) 
RH (%) 

Final MC 

(%) 

Total 

process 

duration (h) 

160  ± 1.09 atmospheric - 3.34 ±0.25 30.2 

180  ± 1.00 atmospheric - 2.04 ±0.19 33 

200 ± 1.18 atmospheric - 2.04 ±0.19 35.5 

210 ± 1.04 atmospheric - 2.18 ±0.30 37 

220 ± 1.00 atmospheric - 2.25 ±0.16 38.2 

230 ± 1.10 atmospheric - 2.44 ±0.12 39.5 
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 Mass loss and extractive content 

To measure the mass loss caused by the thermal modification, the final moisture content was 

measured by difference of dry weight using small pieces collected from each slat. The dry mass 

from the small sections and the mass loss (ML) were calculated using the formulas described 

by Metsä-Kortelainen et al. (2006).  

 

The degradation products of the cell wall carbohydrates accumulate in the wood during 

modifications at high temperatures (Altgen et al. 2016b). Hence the extractives have to be 

deducted from the dry mass loss when analysing the effects of modification at elevated 

pressures. In this study this was performed on all modifications (open and closed systems) so 

that the corrected mass loss (CML) could be used to compare the results obtained. The CML of 

oven-dry samples before and after each modification of each individual slat was calculated 

based on the dry and extractive-free weight of the wood before (unmodified) and after each 

process. It has to be noted that the wood material to be tested was neither dried nor extracted 

prior each modification process. 

 

The extractive content was measured using a similar method described in the Solvent 

Extractives of Wood and Pulp Test Method T 204 cm-07 (TAPPI 1997). Material from several 

slats of each process as well as from unmodified references were grounded in a cutting mill and 

sieved to a particle size between 0.2-0.63 mm. 5 g of dry wood particles for each process were 

extracted with a Soxhlet apparatus using 150 ml of distilled hot water and then extracted for 8 

hours. The extractive content was then determined gravimetrically in relation to the initial oven 

dry mass before the Soxhlet process. The amount of extractives was calculated in grams of 

extractives in 100 grams of wood as presented in Eq. 2.1. 

 

 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑠 =
(𝑊𝑏𝑒−𝑊𝑎𝑒)∗100

𝑊𝑏𝑒
,    Equation 2.1 

 

where Wbe is the dry weight of the wood before extraction in grams, and Wae is the dry weight 

of the wood after extraction in grams. There were trials that included an extraction with a 1:2 

mixture of ethanol-cyclohexane after the distilled hot water extraction with additional extractive 

contents between 0.2 to 0.7%, which were similar results obtained by Altgen et al. (2016b) with 

European beech, so it can be concluded that most of the compounds were removed by the 

distilled hot water, thus it was the only solvent used in this study.  
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The corrected mass loss (CML) was measured as described by Altgen et al. (2016b), where first 

the extractives are deducted from the dry weight of the selected wood slats to calculate their 

corrected weight using Eq. 2.2. 

 

 𝐶𝑤 = 𝐷𝑟𝑦𝑤 − (
𝐷𝑟𝑦𝑤∗𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑠

100
),   Equation 2.2 

where Dryw is the dry weight of the slat in grams. Then, the CML can be calculated using the 

following equation (Eq. 2.3). 

 

 𝐶𝑀𝐿 =
(𝐷𝑟𝑦𝑐𝑤𝑏−𝐷𝑟𝑦𝑐𝑤𝑎)∗100

𝐷𝑟𝑦𝑐𝑤𝑏
,     Equation 2.3 

where Drycwb is the corrected dry weight of the slat before the modification process in grams 

and Drycwa is the corrected dry weight after the modification process in grams. Measurements 

were done in duplicate for each modification. 

 

 Determination of acetic and formic acid by HPLC 

For the determination of acetic and formic acid contents the samples were extracted by soaking 

2.5 g of grounded wood with similar size as the ones used for the extractive content in 30 ml 

distilled water for 24 h at room temperature; the extract was filtered, and the particles were 

washed with distilled water to a final volume of 100 ml.  Formic acid and acetic acid were 

measured by high-performance liquid chromatographic (HPLC) separation (Shimadzu LC-20 

equipment, Shimadzu Corporation, Kyoto, Japan) using a Bio-Rad Aminex HPX-87H column 

(Bio-Rad Laboratories Inc., Hercules, USA) at 60 oC, with 0.6 ml min-1 flow of 0.005 M H2SO4 

mobile phase, and UV detection at 210–240 nm. Concentrations were given in mg/100 g dry 

wood. The measurements were taken in duplicate. 

 

 Determination of total phenol content 

Total phenol content was measured using the Folin-Ciocâlteu assay (Singleton and Rossi 1965) 

applying quercetin (Sigma-Aldrich, Budapest, Hungary) as the standard. Folin-Ciocâlteu 

reagent was obtained from Merck (Darmstadt, Germany). Results were expressed in mg 

equivalents of quercetin/ g dry wood.  Mesurements were performed using a Hitachi U-1500 

type spectrophotometer (Hitachi Ltd., Tokyo, Japan) at 760 nm. Measurements were done in 

triplicate. 

 



   Chapter 2: Publication I 

34 

 

 Determination of structural polymers 

Wood polymers were investigated using extractive free wood. Holocellulose was measured 

based on the separation of the lignin by sodium chloride as presented by Wise et al. (1946). 

Cellulose was measured using the alpha-, beta- and gamma-cellulose in pulp TAPPI test method 

203 (TAPPI 2009), where it was separated from the hemicellulose using a sodium hydroxide 

solution. The obtained cellulose is usually called the alpha-cellulose, and was used to measure 

the cellulose degree of polymerization (DP). It has to be noted that the chemical dosage, 

temperature and period of reaction could affect the degradation of cellulose during the isolation 

process (Hallac and Ragauskas 2011). Lignin is obtained using the NREL (National Renewable 

Energy Laboratory) standard Determination of Structural Carbohydrates and Lignin in Biomass 

(Sluiter et al. 2008), where a two-step acid hydrolysis is used to fractionate the wood. The 

filtered solution from the measurement of lignin was used to identify and measure the 

carbohydrates (glucose, xylose, mannose and arabinose) using a Waters 1525 binary HPLC 

pump attached to a Waters 717plus Autosampler and a Waters 2414 refractive index detector 

(Waters GmbH, Eschborn, Germany). Parts of the procedure to measure the carbohydrates are 

based on the standard Determination of Structural Carbohydrates and Lignin in Biomass 

(Sluiter et al. 2008), with portions of the procedure being similar to the ASTM E1758-01 

Standard Test Method for Determination of Carbohydrates in Biomass by High Performance 

Liquid Chromatography (ASTM 2015). As part of the test, a set of calibration standards was 

prepared with defined concentration ranges using standard sugar samples (AppliChem, 

Darmstadt, Germany) to be able to quantify the respective amounts of carbohydrates for each 

hydrolyzed solution. All the values are presented as a percentage of the initial dry mass of each 

sample and all measurements were done in duplicate. 

 

 Cellulose degree of polymerization 

The cellulose DP of the laboratory obtained alpha-cellulose was measured using the capillary 

viscometer method (TAPPI 2013) recommended by Hallac and Ragauskas (2011). It involves 

dissolving cellulose in 0.5 M cupriethylenediamine solution. 0.25 g of dry cellulose is added to 

25 mL of distilled water and 25 mL of cupriethylenediamine solution and then shacked to 

solubilize. The DP was then calculated using the formulas presented by Jahan and Mun (2005) 

for the intrinsic viscosities (nint) (Shitola et al. 1963) and the viscometric average DP using the 

Mark-Houwink-Sakurada equation with the constant suggested by Evans and Wallis (1989) 

(DP0.90) (Eq. 2.4 and 2.5). All analyses were done twice for each modification. 
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  𝑛𝑖𝑛𝑡 = 954 ∗ log(𝑇𝐴𝑃𝑃𝐼 𝑣𝑖𝑠𝑐𝑜𝑐𝑖𝑡𝑦) − 325, Equation 2.4 

 

 𝐷𝑃0.90 = 1.65 ∗ 𝑛𝑖𝑛𝑡 ,    Equation 2.5 

 

 Mechanical properties 

A three-point bending test based on the DIN 52186 (1978) bending test norm was performed 

on a universal testing machine (Zwick Roell Z010, Zwick, Ulm, Germany) on wood samples 

with dimensions of 10 × 10 × 180 mm3 (radial × tangential × longitudinal) that were conditioned 

at 20°C/65% RH before the test. At least 15 samples per modification were tested. The span 

length of the samples was 150 mm and the load was applied in the transversal direction with 

the testing speed adjusted individually for each modification to be able to cause the failure of 

the samples within 90±30 s. A load decrease of 10% or more of the maximum load was defined 

as a failure. Modulus of elasticity (MOE) (MPa) and modulus of rupture (MOR) (MPa) 

(bending strength) were measured as described in DIN 52186 (1978). 

 

 Statistical evaluation 

Statistical analysis was performed to correlate selected chemical changes with mechanical 

properties using the Pearson Correlation Coefficient Test using the STATISTICA Software 

package Version 13.1 (StatSoft Inc., Tulsa, USA). 

 

2.3 Results and discussion 

 Chemical composition and mass loss changes 

Chemical composition results are presented in Table II. The results of the chemical composition 

of the unmodified sample were similar to the ones presented for E.nitens by Niemz et al. (2004) 

(3.4% extractives, lignin 22.4%, holocellulose + pentosanes 78.1%). 

 

The extractive content increases in the closed system as the temperature rises, with the 

exception of the modifications at higher pressure, as it reaches its peak at 160°C (13.2%) and 

decreases to 10.1% at 170°C, while in the open system the highest extractive content is at 210°C 

(12.7%), following by a decrease up to 7.4% at 230°C. The difference is a result of which 

reaction was faster, either the formation of degradation products or their vaporization at 

elevated temperatures. Similar results were obtained with E. globulus modified in an autoclave 
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heat treatment and oven heating where the extractive content was lower at the highest 

modification conditions (200°C and 12 hour treatment time and 190°C and 24 hour treatment 

time for autoclave and oven modification respectively) than at modifications at shorter 

treatment times (Esteves et al. 2008a). It was also expected that the closed system modifications 

would have higher amounts of extractives than in the open system, but for some modifications 

in this study, the contents were similar. The longer time to complete the open system 

modification (Table 2.1) could be the reason that the extractive contents were similar. 

 

ML, in our case CML, is also related to the degradation of the wood (Zaman et al. 2000), which 

makes it a suitable comparison point and is usually referred as an indicator of the quality of the 

modification, as it is linked to many properties of the modified wood (Welzbacher and Rapp 

2007; Esteves and Pereira 2009). The CML in the closed system showed tendencies that were 

similar to what was presented by Altgen et al. (2016b) with European beech, as the CML 

increases with higher pressure and the same temperature (Table 2.2). Altgen et al. (2016b) 

showed that, although an improved heat transfer and reduced evaporative cooling could be a 

factor in the accelerated degradation reactions, temperature can be excluded as the sole factor 

for the degradation of wood in modifications under high pressure. The open system 

modification tends to show a higher CML as the temperature rises, with the exception of the 

modification at 220°C (16.8%), which was lower than 210°C (18.7%). The influence of the 

extractives can be a reason for this, as they are higher at 210°C (Table II). The mass loss in 

autoclave modifications (open system) at similar temperatures performed in other eucalypt 

species, such as E. grandis (from 12.63% at 180°C and 16.91% at 220°C), E.saligna (from 

12.77% at 180°C and 19.12% at 220°C) (de Cademartori et al. 2015) and 8.7% at 190°C and 

12.1% at 200°C for E. globulus (Esteves et al. 2007b), show a tendency of an increase in mass 

loss at higher modification temperatures, but it has to be noted that they did not use the CML 

in their data. 
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Table 2.2: Average values and standard deviation of cellulose DP, corrected mass loss (CML) 

and the summative chemical composition of unmodified and thermally modified of E. nitens 

wood in an open and closed system. Values are given as mean ± standard deviation. 

Temperature 

(°C) 

RH 

(%) 

Extractives 

(%) 
Lignin (%) Cellulose (%) 

Hemicelluloses 

(%) 

Cellulose 

DP 
CML (%) 

Unmodified - 4.7 ± 0.31 22.5 ± 0.33 48.3 ± 0.40 27.4 ± 0.38 930 ± 14 - 

      
  

150 30 6.0 ± 0.38 21.0 ± 0.22 50.1 ± 0.28 23.5 ± 0.31 850 ±31  2.6 ± 0.56 

160 30 7.6 ± 0.15 23.1 ± 0.19 51.3 ± 0.23 17.6 ± 0.32 783 ± 23 5.0 ± 0.63 

170 30 8.4 ± 0.28 22.8 ± 0.21 53.9 ± 0.25 14.2 ± 0.27 714 ± 27 6.3 ± 0.77 

150 100 12.7 ± 0.22 25.4 ± 0.18 55.7 ± 0.33 5.9 ± 0.30 569 ± 30 11.4 ± 1.26 

160 100 13.2 ± 0.24 26.5 ± 0.23 53.7 ± 0.36 6.5 ± 0.33 427 ± 20 18.6 ± 1.63 

170 100 10.1 ± 0.18 31.8 ± 0.15 49.7 ± 0.29 10.3 ± 0.33 356 ± 26 20.5 ± 1.82 

      
  

160 - 6.8 ± 0.38 20.8 ± 0.26 52.2 ± 0.37 18.8 ± 0.40 805 ± 18 5.4 ± 0.37 

180 - 9.0 ± 0.40 23.5 ± 0.27 48.6 ± 0.33 18.7 ± 0.36 863 ± 22 7.9 ± 0.53 

200 - 12.3 ± 0.10 23.7 ± 0.12 52.5 ± 0.21 10.4 ± 0.29 589 ± 11 14.6 ± 0.88 

210 - 12.7 ± 0.16 27.4 ± 0.13 49.3 ± 0.19 10.8 ± 0.24 648 ± 15 18.7 ± 0.58 

220 - 9.1 ± 0.26 28.6 ± 0.21 50.2 ± 0.24 11.8 ± 0.27 630 ± 3 16.8 ± 1.23 

230 - 7.4 ± 0.15 36.9 ± 0.23 45.8 ± 0.32 12.2 ± 0.41 466 ± 19 19.3 ± 1.31 

 

Cellulose has a highly ordered crystalline structure which provides a high stability to the 

cellulose chains and protects them against acid attack during hydrolysis (Fengel and Wegener 

1984). There is a limited occurrence of cellulose degradation during the hydro-thermolysis of 

wood (Boonstra and Tjeerdsma 2006), but it appears that under moist conditions there is a 

stimulating effect on the crystallization of amorphous cellulose (Bhuiyan et al. 2000). Cellulose 

is related to the strength of the wood fiber, so a reduction of its degree of polymerization (DP), 

which represents the length of the cellulose chain, would cause a reduction in the strength 

properties of the wood (Sweet and Winandy 1999). Cellulose content in the modified wood 

tends to be higher at higher temperatures at low pressure modification, up to 53.9% at 170°C, 

whereas the contrary happens at higher pressure, with the modification at 150°C having 55.7% 

of cellulose. At higher temperatures 200°C presents the higher cellulose content (52.5%), while 

modifications at 210 and 220°C have similar contents (around 50%) and the modification at 

230°C being lowest at 45.8% (Table II).The higher amounts of cellulose content in relation to 

the unmodified sample can be related to the depolymerization of the hemicellulose chains, while 

the lower amount of cellulose content at 230°C can be related to the increase of the lignin 
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content. In both high and low pressure modification, the cellulose DP tends to get shorter with 

higher temperatures (Table 2.2). Particularly at high pressure and 170°C the cellulose DP is 

almost a third shorter than at the unmodified samples (930 to 356). At the modifications in the 

open system there is no constant degradation of the cellulose DP chains as the temperature rises, 

having similar results between 210 and 220°C (648 and 630 respectively). Both were longer 

than at 200°C (589), while the shortest cellulose DP was at 230°C (466). It has to be noted that 

the isolation of cellulose from wood involves risk for some degradation that can result in a 

reduced molecular weight. The results were similar to what Kačíková et al. (Kačíková et al. 

2013) presented in Norway spruce, where the cellulose DP decreased at higher temperatures. 

 

The cleavage of the side chain constituents (arabinose and galactose) is followed by the 

degradation of the main chain constituents (mannose, glucose and xylose), with the 

corresponding pentoses and hexoses being dehydrated to furfurals and hydroxymethylfurfurals 

(Bobleter and Binder 1980). In all modifications the xylose content decreased from lower to 

higher temperatures, with galactose and mannose completely absent in the high pressure and  

almost completely absent at high temperatures in the open system modification (Table 2.3). The 

results were similar to the ones obtained by Esteves et al. (2008b) with E. globulus, de Moura 

et al. with E. grandis (2012) and Araújo et al. (2017) with various eucalypt species after a 

torrefaction with gradual heating from 160 to 230°C. 
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Table 2.3: Average values of the carbohydrate composition in relation to total sugars of the 

unmodified and thermally modified of E. nitens wood in an open and closed system. 

Temperature 

(°C) 

RH 

(%) 

Glucose 

(%) 

Xylose 

(%) 

Galactose 

(%) 

Mannose 

(%) 

Unmodified - 72.34 26.25 0.76 0.66 

      

150 30 72.24 22.99 3.74 1.02 

160 30 78.38 19.26 1.58 0.78 

170 30 82.29 15.93 1.16 0.62 

150 100 86.58 12.27 0.00 1.16 

160 100 96.89 2.36 0.00 0.75 

170 100 97.86 1.22 0.00 0.91 

      

160 - 79.09 17.49 2.61 0.82 

180 - 76.24 19.57 2.91 1.28 

200 - 89.78 9.83 0.00 0.38 

210 - 89.74 9.59 0.07 0.60 

220 - 90.29 8.91 0.16 0.64 

230 - 96.02 3.29 0.14 0.55 

 

There is an increase in lignin at higher temperatures in all modifications, which is related to the 

fact that lignin has a higher thermal stability than the other elements in wood, but also to its 

condensation reactions. As the lignin content increases, the hemicellulose content decreases. 

The process temperature, duration of treatment and the pressure influence the degradation of 

the hemicelluloses and the release of acids (Belkacemi et al. 1991). At higher temperatures 

there are more hemicellulose cleavage products due to depolymerisation, and the production of 

more reactive intermediates, such as furfurals, which cause more cross linking reactions that 

increase the lignin polymer network and probably increase the relative proportion of crystalline 

cellulose (Boonstra and Tjeerdsma 2006). In this study, this tendency was not present in the 

modification at high pressure, where it reached its lowest value at 150°C (5.9%). This could be 

related to the higher acid content present at that temperature (Table 2.4), as it is a factor that 

affects the hydrolysis of hemicelluloses and the accessibility of the reactants (Belkacemi et al. 

1991). In the case of the open system, there was no significant difference between 200°C and 

210°, but there was slight increase of the hemicellulose content until 230°C. In general, the 
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hemicellulose content decreases at higher temperatures (Esteves and Pereira 2009). In our case, 

this slight increase could be related to the decrease of the extractive content and the increase of 

the lignin content, specifically at 230°C (Table 2.2).  

 

High concentrations of acids build up in closed systems, with the most prevalent acids being 

acetic and formic acid (Garrote et al. 2001; Sundqvist et al. 2006). Acetic acid has an 

atmospheric boiling point at around 118°C, while formic acid has it around 101°C, thus they 

are vaporized and emitted during a modification in an open system (Hofmann et al. 2013; 

Altgen et al. 2014). As the acidic catalysed hydrolysis affects the degradation of lignocellulosic 

material (Garrote et al. 1999), it shows the influence in the modified wood under pressure 

(Altgen et al. 2016a), as there is a higher acetic acid content at lower temperatures in 

modifications at high pressure, while at the open system the highest acetic acid content is at 

220°C and the lowest at 230°C. As for the formic acid, it is at its highest in the modifications 

at high pressure and modification temperatures of 160 and 170°C, whereas in the closed system 

it reaches its higher values at 200 and 210°C (Table 2.4).  

 

The concentration of phenolic compounds increases as the pressure and temperature raises in 

the closed system, while in the open system it reaches its peak at 230°C, but at 220°C the total 

phenol is lower than at 200 and 210°C (Table 2.4). The modification at 100% RH showed the 

highest amount of total phenolic compounds, so there are more phenols produced at high 

pressure and are probably simple phenols with low molecular weight as stated by 

Hofmann et al. (2013). 
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Table 2.4: Average values of formic and acetic acid content and average values and standard 

deviation of total phenol of unmodified and thermally modified of E. nitens wood in an open 

and closed system modification. Values are given as mean ± standard deviation. 

   

Temperature 

(°C) 
RH (%) 

Formic 

acid 

(mg/100g 

dry wood) 

Acetic 

acid 

(mg/100g 

dry wood) 

Total phenol 

(mg/g dry 

wood) 

Unmodified - 15.3 94.5 8.4 ± 0.21 

     
150 30 30.5 140.1 8.4 ± 0.01 

160 30 72.9 116.5 10.9 ± 0.07 

170 30 60.5 121.5 13.4 ± 1.92 

150 100 71.1 391.4 29.7 ± 1.20 

160 100 104.2 260.4 34.9 ± 1.94 

170 100 104.0 228.9 40.7 ± 6.08 

     
160 - 48.4 95.3 9.9 ± 0.08 

180 - 62.4 120.2 11.8 ± 0.24 

200 - 73.6 108.4 23.3 ± 0.78 

210 - 74.3 128.8 23.6 ± 1.14 

220 - 48.7 225.7 20.1 ± 1.44 

230 - 36.6 67.5 24.1 ± 1.49 

 

 Mechanical changes 

There is a decrease in the MOE as the temperature increases in the closed system, showing a 

clear influence of the pressure and temperature on this property, while in the open system 

modification there was an increase of MOE from 160 to 200°C, followed by a decrease starting 

at 210°C (Table 2.5). This increase in MOE was also presented in a thermal modification of 

E. globulus (Santos 2000), although no type of treatment was mentioned, and in E. grandis and 

E. regnans (de Cademartori et al. 2015). Esteves et al. (2007a) also showed a slight increase at 

the lower modification temperatures, followed by a decrease of MOE at higher temperatures in 

modifications between 170°C and 200°C using E. globulus. 
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MOR tends to decrease at the modifications at higher pressure in the closed system and at 

temperatures over 210°C in the open system. At 150°C the MOR is somewhat higher than the 

unmodified sample, whereas the values at 160 and 170°C were similar to the unmodified sample 

(Table 2.5). In general, there is a decrease in MOR in open thermal modification systems 

(Esteves and Pereira 2009), but there are cases in thermal modifications of other hardwood 

species, such as birch, where there was a slight increase in the MOR (Shi et al. 2007b). 

 

Table 2.5: Average values and standard deviation of MOE and MOR of unmodified and 

thermally modified of unmodified and thermally modified of E. nitens wood in an open and 

closed system modification. Values are given as mean ± standard deviation. 

Temperature (°C) RH (%) MOE (MPa) MOR (MPa) 

    
Unmodified - 18449 ± 959 119 ± 13 

    
150 30 18761 ± 1009 131 ± 11 

160 30 17012 ± 1233 117 ± 16 

170 30 16305 ± 1256 117 ± 9 

150 100 16131 ± 1740 94 ± 9 

160 100 15059 ± 1696 89 ± 15 

170 100 14464 ± 1228 85 ± 9 

    
160 - 19084 ± 1746 132 ± 19 

180 - 19403 ± 2098 134 ± 18 

200 - 22224 ± 1684 119 ± 14 

210 - 17829 ± 1624 109 ± 18 

220 - 15775 ± 1558 90 ± 15 

230 - 14604 ± 1411 88 ± 19 

 

 Correlation between chemical and mechanical changes 

A Pearson correlation test was run to determine any relationship between the mechanical 

properties (MOE and MOR), the chemical variations of selected properties (lignin, 

hemicelluloses, xylose, cellulose DP and total phenols) and the CML in the open and closed 

system modifications. In the case of the closed system modifications there was a strong negative 
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relationship between MOE and MOR with the CML, lignin and total phenols, meaning that 

when there was a decrease of these properties, the MOE and MOR had a tendency to increase. 

There was also a strong positive relationship between hemicelluloses, xyloses and cellulose DP, 

which means that when these properties decrease, the MOE and MOR would also decrease. In 

the case of the MOE for the open system, no property showed a significant correlation. MOR 

had a strong negative relationships with the CML and lignin content and a strong positive 

relationships with xylose and cellulose DP (Table 2.6).  

 

Table 2.6: Pearson correlation coefficients for MOE and MOR in relation to corrected mass 

loss and selected chemical changes in open and closed system. Significant correlations (p<0.05) 

were marked with an asterisk (*). 

 Pearson correlation coefficient 

 Open Closed 

 MOE MOR MOE MOR 

CML -0.504 -0.871* -0.921* -0.955* 

Lignin -0.806 -0.876* -0.883* -0.896* 

Hemicelluloses -0.154 0.710 0.837* 0.906* 

Xylose 0.489 0.902* 0.952* 0.975* 

Cellulose DP 0.435 0.849* 0.938* 0.970* 

Total phenols -0.254 -0.748 -0.888* -0.977* 

 

The main components of the cell wall (cellulose, hemicellulose, lignin) have different degrees 

of contribution to the strength of wood according to a hypothetical model presented by Winandy 

and Rowell (1984). A thermal modification affects the individual wood components and it can 

have an effect on the mechanical properties of the modified wood. The linear backbone chain 

of hardwood hemicelluloses is mainly the xylose. Because there is a higher amount of xylose 

than mannose, arabinose and galactose, small variations can have a large impact on the overall 

strength (Sjostrom 1981). LeVan et al. (1990) speculates that the cleavage of these side groups 

between the lignin and hemicelluloses release the linkage by which one microfibril of a wood 

fiber shares the load with another microfibril. This disruption of the load-sharing would result 

in increased brittleness, which would lead to a gradual reduction in strength in combination 

with the disruption of the hemicellulose backbone chains (Winandy and Rowell 1984; LeVan 

et al. 1990). The degradation or modification of hemicelluloses has also been suggested to be 

one of the primary influences for the loss of bending strength, as there was no depolymerisation 
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or degradation of lignin or cellulose after a heat treatment (Sweet and Winandy 1999; Winandy 

and Lebow 2001). Cellulose and hemicelluloses are linked between themselves and lignin, with 

lignin being the “adhesive” that holds the microfibrils formed by cellulose chains that are 

covered by hemicelluloses. The removal of hemicelluloses increases the crystalline part in 

wood material which relatively increases the cellulose component. This replaces the flexible 

hemicellulose-cellulose-hemicellulose bond with the more rigid cellulose-cellulose bond, 

decreasing the flexibility of the material (Kocaefe et al. 2008a). 

 

In the case of the thermally modified E. nitens wood, as the correlations from Table 2.6 show, 

xylose had a stronger correlation with the decrease of MOR in both open and closed system, 

whereas the hemicelluloses were not significantly correlated to this property in the open system. 

Due to those correlations, it would be recommendable to use xylose as the dependent variable 

to suggest brittleness in modified wood. The decreasing pattern in the xylose content and the 

decline in MOR at higher temperatures in each thermal modification shows that there is a 

relationship between strength properties and the degradation of the carbohydrates. This 

confirms the wood strength-wood chemical model that was suggested by Winandy and Rowell 

(1984). 

 

The hemicellulose and xylose content are slightly higher in the modifications in open system 

than in the modification in the closed system at high pressure and 160°C and 170°C (Table 2.2). 

The cellulose content tends to be higher in the modifications at high pressure, meaning that the 

hemicelluloses were affected more in the modifications under high pressure, which could mean 

that the cellulose crystallinity was also affected. This could explain the higher MOE values in 

the open system modifications, as it seems that the hemicelluloses were not affected as much 

as in the closed system modifications, something that also occurred in thermally modified aspen 

wood (Kocaefe et al. 2008a). 

 

Sweet and Winandy (1999) suggest a theory that the acids in wood hydrolyse the cellulose 

chains, and since the cellulose DP is considered as primarily responsible for the strength of the 

wood fiber, the reduction of the length of the cellulose chains could cause a reduction in strength 

properties, which can be related to the mechanical properties of the wood. The results obtained 

in this study show that the cellulose DP had a tendency to decrease rapidly as the temperature 

raised in both low and high pressure closed system modifications. In the open system 

modifications there was no such constant decrease as the temperature raised, as the cellulose 
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DP maintained a similar length between 210° and 220°C (Table 2.2). This is related to the 

stronger correlations between MOR and cellulose DP in the closed system presented in Table 

VI, which could suggest that it would lead to a more brittle material that breaks at a quicker rate 

in the modifications under high pressure. It can also be seen that the formic and acetic acid has 

a higher content in closed system modification (Table 2.4), which also confirms the theory 

suggested by Sweet and Winandy (1999). 

 

Phuong et al. (2007) concluded that the brittleness in Styrax tonkinesis increased significantly 

after heat treatment and that could be related to lignin relocation at low temperatures (160°C) 

and loss of amorphous polysaccharides due to degradation. In the case of E.nitens, the lignin 

content increases similarly in both open and closed systems, but there is a stronger correlation 

for both MOE and MOR in the closed system, while also having a higher total phenol content, 

which could mean that the transformation of lignin during a closed system could produce higher 

amounts of phenolic extractives than the modification in an open system. This also suggests 

that the closed system modifications would tend to be more brittle than the ones in the open 

system. 

 

For a direct comparison of modifications from the open and the closed system, the CML can be 

used. The closed system modification at 160°C and high pressure and the open system 

modification at 210°C show similar CML of 18.6 and 18.7% respectively. They present similar 

lignin and extractive content, but show significant differences in cellulose DP, cellulose and 

hemicellulose content (Table 2.2), xylose content (Table 2.3), total phenol and formic and acetic 

acid content (Table 2.4). The MOE and MOR were also lower in the closed system than in the 

open system modification (Table 2.5). Based on the previous analysis of the correlation between 

mechanical and chemical properties, at least when both modifications present the same CML, 

it can be said that the modification at 160°C and high pressure was more brittle than at 210°C. 

 

The results obtained show that the influence of pressure in the closed systems change the 

chemical properties to similar or even higher values as in the open system, even at shorter total 

process duration and lower modification temperatures (Table 2.1). This confirms that in this 

closed system the modification pressure influences more the chemical structure than the 

temperature (Altgen et al. 2016b). These changes influence the mechanical properties, 

especially at high pressure, suggesting that the modified wood obtained from those processes 

would tend to be more brittle than in the open system modification. 
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2.4 Conclusion 

Even at lower temperatures, and shorter total process duration times, modifications in a closed 

system under high pressure affected more the chemical structure of the modified wood than the 

modifications in the open system. In turn, it also affected the mechanical properties, as they 

were strongly correlated to the variations of xyloses, cellulose DP, lignin content and total 

phenols. This was related to the tendency of the wood to be more brittle in those modifications. 

The use of closed system modifications has its advantages for the industry, especially the fact 

that the modifications take less time and hence have a lower energy consumption, but some of 

the properties obtained could affect the types of products to produce. Taking this into 

consideration and knowing that the open system modification take longer to be completed, the 

obtained results in this study can be used as a reference for future applications of E. nitens 

modified wood. They could also be used to optimize thermal modification processes to adjust 

to the necessities of the wood market. 
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Abstract: Eucalyptus nitens is a fast growing plantation species that has a good acclimation in 

Chile. It is commonly used for pulp and paper, but there is a growing market for solid wood 

products made from this species and an interest on producing high quality material. Thermal 

modification technology have been used to obtain high quality product out of fast growing 

plantation species. In this study we modified E. nitens to analyse the influences of the process 

conditions and evaluated its mechanical properties under several process conditions. The 

material was modified in a closed system under elevated pressure and controlled relative 

humidity (30 and 100% RH) at temperatures between 150 and 170°C, and in an open system 

with a standard thermal modification procedure between 160 and 230°C. Modulus of elasticity 

(MOE), modulus of rupture (MOR), deflection and work in bending (in elastic and inelastic 

proportions) and the resistance to impact milling (RIM) in High-Energy Multiple Impact 

(HEMI) tests were determined. Mass loss after each modification was also measured and 

correlated with the mechanical properties. Anatomical properties of selected modifications 

were analysed. There were no significant differences between open and closed system 

modifications in both mechanical and anatomical properties.  

 

Keywords: Eucalyptus nitens, High-Energy Multiple Impact (HEMI) test, modulus of 

elasticity (MOE), modulus of rupture (MOR), thermal modification, wood anatomy 

 

3.1 Introduction 

Currently, Eucalyptus nitens plantation wood is mostly used for pulp and paper or biofuels, but 

there is an interest to widen the use of this fast growing tree species in Chile. Thermal 

modification technologies show potential to produce high quality material and open new 

markets for the use of this species. These processes use treatment temperatures between 150°C 

and 240°C under different operating conditions, either steam, vacuum, nitrogen that limit the 

presence of oxygen in the process (Hill 2006; Militz and Altgen 2014). They can be separated 

in open systems, in which the modification happens at atmospheric pressure (ThermoWood 

(Mayes and Oksanen 2002)), and closed systems, where the processes work under steam 

pressure such as FirmoLin (Willems 2009) and WTT (Dagbro et al. 2010), or vacuum 

(TERMOVUOTO (Allegretti et al. 2012)), to name a few examples. The wood composition 

changes when it is exposed to high temperatures, and as a consequence, it improves the 

biological durability (Hakkou et al. 2006; Boonstra et al. 2007b), and its dimensional stability 

(Boonstra and Tjeerdsma 2006; Tjeerdsma and Militz 2005), changing its mechanical 

properties (Esteves and Pereira 2009; Kubojima et al. 2000). These variations are closely related 
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to the species and the process conditions. The static modulus of rupture (MOR) and the modulus 

of elasticity (MOE) are affected differently, as the MOR tends to decrease more than the MOE, 

as shown for thermal modifications of Betula papyrifera (Canadian white birch) (Poncsák et al. 

2006) and Fagus sylvatica (European beech) (Tjeerdsma et al. 1998). In both species, MOE 

and MOR reduced with rising modification temperature. However, other authors showed that 

MOE of thermally modified wood can de higher than the reference values increased in certain 

thermal modifications (Kubojima et al. 2000; Santos 2000; Borrega and Kärenlampi 2008b; 

Lekounougou et al. 2011; Rautkari and Hill 2014). The structural integrity of wood is also 

affected by the thermal modification, as the degradation of hemicelluloses (Alen et al. 2002; 

Boonstra and Tjeerdsma 2006; Sundqvist et al. 2006) can cause an increased brittleness of the 

material (Phuong et al. 2007; Weigl et al. 2012). This also contributes to the decomposition of 

cell wall components, which are related to the mass loss, causing defects in the microscopic 

structure of the wood, such as cracking and cell wall collapse (Boonstra et al. 2006a; Boonstra 

et al. 2006b; Awoyemi and Jones 2011; Biziks et al. 2013). These structural defects may 

contribute to the mechanical changes of the thermally modified wood.  

 

To quantitatively analyze the structural changes, a method was developed to determine the 

structural integrity of wood in relation of its resistance to impact milling (RIM). This is 

determined in a High-Energy Multiple Impact (HEMI) mill, which had been designed using 

steel balls of different size in a heavy vibratory mill for crushing wood samples. The process 

was developed to overcome the drawbacks of standard dynamic strength tests. Instead of using 

a high number of replicate wood specimens, the number of events that affect directly the wood 

can be multiplied (Brischke et al. 2006a; Brischke 2017). 

 

The objective of this study was to examine the static mechanical behavior (MOE and MOR) 

and the dynamic mechanical behavior (HEMI test) of eucalypt wood after treatments in both 

open and closed reactor systems with the goal to analyze the influence of the process conditions. 

Selected samples from the open and closed modification systems were chosen to be analyzed 

with a scanning electron microscope (SEM) to reveal possible differences in the anatomical 

structure that could be influential in the changes of the mechanical properties. 
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3.2 Material and methods 

E. nitens wood that came from 19 year old plantations of the Región del Bío-Bío in Chile was 

used. Wood specimens with dimensions of 20 × 50 × 650 mm3 (radial x tangential x 

longitudinal) were prepared from kiln-dried wood that had an average moisture content (MC) 

of 12% avoiding knots and other visible flaws. For each modification process ten specimens 

were used. 

 

 Thermal modification process 

Thermal modifications in an open and a closed systems were performed. The open system was 

a process similar to the Thermowood procedure (Mayes and Oksanen 2002), in which the first 

step is a pre-drying that starts at 100°C up to 130°C at a heating rate of 2°C per hour. Afterwards 

the temperature ramps up at 12°C per hour to the peak temperature, where it is hold up for 3 

hours. Finally, the temperature decreased at a rate of 20°C per hour to 65°C. In the case of the 

closed system modification, the WTT process (Willems 2009) was used. It consist of four steps: 

a 50 min holding step at pre-vacuum at <14 kPa, temperature increase in a rate of 12°C per hour 

until modification temperature, a holding step at the peak temperature for 3 hours and a 

temperature decrease in a rate of 20°C per hour up to 65°C. The total duration of the process 

was shorter in the closed system than in the open system. The list of modifications is presented 

in Table 3.1. Both processes were performed in a laboratory scale reactor in a stainless steel 

vessel with electric heating cables to heat up and cooling coils to cool down after the process. 

Exhaust valves were used to release the excess pressure. A gas washer was used to condense 

the volatiles produced by the modification. Water vapour was produced by heating an external 

water reservoir connected to the vessel. When using the equipment for closed system 

modifications, a pre-vacuum was applied (13 kPa), with the water vapour pressure being 

adjusted by heating the water reservoir and discharging the excess pressure to maintain the 

relative humidity (RH) constant. A scheme is presented in Figure 3.1. 
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Figure 3.1: Scheme of the laboratory scale reactor. 1: Vessel for the wood specimens. 

2: Cooling coil to regulate temperature inside the vessel. 3: Exhaust valves to regulate pressure. 

4: Gas washer. 5: Vacuum pump. 6: Steam generator. 7: Safety valve. Adapted from 

Willems (2009). 
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Table 3.1: Peak temperature, maximum pressure, extractive content, corrected mass loss 

(CML), moisture content (MC) and total process duration (TPD) of both modifications (open 

and closed) and the relative humidity (RH) applied in the thermal modifications in the closed 

systems. Duration of the modification at peak temperature was 3 hours for all processes. 

 

 

 

The final wood MC was measured after each modification by difference of dry weight using 

small pieces collected from each specimen, so that this value could be extracted from the dry 

weight of each specimen. The degradation products of the cell wall carbohydrates accumulate 

in the wood during modifications at high temperatures (Altgen et al. 2016b). Hence, for a 

correct measurement of mass loss, the extractive content was measured as described by the 

Solvent Extractives of Wood and Pulp Test Method T 204 cm-07 (TAPPI 1997) using a Soxhlet 

Open System 

Peak 

temperature 

(°C) 

Max 

pressure 

(mPa) 

RH 

(%) 

Extractives 

(%) 

CML 

(%) 

Final 

MC 

(%) 

TPD 

(h) 

 

160 atmospheric - 6.76 5.37 3.34 30  

180 atmospheric - 9.04 7.89 2.04 33  

200 atmospheric - 12.29 14.61 2.04 35.5  

210 atmospheric - 12.70 18.68 2.18 37  

220 atmospheric - 9.12 16.78 2.25 38  

230 atmospheric - 7.44 19.29 2.44 39.5  

     
   

Closed System 

Peak 

temperature 

(°C) 

Max 

pressure 

(mPa) 

RH 

(%) 

Extractives 

(%) 

CML 

(%) 

Final 

MC 

(%) 

TPD 

(h) 

 

150 0.14 30 5.96 2.55 4.50 16.5  

160 0.18 30 7.64 4.99 3.85 18  

170 0.23 30 8.41 6.29 3.20 19  

150 0.47 100 12.72 11.36 5.27 16.5  

160 0.61 100 13.16 18.57 4.94 18  

170 0.77 100 10.05 20.51 4.62 19  
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apparatus. The corrected mass loss (CML) was calculated based on the dry and extractive-free 

weight of the wood before (unmodified) and after each process following eq. 3.1 and 3.2. It 

should be noted that the wood specimens were neither dried nor extracted prior to each 

modification process.  

 

𝑂𝐷𝐸 = 𝑂𝐷 − (𝑂𝐷 ∗ 𝐸𝐶 100)⁄ ,   Equation 3.1 

where OD is the oven dry weight of small wood specimens in grams, EC is the extractive 

content and ODE is the oven dry and extractive free weight of the specimen. Now the CML can 

be calculated using Equation 2, 

 

𝐶𝑀𝐿 = (𝑂𝐷𝐸𝐵 − 𝑂𝐷𝐸𝐴) ∗ 100 𝑂𝐷𝐸𝐵⁄ ,  Equation 3.2 

 

where ODEB is the oven dry and extractive free weight of the specimen before the modification 

process in grams and ODEA is the oven dry and extractive free weight of the specimen after the 

modification process in grams. 

 

The increase of the extractive content is related to the generation of degradation products that 

outweighed their vaporization. By increasing the temperature beyond 210 °C it seems that the 

vaporization of the degradation products increases more than the generation of them (Wentzel 

et al. 2018a). Thus there is a decrease in the CML at 220°C because the extractive content was 

less than at 210°C in the open system. 

 

 Mechanical properties 

A three-point bending test according to DIN 52186 (1978) was conducted using a universal 

testing machine (Zwick Roell Z010, Zwick, Ulm, Germany) to measure the modulus of 

elasticity (MOE) and the modulus of rupture (MOR) (both in Nmm-2) on wood specimens of 

10 × 10 × 180 mm3 (radial × tangential × longitudinal) that were conditioned at 20°C/65% RH 

before the test. At least 15 replicates per modification were tested. The span length of the 

samples was 150 mm and the load was applied in the transversal direction with the testing speed 

adjusted individually for each modification to allow failure of the samples within 90±30 s. A 

load decrease of 10% or more of the maximum load was defined as failure. Deflection and work 

in bending were measured using the formulas presented by Altgen and Militz (2016). The 
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elastic deflection was divided into elastic (δe) and inelastic deflection (δi) (mm) using the eq. 3.3 

that is represented in Figure 3.2, 

δe =
𝑃𝑚𝑎𝑥 ∗ δ

𝑃⁄ ,    Equation 3.3 

where Pmax is the maximum load (N), P represents any load (N) below the proportional limit 

and δ is the deflection (mm) at the respective load P. The inelastic deflection (δi) was calculated 

by subtracting the elastic deflection from the deflection at the maximum load. Work in bending 

(Wmax) (Nmm) was calculated as the area under the load deflection curve using eq. 3.4, 

 

𝑊𝑚𝑎𝑥 = ∫ 𝑃𝑑δ
δ𝑚𝑎𝑥

0
,    Equation 3.4 

Work in bending was separated into inelastic and elastic proportions (We (N mm) and Wi 

(N mm) respectively) as seen in Figure 3.2. The elastic proportion was calculated using eq. 3.5, 

 

𝑊𝑒 = (
δ𝑒

2⁄ ) ∗ 𝑃𝑚𝑎𝑥,    Equation 3.5 

The inelastic work in bending (Wi) was calculated by subtracting the elastic deflection from the 

deflection at the maximum load. All results are presented as a ratio with the average value of 

the reference set to 1. 

 

 

Figure 3.2: The schematic load-deflection curve of the three-point bending test. Maximum load 

(Pmax), deflection at maximum load (δmax), elastic deflection (δe), inelastic deflection (δi), elastic 

work in bending (We) and inelastic work in bending (Wi). Adapted from Altgen and Militz 

(2016). 
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 High-Energy Multiple Impact test (HEMI) 

The development of the HEMI test had been described by Rapp et al. (2006) and Brischke et 

al. (2006b). In the present study, the process was adapted from the procedure presented by 

Brischke (2017): 20 oven-dry specimens of 10 x 10 x 10 mm were placed into a bowl of 140 mm 

inner diameter of a heavy impact ball mill (Herzog HSM 100, Osnabrück, Germany), together 

with one steel ball of 35 mm diameter, three steel balls of 12 mm diameter, and three steel balls 

of 6 mm diameter. The bowl was shaken for 60 s with a rotary frequency of 23.3 s-1 and a stroke 

of 12 mm. The fragments of the 20 specimens were fractionated on a slit sieve with a slit width 

of 1 mm using an orbital shaker at an amplitude of 25 mm and a rotary frequency of 350 min-1 

for 2 min. The following values were calculated using eq. 3.6, 3.7 and 3.8: 

 

𝐼 =
𝑚20

𝑚𝑎𝑙𝑙
⁄ ∗ 100 (%),   Equation 3.6 

Where the degree of integrity (I) is the ratio of the mass of the 20 biggest fragments (m20) to 

the mass of all fractions (mall) after the crushing process. 

 

𝐹 =  
𝑚<1𝑚𝑚

𝑚𝑎𝑙𝑙
⁄ ,    Equation 3.7 

Where the fine fraction (F) is the ratio of the mass that is sieved and has a diameter of less than 

1 mm (m<1mm), to the mass of all fractions (mall) multiplied by 100.  

 

𝑅𝐼𝑀 =
(𝐼 − 3 ∗ 𝐹) + 300

400⁄ (%), Equation 3.8 

Where RIM is the resistance to impact milling and represents the value of the measure for the 

structural integrity of the material. All results are presented as a ratio with the average value of 

the reference set to 1. 

 

 Statistical evaluation 

Statistical analysis was performed to correlate selected chemical changes with mechanical 

properties using the Pearson Correlation Coefficient Test using the STATISTICA Software 

package Version 13.1 (StatSoft Inc., Tulsa, USA). 
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 Scanning electron microscopy  

For the scanning electron microscopy (SEM) a ZEISS EVO ILS 15 (Carl Zeiss Microscopy 

GmbH, Jena, Germany) was used. The specimens were taken from the wood before any 

mechanical test were performed. To obtain a smooth transversal surface, the samples were cut 

with a microtome knife. After mounting on an aluminum stub, the unmodified samples were 

carbon coated. Images were captured through detection of the secondary electrons. Working 

parameters were set to an accelerating voltage of 5 kV, a current of 40 pA, and a working 

distance of 8.5 mm. The magnification used for imaging was 1000x. After taking the images, 

the samples were thermally modified. This was done to compare the differences before and 

after modification and to avoid some issues with the surface preparation, as the thermally 

treated samples tend to be brittle, making it difficult to obtain a smooth surface. 

 

3.3 Results and discussion 

 Static and dynamic mechanical properties 

The MOR ratio did not decrease at CML below 10% (Figure 3.3a). At CML above 10% the 

MOR ratio decreased up to 0.71 at 170°C and 100% RH, while at 230°C in the open system 

modification showed the highest decrease in the ratio (0.74). The loss of MOR at the higher 

temperatures, in both open and closed systems, can be related to the degradation of 

hemicelluloses (Zaman et al. 2000). This was confirmed by Wentzel et al. (2018b), where the 

degradation of xylans was closely related to the decrease of MOR. The degradation was higher 

in the closed system modifications due to the high concentrations of acids that build up because 

of the pressure, meaning that even at lower temperatures, closed system modifications can cause 

an increasing degradation of the hemicelluloses than high temperature modifications in the open 

system. This removal of hemicelluloses leads to distribution of stress over less cell wall material 

(related to CML) as one of its functions is to serve as stress transfer between lignin and 

reinforcing the cellulose microfibrils in the wood cell wall (Winandy and Lebow 2001). A 

decrease in the equilibrium moisture content (EMC) caused by the thermal modification may 

also play an important role in the decrease of MOR. Borrega and Kärenlampi (2008b) 

concluded that the mechanical properties were not only dependent of the mass loss, but also the 

relative humidity in the heating atmosphere, which influences the EMC of the wood after 

modification. In their study, MOR showed less decrease in modifications with lower EMC. In 

the case of the modified E. nitens, the EMC were shown to be lower in the open modification 
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process (Wentzel et al. 2018a), which can be related to the slightly higher ratios presented in 

Figure 3.3a. 

 

The MOE ratio decreases (Figure 3.3a) when the CML was above 10% for both open and closed 

systems, although is less affected by the thermal modification than the MOR ratio. In the closed 

system the decrease in MOE is directly correlated to the CML, but in the open system 

modification there was an increase of the MOE ratio until 200°C reaching 1.2 (CML 15%), 

after that point it started to decrease but without showing a direct relation between the CML 

and the MOE. Similar peaks of MOE have been reported in other species, such as Canadian 

white birch (Lekounougou et al. 2011), Picea abies (Norway spruce) (Borrega and Kärenlampi 

2008b) and other eucalypt species, such as E. grandis and E. regnans (de Cademartori et al. 

2015), and E. globulus (Santos 2000), although no type of treatment was mentioned in the latter. 

 

The elastic deflection (Figure 3.3b) decreased with increasing CML in all the closed system 

modifications, while in the open system modification it was at its lowest at 200°C (0.72) and 

showed almost no variation in all other temperatures. On the other hand, the inelastic deflection 

was more sensitive to the thermal modification as it decreased further than the elastic deflection 

as the temperature rose on all the closed system modifications. The open system modifications 

showed a lower inelastic deflection ratio than in the closed system (Figure 3.3b), with its lowest 

peak being at 200°C (0.25). This could be related to an ultra-structural realignment that could 

cause to reduce the capabilities of the cell wall components for plastic flow (Altgen and Militz 

2016). The results were similar to what was obtained for European beech (Altgen and Militz 

2016) and Norway spruce (Borrega and Kärenlampi 2008b) in treatments in dry conditions. 
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Figure 3.3: Ratio of MOE, MOR (a), inelastic and elastic deflection (b) and work (c) (N=15), 

RIM and integrity (d) (N=20) as a function of CML. Circles represent open system 

modifications, triangles represent closed system modifications. Black represents MOE, elastic 

deflection, elastic work and RIM; grey represents MOR, inelastic deflection, inelastic work and 

degree of integrity. The line shows the unmodified reference value. 

 

Elastic work ratio was higher at the lowest CML and then it decreased as the temperature rose 

in the closed system modifications at 30% and 100% RH. At the open system it slightly 

increased at the lowest CML, reaching its lowest point at 200°C (0.73). As for the closed 

system, it showed similar tendencies as the deflection, but with slightly higher ratios. At higher 

CML the elastic work showed no variation in relation to the reference sample. The inelastic 

work had a similar tendency as the elastic work in all the closed system modifications, 

meanwhile the closed system had its lowest ratio at 200°C (0.31) (Figure 3.3c). The changes 
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could be associated to the inelastic deflection, as it influences the plastic flow, thus influencing 

negatively the work in bending (Altgen and Militz 2016).  

 

There was a minor difference between open and closed modification systems in relation to the 

RIM and the degree of integrity. The slight differences between the modifications could be 

related to changes at a cell wall level, since the RIM is directly correlated with the decrease in 

microstructural integrity caused by heat-induced modification of the cell walls (Welzbacher et 

al. 2011). Both properties reduced when the temperature increased during the closed system 

modifications (Figure 3.3d). This reduction is in line with previous results (Brischke et al. 

2006a; Rapp et al. 2006; Welzbacher and Rapp 2007; Welzbacher et al. 2011) confirming the 

strong correlation between RIM and the decrease in mass by heat treatment. On the other hand, 

in the open system the reduction of the RIM and the degree of integrity occurred until a CML 

of about 16.8% (modification at 220°C) and then it slightly increased at 18.7% (modification 

at 210°C). CML is related to the amount of extractive content, which also considers part of the 

degradation products caused by the thermal modification, deducted from the oven dry mass for 

its measurement, a higher degradation would mean a lower CML. When the E. nitens wood 

was modified over 210°C, its relative content decreased (Wentzel et al. 2018b). As the RIM in 

the open system did not decrease linearly as the CML increased, it could mean that other 

chemical changes also could have influenced the RIM and should be taken into consideration 

when evaluating the results. 

 

The correlations presented in Table 3.2 show that for the closed system significant positive 

correlations can be found between the dynamic (RIM and degree of integrity) and static (MOE, 

MOR) mechanical properties, which means that when one property increases or decreases, the 

other does too. The CML had also a significant negative correlation with the mechanical 

properties, as it increases when the mechanical properties decrease, confirming what was shown 

in Figure 3.3. Open system modification shows that MOE does not correlate with the other 

mechanical properties or the CML, whereas all the other properties correlate the same way as 

the closed system modification. 
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Table 3.2: Pearson correlation coefficients for RIM, degree if integrity, MOE, MOR and CML 

in open and closed system modification. Significant correlations (p<0.05) were marked with an 

asterisk (*). 

 
Closed system modification 

 

RIM 
Degree of 

Integrity 
MOE MOR CML 

RIM 1.000 0.999* 0.964* 0.910* -0.974* 

Degree of 

Integrity 
 1.000 0.955* 0.903* -0.975* 

MOE   1.000 0.921* -0.925* 

MOR    1.000 -0.952* 

CML     1.000 

      

 Open system modification 

 

RIM 
Degree of 

Integrity 
MOE MOR CML 

RIM 1.000 0.974* 0.572 0.946* -0.938* 

Degree of 

Integrity 
 1.000 0.400 0.863* -0.948* 

MOE   1.000 0.770 -0.504 

MOR    1.000 -0.870* 

CML     1.000 

 

When directly comparing two processes with similar CML from the open and closed system, 

the process at 160°C and 100% RH and the process at 210°C had similar values (18.57% and 

18.68% respectively), there were some slight differences in all the ratios of their respective 

static mechanical properties (closed system presented lower values), but similar values in the 

dynamic mechanical properties.  

 

 Scanning electron microscopy 

For this study, we focused on the development of cracks due to thermal modification. Previous 

studies show that there are no changes in the structure of ray parenchyma, vessels and fibers 

tissues before and after modification, as shown in E. grandis thermally modified up to 180°C 
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(Batista et al. 2015) and birch and beech in a two-stage thermal treatment (Boonstra et al. 

2006b). The same authors (Boonstra et al. 2006b) showed that radial cracks and broken cell 

walls perpendicular to the fiber direction resulted in cracks that could lead to different failures 

in the mechanical tests. This was corroborated by Biziks et al (2013), where voids and cracks 

were found on thermally treated birch. Figure 3.4 shows an unmodified E. nitens specimen. The 

wood cell walls of the fibers were all united by their respective middle lamellas (black arrows) 

and some of the pit connection between fibers can also be seen (white arrows). Figure 3.5 shows 

E. nitens thermally modified at 160°C and 100% RH in a closed system and Figure 3.6 shows 

a specimen modified at 210°C in an open system. Both samples have the same CML (Table 1). 

It can be seen for both modifications, that the structure of the wood cell started to separate 

where the middle lamella was (black arrow in Figures 3.5 and 3.6) and cracks started to spread 

to the surrounding cells. Cracks also start to develop where pit connections where exposed 

(white arrows in Figure 3.5 and 3.6), which could be related to pit deaspiration, as described by 

Awoyemi and Jones (2011). Both crack developments happened in open and closed 

modifications, making it difficult to be certain that the process affects the wood structure 

differently. As with the mechanical properties, anatomical changes did not show significant 

differences between open and closed system modifications. 

 

 

Figure 3.4: SEM image of unmodified specimen of E. nitens in the transversal direction. White 

arrow: Pit conection between wood cell wall of the fibers. Black arrows: Middle lamella. 
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Figure 3.5: SEM images of  thermally modified speciemens at 160°C 100% RH in the closed 

system modification. White arrows: Pit conection between wood cell wall of the fibers. Black 

arrows: Middle lamella. 

 

 

Figure 3.6: SEM images of  thermally modified speciemens at 210°C in the open system 

modification. White arrows: Pit conection between wood cell wall of the fibers. Black arrows: 

Middle lamella. 

 

3.4 Conclusions 

In general, there was not a significant influence of the process conditions on the static and 

dynamic mechanical properties. Closed system modification led to slightly lower static 

mechanical properties of wood compared to open system modifications, the inelastic deflection 

and inelastic work were lower in the open system, and the differences in the dynamic 

mechanical properties were insignificant. There were also not mayor differences at the 
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anatomical level between open and closed systems, as both presented similar crack 

developments. The cracks seem to initiate at the middle lamella or pits. To further distinguish 

the differences between open and closed system, it would be recommended to analyse the 

chemical structure of the modified wood using non-destructive techniques such as Raman 

spectroscopy or Fourier-transform infrared spectroscopy (FTIR).
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Abstract: Currently there is a growing market for high quality solid wood products in Chile 

made from Eucalyptus nitens. Thermal modifications have been used to obtain such products 

out of fast growing species. The chemical and crystallinity changes of the modified wood were 

investigated using diffuse reflectance FTIR spectroscopy and crystalline analysis by X-Ray 

diffraction to analyze the difference between thermal modifications processes using pressure 

under wet conditions (closed system) and processes without pressure under dryer conditions 

(open system). In general, the FTIR spectra showed differences in the degradation of the 

hemicelluloses in the peaks of the C=O linkages, but it showed almost no differences in the 

peaks that identify the lignin structure of the wood, as it was difficult to separate the different 

chemical reactions due to the depolymerization of lignin only observing the bands. Meanwhile, 

the degree of crystallinity showed a tendency to increase at high pressure in the closed system 

modifications and in elevated temperatures in the open system modifications, but no significant 

differences at low modification pressure and temperatures. Nonetheless, there were differences 

in FTIR spectra and cellulose crystallinity when directly comparing modifications with the 

same corrected mass loss under different conditions. 

 

Keywords: Eucalyptus nitens, thermal modification, FTIR, cellulose crystallinity, X-ray 

crystallography 

 

4.1 Introduction 

There is interest in Chile to widen the use of solid wood products, especially from fast growing 

plantation species such as Eucalyptus nitens (Shining Gum). The plantation of this species has 

grown in importance in recent years because due to its excellent growth rates, positioning it 

into the second fastest growing species in Chile, after Pinus radiata, and better cold and frost 

resistance than Eucalyptus globulus (Blue Gum), the most used hardwood plantation species 

(INFOR 2014; INFOR 2015). There has been an interest to widen the use to solid wood products 

to increase the economic returns (Muñoz et al. 2005) and thermal modifications have been used 

to produce high quality material from plantation eucalypt species (Esteves et al. 2007a; de 

Cademartori et al. 2015; Batista et al. 2016; Wentzel et al. 2018b) that can be potentially used 

for windows, claddings, flooring, decking or garden products (Militz and Altgen 2014). 

 

Thermal modification processes have been developed in the past decades, where the common 

features are temperatures between 160 and 240°C in an atmosphere with limited oxygen content 

(Hill 2006; Esteves and Pereira 2009; Militz and Altgen 2014). The main differences between 
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the processes are the kind of shielding gas used (nitrogen or steam to name a few) and if the 

process is open or closed. Usually, open reactor systems work at atmospheric pressure using 

superheated steam, like the Thermowood® process (Mayes and Oksanen 2002), which has a 

high temperature drying step at the beginning of the process to avoid excessive drying rates 

during the actual modification temperature, but on the other hand it the relative humidity (RH) 

of the wood reaches almost 0% at that step. As for the closed reactor systems, an example is 

the FirmoLin process (Willems 2009) where the pressure is generated using steam, which 

enables to control the RH inside the chamber thus preserving the wood moisture content during 

the process (Willems 2009; Altgen et al. 2016b)) and preventing excessive vaporization of the 

degradation products generated during the modification. The differences in the wood moisture 

content and the duration of the exposition to the peak modification temperature affect the 

chemical reactions and alter the temperature limit that induces the depolymerization of the cell 

wall constituents (Stamm and Hansen 1937; Seborg et al. 1953; Borrega and Kärenlampi 

2008a). The first component to degrade are the hemicelluloses, where there is a hydrolysis of 

the polymer chains into oligomers and monomers, while also loosing hydrogen bonds 

(Tjeerdsma et al. 1998; Garrote et al. 1999). Cellulose is the least transformed wood component, 

as it is not as strongly affected by thermal degradation as the hemicelluloses, even if many 

chemical reactions are similar between them (Fengel 1967; Alen et al. 2002), but in the 

amorphous region of the cellulose microfibril hydrolytic cleavage takes place, which results in 

an increase of the relative crystallinity (Bhuiyan et al. 2000; Sivonen et al. 2002). Lignin is the 

component that is most thermally stable, as its relative percentage after a thermal modification 

usually increases (Alen et al. 2002; Esteves et al. 2008a), but there are still chemical changes 

happening in the lignin during the modification, such as cleavage of the methoxyl groups and 

a depolymerization of the lignin macromolecule to lower molecular weight compounds 

(Tjeerdsma et al. 1998; Sivonen et al. 2002) and also a higher concentration of phenolic groups 

(Runkel 1951; Kollmann and Fengel 1965). These chemical changes influence the loss in 

mechanical strength of the thermally modified wood (Tjeerdsma et al. 1998; Kubojima et al. 

2000), while crystallinity particularly can influence the brittleness (Phuong et al. 2007) and the 

decrease of flexibility of the material (Kocaefe et al. 2008). 

 

A quick method to measure the chemical changes is the use of Fourier-transform infrared 

spectroscopy (FTIR). The absorption observed in the FTIR spectra can be assigned to a mixture 

content of the functional groups C, H, and O that are present in celluloses, hemicelluloses, 

extractives, lignin and water in woody materials (Rodrigues et al. 1998). In thermal modified 
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wood it has been used by Tjeerdesma and Militz (2005) analyzing Beech (Fagus silvatica) and 

Scots pine (Pinus sylvestris), and in the case of species similar to E. nitens, Esteves et al. (2013) 

used this method when analyzing thermally modified E. globulus wood. They used the KBr 

embedding method, as described by Faix and Böttcher (1992). Solid wood samples and thin 

slices have also been used, but to obtain reproducible spectra, the roughness and direction of 

the cut (radial, tangential or transversal) have to be identical (Pandey and Theagarajan 1997). 

To minimize the problems of the wood surface during the analysis, diffuse reflectance is a 

technique that allows the use of samples without previous preparation to obtain the spectra, as 

it is an in situ measurement that gives fast results in a reliable way. 

 

X-ray diffraction has been used to measure and characterize the crystallinity of the cellulose 

(Segal et al. 1959; Isogai and Usuda 1990; Thygesen et al. 2005). It has also been used to 

measure the crystallinity in thermally modified wood (Dwianto et al. 1996; Bhuiyan et al. 2000; 

Bhuiyan et al. 2001) and even in thermally modified eucalypt species (Cheng et al. 2017). There 

is a tendency of increase of crystallinity after modification (Bhuiyan et al. 2000; Cheng et al. 

2017), but it is not known if differences in the process conditions have an influence on the 

crystallinity. There are also no reports on measurements done directly in thermally modified 

solid wood samples. 

 

The aim of the present study was to use a combination of FTIR and x-ray diffraction to have a 

deeper look on the chemical variation and measure the degree of crystallinity to further analyze 

the changes that occur during the different thermal modification processes. 

 

4.2 Material and methods 

 Material 

Wood from 19 year old Eucalyptus nitens plantations was obtained from the Región del Bío-

Bío in Chile. Slats of 20 × 50 × 650 mm3 (radial × tangential × longitudinal) size were prepared 

from kiln-dried avoiding major defects and large knots. The slats had an average moisture 

content of 13% before the modification process. Ten slats per modification process were used. 

 

 Thermal modification 

Thermal modification processes were performed in a laboratory-scale treatment reactor. The 

samples were placed in a stainless steel vessel with a volume of 65 l that could be heated up to 
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a maximum of 260°C with electric heating cables and is cooled down to room temperature using 

water cooling coils. Water vapor was produced by heating an external water reservoir connected 

to the vessel. Exhaust valves were used for the release of excess pressure. The treatment reactor 

can be used as either an open (without pressure, dry conditions) or as a closed (under pressure, 

wet conditions) system.  

 

The open system modifications was similar to the ThermoWood® process (Mayes and Oksanen 

2002). The first step is to rise the temperature 12°C per hour until it reaches 100°C, followed 

by increasing the temperature 2°C per hour until 130°C to emulate the high temperature drying 

step of the ThermoWood® process. The third step was to increase the temperature 12°C per 

hour until it reaches the peak temperatures shown in Table 4.1. The peak temperature was then 

held for 3 hours. Afterwards the temperature was decreased 20°C per hour until it reached 65°C, 

at that point the vessel was opened and the samples were taken out of it.  

 

As for the modifications in the closed system, a similar schedule to the one used in the open 

system was used, but there was no high-temperature drying step applied, so the temperature 

was risen 12°C per hour until the peak temperature. It was also held for 3 hours and afterwards 

decrease 20°C per hour up to 65°C. Pre-vacuum (ca. 13 kPa) was applied at the beginning of 

each thermal modification process. Peak temperatures, RH and maximum pressure applied in 

the closed system are shown in Table 4.1. 

 

The final moisture content (MC) was measured by difference of dry weight using small pieces 

taken from each slat. The dry mass from the small sections and the mass loss (ML) were 

calculated using the formulas described by Metsä-Kortelainen et al. (2006), while the corrected 

mass loss (CML) was measured as described by Altgen et al. (2016b), where first the extractives 

are deducted from the dry weight of the selected wood slats to calculate their corrected weight. 
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Table 4.1: Peak temperature, maximum pressure, relative humidity (RH), final moisture 

content (MC) and corrected mass loss (CML) determined for each modification. The hold time 

at peak temperature was 3 hours for all processes. 

Peak 

temperature 

(°C) 

Max 

pressure 

(MPa) 

RH 

(%) 

MC 

(%) 

CML 

(%) 

Closed system     

150 0.14 30 4.5 2.6 

160 0.18 30 3.9 5.0 

170 0.23 30 3.2 6.3 

150 0.47 100 5.3 11.4 

160 0.61 100 4.9 18.6 

170 0.77 100 4.6 20.5 

Open System   

160 Atm.a - 3.3 5.4 

180 Atm. a - 2.0 7.9 

200 Atm. a - 2.0 14.6 

210 Atm. a - 2.2 18.7 

220 Atm. a - 2.3 16.8 

230 Atm. a - 2.4 19.3 

a Atmospheric pressure 

 

 FTIR analysis 

A FTIR chemical imaging system (PerkinElmer) was used to obtain the spectra from each 

modification and from untreated specimens. The system consists of a spectrophotometer 

Frontier that has two detectors, type DTGS NIR and MIR, both covering a range between 

(14,700 -350 cm-1) with a resolution of 4 cm-1. The imager Spotlight 400, one detector type 

MCT MIR (7800- 720 cm-1) with a resolution >2 cm-1, was used. The system can generate 

chemical spectra directly on the surface of the wood through chemical images. In this work, 

diffuse reflectance was used to obtain the spectra with resolution of 8 cm-1 and 32 scans. The 

spectra were baseline corrected using an interactive baseline correction and then they were 

normalized considering maximum ordinate value in the spectrum. 
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The samples were cut to blocks of 10× 10 × 10 mm3 (radial × tangential × longitudinal) and the 

conditioned at 20°C/65% RH for a month previous to the FTIR analysis. The radial surface was 

chosen for each analysis. 

 

 X-ray diffraction 

The late wood from the radial surface of solid wood Eucalyptus nitens samples were positioned 

on sample holder of a Multifunctional Smartlab diffractometer (Rigaku Corporation, Japan). 

The equipment employs Ni-filtered Cu radiation (30 kV and 40 mA), 1 mm divergence slit, 0.3 

mm anti-scatter slit, 5° Soller slits and a Rigaku D/teX 250 detector. The alignment is regularly 

checked against the NIST SRM660c LaB6 powder standard (NISTS 2015). Patterns were 

collected in the 10-30° range, counting 0.5°/sec per step of 0.01°. PDXL 2 v.2.7.3.0 software 

was used for patterns intensity analysis. The Crystalline Index (CI) was calculated according to 

the method of Segal et al. (1959). ). Three measurements per sample were done, as it is a proof 

of concept for the use of solid wood in the measurement of crystallinity, and due to the difficulty 

to align the late wood to the beam. 

 

4.3 Results and Discussion 

The bands at 1748 cm-1 represent the ketones and in free aldehyde present in lignin and 

hemicelluloses (Rodrigues et al. 1998; Michell and Higgins 2002). The C=O linkage present 

strong absorptions in FTIR spectra between 1750 and 1700 cm-1, and the exact wavenumber 

depends of the functional group (carboxylic acid: at about 1725-1700 cm-1; ester, ketone: 1725-

1705 cm- 1, aldehyde: 1740-1720 cm-1) and of its structural location (Esteves et al. 2013). As it 

can be seen in Figures 4.1, 4.2 and 4.3, all thermal modifications show a decrease in absorbance 

in this band as the temperature increases. The lower reactivity can be related to the decrease in 

free reactive hydroxyl groups in holocellulose due to the thermal degradation of the 

hemicelluloses, as it is more reactive than cellulose (Nguila Inari et al. 2007). There is a more 

noticeable decrease of this band decreasing in the modifications at 100% RH (Figure 4.2). This 

is mostly due to the auto-hydrolysis during the modification, which results in the formation of 

acetic acid that accelerates the degradation (Garrote et al. 1999; Garrote et al. 2001). This 

decrease is also related to the variations in lignin due to esterification caused by the reaction of 

the produced acids with the wood cell wall (Tjeerdsma and Militz 2005). Wentzel et al. (2018b) 

shows that the acetic acid concentration was higher in the modifications at 100% RH, causing 

an increase of the degradation of hemicelluloses, particularly the xylans. This can be seen in 
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the band around 1730 cm-1, which is the band that represents the acetoxy groups in xylan, and 

at the band around 1468 cm-1, which corresponds to the asymmetric deformation of C-H bond 

of xylan (Michell and Higgins 2002). There is also a decrease around the peak at 1600 cm-1, 

which are related to C=C unsaturated linkages and aromatic rings present in lignin (Rodrigues 

et al. 1998; Mitchel and Higgins 2002). The changes in this band were related to lignin 

condensation at the expense of conjugated carbonyl groups and to the carboxylation of 

polysaccharides (Chow 1971; Gonzalez-Peña et al. 2009). 

 

 

Figure 4.1: FTIR spectra of thermally modified E. nitens under pressure at 30% RH and 

untreated sample. From top to bottom: Untreated, 150, 160 and 170°C respectively. 
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Figure 4.2: FTIR spectra of thermally modified E. nitens under pressure at 100% RH and 

untreated sample. From top to bottom: Untreated, 150, 160 and 170°C respectively. 

 

 

Figure 4.3: FTIR spectra of thermally modified E. nitens at atmospheric pressure and untreated 

sample. From top to bottom: Untreated, 160, 180, 200, 210, 220, 230°C respectively. 

 

Lignin in eucalypts can be seen at the band around 1505-1510 cm-1 (Rodrigues et al. 1998), 

where the aromatic rings of hardwood lignin (Guaiacyl and Syringyl) are represented (Faix 

1991), although it can be difficult to differentiate properly its changes, as it can increase or 

decrease on whether there is an increase in the relative lignin (Kotilainen et al. 2000; Windeisen 

et al. 2007) or the aromatic ring opening in the lignin is the one dominating (González-Peña 
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and Hale 2009). According to Pandey (1999), Guaiacyl and Syringl can also be seen in the 

peaks around 1250 cm-1, which represent the C-O stretching and bending (Rodrigues et al. 

1998; Mitchel and Higgins 2002). These bands shifted in the modified wood, similar to what 

happened to E. globulus (Esteves et al. 2013) and it shows an increase in the band in all the 

thermal modifications (Figures 4.1, 4.2 and 4.3). This is related to carbohydrate degradation. 

Something similar can be seen in the band 1385 cm-1, which represents the O-H bending 

vibrations in phenols (Rodrigues et al. 1998), where the OH stretching frequencies change and 

also increase for the thermal modifications. This variation could be influenced by dehydration 

effects of the modifications (Moharram and Mahmoud 2008; Spiridon et al. 2011). The open 

system modifications tend to have a lower MC after the process (Table 4.1). The bands show 

different peaks when compared directly between samples with same CML from a drier 

modification at atmospheric pressure (210°C) and a modification under pressure and 100% RH 

(160°C and 0.61 bar) (Figure 4.4). There are other vibrations that arise from the aromatic 

skeletal in lignin (around 1140 cm-1) (Faix 1991; Rodrigues et al. 1998; Michell and Higgins 

2002) that decline as the temperature of the treatment increases, which probably contribute 

towards the increase of the CO band at 1708 cm-1 (González-Peña and Hale 2009). The changes 

in lignin can be related to the loss of syringyl units, which tend to be liberated easier than the 

guaiyacyl monomers by a thermal degradation (Faix et al. 1990). The decrease in content of 

this group could be related to the decrease in the methoxyl groups in lignin, which leads to the 

loss of a monomer. Previous research indicates that a shift occurs in this group, which can be 

attributed to the breaking of aliphatic side-chains in lignin and/or condensation reactions 

(Windeisen et al. 2007). Differences between wet and dry modifications, which could be related 

to the cross-linking reactions from the degradation of hemicelluloses and lignin, are difficult to 

make out due to the absorbance of the aromatic rings of furan-type intermediates and lignin 

overlap (Altgen et al. 2018). 

 

The bands at 1335 cm-1 and 1323 cm-1 represent the C-H bending of polysaccharides and the 

condensed units of syringyl and guayacyl respectively, thus combining most of the structural 

components of wood (Faix 1991). As it represents many structures, it is difficult to conclude 

which is the structure that causes the changes to be able to differentiate between the open and 

closed system. There were distortions in the intensities of the bands in the region close to 1150–

950 cm-1, when DRIFT spectra were measured directly from wood surfaces (Pandey 1999).  
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Figure 4.4: Comparison of FTIR spectra of thermally modified E. nitens in the closed system 

(160°C and 0.61 bar) (top) and in the open system (210°C and atmospheric pressure) (bottom). 

 

These represent the C-O stretch in polysaccharides. Similar distortions can be seen in both open 

and closed system modifications, but no difference between the modifications can be seen as 

shown in Figure 4.4. 

 

The crystallinity index measured directly on solid wood samples shows a tendency to increase 

at elevated pressure under wet conditions and at elevated temperatures and drier conditions 

under atmospheric pressure, but it shows little to no change at the lower pressures and at lower 

temperatures (Table 4.2). In the closed system under wet conditions there was an increase at 

150°C and 0.14 bar and a decrease at 230°C under drier conditions. We suspect that this increase 

is due to the sample surface, as the measurements are done in situ and it could have measured 

a mixture of early/late wood, thus causing issues in the measurement of the crystallinity. 

According to Segal (1959), the difference between the intensities or the height of the angles 

between 18 and 22° (2θ) of the diffraction pattern in relation with the intensity of the crystalline 

peak at 22° is the indicator of the degree of crystallinity. This means that a higher difference 

between the intensity values is an indicator of the prevalence of the crystalline face, on the 

contrary it means a prevalence of the amorphous part. This could be explained by considering 

that cellulose chains swell when exposed by high temperature and humidity, thus increasing the 

distance between the crystal planes, as stated by Cheng et al (2017).  
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Table 4.2: Degree of crystallinity (CI) by X-ray diffraction in open and closed thermal 

modifications of E. nitens. 

Temp Pressure I002 Iamorph CI (%) 

Ref ATM 988 308 69 

150 0.14  1363 364 73 

160 0.18  881 302 66 

170 0.23  1087 352 68 

150 0.47  919 292 68 

160 0.61  1401 298 79 

170 0.77  1398 315 78 

160 ATM 1169 366 69 

180 ATM 1300 385 70 

200 ATM 1301 359 72 

210 ATM 1510 399 74 

220 ATM 1706 426 75 

230 ATM 1200 392 67 

 

At higher temperatures there are more hemicellulose cleavage products due to depolymerisation 

and the production of more reactive intermediates, such as furfurals, which cause more cross 

linking reactions that increase the lignin polymer network (Boonstra and Tjeerdsma 2006), 

causing probably an increase in the relative proportion of crystalline cellulose due to a 

rearrangement of the cellulose molecules (Bhuiyan et al. 2000). The acetic acid generated by 

the modification degrades the hemicelluloses and could also degrade the microfibrils of the 

amorphous region of the cellulose, even attack the crystalline region (Sivonen et al. 2002). Both 

chemical changes occur in wet and dry modifications, but the acidity is higher in the wet 

modification in a closed system (Wentzel et al. 2018b). Omitting the crystalline index at 150°C 

and 0.14 bar, the modifications at lower pressures in the wet process showed no significant 

difference with the untreated samples (Fig. 5), but at higher pressure there was a noticeable 

increase in the degree of crystallinity index for the modifications at higher temperatures and 

pressure (Figure 4.6). Bhuiyan et al. (2000) suggested that under moist conditions there is a 

stimulating effect on the crystallization of amorphous cellulose. As already established by the 

FTIR spectra and Wentzel et al. (2018b), the degradation of hemicelluloses is closely related to 

the xylans, which crystallize due to the controlled pyrolysis during the modification, thus they 

could also influence the change in the degree of crystallinity (Akgül et al. 2007). As for the 

open system modification under drier conditions, there is a steady increase of the crystallinity 

index as the temperature rises, excluding the modification at 230°C (Figure 4.7), but not a 

significant difference with the reference with the exception of the modifications at 210 and 
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220°C respectively. Besides the increase of acetic acid, the increase in the crystallinity index in 

the dry modification can be related to the preferred degradation of less ordered molecules 

(Sivonnen et al. 2002). The results obtained in the open system were in contrast to what was 

shown by Cheng et al. (2017), where there was a decrease of the crystallinity when the 

temperature rises and an increase at 220°C. The difference could be due to the different species 

used and the types of modifications. 

 

 

Figure 4.5: X-ray diffraction of thermally modified E.nitens at 30% RH in the closed system 

and an untreated sample. From top to bottom: 170, 160, 150°C and untreated specimen. 

 

 

Figure 4.6: X-ray diffraction of thermally modified E.nitens at 100% RH in the closed system 

and an untreated sample. From top to bottom: 170, 160, 150°C and untreated specimen. 
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Figure 4.7: X-ray diffraction of thermally modified E.nitens at atmospheric pressure and 

untreated sample. From top to bottom: 230, 220, 210, 200, 180, 160°C and untreated specimen. 

 

When directly comparing wet and dry modifications with processes with the same CML (210°C 

and atmospheric pressure and 160°C and 0.61 bar) the wet modification presents slightly higher 

crystallinity index than the dry modification, but overall the difference is not significant.  

 

There are differences when directly comparing modifications with the same CML for both FTIR 

and x-ray diffraction, but it the case of cellulose crystallinity, it is difficult to be certain that 

there are significant differences between modifications under pressure under wet conditions 

and without pressure under drier conditions.  

 

4.4 Conclusions 

The biggest chemical differences between modifications under pressure in wet conditions and 

without pressure in dry conditions were observed in the variations in the peaks of the C=O 

linkages (1750 and 1700 cm-1), which represent carbonyl stretching vibration in non-conjugated 

ketones and in free aldehyde present in lignin and hemicelluloses and can be related to the 

formation of acetic acid that accelerates the degradation of the hemicelluloses and the variations 

in lignin due to esterification, with a decrease of this band in the modifications of the closed 

system at 100% RH. The OH bending also showed different peaks between open and closed 

system (band 1385 cm1), but it was harder to differentiate the lignin peaks between both 

processes, as it was difficult to separate the different chemical reactions due to the 
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depolymerization of lignin by only observing the bands. On the other hand, the degree of 

crystallinity did not show significant differences between both modifications, although the 

modifications under wet condition had slightly higher values. Further research on the 

measurement of the crystallinity in solid wood samples should be done, focusing on differences 

between late and early wood and the direction of the sample (longitudinal, transversal, radial). 

There were differences in FTIR spectra and cellulose crystallinity when directly comparing 

modifications with the same CML under different conditions. This should be taken into 

consideration in further research of the properties of thermally modified wood. 
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Abstract: Eucalyptus nitens was thermally modified in either an open or a closed reactor 

system at different temperatures and water vapor pressures. Reversible changes in equilibrium 

moisture content (EMC) and volumetric swelling (Smax) were analyzed during cycles that 

included repeated conditioning at 20 °C/65 % RH, water-soaking and vacuum-drying at room 

temperature. These cycles partially diminished the reduction in EMC and Smax measured 

directly after the modification process. The recovery of drying related annealing effects of 

amorphous polymers was considered the main effect during water soaking cycles of wood from 

the open reactor system, while the removal of the cell wall bulking effect was the main effect 

in the wood modified in the closed system in nearly saturated water vapor. Water soaking cycles 

also changed the dynamic vapor sorption behavior to considerable extent, leading to a lower 

reduction in EMC by thermal modification over the entire RH range measured. Exposure of the 

samples to 95 % RH during the dynamic vapor sorption measurements was incapable of 

removing reversible effects to the same extent as repeated water soaking. 

 

Keywords: Thermal modification, Dynamic vapor sorption (DVS), Equilibrium moisture 

content (EMC), Volumetric swelling, Water soaking cycles  

 

5.1 Introduction 

Several thermal modification processes have been developed in the past decades that enable the 

use of fast growing wood species in exterior applications (Esteves et al. 2007a). As reviewed 

comprehensively (Hill 2006; Esteves and Pereira 2009; Militz and Altgen 2014), the application 

of modification temperatures between 160 and 240 °C and the limitation of the oxygen content 

in the process are common features of all thermal modification processes on the market. 

However, the main differences in the processes are the shielding gas used (such as steam, 

nitrogen or others) and the pressure regimes applied in open or closed reactor systems. Open 

reactor systems operate at atmospheric pressure, with superheated steam being the most used 

shielding gas. Under these conditions, the relative humidity (RH) and the corresponding wood 

moisture content (MC) decrease considerably. This requires a high-temperature drying step at 

the beginning of the process so that excessive drying rates during the actual modification at 

temperatures around 200 °C are avoided (Mayes and Oksanen 2002). Closed reactor systems 

enable the application of elevated pressure levels during the thermal modification. If the 

pressure is generated by steam, the RH may be controlled and elevated wood moisture contents 

can be preserved during the process (Willems 2009; Altgen et al. 2016b). The elevated wood 

MC during the process, together with the accumulation of carboxylic acids in the wood, have 
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been suggested as the main causes for accelerated wood degradation in closed reactor systems 

(Giebeler 1983; Borrega and Kärenlampi 2008a; Willems et al. 2015a; Altgen et al. 2016b). 

However, up until today, it remains unclear whether the properties of thermally modified wood 

from open and closed reactor systems differ significantly. Without the existence of any general 

quality control system for thermally modified wood products available on the market (Willems 

et al. 2015b), such differences need to be explored to avoid the use of thermally modified wood 

with properties that are unsuitable for a specific application.  

 

The improvement in dimensional stability and the decrease in water vapor sorption of wood 

during thermal modification have been known for many decades (Tiemann 1917; Stamm and 

Hansen 1937; Seborg et al. 1953; Burmester 1975). Besides the increase in biological durability 

(Weiland and Guyonnet 2003; Hakkou et al. 2006; Boonstra et al. 2007a), this is the main 

reason for the extended service life of thermally modified wood in many exterior applications. 

The change in wood properties is linked to the various degradation reactions in the cell wall 

that are induced by thermal modification. This includes the hydrolysis of amorphous 

carbohydrates to smaller sugars units, which can undergo dehydration and decarboxylation 

reactions to be either emitted from the wood as volatile compounds or be involved in 

condensation reactions with the remaining cell wall polymers (Tjeerdsma et al. 1998; Demirbaş 

2000; Alen et al. 2002). Hemicelluloses contain far more water accessible OH groups than the 

semi-crystalline cellulose or the lignin (Runkel 1954; Runkel and Lüthgens 1956). Therefore, 

their preferential degradation during the thermal modification process (Alen et al. 2002) reduces 

the concentration of water-accessible OH groups in wood as sorption sites for water. However, 

a pure change in chemical composition is insufficient to increase the dimensional stability of 

wood, because the space that was previously occupied by hemicelluloses can still be occupied 

by water (Burmester 1975). Instead, the formation of additional covalent bonds and cross-links 

during the thermal modification are necessary to improve the dimensional stability of the wood 

by hindering the expansion of nanopores in the cell wall matrix upon water uptake (Repellin 

and Guyonnet 2005; Altgen et al. 2016a). A hindered expansion of nanopores, which may be 

interpreted as increased cell wall matrix stiffness, has also been suggested to decrease the water 

vapor sorption of wood in addition to the decrease caused by a preferential degradation of 

hemicellulose(Hill et al. 2012; Altgen et al. 2016a). 

 

Besides the changes in hygroscopicity that are linked to irreversible chemical changes by 

thermal degradation during the modification process, there is a number of recent studies that 



   Chapter 5: Publication IV 

84 

 

provide evidence for a simultaneous occurrence of reversible changes in hygroscopicity (Hill 

et al. 2012; Altgen and Militz 2016; Endo et al. 2016; Majka et al. 2016). The partial 

reversibility of the property changes might lead to a discrepancy between the properties of 

thermally modified wood that are determined directly after the process and those that are 

evident for thermally modified wood in service. The neglect of this partial reversibility might 

also lead to false conclusions in mode of action studies on thermally modified wood.  

 

One cause for reversible changes in hygroscopicity is the drying of wood at high-temperatures 

during the thermal modification process (Borrega and Kärenlampi 2010; Altgen and Militz 

2016; Endo et al. 2016). This was first explained by irreversible hydrogen bonding, which is 

similar to the hornification effect that reduces the water retention value of wood pulp upon 

drying (Borrega and Kärenlampi 2010). However, this drying related effect was later shown to 

be reversible. It was suggested that drying wood at elevated temperatures, beyond the softening 

point of amorphous matrix polymers, causes their annealing and realignment. This results in 

residual stresses within the cell wall matrix upon cooling. These stresses are then released by 

swelling and re-exceeding the softening point during high humidity exposure or water-soaking 

of the wood after the process, which nearly fully removes any drying related effect (Altgen and 

Militz 2016; Endo et al. 2016). Nonetheless, a study on the hydroxyl accessibility of unmodified 

wood after drying showed that water vapor exposure only restores the accessibility partly, while 

a full re-accessibility is only achieved by water-saturation (Thybring et al. 2017). 

 

In addition to drying-related effects, a reversible change in hygroscopicity and dimensional 

stability may also be related to the presence of degradation products in thermally modified 

wood. Remaining degradation products may occupy space and decrease the volume of 

nanopores within the cell wall, similar to the cell wall bulking effect of chemical modification 

agents (Rowell and Ellis 1978; Hill and Jones 1996). Removal of remaining degradation 

products during water soaking reduces the dry volume of the wood to increase the maximum 

swelling, which is calculated as the difference between dry and water-saturated wood volume 

(Biziks et al. 2015; Altgen and Militz 2016). In sorption experiments, degradation products may 

also effect the moisture content recorded by providing additional sorption sites on the one hand, 

while increasing the reference (dry) mass on the other hand.  

 

Although the occurrence of reversible changes in thermally modified wood has already been 

evidenced, a clear separation of the modes of action involved and their link to the process 
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conditions applied is still lacking. This study analyses mass and volumetric changes in 

thermally modified Eucalypt (Eucalyptus nitens) wood from open and closed systems during 

water-soaking cycles. Reversible effects related to drying and those related to cell wall bulking 

of remaining degradation products are considered. Furthermore, the study analyses how the 

dynamic vapor sorption behavior of thermally modified wood changes by water-soaking cycles.  

 

5.2 Materials and methods 

 Materials 

Fast grown wood from 19 year old Eucalyptus nitens plantations was obtained from the Región 

del Bío-Bío in Chile. It was originally grown for the use in solid wood products and an increase 

in value could be achieved by thermal modification. Slats of 20 × 50 × 650 mm3 (radial × 

tangential × longitudinal) size were prepared from kiln-dried wood free of large knots or 

juvenile wood. The slats had an average moisture content of 12% before the modification 

process. Ten slats per modification process were used. 

 

 Thermal modification 

Thermal modification processes were performed in a laboratory-scale treatment reactor. The 

samples were placed in a stainless steel vessel with a volume of 65 l that could be heated up to 

a maximum of 260 °C with electric heating cables and cooled down to room temperature with 

water cooling coils. Water vapor was produced by heating an external water reservoir connected 

to the vessel. Exhaust valves were used for the release of excess pressure. The treatment reactor 

functioned either as an open or as a closed system. 

 

When operating as open system, a temperature schedule similar to the ThermoWood® process 

was applied (Mayes and Oksanen 2002). The temperature in the vessel was first raised at 

12 °C h-1 to 100 °C and then very slowly at 2 °C h-1 to 130 °C to allow the high-temperature 

drying of the slats to nearly 0 % MC, before increasing the temperature at 12 °C h-1 until 

reaching the peak temperatures given in Table 5.1. After a 3 h holding time at the peak 

temperature, the temperature was decreased at 20 °C h-1 until reaching 65 °C, at which the 

vessel was opened and the samples were removed. When exceeding 100 °C in the treatment 

vessel, a steam flow was created by heating the water in the water reservoir to slightly above 

100 °C while opening an exhaust valve of the treatment vessel. Thereby, a mixture of steam 

and volatile degradation products was released, while pure steam was added constantly. 
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When operating as a closed system, the process schedule described by Altgen et al. (2016b) 

was applied. The temperature schedule was the same as for the open system, except that there 

was no high-temperature drying step applied. At the beginning of each process, a pre-vacuum 

(ca. 13 kPa) was applied. During the process, the water vapor pressure was adjusted by heating 

the water reservoir and releasing excess pressure to keep the relative humidity (RH) constant, 

except when reaching a pressure below 0.1 MPa at the end of the process. Peak temperatures, 

RH and maximum pressure applied in the closed system are shown in Table 1.  

 

Table 5.1: Peak temperature, maximum pressure, relative humidity (RH), final moisture 

content (MC), hot water extractives, mass loss (MLTM) and corrected mass loss (CMLTM) 

determined for each process run. The hold time at peak temperature was 3 hours for all 

processes. 

Peak 

temperature 

(°C) 

Max. 

pressure 

(MPa) 

RH 

(%) 

Final 

MC 

(%) 

Extractives 

(%) 

MLTM 

(%) 

CMLTM 

(%) 

Reference - - - 4.7 0 0 

Closed system       

150 0.14  30 4.5 6.0 1.3 2.6 

160 0.18  30 3.9 7.6 2.0 5.0 

170 0.23  30 3.2 8.4 2.5 6.3 

150 0.47  100 5.3 12.7 4.0 11.4 

160 0.61  100 4.9 13.2 10.7 18.6 

170 0.77  100 4.6 10.1 15.8 20.5 

Open System     

160 Atm.a - 3.3 6.8 3.3 5.4 

180 Atm. a - 2.0 9.0 3.5 7.9 

200 Atm. a - 2.0 12.3 7.2 14.6 

210 Atm. a - 2.2 12.7 11.2 18.7 

220 Atm. a - 2.3 9.1 12.8 16.8 

230 Atm. a - 2.4 7.4 16.9 19.3 
a Atmospheric pressure 

 

 Determination of mass loss and extractive content 

To determine the mass loss caused by the modification process, the mass and the corresponding 

moisture content were recorded for each slat before and immediately after the process. About 

50 mm from the ends of each slat was cut off after the weighing to avoid edge effects. The 

moisture content was determined from small sections taken from the slats, not from the material 

to be tested itself. The dry mass of each slat before and after the process as well as the mass 
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loss caused by the thermal modification (MLTM, in %) were calculated as described by Metsä-

Kortelainen et al. (2006). 

 

To measure the extractive content an adaption of the method described in the Solvent 

Extractives of Wood and Pulp Test Method T 204 cm-07 (TAPPI 1997) was used. Material 

from randomly selected pieces of each modification process as well as from unmodified wood 

was grounded in a cutting mill and sieved to a particle size between 0.2-0.63 mm. For each 

process, 5 g of dry wood particles were extracted using a Soxhlet apparatus with 150 ml of 

deionized hot water during a period of 8 h. The extractive content was then determined 

gravimetrically in relation to the initial oven dry mass before the Soxhlet process. 

 

The extractive content was subtracted from the dry mass of each slat and the corrected mass 

loss during the thermal modification process (CMLTM) was determined based on the dry and 

extractive-free mass of each slat before and after the process, using the equations given by 

Altgen et al. (2016b).  

 

 Water-soaking cycles 

To measure the EMC and the volumetric swelling during water-soaking cycles, 30 specimens 

per process run with dimensions of 10×10×10 mm3 (tangential × radial × longitudinal) were 

prepared from the modified wood and an unmodified reference. No systematic difference in 

EMC and volumetric swelling was found in dependence on the location of the samples within 

the original slats, thus this factor was not considered in the analysis. The mass and dimensions 

of the specimens were measured after each of the following steps: (step A) conditioning at 

20°C/65% RH; (step B) air drying at room conditions for ten days followed by vacuum-drying 

at 20 °C and 2.5 kPa in a desiccator over silica gel until constant mass; (step C) water-

impregnation for 30 min at 13 kPa and water soaking for two weeks with daily water changes. 

Afterwards, the samples were air dried at room conditions for two weeks and the cycle started 

again from point A. The steps (A-C) were repeated 4 times. 

 

The equilibrium moisture content (EMC, in %) at 20 °C and 65% RH was determined for each 

sample and each water soaking cycle using Eq. 5.1. 
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EMC = 100 × (mxA − mxB) m1B⁄ ,    Equation 5.1 

 

where mxA and mxB is the mass (in g) at the end of step A and B of cycle x (1-4), respectively, 

while m1B is the mass (in g) at the end of step B of cycle 1. Increase in EMC after the fourth 

cycle was separated into the mass change in dry state after water soaking (MDry, in %) and the 

mass change in conditioned state after water soaking (M20/65, in %), as illustrated in Figure 5.1, 

using eq. 5.2 and 5.3  

 

 

Figure 5.1: Schematic illustration of the quantification of mass and volume changes during 

water soaking cycles. The dash and dot line highlights the reference mass/volume. 

 

MDry = 100 × [(m4B − m1B) m1B⁄ ],  Equation 5.2 

 

M20/65 = 100 × [(m4A − m1A) m1B⁄ ],  Equation 5.3 

 

Volumetric swelling (Smax, in %) was measured based on the sample volume at the end of step 

B and C of each cycle using eq. 5.4.  

 

Smax = 100 × [(vxC − vxB) v1B⁄ ],    Equation 5.4 

 

where vxB and vxC are the sample volumes at the end of step B and C of cycle x (1-4), 

respectively, while v1B is the volume at the end of step B of the first cycle. Increase in Smax after 

the fourth cycles was separated into the volume change in dry state during water soaking 
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(VDry, in %) and the volume gain in saturated state during water soaking (VWet, in %), as 

illustrated in Figure 5.1 by applying eq. 5.5 and 5.6. 

 

VDry = 100 × [(v4B − v1B) v1B⁄ ],    Equation 5.5 

 

VWet = 100 × [(v4C − v1C) V1B⁄ ],    Equation 5.6 

 

 Dynamic vapor sorption 

Sorption isotherms were measured for selected samples in a dynamic vapor sorption (DVS) 

apparatus (DVS advantage, Surface Measurement Systems, London, UK). Besides unmodified 

reference samples, samples modified in a closed system at 160 °C and 100 % set point RH and 

samples modified in an open system at 210 °C were chosen, since both treatments resulted in 

similar MLTM and CMLTM (Table 5.1). Thin sections (approx. 40 µm thickness) with a mass of 

20 mg were prepared on a sliding microtome from samples before and after the water soaking 

cycles. The temperature was kept constant at 20 °C for all DVS measurements. The RH 

decreased to 0 % to determine the initial dry weight of the specimen, before increasing at 5 % 

steps until 95 % RH followed by a decrease to 0 % in the reverse sequence. This RH sequence 

was repeated in a second sorption cycle. Each RH step remained constant until a weight change 

of less than 0.001 % min-1 (dmdt) over a 10 minute period. This dmdt threshold is lower than 

typically applied in DVS measurements of wood (dmdt of 0.002% min-1 over a 10 min period) 

to reduce the risk of mischaracterizing the EMC by short hold times in the DVS (Glass et al. 

2017). The final mass of each RH was used for the EMC calculation. The EMC was corrected 

for differences in extractive content by calculating the corrected EMC (EMCc, in %) according 

to eq. 5.7.  

 

EMCc = EMC × (1 + E 100⁄ ),   Equation 5.7 

 

where E is the extractive content (in %) measured by Soxhlet extraction as described in 5.2.3.  

The EMCc ratio was determined for each RH step in the sorption isotherms using eq. 5.8. 

 

EMCc ratio = sample EMCc reference EMCc⁄ , Equation 5.8 
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where the sample EMCc is the EMCc of the respective thermally modified sample at a given 

RH, and the reference EMCc is the EMCc of the unmodified sample measured at the same RH. 

To enable comparability, the reference EMCc was always derived from first sorption cycle of 

the unmodified sample before water soaking.  

 

5.3 Results and discussion 

 Changes in mass, moisture and extractive content by thermal modification 

The results on mass loss and final MC of thermally modified Eucalypt wood are in line with 

studies on modifying other wood species in closed and open reactor systems. A lower final MC 

was measured after modification in the open system than in the closed system (Table 5.1). This 

is caused by the application of a pre-drying step and the low RH that ensues in the open system 

at elevated temperatures, which caused the wood to dry to nearly oven-dry state. As to be 

expected, applying a set point RH of 100 % resulted in a higher final MC than applying a set 

point RH of 30 % at the same temperature level. However, a decrease from the initial 12 % MC 

occurred even at a set point RH of 100 %. This was also observed in a previous study and 

explained by small deviations from the set point parameters, consumption of water in chemical 

reactions and/or reduction in the number of polar sites in wood (Altgen et al. 2016b). However, 

it should also be noted that the differences in MC between the different process conditions 

might be larger during the actual high-temperature exposure. Wood modified in an open system 

and wood modified at 30 % RH is likely to take up moisture during the cooling stage, i.e. below 

100 °C when the RH in the reactor rises.  

 

The extractive content (Table 5.1) increased during all thermal modification processes, 

indicating that the generation of degradation products as new extractives outweighed their 

vaporization. This was especially evident for modifications at 100 % set point RH in the closed 

system, because the high pressure applied hindered rapid vaporization (Altgen et al. 2016b). 

Interestingly, the open system resulted in an increase in extractives with increasing peak 

temperature until reaching 210 °C and an extractive content of 12.7 %, which was followed by 

a decrease until it reached 7.4 % extractive content at 230 °C (Table 5.1). This evidences that 

increasing the temperature beyond 210 °C increases the vaporization more than the generation 

of degradation products. Similar results were obtained by modifying Eucalyptus globulus in an 

autoclave heat treatment and oven heating at longer hold times at a given peak temperature 

(Esteves et al. 2008a). 
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Mass loss based on the dry mass before and after the process (MLTM) is often used as a marker 

for the thermal degradation of the wood (Zaman et al. 2000), and it is usually referred as an 

indicator of the quality of the modification (Welzbacher and Rapp 2007). However, Altgen et 

al. (2016b) pointed out that the accumulation of carbohydrate degradation products results in 

an underestimation of the actual thermal degradation of wood by MLTM. The calculation of the 

corrected mass loss (CMLTM) by deducting the extractive content from the dry mass of the 

wood results in much higher values than MLTM. Modifications at 230 °C in an open system and 

at 170 °C at 100 % set point RH reached ca. 20 % CMLTM, indicating that a substantial 

proportion of hemicelluloses were degraded (Table 5.1). This result also underlines the high 

efficacy of closed systems in causing significant thermal degradation at much lower treatment 

temperatures than required in open systems. Elevated wood moisture contents and the 

accumulation of carboxylic acids within the wood in closed systems have been suggested as 

causes (Borrega and Kärenlampi 2008a; Willems et al. 2015a; Altgen et al. 2016b), which 

coincides with the final MC and extractive content measured in our study. 

 

However, when measuring EMC and Smax immediately after the process, the accumulated 

degradation products are still present within the samples and affect the reference mass, provide 

additional sorption sites for water or cause a cell wall bulking effect. Thus, MLTM is used as the 

basis for the comparison of EMC and Smax between the different process conditions in this 

study. 

 

 Water soaking cycles 

The overall changes of EMC as function of MLTM during the water-soaking cycles can be seen 

in Figure 5.2. In the first cycle, the EMC as a function of MLTM differs considerably depending 

on the process conditions applied (Figure 5.2a). Most noticeable, higher EMC values were 

obtained after modification at 100 % set point RH than after modification in an open system. 

Remarkably, the EMC of theses samples did not decrease with increasing MLTM during the first 

water soaking cycle. With increasing number of water-soaking cycles, all EMC values, 

including the EMC of the unmodified samples, increased gradually (Figure 5.2b-d). An almost 

uniform correlation between the EMC and MLTM was evident after the last cycle (Figure 5.2d), 

indicating that the differences in the initial EMC between the process conditions applied were 

predominantly caused by reversible effects. This is in line with previous studies on Sitka spruce 
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wood modified at 120 °C and different process RH (Endo et al. 2016) and on European beech 

wood modified between 150 and 180 °C and different process RH (Altgen and Militz 2016). 

 

 

Figure 5.2: EMC at 20 °C and 65 % RH (N=30) in dependence on the mass loss by thermal 

modification (N=10) measured during the first (a), second (b), third (c) and fourth (d) water 

soaking cycle. Cross: reference; circles: modification in closed system at 30 % RH; triangles: 

modification in closed system at 100 % RH; squares: modification in open system. 

 

 

Figure 5.3: Change in EMC in dependence on the number of water soaking cycles. The average 

EMC of the first cycle was set to 100% for each sample group. Cross: reference; Triangles: 

modification at 160 °C and 100 % set point RH; Squares: modification at 210 °C in an open 

system. (N= 30, ± standard deviation). 
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Figure 5.4: Volumetric swelling (N=30) in dependence on the mass loss by thermal 

modification (N=10) measured during the first (a), second (b), third (c) and fourth (d) water 

soaking cycle. The symbols are the same as in Figure 5.2. 

 

The change in EMC in dependence on the number of water soaking cycles is further illustrated 

in Figure 5.3 for unmodified eucalypt wood and for wood modified either at 160 °C and 100% 

set point RH or at 210 °C in an open system. Both thermal modifications resulted in a similar 

MLTM, but the increase in EMC with increasing number of cycles was much larger after the 

modification in the open system compared to the modification in the closed system. This clearly 

evidences that additional, reversible effects influence the EMC that are not dependent on MLTM, 

but on the conditions applied during the modification process. 

 

Similar to the results on EMC, Smax as a function of MLTM was higher for samples that were 

modified at 100 % set point RH than for those modified in an open system (Figure 5.4). 

However, in contrast to the change in EMC, changes in Smax in the course of the water-soaking 

cycles increased the differences between the process conditions applied. In addition, the Smax 

increased mainly from the first to the second water soaking cycle and remained almost constant 

during subsequent cycles. A similar increase in swelling of modified wood after several water 

soaking cycles has been reported for several other wood species (Biziks et al. 2015; Čermák et 

al. 2015; Altgen et al. 2016a; Čermák et al. 2016). 

 

Previous studies explain reversible changes in EMC and swelling by two different phenomena 

– either by the drying-related annealing of amorphous polymers during the process (Altgen and 

Militz 2016; Endo et al. 2016) or by the cell wall bulking effect of accumulated degradation 

products (Biziks et al. 2015; Čermák et al. 2015; Altgen et al. 2016a; Obataya and Higashihara 

2017). Changes in mass and volume of the samples in dry and wet/conditioned state during the 
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water soaking cycles shown in Figure 5.5 indicate that both phenomena occur during the water 

soaking cycles. 

 

 

Figure 5.5: Change in mass and volume (%) of the different modification processes determined 

for the fourth water-soaking cycle. Changes in mass are separated into the change in mass in 

dry state (MDry) and the changes in mass in conditioned state (M20/65). Changes in volume are 

separated into the volume change in dry state (VDry) and the volume change in water-saturated 

state (VWet). 

 

The leaching of accumulated degradation products during water soaking caused a loss in dry 

mass and volume, while the loss in wet/conditioned state was either much smaller or fully 

absent. Water-soaking thus removed the cell wall bulking effect of accumulated degradation 

products. Interestingly, however, the loss in dry mass was not a simple function of the extractive 
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content. As an example, for wood modified at 150 °C and 100 % set point RH, 7.7 % loss in 

dry mass was measured after the fourth cycle, while only 1.3 % was lost for wood modified at 

210 °C in an open system, although the same initial extractive content (12.7 %) was recorded 

for both samples. Potentially, degradation products found in wood modified at high steam 

pressure regimes are more water-soluble than those found in wood from open reactors. As 

suggested by Altgen et al. (2016a), higher wood MC during processes at a nearly saturated 

steam pressure conditions might hinder the dehydration of highly water-soluble sugars to furan-

type derivatives, which are less water-soluble. 

 

As suggested by Endo et al. (2016) and Altgen and Militz (2016), re-softening of the amorphous 

cell wall matrix polymers combined with strong swelling by water-soaking at room temperature 

removed the annealing effect that is caused by high-temperature drying during the modification 

process. Removing the annealing effect enhanced the capacity of the cell wall to take up liquid 

water or water vapor, and thereby increased the wet/conditioned mass and volume. In line with 

the theory of a drying-related effect, the extent of this increase in mass and volume was 

somewhat correlated to the final MC measured. Wood modified in an open system, which 

resulted in very low final MC and thus in strong drying at high temperatures, showed the 

strongest increase in wet mass and volume during water soaking cycles. In contrast, such an 

increase in mass and volume was fully absent in wood modified at 100 % set point RH, which 

featured the highest final MC.  

 

For wood modified at 100 % set point RH, the conditioned mass and wet volume even 

decreased, which could be related to increased cellulose microfibril aggregation. Microfibril 

aggregation occurs after removal or relocation of hemicelluloses and/or lignin as spacers 

between adjacent cellulose microfibrils (Salmen and Burgert 2009; Pönni et al. 2014; Salmén 

2015). Microfibril aggregation reduces the capacity of the cell wall for water uptake and is also 

likely to be caused by thermal modification as a consequence of strong drying and thermal 

degradation of hemicelluloses as spacers between adjacent microfibrils (Andersson et al. 2005). 

If thermal degradation products remain within the wood cell wall, they keep occupying space 

to prevent microfibril aggregation. However, removing a large proportion of accumulated 

degradation products during water-soaking enables microfibril aggregation during a subsequent 

drying step. Although a decrease in conditioned mass and wet volume is only evident for wood 

modified at 100 % set point RH, microfibril aggregation after removal of degradation products 

as spacers might also occur in other samples. However, the effect of microfibril aggregation on 
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the conditioned mass and wet volume and the removal of drying related anealing effects 

contradict each other. Therefore, no clear separation between these individual effects can be 

achieved. It is evident, however, that removal of drying related anealing effects is the main 

cause for reversible changes for samples modified in an open system, while cell wall bulking 

of remaining degradation products is the main effect for samples modified at 100% set 

point RH. 

 

 Dynamic vapor sorption 

When measuring the sample that was modified in a closed system before the water soaking 

cycles, a significant decrease in dry mass was observed from the first drying step at 0% RH to 

the second drying step (Figure 5.6). A similar observation was made by Vahtikari et al. (2017) 

for acetone extracted wood, which was explained by the vaporization of residual acetone from 

the wood during the DVS measurement. We suggest that in a similar fashion, some residual 

degradation products became volatile during the DVS measurement to decrease the sample 

mass. However, the dry mass was constant during subsequent drying steps. Therefore, the first 

sorption cycle was omitted and the dry mass of the first 0 % RH step of the second sorption 

cycle was used as reference mass for the EMC calculation. Furthermore, the loss in dry mass 

(- 1.35 %) was subtracted from E for the calculation of EMCc. 

 

 

Figure 5.6: EMC (%) as a function of the RH (%) measured for the samples modified in a 

closed system at 160 °C and 100 % RH before any water-soaking cycles. The first sorption 

cycle is indicated by squares, the second cycle by triangles. The arrow indicates the loss in dry 

mass from the first to the second 0 % RH step. 
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Sorption isotherms and hysteresis of unmodified eucalypt wood, as well as eucalypt wood 

modified at 160 °C at 100 % set point RH and at 210 °C in an open system are shown in 

Figure 5.7. For the unmodified reference samples (Figure 5.7a), the sorption isotherms are 

almost identical before and after the water-soaking cycles. The only deviation from a uniform 

pattern is a small difference between the first and the second adsorption isotherm measured 

after the water-soaking cycles, which might be a result of repeated wetting and re-drying during 

the water-soaking cycles. Such difference between the first and the second adsorption isotherm 

has also been reported for thermally modified pine (Hill et al. 2012) and spruce wood (Majka 

et al. 2016). This effect cannot be verified for the sample from the closed system, because the 

first sorption isotherm before water soaking was omitted. For the sample that was modified at 

210 °C in an open system, however, this effect is clearly evident in the sorption isotherms 

(Figure 5.7c), as well as an increased hysteresis of the first sorption cycle (Figure 5.7f). 

 

 

Figure 5.7: Sorption isotherms (a-c) and hysteresis (%, d-f) of unmodified wood (a and d), 

wood modified at 160 °C and 100 % RH in a closed system (b and e) and wood modified at 

210 °C in an open system (c and f). Open symbols represent the measurement before, closed 

symbols the measurement after water soaking cycles. The first sorption cycle is indicated by 

squares, the second sorption cycle by triangles. 
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Water-soaking not only removed differences between the first and second adsorption isotherm, 

but also resulted in an overall increase of the EMC for thermally modified wood over the entire 

RH range (Figure 5.7b and c). DVS measurements after water-soaking cycles also resulted in 

an increase in hysteresis compared to measurements before the cycles. This was less 

pronounced for the unmodified reference (Figure 5.7d), but clearly evident for the thermally 

modified samples (Figure 5.7e and f). It evidences that performing a minimum of two sorption 

cycles in dynamic vapor sorption measurements of wood to account for the sorption history of 

the wood material, as suggested by Popescu and Hill (2013), does not remove all reversible 

effects in thermally modified wood. Water soaking removes the cell wall bulking effect 

efficiently by leaching accumulated degradation products, which does not occur to the same 

extent during DVS measurements. However, differences in sorption isotherms before and after 

water-soaking were most pronounced for wood modified at 210 °C in an open system, although 

the loss in dry mass during water-soaking was much smaller (-1.1 %) than observed for wood 

modified at 160 °C and 100 % set point RH (-6.4%). Therefore, leaching of accumulated 

degradation products during water-soaking cannot be the sole reason for the differences in the 

sorption isotherms before and after water-soaking cycles. Thybring et al. (2017) demonstrated 

recently that hydroxyl inaccessibility caused by wood drying cannot be fully recovered by water 

vapor exposure, but only by vacuum-impregnation with liquid water. In a similar fashion, water 

vapor exposure up to 95 % in the DVS might be incapable of fully removing drying related 

anealing effects caused by a thermal modification, while maximum swelling during water-

soaking removes this effect to a much larger extent.  

 

The effectiveness in changing the EMCc of unmodified wood by the thermal modification 

process in dependence on the different RH levels measured is further illustrated by the EMCc 

ratio shown in Figure 5.8. An EMCc ratio of 1 denotes no difference in the EMCc between the 

modified sample and the reference EMCc (derived from the first sorption isotherm of the 

unmodified wood before water soaking). A deviation from an EMCc ratio of 1 illustrates either 

an increase in EMCc caused by the modification (EMCc ratio > 1) or a decrease 

(EMCc ratio < 1). 
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Figure 5.8: EMCc ratios in dependence on the RH (%) applied during the DVS measurements. 

The EMCc ratios are determined in adsorption (a and b) and in desorption (c and d). Wood 

modified at 160 °C and 100 % RH in a closed system is shown in a and c, wood modified at 

210 °C in an open system is shown in b and d. The arrows mark the sequence in which the RH 

steps were applied. The symbols are the same as in Figure 5.6. 

 

Before water soaking, the EMCc ratios evidence that the modification at 210 °C in an open 

system was more effective in reducing the EMCc than the modification at 160 °C and 100 % 

set point RH, even though MLTM and CMLTM were almost identical. This is presumably because 

high-temperature drying in the open system caused a stronger annealing of amorphous matrix 

polymers to further reduce the EMCc ratio. Differences in the EMCc ratio that is calculated for 

the first and second adsorption isotherm before water soaking for the sample from the open 

system (Figure 5.8b) is an artifact of this drying-related effect. It further reduces the EMCc ratio 

at low RH levels, but results in an upwards bend in the EMCc ratio above 65 % RH. The latter 

indicates that softening of amorphous cell wall matrix polymers above ca. 60 % RH at room 

temperature partially removes drying related annealing effects, in line with the findings of 

Endo et al. (2016). 
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However, the recovery of reversible effects does not explain the steep increase in EMCc ratio 

from 90 to 95 % RH observed for the samples from the closed reactor system before water 

soaking, because it is evident in ad- and desorption (Figure 5.8a and c). Wood modified in 

closed reactor system at (nearly) saturated water vapor conditions contains large amounts of 

sugars derived from the hydrolysis of hemicelluloses (Altgen et al. 2016a). If they do not 

crystallize, sugars and other deliquescent compounds follow an IUPAC type III sorption 

isotherm, thus their presence in wood may decrease the EMC at low RH levels, but increases 

the EMC at high RH levels to considerable extent (Stamm 1956; Bendtsen 1966; Lesar et al. 

2009). After removing residual sugars in the modified wood by water-soaking, the steep 

increase in EMCc ratio above 90 % RH disappeared.  

 

In line with our explanations of removing reversible effects induced by thermal modification 

as a consequence of maximum swelling and leaching of degradation products, the EMCc ratios 

increased strongly after the water-soaking cycles. Differences in the EMCc ratio between 

samples from open and closed reactor systems became smaller after water-soaking cycles, with 

only slightly lower EMCc ratios for the sample modified in the open system. At RH levels lower 

than 10-15 %, thermal modification became ineffective in decreasing the EMCc after water 

soaking cycles and the EMCc ratio even raised above 1 during desorption, despite significant 

MLTM. Potentially, removing degradation products after the modification leaves the cell wall in 

a more open state. This might improve the creation and/or accessibility of sorption sites in the 

wood to compensate for the reduction in OH group concentration by hemicellulose degradation. 

Nonetheless, increasing the RH resulted in a decrease in EMCc ratio. Such decreasing EMCc 

ratio has previously been assigned to an enhanced cross-linking within the cell wall matrix of 

thermally modified wood (Altgen et al. 2016a), due to its similarity to the effect of wood 

modifications with cross-linking agents on the water sorption (Himmel and Mai 2015). 

Therefore, it may be speculated that enhanced cross-linking within the cell wall matrix and not 

the reduction in OH group concentration by hemicellulose degradation is the predominant cause 

for the reduction in EMCc by thermal modification after water-soaking cycles. Further studies 

are necessary to study this sorption phenomenon in thermally modified wood. We 

recommended the incapability of fully removing reversible effects by exposing thermally 

modified wood to ≤ 95 % RH in DVS instruments to be considered during such studies.  
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5.4 Conclusions 

The effect of reducing the equilibrium moisture content and the volumetric swelling by thermal 

modification was partially lost during water-soaking cycles. For modification processes in an 

open system, the removal of drying-related annealing of amorphous polymers was the main 

cause for recovering reversible changes in hygroscopicity. For modification processes in a 

closed system at 100 % set point RH, the removal of cell wall bulking caused by accumulated 

degradation products was the main effect. However, removal of large proportions of 

degradation products during water soaking also prevented the full re-wetting of the samples in 

subsequent cycles, presumably due to cellulose aggregation. Dynamic vapor sorption (DVS) 

analysis yielded different results before and after water soaking of the samples. Exposure of the 

wood to a maximum of 95 % RH during DVS experiments did not remove reversible effects to 

the same extent as water-soaking cycles. This incapability of the DVS instrument should be 

considered when analyzing thermally modified wood, as it hinders the separation of reversible 

from irreversible effects in mode of action studies.  
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Abstract: Eucalyptus nitens is a fast growing plantation species that has a good acclimation in 

Spain and Chile. At the moment it is mainly used for pulp and paper production, but there is a 

growing market for solid wood products made from this species. Thermal modification offers 

a good alternative to produce high quality material to manufacture products with high added 

value. This study used unmodified and thermally modified E. nitens wood from Spanish and 

Chilean plantations to elaborate external decking and examine if it complies with the necessary 

properties to be a competitive product. A process similar to ThermoWood® was applied with 

the following temperatures: 185°C, 200°C and 215°C. For each modification and for an 

unmodified specimen mass loss, volumetric swelling, anti-swelling efficiency (ASE) and 

equilibrium moisture content (EMC) were determined. Brinell hardness, dynamic hardness, 

screw and nail withdrawal resistance, and abrasion resistance according to the Shaker method 

and the Taber abraser method were determined. In summary, thermally modified E. nitens wood 

showed high potential to be used as decking material outdoors. 

 

Keywords: Eucalyptus nitens, anti-swelling efficiency (ASE), hardness, abrasion resistance, 

decking 

 

6.1 Introduction 

Historically, both Chile and Spain are producers of Eucalypt wood, mostly from plantations of 

Eucalyptus globulus. In the last 30 years there has been a steady growth of Eucalyptus nitens 

plantations, as it is a species with great adaptability to the climate conditions in both countries. 

In Chile, there are about 250,000 ha planted as of 2014 (INFOR 2015), while in Spain no official 

data are available on the eucalypt plantations (including E. globulus, E. nitens and 

E. camaldulensis), but it is estimated to be 700,000 ha for the entire country. The current review 

for the Forestry Plan of Galicia (Xunta de Galicia 2018), which analyzed the Spanish Forestry 

Inventory and the Spanish Forestry Map, gave a value of 500,000 ha in the Galicia region. This 

reference also suggested for E. nitens in this region forests of approximately 40,000 ha, and 

proposed an increase of 30.000 ha during the next 20 years. However, it has to be taken into 

consideration that the figures generated discrepancies in different regions of Spain, as there are 

no official data available, except the aforementioned reference. 

 

Currently, E. nitens plantation wood is mostly used for pulp and paper or biofuels, but there is 

an interest to widen the use of this fast growing tree species. Solid wood made out of plantation 

E. nitens is being sold at the moment in Chile, but it cannot compete with other fast growing 
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species, as the volume of plantations of radiata pine in Chile (INFOR 2015) allows the species 

to maintain a competitive low price, and the dimensional stability and natural durability are not 

as good as high end wood from native species, like Nothofagus alpina (INFOR 2015). As for 

Spain, there is still no market for dry E. nitens wood. The wood-working industry must invest 

in research to use the increasingly available raw material which can be used as alternative for 

currently used wood species on the Spanish market, such as Castanea sativa (Sweet chestnut), 

Pinus spp. or E. globulus. Thermal modification offers a good alternative to produce high 

quality material from this species that could be used for decking, claddings, windows, doors, 

flooring, garden products and even saunas or bathrooms (Militz and Altgen 2014). Most thermal 

modification processes apply temperatures between 160 and 240°C and limit the oxygen 

content during the process (Hill 2006; Esteves and Pereira 2009; Militz and Altgen 2014). 

Eucalypt species, such as E. globulus, E. grandis and E. regnans (durability in ground contact 

class 3-4, Australian Standard 5604 2005), have been used as material for thermal modification 

(Esteves et al. 2007a; Esteves et al. 2007b; González-Prieto and Touza Vázquez 2009; 

Calonego et al. 2012; de Cademartori et al. 2015; Batista et al. 2016). In most cases research 

has been focused on the variation of color, the changes of the mechanical and physical 

properties and variations of the chemical composition.  

 

A potential alternative of using thermally modified E. nitens (durability class 4, Australian 

Standard 5604 2005) is wood decking. Although thermal treatments of other eucalypt species 

did not affect the natural durability when in direct contact to the ground (Knapic et al. 2018), 

in general, the mechanical properties of thermally modified eucalypt species, such as MOE and 

MOR, indicated potential for use as decking (Esteves et al. 2007b; de Cademartori et al. 2015; 

Knapic et al. 2018). Currently, tropical woods such as Bangkirai (Shorea laevis), European-

grown timbers such as Douglas fir (Pseudotsuga menziesii) and Larch (Larix spp.), and 

preservative treated pine are the most commonly used materials for decking. In addition to these 

traditional decking materials in Europe, wood polymer composite (WPC) decking is gaining 

market share throughout Europe (Zeller 2018) not at least due to their good capabilities to 

suppress the moisture uptake and resulting moisture movements. Thermal modification 

improves natural durability and dimensional stability, and decreases the equilibrium moisture 

content (EMC) of wood (Stamm and Hansen 1937; Hill 2006; Esteves and Pereira 2009). 

Thermal modification leads also to an embrittlement of wood coming along with reduced 

abrasion resistance and the risk of splintering on the wood surface (Kubojima et al. 2000; 

Phuong et al. 2007). Surface hardness and resistance to abrasion are critical properties in less 
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and non-load-bearing applications. In the case of decking, surface hardness turns into a decisive 

property for its use (Brischke et al. 2005). In this study the abrasion resistance, which is a 

combination of shearing, impact, friction and compressive stresses, will be measured using a 

modified taber abraser method (DIN EN 438-2 (2005)), in which sanding paper is pressed on 

the modified wood decking with a defined force and number of revolutions (Brischke et al. 

2005), and the Shaker method according to Brischke et al (2005), where wood is subjected to 

abrasion by steel balls in an overhead rotational shaker. Additionally, two hardness 

measurements (Brinell and dynamic), the maximum swelling, the anti-swelling efficiency 

(ASE) and the equilibrium moisture content (EMC) will be measured, as they are further critical 

characteristics for the implementation of decking. 

 

6.2 Materials and methods 

 Material 

The Chilean E. nitens wood came from 19 year old plantations from the Región del Bío-Bío in 

Chile, while the wood from Spain came from 16 year old plantations from the north of the 

province of Lugo in Galicia. Slats of 20×60×650 mm3 and 30x50x650 mm3 (radial × tangential 

× longitudinal) size, for the Chilean and Spanish origin respectively, were prepared from kiln-

dried wood free of large knots. Before the modification process the slats from Chile had an 

average moisture content of 13%, whereas the ones from Spain had an average of 15%. Twelve 

slats (six for each country of origin) per modification process were used.  

 

 Thermal modification 

Thermal modification was performed in a laboratory-scale treatment reactor. The samples were 

placed in a stainless steel vessel with a volume of 65 l that was heated up with electric heating 

cables and cooled down to room temperature with a system of water cooling coils. Water vapor 

was produced by heating an external water reservoir connected to the vessel. Exhaust valves 

were used for the release of excess pressure.  

 

The process had the following steps: The temperature in the vessel was first raised at 12°C/h to 

100°C and then at 2°C/h to 130°C to allow a high-temperature drying of the slats to nearly 0% 

MC, before increasing the temperature again at 12°C/h until reaching the peak temperatures 

(185, 200 and 210°C). The peak temperature was hold for 3 h. Afterwards, the temperature was 

decreased at 20°C/h until reaching 65°C, at which the vessel was opened and the samples were 
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removed. When exceeding 100°C in the treatment vessel, a steam flow was created by heating 

the water in the water reservoir to slightly above 100°C while opening an exhaust valve of the 

treatment vessel. Thus, a mixture of steam and volatile degradation products was released, while 

pure steam was added constantly to the process. 

 

 Determination of mass loss (ML) 

To determine the mass loss (ML) caused by the thermal modification an adaptation of the 

procedure reported by Metsä-Kortelainen et al. (2006) was applied. The mass and the 

corresponding wood moisture content (MC) were recorded for each slat before and immediately 

after the process. The MC was determined from small sections taken from the slats, not from 

the material to be tested itself according to eq. 6.1,  

 

𝑀𝐶 = (𝑚𝑥 − 𝑚𝑑𝑟𝑦 𝑚𝑑𝑟𝑦⁄ ) ∗ 100,   Equation 6.1 

where mx is the mass of the specimen before or after modification and mdry is the dry mass of 

the specimen before or after modification. The dry mass (my in g) was then calculated 

using eq. 6.2: 

 

𝑚𝑦 = (𝑚𝑥 𝑀𝐶 + 100⁄ ) ∗ 100,   Equation 6.2 

where mx is the mass of the specimen before or after modification and MC is the moisture 

content calculated using eq. 6.1. Finally, the mass loss (ML in %) was calculated using eq. 6.3: 

 

𝑀𝐿 = [(𝑚𝑦𝑏 − 𝑚𝑦𝑎) 𝑚𝑦𝑏⁄ ] ∗ 100%,  Equation 6.3 

where myb is the dry mass before modification (g) and mya is the dry mass after the 

modification (g). 

 

 Determination of oven-dry density 

The oven-dry density was determined using the abrasion specimens, which were oven dried at 

103±2°C until constant mass. They were then weighed to the closest 0.01 g and their dimensions 

were measured to the nearest 0.01 mm. The oven-dry density was calculated using eq. 6.4: 
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𝐷𝑜𝑑 = 𝑚𝑜𝑑 𝑉𝑜𝑑⁄ ,    Equation 6.4 

where Dod is the oven-dry density (g/cm3), mod is the oven-dry mass (g) and Vod is the oven-dry 

volume (cm3). The data was then transformed in kg/m3. 

 

 Determination of equilibrium moisture content (EMC), volumetric swelling (Smax) 

and anti-swelling efficiency (ASE)  

To measure EMC, Smax and ASE, 30 specimens per process run with dimensions of 10×10×10 

mm3 (rad. × tang. × long.) were prepared from the modified wood and from unmodified 

references. The mass and dimensions of the specimens were measured after each of the 

following steps: (step A) conditioning at 20°C/65% RH until constant weight; (step B) air 

drying at room conditions for a week and oven drying at 103 °C for two days or until constant 

mass; (step C) water-impregnation for 30 min at 13 kPa and water soaking for 14 days, or until 

constant weight, with daily water changes.  

 

The EMC (in %) at 20 °C and 65% RH was determined for each sample using eq. 6.5: 

 

EMC = 100 × (mA − mB) mB⁄ ,  Equation 6.5 

where mA and mB is the mass (in g) at the end of step A and B respectively. 

 

Smax (in %) was measured based on the sample volume at the end of step B and C for each cycle 

using eq. 6.6: 

 

Smax = 100 × [(VC − VB) VB⁄ ],  Equation 6.6 

where VB and Vc are the sample volumes at the end of step B and C respectively. 

 

ASE (in %) was measured using the Smax before and after modification using eq. 6.7: 

 

𝐴𝑆𝐸 = 𝑆𝑢𝑚𝑎𝑥 − 𝑆𝑚𝑚𝑎𝑥 𝑆𝑢𝑚𝑎𝑥 ∗ 100⁄ , Equation 6.7 

where Sumax is the maximum swelling of the unmodified sample and Smmax is the maximum 

swelling of the modified sample respectively. 
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 Brinell hardness tests 

The Brinell hardness (static hardness) was measured according to EN 1534 (2011) with a 

universal testing machine (Zwick Roell Z010, Zwick, Ulm, Germany). A maximum force of 

500 N using a steel ball with a diameter of 10 mm was applied for 25 seconds on specimens of 

15x50x50 mm3 (rad. × tang. × long.) for the Chilean wood and 25x50x50 mm3 (rad.× tang.× 

long.) for the Spanish wood. The specimens were conditioned at 20°C/ 65% RH during seven 

days until constant weight. The diameter of the residual impression was automatically 

determined by the testing machine. The Brinell hardness was then calculated according to 

eq. 6.8: 

 

𝐵𝐻 = 2 ∗ 𝐹 𝜋 ∗ 𝐷 [𝐷 − √(𝐷2 − 𝑑2)]⁄ ,  Equation 6.8 

where BH is the Brinell hardness (N/mm2), F is the maximum force used (N), D is the diameter 

of the steel ball (mm) and d is the diameter of the imprint on the sample (mm).  

 

 Dynamic hardness tests 

The dynamic hardness was determined according to Meyer et al. (2011) using specimens of the 

same dimensions as for the Brinell hardness tests. An indentation was generated in the surface 

of the specimen using a steel weight of 500 g that was dropped down on a steel ball from 

300 mm of height. Four measurements were conducted on five replicates per material. The 

dynamic hardness was calculated according to eq. 6.9: 

 

𝐷𝐻 = 𝑚 ∗ √(2 ∗ 𝑔 ∗ ℎ) 𝑟2 ∗ 𝜋⁄ ,   Equation 6.9 

where DH is the dynamic hardness (N/mm2), m is the mass of the dropping weight (kg), h is 

the dropping height (m), r is the radius of the imprint on the sample (mm) and g is the gravity 

acceleration (m/s2). 

 

 Resistance to abrasion: Shaker test 

The resistance against abrasion was determined using the Shaker method described by Brischke 

et al. (2005). Five oven-dry specimens of 8.5x8.5x35 mm3 (rad. × tang. × long.) were placed in 

polyethylene flasks (V= 500 mL) together with 400 g stainless steel balls of 6 mm in diameter 

and moved in an overhead shaker at 28 revolutions per minute during 72 h. 25 specimens per 

material were tested. The distances between the opposite corners at oven-dry state were 
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measured of each specimen, before and after the abrasion process. The loss in dimension (%) 

was determined according to eq. 6.10: 

 

∆𝑎𝑏 = [(𝑑𝑎1 + 𝑑𝑎2 2⁄ ) − (𝑑𝑏1 + 𝑑𝑏2 2⁄ ) (𝑑𝑏1 + 𝑑𝑏2 2⁄ )⁄ ] ∗ 100, Equation 6.10 

where ∆ab is the abrasion (%), db1 is the diagonal 1 before abrasion (mm), db2 is the diagonal 2 

before abrasion (mm), da1 is the diagonal 1 after abrasion (mm) and da2 is the diagonal 2 after 

abrasion (mm). The average of the 5 samples per flax bottle was determined for each 

modification. 

 

 Resistance to abrasion: Taber abraser test 

The resistance against abrasion was determined according to the Taber abraser method (EN 

438-2, (2005)). The following modifications of the Taber abraser test were made in order to 

allow testing of solid wood: Specimens of 100x100x7 mm³ were prepared and conditioned in 

20 °C/65 % RH. The tree rings of all specimens were oriented 45° to their cutting edges. After 

weighing and measuring of the thickness at four points, the specimens (n=5) were clamped into 

the Taber abraser and were abraded with sanding paper S-42 with approx. 72 min-1 for 1000 

revolutions. Afterwards the decrease in thickness by abrasion was determined. The percentage 

loss in thickness (Δt) was determined as a measure of abrasion according to the following 

eq. 6.11 for each specimen and an average was calculated: 

 

Δt = (𝑡𝑏 − 𝑡𝑎 𝑡𝑏⁄ ) ∗ 100,   Equation 6.11 

where tb is the thickness (mm) before the Taber abrasion test and ta is the thickness (mm) after 

the Taber abrasion test. 

 

 Screw withdrawal resistance tests 

Screw withdrawal resistance (SWR) tests were performed according to EN 320 (2011), but 

modified as follows: The same specimens used for the Brinell hardness test were used. Screws 

with nominal dimensions of 4.2x38 mm were used to penetrate the tangential face until 15±0.5 

mm. Afterwards the screws were attached to a bracket to be pulled out at a constant speed of 

10±1 mm min-1. The screw withdrawal resistance corresponds to the maximum force 

determined to 10 N and was measured according to eq. 6.12: 
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𝑆𝑊𝑅 = 𝑁𝑚𝑎𝑥 𝑡⁄ ,    Equation 6.12 

where SWR is the screw withdrawal resistance, Nmax the maximum force (N) and t the thickness 

of the specimen (mm). 

 

6.3 Results and discussion 

 Changes in mass, oven dry density, EMC, swelling and ASE by thermal 

modification 

ML increased with rising treatment temperature (Table 6.1), which is in line with results 

obtained in tests with other Eucalypt species, such as E. saligna (from 12.77% at 180°C and 

19.12% at 220°C) (de Cademartori et al. 2015) and E. globulus (8.7% at 190°C and 12.1% at 

200°C) (Esteves et al. 2007a). There were no significant differences in ML between the 

specimens from Chile and Spain. On the other hand, oven-dry density (Table 6.1) decreased as 

the modification temperature increased, which also occurred in vacuum thermally modified 

E. pellita wood (Wang et al. 2014) and E. globulus (Calonego et al. 2012). The oven-dry density 

of the Spanish wood specimens was lower than the Chilean ones, which might be due to the 

age difference of the plantations. 

 

Table 6.1: Mean mass loss (ML) determined for each process run and oven-dry density for each 

modification and unmodified reference (standard deviation in parentheses) for both Chilean and 

Spanish specimens. 

Country of origin Temperature (°C) ML (%) OD Density (kg/m3) 

C
h
il

e 

Reference - 617 ± (16) 

185 2.4 ± (0.4) 603 ± (39) 

200 6.1 ± (1.0) 592 ± (23) 

215 12.3 ± (0.5) 553 ± (29) 

S
p
ai

n
 

Reference - 574 ± (26) 

185 2.6 ± (0.9) 555 ± (35) 

200 5.7 ± (1.3) 529 ± (18) 

215 12.0 ± (0.9) 517 ± (35) 

 

The EMC of the modified wood was reduced in both the Chilean and Spanish specimens 

(Figure 6.1) after all the thermal modifications, and so did Smax (Figure 6.2). Similar 

improvements were obtained with thermally modified E. grandis in both EMC and Smax 
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(Calonego et al. 2012) and EMC in E. globulus (Esteves et al. 2007b). Compared with other 

tropical wood species used for decking (Choong and Achmadi 1991), the EMC of E. nitens was 

lower after treatment at 215°C and similar at 185°C and 200°C. ASE of E. nitens was lower at 

modification at 185°C (26.14% and 23.11% for Chile and Spain respectively) (Figure 6.3) 

compared to the modifications at higher temperatures. As for other eucalypt species, the ASE 

of thermally modified E. globulus reported by Esteves et al. (2007b) was higher.  

 

Figure 6.1: EMC of E. nitens at 20 °C and 65 % RH, in dependence of the mass loss by thermal 

modification. Black circles: Chilean specimens. White circles, Spanish specimens. Standard 

deviations are indicated by error bars 

 

Figure 6.2: Smax of E. nitens, in dependence of the mass loss by thermal modification. Black 

circles: Chilean specimens. White circles, Spanish specimens. Standard deviations are indicated 

by error bars 



   Chapter 6: Publication V 

113 

 

 

Figure 6.3: ASE of E. nitens, in dependence of the mass loss by thermal modification. Black 

circles: Chilean specimens. White circles, Spanish specimens. Standard deviations are indicated 

by error bars 

 

 Changes in hardness, abrasion and screw withdrawal by thermal modification 

Static hardness (Brinell) of Chilean material was higher than of the Spanish, which could be 

related to the difference in densities and age of the specimens. There was a slight decrease until 

200°C, and then a clear difference between unmodified and 215°C, while the Spanish material 

showed a noticeable decrease after all modifications (Figure 6.4). Dynamic hardness decreased 

with increasing treatment temperature in the Chilean specimens, while at 185°C and 200°C 

similar results were obtained in the Spanish specimens (Figure 6.5). The static and dynamic 

hardness at all temperatures was lower compared to both WPC and tropical species, such as 

Bongossi (Lophira alata) and Balau (Shorea spp), but similar to Douglas fir and Beech 

(Brischke et al. 2014) at 200°C for the Chilean specimens. The Brinell hardness was similar to 

thermally treated European beech and European ash (Standfest and Zimmer 2008) and higher 

than thermally treated birch and aspen (Kocaefe et al. 2008b), while the dynamic hardness was 

lower than that of European beech (Meyer et al. 2011). 
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Figure 6.4: Brinell hardness of E. nitens after each thermal modification process. Black 

column: Chilean specimens. Grey column: Spanish specimens. 

 

 

Figure 6.5: Dynamic hardness of E. nitens after each thermal modification process. Black 

column: Chilean specimens. Grey column: Spanish specimens. 

 

The abrasion resistance of E. nitens decreased with increasing treatment intensity in all the 

specimens (Figure 6.6). Traces of abrasion on unmodified and thermally modified E. nitens at 

215°C after the shaker test can be seen in Figures 6.7 and 6.8 for Chilean and Spanish specimens 

respectively. The thermally modified specimen (Figure 6.7c, d and Figure 6.8c, d) had more 
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severely rounded edges and a slight loss of material due to splintering. The reduced abrasion 

resistance is likely due to an increased brittleness of the material (Kubojima et al. 2000; Phuong 

et al. 2007), and the lower density of the material after thermal modification (Esteves and 

Pereira 2009). Previous reports indicated that abrasion resistance is positively correlated with 

wood density (Brischke et al. 2014), which is shown to decrease in Table 6.1. Compared to 

other flooring materials, the unmodified E. nitens showed similar abrasion resistance as wood-

polymer composites (WPC) and tropical species such as Balau (2.9 and 3%), while E. nitens 

modified at 200°C and 215°C was slightly more resistant to abrasion than Douglas fir and 

Norway spruce (Picea abies) (both 6.2%, (Brischke et al. 2014)).  

 

 

Figure 6.6: Abrasion of E. nitens after shaker tests in dependence of the mass loss by thermal 

modification. Black circles: Chilean specimens. White circles, Spanish specimens. Standard 

deviations are indicated by error bars. 
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Figure 6.7: Cross section of E. nitens, unmodified and thermally modified at 215°C of the 

Chilean specimens before (a and c) and after (b and d) the shaker abraser test. 

 

 

Figure 6.8: Cross section of E. nitens, unmodified and thermally modified at 215°C of the 

Spanish specimens before (a and c) and after (b and d) the shaker abraser test. 
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The abrasion expressed as Δt increased with increasing modification temperature in the Spanish 

specimens, while the Chilean specimens showed only small differences between modifications 

(Figure 6.9). The measurements were performed on finished decking (Figure 6.10), where the 

difference in Δt can be seen between the modified specimens at 215°C (Chile is Figure 6.10c 

and Spain 6.10d) where more material was lost in the Spanish specimens.  

 

 

Figure 6.9: Abrasion of E. nitens after Taber abraser tests in dependence of the mass loss by 

thermal modification. Black circles: Chilean specimens. White circles, Spanish specimens. 

 

 

Figure 6.10: Finished decking specimens after the taber abraser test. E. nitens wood, 

unmodified and thermally modified at 215°C of the Chilean and Spanish specimens before 

(a and b) and after (c and d) the taber abraser test. 
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The screw withdrawal resistance (SWR) decreased with increasing treatment temperature, but 

did not differ between Spanish and Chilean E. nitens (Figure 6.11). Similar effects of thermal 

modification on SWR were previously reported for birch (Poncsák et al. 2006) and spruce 

(Kariz et al. 2013). 

 

Figure 6.11: Screw withdrawal resistance of E. nitens in dependence of the mass loss by 

thermal modification. Black column: Chilean specimens. Grey column: Spanish specimens. 

 

The results indicate that the characteristics of thermally treated E. nitens is close to other more 

commonly used species, and the tested mechanical characteristics indicate that the modified 

wood could be a probable alternative to be used as decking. 

 

6.4 Conclusions 

Thermally modified E. nitens, from both Chile and Spain, showed very similar characteristics 

compared to each other and to other thermally modified species that are currently used for 

decking. Compared to other potential wood based materials, the modified E. nitens up to 200°C 

had higher abrasion resistance and similar dynamic and static hardness properties in regards to 

frequently used species such as Douglas fir, but lower than tropical species and WPC. The 

thermally modified wood from E. nitens fulfilled all the minimal requirements regarding the 

surface characteristics to be used as decking material. 
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7.1 Abstract 

Eucalyptus nitens specimens were thermally modified under open and closed systems. The 

anatomical characteristics from selected modifications that presented similar mass losses were 

investigated by analyzing images taken from scanning electron microscopy, transmission light 

microscopy, and X-ray micro-computed tomography. Wood cell wall thickness, fiber, and 

lumen area were measured and compared to unmodified specimens, and the crack formation 

after modification was also analyzed. There was only a slight decrease in the measured 

characteristics when compared to unmodified specimens. The wood cell wall thickness was less 

affected than the fiber and lumen areas, and both modifications presented similar crack 

formations. Overall, there were no significant differences between open and closed system 

modifications in the anatomical structure. 

 

Keywords: Eucalyptus nitens, thermal modification, wood anatomy, image analysis 

 

7.2 Introduction 

The thermal modifications offer a good alternative to improve the properties of fast growing 

wood species (Esteves and Pereira 2009), such as Eucalyptus nitens. The processes use 

treatment temperatures that vary between 150°C and 240°C under different operating 

conditions, either steam, vacuum, nitrogen that limit the presence of oxygen in the process, and 

they can be separated in open systems, in which the modification happens at atmospheric 

pressure or closed systems, where the process occur at subatmospheric pressures or vacuum 

(Hill 2006; Militz and Altgen 2014). Two of the main benefits from thermal modification are 

the improvement of biological durability (Hakkou et al. 2006; Welzbacher and Rapp 2007) and 

dimensional stability (Giebeler 1983; Tjeerdsma and Militz 2005), but on the other hand, the 

mechanical properties decrease after modification (Tjeerdsma et al. 1998; Kubojima et al. 2000; 

Boonstra et al. 2007b). Most of the changes in the wood properties can be related to the chemical 

changes that occur during the modification process, such as the degradation of hemicelluloses 

by the released carboxylic acids (Boonstra and Tjeerdsma 2006; Sundqvist et al. 2006), 

modifications of the lignin polymer network (Tjeerdsma et al. 1998; Tjeerdsma and Militz 

2005) and an increase of the relative crystallinity of the cellulose (Bhuiyan et al. 2000; Sivonen 

et al. 2002) to name a few. 
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There is an extensive bibliography related to the properties of thermally modified wood 

(Esteves and Pereira 2009; Militz and Altgen 2014; Sandberg and Kutnar 2016), however, 

publications related to variation to the anatomical characteristics of the modified wood (cellular 

elements) are relatively scarce in comparison to other wood properties (Boonstra et al. 2006a; 

Boonstra et al. 2006b; Awoyemi and Jones 2011; Biziks et al. 2013; Batista et al. 2015; 

Bernabei and Salvatici 2016). Results indicate variations such as cracks that start in the middle 

lamella, pit aspiration, damage to the axial tracheid walls and the parenchyma cells in wood 

rays and resin canals (Boonstra et al. 2006a; Boonstra et al. 2006b; Awoyemi and Jones 2011; 

Biziks et al. 2013), and a reduction of the wood cell wall thickness at high temperatures 

(Bernabei and Salvatici 2016). In hardwood species the collapse of vessels and the deformations 

of fibers near the vessels were some of the main changes observed (Boonstra et al. 2006b). As 

for eucalypt species, a report presented by Batista et al (2015) on thermally modified Eucalyptus 

grandis wood showed that there were no significant changes in the structure of ray parenchyma, 

vessels and fibers. 

 

It has been shown that the chemical properties of thermally modified E. nitens wood presented 

differences between open and closed system modifications, even when both modifications had 

similar mass losses (Wentzel et al. 2018b). The samples that presented similar mass loss but 

different modification process (open and closed) were selected to analyze their anatomical 

characteristics by measuring the wood cell wall thickness, the fiber and vessel area, and the 

development of cracks. This was done by using 2D images obtained by transmission light 

microscopy (TLM) and scanning electron microscopy (SEM) and 3D images using X-ray 

micro-computed tomography (XµCT). The aim of this study was to analyze the influence of 

each thermal modification on the anatomical structure of modified E. nitens wood and to 

observe if there was a significant anatomical difference between these modifications. 

 

7.3 Materials and methods 

 Material 

E. nitens wood from 19 year old plantations in the Región del Bío-Bío in Chile was used. 

Selected wood pieces from conventionally kiln-dried mature wood with an average moisture 

content (MC) of 12% were used. 
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 Thermal modification 

The selected specimens were based on results presented in a previous publication (Wentzel et 

al. 2018b), where the specimens showed a similar corrected mass loss (CML), which is based 

on the dry and extractive-free mass of each slat before and after the process (Altgen et al. 

2016b). The selected specimens had a CML of 18.7% for the open system modification (210°C) 

and 18.6% for the closed system modification (160°C and 0.61 MPa). 

 

These processes were performed in a laboratory-scale treatment reactor. The samples were 

placed in a stainless steel vessel with a volume of 65 l that could be heated up to a maximum 

of 260°C using electric heating cables and cooled down to room temperature with water cooling 

coils. The water vapor was produced by heating an external water reservoir which is connected 

to the vessel. Exhaust valves were used for the release of excess pressure. The treatment reactor 

can be used either as an open or as a closed system. 

 

The open system modification was based on the ThermoWood® process (Mayes and Oksanen 

2002). The temperature in the vessel was first raised 12°C per hour until it reached 100°C. The 

temperature was then increased very slowly 2°C per hour until 130°C. Afterwards, the 

temperature was increased 12°C per hour until it reached 210°C. After a holding the 

temperature for 3 h, it was decreased at 20°C per hour until reaching 65°C, at which the vessel 

was opened and the samples were removed. 

 

The closed system modification was based on the Firmolin process (Willems 2009). It consist 

of four steps: a 50- min holding step at pre-vacuum at <14 kPa, temperature increase in a rate 

of 12°C per hour until it reaches 160°C, while the pressure ramps up to 0.61 MPa inside the 

modification chamber, a holding step at the peak temperature for 3 h and a temperature decrease 

in a rate of 20°C per hour up to 65°C. As with the open modification, the vessel was open at 

this point and the samples were removed from it. 

 

 Scanning electron microscopy 

The sample preparation for the SEM was done using unmodified specimens which were shaped 

into a cropped pyramid using a sledge microtome equipped with a sharp steel knife. The top of 

the specimen was cut with the knife in the transverse direction to obtain a smooth surface for a 

better image analysis. This methodology was recommended by Moon et al (2009). The prepared 
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specimens were then mounted on an aluminum stub and carbon coated, with the carbon layer 

being 15 nm thick. An example of the finished specimen can be seen in Figure 7.1. The images 

were taken with the ZEISS EVO LS 15 electron scanning microscope (Carl Zeiss Microscopy 

GmbH, Jena, Germany). Images were captured through detection of the secondary electrons. 

The working parameters were set to an accelerating voltage of 5 kV, a current of 40 pA, and a 

working distance of 8.5 mm. The magnification used for imaging was 1000x, with an image 

size of 1024 × 1024 pixels. After taking the images, the samples were thermally modified. The 

carbon coating had no effect on the thermal modification of the specimen. This was done to 

compare the differences before and after modification and to avoid some issues with the surface 

preparation, as the thermally treated samples tend to be brittle, making it difficult to obtain a 

smooth surface. 

 

 

Figure 7.1: Cropped pyramid shape sample for SEM analysis before modification. 

 

 Transmission light microscopy 

The samples used for TLM were sectioned in the transverse plane of both modified and 

unmodified samples using a sledge microtome. The thickness of the slices was 15 µm. The 

images were taken with the equipped digital camera Sight DS-5M-L1 and the NIS-Elements F 

software for image acquisition (Nikon, Germany). All images were acquired at a magnification 

of 40x, with an image size of 1024 × 1024 pixels. 
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 X-ray micro-computed tomography 

The XµCT was performed using the nanotom® system (phoenix x-ray; GE Sensing & 

Inspection Technologies GmbH, Wunstorf, Germany). The system consists of a transmission 

molybdenum target, cone-beam geometry, and a CMOS flat panel detector. For X-ray imaging, 

specimens measuring 1 × 1 × 10 mm³ (tan x rad x long) were prepared from a single 20 mm 

stick. The stick was cut perpendicular to the grain in the middle, the top part was left unmodified 

and the bottom was modified. The specimens were vertically glued together onto a cylindrical 

glass rod 5 mm in diameter using a hot-melt adhesive based on an ethylene vinyl acetate 

copolymer. 

 

To obtain the images, the micro-computed tomography basically detects the attenuated X-ray 

radiation. X-ray attenuation happens when the incident radiation penetrates an object and 

interacts with its matter. Attenuation mainly depends on the object properties, for example 

elemental composition, density, and thickness. The attenuated radiation enters a detector array 

in which the different attenuation coefficients are detected and saved into a projection image in 

grayscale tones. A stack of projection images was produced by rotating the specimen through 

360°. The captured stack of projection images was then converted into a volumetric dataset 

using the datos x reconstruction software (phoenix x-ray; GE Sensing & Inspection 

Technologies GmbH, Wunstorf, Germany). 

 

 Image analysis 

For the TLM image analysis, selected regions of interest (ROI) of the specimens were used to 

measure the area of the fibers and vessels, before and after modification. This was done by 

transforming the raw image into a binary image consisting of black and white pixels through 

thresholding using the open source image software ImageJ 1.48v (Schneider et al. 2012). This 

software was also used for the automatic measure of fibers. An example can be seen in in 

Figure 7.2. A visual selection was performed selecting the fibers that were better characterized 

by the software. The same procedure was done for the vessels. 
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Figure 7.2: Raw (a) and black and white binary image (b) of unmodified E. nitens. The numbers 

represent the measured fiber areas. 

 

For SEM images, a procedure was performed similar to TLM images. But before binarization, 

the lumens and vessels were manually darkened to facilitate the image analysis with the ImageJ 

software (Figure 7.3). 
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Figure 7.3: Selected fiber cells for measurement (a). Darkened lumens before binarization (b). 

Selected area of lumen for software measurement. The numbers represent the measured fiber 

areas. 

 

The single cell wall thickness of cells (i.e. fibers and vessels before and after modification) was 

measured with SEM images. Selected cells were chosen from the same ROI before and after 

modification. Manual measurements were done, with a minimum of three measurements per 

radial and tangential direction of the cell. The measurements were averaged independent of the 

direction. Late wood and early wood cell walls were measured separately. 

 

The 3D image obtained by XµCT was used for an overall visual analysis of the anatomical 

structure before and after modification and to see if it was possible to detect crack formation 

after the modification. 

 

7.4 Results and discussion 

A summary of the measurements done using SEM and TLM on the specimens modified in open 

and closed system described in the materials and methods are shown in Table 7.1. 
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Table 7.1: Average results of wood cell wall thickness measured using SEM in early wood 

(EW) and late wood (LW), fiber lumen area measured using SEM and TLM in EW and LW 

and vessel lumen area measured using SEM and TLM. Standard deviation shown in parenthesis.  

 

Wood cell wall 

thickness (µm) 
Fiber lumen area (µm2) 

Vessel lumen 

area (µm2) 

Modification EW LW 
SEM 

EW 

SEM 

LW 

TLM 

EW 
TLM LW SEM TLM 

Reference 

(open 

system) 

1.440 

(±0.344) 

1.817 

(±0.400) 

75.16 

(±19.83) 

36.29 

(±9.29) 

81.38 

(±22.77) 

41.23 

(±10.96) 

20,212 

(±4800) 

22,160 

(±6896) 

210°C 
1.406 

(±0.356) 

1.797 

(±0.371) 

72.38 

(±18.18) 

31.55 

(±8.73) 

76.57 

(±16.03) 

35.21 

(±9.66) 

16,875 

(±4667) 

19,347 

(±4240) 

Reference 

(closed 

system) 

1.454 

(±0.264) 

1.823 

(±0.311) 

66.03 

(±18.91) 

35.19 

(±8.96) 
- - 

18,334 

(±4125) 
- 

160°C 100% 

RH 

1.367 

(±0.269) 

1.779 

(±0.295) 

62.30 

(±18.63) 

30.90 

(±8.10) 
- - 

15,027 

(±3921) 
- 

 

The wood cell wall thickness was measured before and after modification in the same fibers. 

The averages were taken from 1900 measurements from different cuts and ROIs. It can be seen 

that both specimens used for open and closed systems have similar average values in both early 

wood and late wood. After modification, both processes showed a decrease in thickness 

(2.3% and 5.9% in EW and 1.1% and 2.4% for in LW for the open and closed system 

respectively), slightly more in the modification in the closed systems. Bernabei and Salvatici 

(2016) used in situ ESEM observations to determine the effects of the heat treatment on Picea 

abies cellular structure and determined that the cell wall thickness remained almost constant up 

to 200°C and that at greater temperatures the thickness started to reduce, which in our case can 

be slightly seen in both modifications. There was no significant difference between either 

modification (open and closed) with their respective unmodified references, and also between 

the open and closed modifications (Table 7.1). Similar results were obtained in E. grandis wood 

using a hydrothermal modification (Batista et al. 2015), where the wood cell wall thickness also 

only slightly decreased after the modification. It can be said that changes in the wood cell wall 

thickness were minimal and that they were affected similarly by both types of modifications. 

 

The fiber area was measured using SEM and TLM. There were some challenges to get a good 

quality sample for the closed system modification for TLM due to the brittleness of specimens 

used, as it can cause unwanted cracks in the cellular structure and poor surface quality which 

can difficult the image analysis. For the open system modification, two good quality microtome 

cuts were obtained and used for the TLM measurements. As with the wood cell wall thickness, 
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different cuts and ROIs where used for the measurements. From SEM and TLM 100 and 500 

fibers areas were measured respectively, for both early and late wood before and after 

modification. The results show that the measurements using TLM where slightly higher than 

the ones using SEM (Table 7.1). This could be related to the image thresholding, which could 

take into account the borders of the wood cell walls impacting the final outcome of the 

measurement. Nonetheless, at least in the open system, both SEM and TLM measurements 

decreased similarly in early wood (3.7% and 5.9% respectively) and late wood (13.1% and 

14.6% respectively). As for the closed system, the decrease showed a similar tendency (5.6% 

for EW and 12.2% for LW), so there were no marked differences between the modifications. 

The decrease of fiber area was also present in thermally modified birch (Biziks et al. 2013). 

They related the changes of the sizes to the decrease of the annual ring width in relation to the 

mass loss produced by the thermal modification, which in their case was 18%, similar to the 

CML obtained in the modifications used in this study. The mass loss also influences the overall 

dimensions of the wood, which can be measured by the overall shrinkage. The average values 

were 8.2% in the open system and 9.7% in the closed system, thus it can be said that the decrease 

of fiber area from the unmodified to the modified state leads to a decrease in the volume in both 

modifications. Figure 7.4 shows the slight differences of the fiber lumen area before and after 

modification and indicates some changes in the wood cell wall. 
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Figure 7.4: Fiber lumen changes after modification at 210°C. Reference (a), modified specimen 

(b). Black arrows show changes in the wood cell wall after modification. 
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Most of the vessels in E. nitens are exclusively solitary arranged in a diagonal bands 

(Figure 7.5). The transverse size of vessels varies along the growth ring from moderately large 

in early wood to small in late wood. In vessels, a high amount of tyloses is present. For the 

measurement of the vessel area in our study, only early wood vessels were used, as they have a 

higher influence on other wood properties (such as mechanical and physical) of the material 

than the late wood vessels (Villegas and Rivera 2002). The open system modifications show a 

decrease of 16.5% and 12.7% using SEM and TLM measurements respectively, while the 

closed system showed 18% decrease using SEM measurements (Table 7.1). The results were 

higher than what was shown in other hardwood species (birch) (Biziks et al. 2013). This could 

be due to the changes in the lignin structure, as they contain mainly guaiacyl structures (Biziks 

et al. 2013), which was shown to decrease in thermally modified E. globulus (Esteves et al. 

2013), thus it could be argued that the changes in the lignin structure could have been affected 

by both open and closed system modifications, softening the cell wall of the vessels and 

decreasing their respective areas. The reduction can also be related to the loss of mass and the 

volumetric shrinkage, as with the reduction of the fiber lumen area. 

 

 

Figure 7.5: Typical vessel distribution in early wood from E. nitens. 
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Cracks were formed in both modifications (Figure 7.6). The cracks tended to be formed from 

the middle lamella and they start to spread to surrounding cells, which could have an influence 

in the mechanical properties of the material (Boonstra et al. 2006b). It seems that the crack 

formation was unrelated to the type of modification, as they were present in similar quantities 

in both modifications used in this study. Bernabei and Salvatici (2016) observed that cracks did 

not tend to appear due to the rising temperatures, while Awoyemi and Jones (2011) showed that 

the heat treatment destroyed the tracheid walls and the ray issues and Biziks et al. (2013) 

mentioned that the separation of fibers and the formation of voids could influence the formation 

of them. These confirms what Boonstra et al. (2006a) established, which was that the effects to 

the wood anatomy of the thermal modification are strongly related of the wood species used, 

thus is difficult to be certain how the cracks develop. 

 

 

Figure 7.6: Cracks developed after thermal modification in the open (a) and closed systems (b). 

White arrows indicate the cracks. 
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Overall, most of the anatomical changes can be related to the loss of mass that causes volumetric 

shrinkage in the modified wood, and this shrinkage can be seen in the decrease of the fiber and 

vessel areas, although no clear difference between open and closed system modifications can 

be seen. 

 

The 3D image visualization obtained by XµCT at 1 µm resolution shows no particular 

differences between the reference and the modified specimen (Figure 7.7). An exploratory 

survey of the 3D structure revealed that it was not possible to detect cracks or other changes in 

the modified structure. As indicated in SEM images (Figure 7.4), structural changes are hard to 

visualize even with high-resolution SEM. In tomographic datasets, structural changes are only 

detectable if their impact on the structure is larger than the spatial resolution used. At 1µm 

resolution, structures smaller than the resolution will inevitably fade into noise during image 

acquisition (Trtik et al. 2007; Van den Bulcke et al. 2009). 

 

Figure 7.7: 3D XµCT image of the reference specimen (a) and modified wood at 160°C and 

100 % RH (b). 

 

SEM images were better suited for analysis of the anatomical characteristics, as the quality was 

better than TLM images. It was also not possible to see any differences between open and closed 

system modifications using any mehodology, so the use of 3D XµCT images to do this kind of 
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comparison is not recommended. The 3D XµCT images are more suited to more deep 

anatomical analysis, such as fiber length and pit distributions along the wood cell wall. 

 

7.5 Conclusions 

Generally, vessel and fiber areas were affected more by the thermal modifications than the 

wood cell wall thickness of the fibers. These changes can be related to the mas loss caused by 

the modifications, which casues the wood to shrink, thus decreasen the areas of the fibers and 

vessels. Both modifications also presented noticeable crack formations, but overall, there were 

no differences between open and closed system modifications. The SEM images were better 

suited for anatomical characterization than the TLM images, as the quality of the images was 

better than TLM, which made it easier for the measurements to be done, and the use of 

3D XµCT images is not recommended to differentiate between unmodified and modified wood. 

Further research should focus on ways to properly measure the crack development and test other 

methods for cellular structure measurements, such as gray tone image analysis or measurement 

by pixels. 
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8 Chapter 8: General discussion 

The main objective of the thesis was to evaluate and compare the open and closed system 

modifications to see if they present significant differences, and the potential of E. nitens as 

species to be thermally modified to produce high quality material. The overall results indicate 

that the changes in the chemical properties were a good way to differentiate between both types 

of modifications, as the mechanical and anatomical variations showed only slight differences. 

The differences were also noticeable when analyzing the changes in EMC and swelling. The 

CML was a good indicator for comparing between thermal modifications, as the samples with 

similar CML showed different properties. The following chapter will connect the discussions 

of the publications to give a broader overall view of the differences between the modification 

systems, their influence in E. nitens wood and how it compares to similar modified species. 

This will be followed by a brief analysis of the potential uses of the modified material based on 

the variations observed in the properties of each modification. 

 

8.1 Chemical properties 

The extractive content is one of the chemical properties that varies the most due to the thermal 

modifications. There is an increase in relation to the reference in all thermal modification 

processes, which indicates that the generation of degradation products as new extractives offset 

their vaporization. The modifications at 100% RH were a good example of this phenomena 

because the high pressure hinders the vaporization (Altgen et al. 2016b). It was expected that 

the closed system modification was going to have higher amounts of extractives, which 

occurred when the modification temperature was 160°C for both modifications (Publication I), 

but for the modifications with similar CML the differences were not as high as expected, with 

the extractive content of open and closed system modifications with being about 1% higher in 

the closed system (Publication I). This could be explained by the longer time it takes to complete 

an open system modification, as the modifications in the open system take up to 38 hours to 

complete, double the time it takes for a closed system modification. This could mean that the 

degradation started earlier in the pre-drying process and continued during the cool down face. 

It is also interesting to see that at temperatures over 210°C in the open system the extractive 

content decreased, which evidences that increasing the temperature beyond that point increases 

the vaporization more than the generation of degradation products. Similar results were 

obtained by modifying E. globulus in an autoclave heat treatment and oven heating at longer 

hold times at high temperatures (Esteves et al. 2008a). 
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Depolymerization of hemicelluloses was clearly evident by the degradation of xylose, galactose 

and mannose in all modifications. This was also seen when analyzing the FTIR spectra, as they 

all showed a decrease in the band that represents C=O linkage, which is related to a lower 

reactivity due to the decrease of the free reactive hydroxyl groups of the holocellulose, 

represented by the degradation of hemicelluloses (Nguila Inari et al. 2007). This decrease was 

more noticeable in the modifications at 100% RH, which is due to the acetic acid concentration, 

which was higher in the modifications at 100% RH (Publication I). This was confirmed by the 

band that represents the acetoxy groups in xylan, and at the band which corresponds to the 

asymmetric deformation of C-H bond of xylan (Michell and Higgins 2002). These differences 

were not as noticeable in the bands of the open system modification (Publication III). 

 

As the hemicellulose relative content decreases, the lignin content increases. This occurs in all 

modifications, as lignin has a higher thermal stability and due to the condensation reactions 

than are influenced by the high temperatures. The bands representing lignin shifted in all 

modifications, as it increased where the aromatic rings of hardwood lignin (guaiacyl and 

syringyl) were represented, but it is not clear if it was related to the increase of relative lignin 

(Kotilainen et al. 2000; Windeisen et al. 2007), as it can also be interpreted as an aromatic ring 

opening (González-Peña and Hale 2009). Nonetheless, the changes were visible and are related 

to carbohydrate degradation and the O-H bending vibrations in phenols (Rodrigues et al. 1998). 

This was confirmed by the increase in concentration of the phenolic compounds as the 

temperature rises in the closed system and open system, with the modifications at 100% RH 

showing the highest amounts of phenolic compounds (Publication I). 

 

Cellulose is the least affected wood component by the thermal modification. The relative 

percentage of cellulose in all the thermal modifications (with exception of the modification at 

230°C) increases in relation to the reference. This increase is related to the fast 

depolymerization of the hemicellulose chains. What changes in the cellulose composition is the 

cellulose degree of polymerization (cellulose DP), which is the length of the cellulose molecule 

chain and could be related to the reduction of the mechanical properties (Sweet and Winandy 

1999). The closed system modifications showed a decrease in cellulose DP as the temperature 

increased in both 30% and 100% RH processes, reaching a third of the original cellulose DP 

when it was modified at 170°C and 100% RH. The modification in the open system showed no 

constant decrease of the cellulose DP as the temperature increased. These differences between 

processes can be related to the relative hemicellulose content, which is lower in the closed 
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system modifications at 100% RH, thus influencing the hemicellulose-cellulose bond that 

allows the cellulose molecule chain to maintain its structure. 

 

There were also changes in the amorphous region of the cellulose, as microfibril hydrolytic 

cleavage occurs, which increases the relative crystallinity (Bhuiyan et al. 2000; Sivonen et al. 

2002). The measurements done on solid wood samples showed that there was an increase of 

the crystallinity at elevated pressure under wet conditions (100°RH) and at elevated 

temperatures under atmospheric pressure, but there was little to no change at the lower pressures 

and at lower temperatures. These variations can be related to the cleavage products caused by 

the depolymerization of the hemicelluloses and the production of reactives, such as furfurals, 

which can cause cross link reactions (Boonstra and Tjeerdsma 2006). It can also be related to 

the rearrangment or reorientation of cellulose molecules, which can cause the crystallization of 

the celluloses, as it was shown in thermally modified wood under dry and wet conditions by 

Bhuiyan et al. (2000). This was associated to the formation of acetic and formic acid, which 

causes partially degraded wood components to become mobile, loosening the inner stresses in 

the crystalline region of the cellulose (Tanahashi et al. 1989, cited by Bhuiyan and Hirai 2005). 

It was shown in Publication I that the acetic and formic acid content was higher in the closed 

system modifications and that in turn causes a decrease in the xylose content, thus it can be said 

that the degradation of xyloses could influence the crystallization of the celluloses, as the 

modifications where the crystallinity index started to increase, as shown in Publication III 

(160°C and 170°C at 100% RH in the closed system and over 200°C in the closed system), 

presented a notable decrease of xylose content. It was also shown that the xylans crystallize due 

to the controlled pyrolysis during the modification. This could also be a side effect that could 

also influence the degree of crystallinity of the modified celluloses (Akgül et al. 2007).  

 

It was shown that there were differences between open and closed system modifications in the 

chemical composition, especially related to the xyloses and the degree of polymerization of the 

celluloses, which influences the mechanical properties of some modifications. 

 

8.2 Mechanical properties 

The MOE is one of the wood properties that is less affected by the thermal modification 

(Tjeerdsma et al. 1998; Kubojima et al. 2000; Santos 2000; Poncsák et al. 2006; Esteves and 

Pereira 2009). It can be seen in Table 8.1, which shows the lowest and highest MOE and MOR 

values in different thermal modification trials performed in various eucalypt species, that the 
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MOE was not as affected as compared to the MOR. In the case of the modified E. nitens, as 

shown in publications I and II, MOE tended to increase until the 200°C in the open system and 

then it decreased below the unmodified specimens. This increase was also in relation to the 

unmodified wood was also present in E. globulus (Santos 2000), E. saligna and E. grandis (de 

Cademartori et al. 2015) and Betula papyrifera (Canadian white birch) (Lekounougou et al. 

2011). 

 

As for the closed system modification, the MOE slightly decreased as the temperature 

increased, in both 30% and 100% RH modifications. In the case of other hardwood species with 

similar modifications, European beech MOE slightly increased in modifications at 30% and 

100% RH with similar CML (Altgen and Militz 2016). It seems that the effect on the MOE of 

modifications under pressure depends on the species, as E. nitens decreased and the European 

beech increased, but in both cases there was not a considerable increase or reduction of this 

property. 

 

In the open system modification, MOR increased up to 180°C. At 200°C it had a similar MOR 

value as the unmodified sample, followed by a decrease at higher temperatures, but there was 

no correlation between the decreases of MOR in relation to the increase of temperature 

(Publications I and II). In other eucalypt species (Table 8.1), E. saligna (de Cademartori et al. 

2015), E. grandis (Calonego et al. 2012; de Cademartori et al. 2015) and E. globulus (Esteves 

et al. 2007a) showed higher losses in MOR in comparison to E. nitens. Other hardwood species, 

such as European beech, also showed minimal decreases in their MOR after modification 

(Tjeerdsma et al. 1998). There was also an increase in MOR using ThermoWood process at 

200°C using birch (Betula ssp.) (Shi et al. 2007b).  

 

The closed system presented a decrease in MOR as the temperature increased, with similar 

values of thermally modified beech using the same type of modifications (Altgen and Militz 

2016). Other eucalypt species (Table 8.1), such as E. pellita modified under a vacuum thermal 

process, presented a slight increase until 160°C and a higher decrease of MOR at higher 

temperatures (Wang et al. 2014) than the E. nitens. Martins et al. (2014) used the hybrid process 

PlatoWood at 180°C and it showed a bigger decrease in the MOR than in the other 

modifications using eucalypt species, but in general, in both open and closed system 

modifications, eucalypt species tend to decrease MOR as the temperature increases. 
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In most cases, the decrease of MOR is a consequence to the reduction in tensile strength and 

compression strength (Boonstra et al. 2007b), although there are some cases that compression 

strength stays unchanged (Widmann et al. 2012) or even increases (Boonstra et al. 2007b; 

Perçin et al. 2016). These changes are related to the chemical composition of the modified 

wood. The reduction of MOR in relation to the MOE is related to the degradation of structural 

cell wall components (cellulose, hemicellulose and lignin) produced stress enhancing voids 

within the wood cell walls, as stated by Borrega and Kärenlampi (2008b). In the case of the 

hardwood hemicelluloses, the main component of the linear backbone chain is the xylose, 

which degraded heavily as the temperature increased (Publication I and III). It has been stated 

that small variations in the side groups can have a large impact on the overall mechanical 

properties (Sjostrom 1981). There is also the cleavage of these side groups between the lignin 

and hemicelluloses that releases the linkage by which one microfibril of a wood fiber shares the 

load with another microfibril, thus disrupting the load-sharing capabilities of the fibers (LeVan 

et al. 1990). It was also shown that there was an increase in crystallinity in modifications at 

high temperature in both open and closed systems (Publication III), which also increased the 

relative cellulose content present in the wood. This causes a decrease in flexibility of the 

material, as it replaces the flexible hemicellulose-cellulose-hemicellulose bond with the more 

rigid cellulose-cellulose bond (Kocaefe et al. 2008a). All the previously described changes in 

the hemicellulose composition correlate with the loss of mechanical properties, especially 

MOR. This was indicated by the strong relation between its decrease and the degradation of 

xyloses in open and closed systems (Publication I). 

 

The xylose and the overall relative hemicellulose content were lower in the modifications at 

160°C and 170°C at 100% RH than in the high temperature modifications in the open system. 

These modifications also showed higher relative cellulose content and slightly higher 

crystallinity index, which indicates that the hemicelluloses were affected more in pressurized 

modifications. On the other hand, it could explain why there was an increase of MOE in certain 

modifications in the open system, as it seems that the hemicelluloses were less affected in the 

open system modifications, thus not affecting as much the flexible hemicellulose-cellulose-

hemicellulose bond. This could also be an explanation on why this also happened in other 

eucalypt species, such as E. globulus (Santos 2000), E. saligna and E. grandis (de Cademartori 

et al. 2015). 
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To have a better understanding of the influences of the thermal modifications on the mechanical 

properties, the deflection and work in bending were analyzed, separating the elastic and 

inelastic proportions (Publication II). The elastic deflection decreased in all open and closed 

system modifications, except the modification at 180°C in the open system, with the 

modification at 200°C presenting the highest decrease. Although the highest decrease was in a 

modification in the open system, the closed system modifications tend to decrease more in 

relation to their CML. The inelastic deflection presented a steeper decrease in relation to the 

unmodified specimens, with the open system modification having the biggest decrease. Borrega 

and Kärenlampi (2008b) cited Back and Salmén (1982) to state that the lower inelastic work 

and deflection in dry climates (in our case, open system modifications) were related to the 

reduction of the glass transition temperature of the wood polymers, thus the decrease in these 

properties is less noticeable in wet modifications (closed system in our case). Overall, the 

decrease in both inelastic work and deflection could be related to ultra-structural realignments 

that reduce the capabilities of the cell wall components for plastic flow (Altgen and Militz 

2016). 

 

These realignments can be related to the changes described in Publication IV, were the drying 

related annealing effects were more present in the open system modifications and the cell wall 

bulking was more evident in the closed system modifications, although both effects happen in 

all modifications. It can be said that the annealing effect causes the wood to be stiffer but less 

flexible and that the remaining degradation products could be the cause of the higher brittleness 

of the modifications in the closed system. These phenomena are strongly correlated to the MC 

after modification. The measured MC was lower in the open than in the closed system 

(Publication I). This is related to the pre-drying step and the low RH during the process which 

causes the nearly oven dry. It is important to note that these differences between processes 

might be larger at the peak temperature exposure. Wood modified in an open system and wood 

modified at 30% RH is more likely to take up moisture during the cooling stage phase, when 

the RH in the reactor increases. These differences could also further explain why in some of the 

previous discussed modifications MOR and MOE increased. Probably, depending on the 

modification, the annealing effect could influence the stiffening effect at certain temperatures, 

which would be shown in the measurement to the properties. 

 

Brittleness may be the biggest difference between both modifications. Phuong et al (2007) 

established that higher brittleness could be caused by a relocation of lignin molecules, the loss 
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of amorphous polysaccharides, and the inherent crystalline cellulose that is formed during the 

thermal modification. It was shown that in the closed system presented a stronger degradation 

of hemicelluloses represented by the loss of xyloses due to the higher concentration of acids, 

and a slightly higher crystallinity, as shown in Publication III. These changes cause a loss in 

flexibility of the wood due to the changes of the hemicellulose-cellulose chain (Kubojima et al. 

2000; Boonstra et al. 2007b). It seems that the transformation of lignin was similar for both 

open and closed system modifications, there was a higher phenol content in the closed system, 

which could produce higher amounts of phenolic extractives. The lower DP of the cellulose can 

also be a cause of higher brittleness. It can also be argued that the degradation products left 

inside the wood may also be a cause of higher brittleness. So, even though mechanically the 

modifications in open and closed systems showed similar characteristics (Publication II), the 

wood from the closed system could be considered slightly more brittle due to the chemical 

changes. 

 

There were almost no differences between open and closed system modifications when 

comparing the RIM and the degree of integrity, as both properties tended to decrease as the 

temperature increased, which confirms the correlation to the intensity of the treatment (related 

to CML) shown in previous reports (Brischke et al. 2006a; Welzbacher et al. 2007; Welzbacher 

et al. 2011). There was one exception, as there was a slight increase in the RIM at 210°C in the 

open system, this is related to the extractive content at that temperature. Higher temperatures 

increases the vaporization more than the generation of extractives and change the structure of 

the cellulose (DP of the cellulose and crystallinity). Those changes should be taken into account 

when analyzing the RIM and the degree of integrity in modifications with temperatures over 

210°C in the open system. It was also reported that decrease in RIM was related to changes in 

the wood cell wall level, as it is directly correlated to the decrease in microstructural integrity 

caused by the thermal modifications (Welzbacher et al. 2011). This could also be explained by 

the accumulation of degradation products or the annealing effect. 

 

Willems et al (2015b) would recommend the HEMI test as a quick laboratory test to probe 

mechanical properties when the material is limited. Our results fall in line with that 

recommendation if one type of modification was used. As to differentiate or test if the 

modification was performed in an open or closed system, this methodology was not capable to 

differentiate between them, as the results presented in Publication II show. 
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8.3 Dimensional stability 

The changes caused by degradation reactions in the cell wall that are induced by thermal 

modification are related to the improvement in dimensional stability and the decrease in water 

vapor sorption of the modified wood. The degradation of hemicelluloses reduces the 

concentration of water accessible OH groups in wood as sorption sites for water, as they contain 

far more water accessible OH groups than cellulose or lignin (Runkel 1954; Runkel and 

Lüthgens 1956). The formation of cross-links also contributes to improve the dimensional 

stability (Repellin and Guyonnet 2005; Altgen et al. 2016a), which was shown that it could be 

occurring in both open and closed system modifications (Publication IV). This leads to 

irreversible and reversible chemical changes that are linked to the changes in hygroscopicity. 

In the case of the EMC and the Smax measured immediately after the process, the accumulated 

degradation products are still present within the samples and affect the reference mass, provide 

additional sorption sites for water or cause a cell wall bulking effect, so the regular ML was 

used instead of the CML for comparison purposes. EMC and Smax were measured during cycles 

that included repeated conditioning at 20°C/65% RH, water-soaking and vacuum-drying at 

room temperature. This conditions can be considered similar to a weathering cycle, thus closely 

imitating real uses for the material, such as exterior decking or gardening furniture. 

 

When comparing open and closed system modifications, both thermal modifications resulted in 

a similar ML, but the increase in EMC with increasing number of cycles was much larger after 

the modification in the open system compared to the modification in the closed system. This 

clearly evidences that additional, reversible effects influence the EMC that are not dependent 

on ML, but on the conditions applied during the modification process. However, in contrast to 

the change in EMC, changes in Smax in the course of the water-soaking cycles increased the 

differences between the processes conditions applied. In addition, the Smax increased mainly 

from the first to the second water soaking cycle and remained almost constant during 

subsequent cycles. These reversible changes were explained by two distinct phenomena, the 

drying related annealing of amorphous polymers during the modification process and the cell 

wall bulking effect caused by the accumulated degradation products, which is measured by 

relating the dry volume of the thermally modified sample before and after leaching. These 

phenomena were shown to probably also affect other properties of the modified wood. 

 

The leaching of accumulated degradation products during water soaking caused a loss in dry 

mass and volume, while the loss in wet/conditioned state was either much smaller or fully 
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absent. This is due to the higher extractive content in the modifications where this loss was 

evident (Publication IV), thus its removal, along other potential degradation products and 

sugars, removed the cell wall bulking effect created by the thermal modification. This effect 

was higher in the wet modifications (closed system), as it is theorized that the degradation 

products (extractives) formed in those modifications tend to be more water soluble due to the 

high MC during the process that could hinder the dehydration of highly water-soluble sugars to 

furan-type derivatives (Altgen et al. 2016a). 

 

The decrease in the relative hemicellulose content, DP of the cellulose and a higher crystallinity 

could explain the theory presented in Publication IV, which related the decrease of the 

conditioned mass and wet volume of modification at 100% RH to an increase of the cellulose 

microfibril aggregation. This occurs after the removal or relocation of hemicelluloses and/or 

lignin as the spacers between the cellulose microfibrils (Salmen and Burgert 2009; Pönni et al. 

2014; Salmén 2015), which was shown to occur in these thermal modifications. The 

degradation of hemicelluloses and the structural changes of the cellulose increased the 

microfibril aggregation, reducing the water uptake of the wood cell wall. This effect was most 

likely removed after the first water soaking cycle, however, as previously mentioned, it is 

difficult to separate it to the drying related annealing effects. Though, it was clear to see, thanks 

to the chemical changes discussed in Publication I and the differences between open and closed 

systems in relation to their EMC and Smax, that the removal of drying related annealing effects 

is the main cause for reversible changes for samples modified in an open system and the cell 

wall bulking effect caused by the remaining degradation products is the main effect for samples 

modified at 100% RH. This high RH also influenced the decrease of the corrected EMC ratio 

(EMCc) ratio (Publication IV), which is related to enhanced cross-linking within the wood cell 

wall (Altgen et al. 2016a) as it was a similar effect shown by modifications with cross linking 

agents (Himmel and Mai 2015), and also in the increase of phenolic compounds as the 

temperature rises due to the degradation of hemicelluloses and lignin, especially at 100% RH. 

It can be speculated that there is a cross-link effect in the thermal modifications, and that this 

effect could be the predominant cause of the reduction of EMCc after the water-soaking cycles. 

 

8.4 Corrected mass loss (CML)  

Usually mass loss (ML) is used as an indicator of the severity of the modification, as it is directly 

related to the degradation of the wood (Zaman et al. 2000) and linked to the chemical and 

mechanical properties of the wood (Welzbacher and Rapp 2007; Esteves and Pereira 2009). 
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However, when doing a modification under closed conditions, some of degradation products 

created by the thermal modification accumulate in the wood (Altgen et al. 2016b), which would 

influence the actual mass loss of the wood after modification. To avoid this issue, the extractive 

content has to be deducted from the dry mass loss to obtain the corrected mass loss (CML). In 

this project, the CML was used for both open and closed system modifications. The results 

obviously showed higher values than using ML, with the modifications at 230°C in an open 

system and at 170°C at 100% reaching about 20% CML, which underlines the high efficacy of 

closed systems (wet/moist process) in causing significant thermal degradation at much lower 

treatment temperatures as the ones usually used for open system modifications (dry process). 

This degradation is caused by the elevated moisture content of the wood during modification 

and to the high amounts of formic and acetic acids formed (Publication I) in the closed system 

(Borrega and Kärenlampi 2008a; Willems et al. 2015a; Altgen et al. 2016b). The CML 

increased at higher temperatures in both open and closed system modifications, but there were 

some exceptions in the open system, as the modifications at 220°C showed a lower CML than 

at 210°C because of its lower amount of extractives. This results show the importance to modify 

the way to calculate the ML to be able to see the real effects of the modifications. The CML is 

recommended for any future analysis of thermal modifications, as it allows the values to be 

used for comparison purposes between varying thermal modification processes, and to replace 

the common methods to measure ML to CML, but the time it takes to measure the extractive 

content makes it difficult to be applied at an industrial level. 

 

Table 8.2 presents the highest and the lowest average ML values from various thermally 

modified eucalypts at a laboratory scale. They calculated the ML directly after modifications 

with the extractives and degradation products still present in the wood, so to be able to compare 

with the results obtained in this study, the regular ML value was used instead of the CML. 
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Table 8.2: Highest and lowest average mass loss from various thermally treated eucalypts under 

different process conditions. 

Species Age 
Thermal 

modification 

Process 

type 

Temperature 

(°C) 
ML (%) 

Reference 

min max min max 

E. nitens 19 ThermoWood Open 160 230 3.3 16.9 Publication I 

E. nitens 19 WTT (30% RH) Closed 150 170 1.3 2.5 Publication I 

E. nitens 19 WTT (100% RH) Closed 150 170 4.0 15.7 Publication I 

E. grandis 30 
Modified 

laboratory oven 
Open 180 220 2.5 8.0 

(Almeida et 

al. 2009) 

E. saligna 30 
Modified 

laboratory oven 
Open 180 220 3.0 9.0 

(Almeida et 

al. 2009) 

E. grandis 17 
Modified 

autoclave 
Open 180 240 12.6 22.5 

(de 

Cademartori 

et al. 2015) 

E. saligna 17 
Modified 

autoclave 
Open 180 240 12.7 21.9 

(de 

Cademartori 

et al. 2015) 

E. globulus - 
Autoclave steam 

heat treatment 
Open 190 210 3.7 14.5 

(Esteves et 

al. 2007b) 

E. globulus - 
Modified 

laboratory oven 
Open 190 190 4.8 9.0 

(Esteves et 

al. 2013) 

E. globulus - 
Modified 

laboratory oven 
Open 180 210 3.0 5.0 

(Knapic et 

al. 2012) 

E. pellita 6 

Laboratory 

vacuum 

treatment 

Closed 160 280 2.2 25.5 
(Wang et al. 

2014) 

 

The tendency shows that the modifications from this study presented higher MLs than the other 

eucalypt species, with exceptions of the thermally modified E. saligna and E. grandis by de 

Cademartori et al (2015) and E. pellita by Wang et al (2014), but both processes had higher 

peak temperatures than the ones used in our study. As mentioned in the introduction the age 

and type of plantation influences the properties of the eucalypt wood, so the data presented in 

Table 8.2 should only be taken as an approximate reference of thermally modified wood ML. 

As for the closed system, there are no data available from other eucalypt species, but the results 

obtained were similar as the modified European beech, as it showed a similar tendency of an 

increasing ML and CML as the temperature and pressure rises (Altgen and Militz 2016). 

 

One of the main points was to compare between modifications with similar CML. This was the 

case for the modifications at 160°C and 100% RH and 210°C, which had a CML of 18.6% and 

18.7% respectively. It was shown that the relative lignin and extractive content were similar 

between both modifications, but the closed system had lower hemicellulose content, which was 
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confirmed by the higher degradation of xylose. The relative cellulose content was also higher, 

although the DP of the cellulose was lower. This is related to the higher degradation of 

hemicelluloses and also higher amounts of acetic acid and phenols. These differences were 

confirmed by the FTIR spectra, as it was possible to differentiate the bands representing 

hemicelluloses between open and closed systems. There were no significant differences in the 

cellulose crystallinity, although closed system modifications were slightly higher. 

 

The EMCc ratio (Publication IV) showed that that the modification at 210°C was more effective 

in reducing the EMC than the modification at 160°C and 100% RH. This is related to the 

annealing effect of the amorphous matrix polymers that contribute to a further reduction of the 

EMCc ratio. 

 

The anatomy of the thermally modified wood from these two selected modifications did not 

show differences in the wood cell wall thickness, diameter of fibers and vessels. Both showed 

development of cracks starting from the middle lamella, which started to spread to the 

surrounding cells, and from the pit connections. Overall, there were no noticeable differences 

between the modifications at an anatomical level. 

 

For this project, the CML was a useful indicator to compare between open and closed system 

modifications and would be recommended to be used in any future studies related to thermally 

modified wood. 

 

8.5 Recommended further studies 

Durability tests were not performed during this project, as it was already established that 

thermally modified wood improved the resistance against fungi attacks as reviewed by Esteves 

and Pereira (2009), except when it was in direct contact with the soil, which was confirmed 

recently for thermally modified eucalypt species by Knapic et al. (2018). Chaouch et al. (2013) 

established correlations between the treatment intensity and wood properties such as durability, 

elemental composition, ASE and EMC, thus indicating that the chemical modifications of the 

cell wood wall polymers, something that was shown during our study, was directly responsible 

of the durability improvement, dimensional stability and reduced water adsorption. This would 

mean that the thermal modifications performed in this study, especially when the CML was 

over 10% both in open and closed systems, most likely improved the durability. On the other 

hand, it was shown that annealing effects and degradation products after modification 
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influenced the swelling and EMC of the modified samples and were shown to be reversible 

after water soaking cycles. Considering that the improved durability can be related to the 

modification of the wood polymers, degradation of hemicelluloses, the generation of new 

extractives and the chemical modification of wood cell wall polymers, which all limit or cause 

unfavorable conditions for the proliferation on fungi (Weiland and Guyonnet 2003; Hakkou et 

al. 2006; Lekounougou et al. 2009; Chaouch et al. 2013), it would be interesting to investigate 

if the durability decreases to a point that the modified wood reacts like the unmodified specimen 

or that the effect of the thermal modification still is present after water soaking cycles. This 

would also be recommended to do with the mechanical properties of MOE and MOR. The 

results could eventually show the long term effect of the thermal modifications and further 

differentiate between modifications in open and closed systems. 

 

8.6 Potential of thermally modified E. nitens for the Chilean market 

Publication V described the potential of thermally modified E. nitens wood to be used for 

decking. The results indicated that the material fulfils all the requirements regarding the surface 

hardness, anti-swelling efficiency, equilibrium moisture content, volumetric swelling, and 

abrasion resistance to be used as decking material. Currently, the range of prices of sawnwood 

of species that dominate the decking market in Chile ranges between the blocks of clear radiata 

wood (free of knots) that cost 360 US$ per m3 and the native species Raulí (Nothofagus alpina) 

at 900 US$ per m3. Considering that the current sawnwood prices for E. nitens is 225 US$ per 

m3 (INFOR 2015), even adding the cost of the thermal modification, the price of the material 

could be considered competitive and an alternative for the more expensive native wood species. 

In addition, the mechanical properties shown in Publication II indicate there was not a 

significant influence of the process conditions on the static and dynamic mechanical properties, 

only slight differences, such as lower static mechanical properties in the closed system 

modifications and lower inelastic work and deflections in the open system. These differences 

were explained by the changes in the chemical structure, and in long term use, the changes in 

the dimensional stability. Although the mechanical properties seem to suggest that the modified 

wood can be recommended for many purposes, it should not be used in structures that require 

dynamic loads, as our material has a brittle behavior and it has already been shown in a report 

by Widmann et al (2012) that thermally modified structural timber made out of beech should 

not be used for those purposes. Other important factor to be taken into account, which was not 

part of this project, is the machinability of the modified material, which influences its sawn and 

surface quality and can have an effect on the final product.  
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Although the results show that the wood for E. nitens was suitable for thermal modification, the 

material used was dried wood ready to be sold, so common issues of this species, such as the 

age of the plantation, problems with reaction wood after drying and the effect of knots were 

avoided. This means that to obtain the better result when modifying this species, the wood has 

to be selected before the modification, preferably from plantations designed for solid wood 

material, already dried and without signs of reaction wood, surface cracking and avoiding 

visible knots as much as possible. 

 

Overall, it would be recommended to use the modified E. nitens wood for decking, cladding, 

garden furniture or fences, like the current uses of thermally modified wood in the market. 

There is already a in Spain (MH PARQUETS) that sells products out of thermally modified 

E. globulus wood and small batches of modified E. globulus and E. nitens are being produced 

in some industries in Chile, with the material being used for furniture and decorative cladding. 

 

In general, the results obtained in this study can be used as guidelines for the selection of the 

type of modification to be used for this species. Both modifications can be recommended, but 

in the end, it will depend on the size and quantity of material to be produced. If the production 

would lean towards very specific products, the closed system would be recommended, as it uses 

less space, it is ideal for smaller production runs and it has the advantage of taking less time to 

finish a complete process cycle than the open modification systems. On the other hand, if there 

is interest by the bigger industries in Chile, the open modification system would be the one to 

use, as it has less size limitations than the closed system modification, thus the system can be 

adapted to modify large quantities of material.  
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