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ABSTRACT: 

 

Before applying change detection, high resolution SAR (Synthetic Aperture Radar) imagery benefits from advanced denoising 

mechanisms to preserve details and minimize speckle. We propose a change detector based on a MCA (Morphological Components 

Analysis) of a difference image (DI). With MCA, the data is decomposed into image features utilizing sparse representations of the 

image content. By introducing a priori knowledge of the content of the scenes, and exploiting shape information corresponding to 

the changes provided by MCA, we can significantly improve performance under adverse conditions, such as inconsistent acquisition 

geometries. 

 

 

1. INTRODUCTION 

Image change detection is an enhancement technique that 

compares two or more images of the same area acquired at 

different times. The procedure interrogates a test image with 

respect to a reference image to obtain a binary map describing 

the changes. This method is particularly useful for Earth 

environmental observation, risk management, agricultural 

surveys, and urban studies. SAR sensors are well suited as time 

series data can be reliably collected; moreover, these sensors 

can operate in unfavorable weather and daylight conditions. 

Previous studies (Brunner, 2010; Bovolo, 2007; Schmitt, 2009) 

showed great potential for SAR-based image change detection. 

Nonetheless, the inherent complexity of SAR data imposes 

multiple challenges that need to be tackled.  

 

Most of both coherent and incoherent SAR-based change 

detectors are designed to mitigate the errors due to the presence 

of noise. In image change detection, denoising carries an 

implicit trade-off between detail preservation and accurate 

representation of homogeneous areas. Some incoherent change 

detectors were proposed to assess this compromise and 

evaluated with high resolution spaceborne SAR imagery 

(Bovolo, 2007). A similar approach was presented with medium 

resolution data sets in (Celik, 2010a). All these methods do not 

filter, but instead exploit a multiresolution sequence, in which 

the noise level decreases with the resolution scale. A more 

typical example with explicit denoising can be found in (Celik, 

2010b) and (Yousif, 2013).  

 

Another alternative based on a wavelet fusion kernel that avoids 

direct denoising of the original SAR images was presented in 

(Ma, 2012). The low and high frequency components of the 

mean ratio and the log ratio images are fused with a decimated 

wavelet transform. Other methods based on the modification of 

the coefficients obtained in a transformed domain of the original 

image space were introduced in (Schmitt, 2009). In those, 

different enhancement techniques were applied to the curvelet 

coefficients of the difference image to highlight the structure of 

man-made objects. 

  

Coherent change detectors are a good alternative to reduce the 

effect of the speckle noise without explicit suppressing noise in 

the SAR data (Damini, 2013; Wright, 2005; Scheuchl, 2009). 

Nonetheless, these detectors require short-term scenarios and 

data sets recorded with very similar flight paths, so that 

coherence is still a useful metric to evaluate changes. Different 

methods to perform coherent change detection were also 

proposed in (Scheuchl, 2009) and (Ridd, 1998), where the phase 

of the complex values of the SAR images is applied to a variant 

of Principal Components Analysis (PCA) rather than the 

coherence. PCA is highly sensitive to inter-channel correlation, 

thus the performance of this algorithm depends on the 

radiometry of the SAR images. The use of a sliding window can 

effectively remove this dependency at the cost of border 

artifacts. An efficient solution that mitigates these border effects 

was proposed in (Ranney, 2006).  

 

To overcome some of the limitations of current coherent and 

incoherent SAR-based change detectors, particularly as applied 

to high resolution airborne SAR imagery, we propose advanced 

MCA-based denoising techniques to (a) accurately preserve 

details and suppress speckle and (b) cope with slightly 

inconsistent acquisition geometries (common for airborne 

SAR). For (b), we use the shape information inherited from 

MCA to remove some features caused by linear urban structures 

to improve the performance of the change detector. 

 

This paper is organized into three sections. Section 2 introduces 

the design of the change detector when considering noise as the 

main source of error, and the required modifications to handle 

some errors induced by the different acquisition geometries for 

single channel airborne SAR data sets. Section 3 illustrates the 

results obtained with real multitemporal SAR data, showing the 

performance of the algorithm in typical urban scenarios. Finally, 

section 4 wraps up the document with a discussion of the results 

and conclusions. 

 

2. METHOD 

2.1 Data and Test Sites 

The data sets were acquired with the DLR F-SAR sensor 

(Reigber, 2013) over the residential and industrial area of 

Oensingen (Switzerland) from three parallel paths, referred to as 

P0302, P0305 and P0306. The SAR images were recorded at X-
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band in fully polarimetric mode in linear stripmap 

configuration. To reflect typical variations in airborne 

acquisition geometries, Table 1 includes the incidence angle at 

mid-range of the different flight passes. Their geometries are 

illustrated in Figure 1.  All SAR images shown in this document 

are single-look representations of the HH co-polarized channel 

after absolute radiometric and polarimetric calibration, with a 

theoretical range and azimuth resolution of 0.51 and 0.15 meters 

respectively. Absolute geometric calibration was achieved by 

using the geolocation of the corner reflectors deployed along the 

area of interest, giving residual range and azimuth geolocation 

errors below 2 centimetres in each dimension. The RAW data 

was processed with a matched filter without taper in range, and 

an interpolated matched filter (Graphics Processor Unit-based 

back-projection) with a Hanning tapper in azimuth (Henke, 

2015).  

 

 
 

Figure 1. Geometry acquisition differences between the passes 

P0302, P0305 and P0306. 

 

Flight 

Pass 

Acquisition Date and 

Time 

Incidence Angle at Mid-

Range (θi) 

P0302 16/06/2010 09:23:00 47° 

P0305 16/06/2010 09:55:15 42.66° 

P0306 16/06/2010 10:06:16 51.34° 

Table 1. Acquisition characteristics. 

 

2.2 Morphological Components Analysis with SAR images 

Coherent interference of the electromagnetic waves reflected by 

the objects causes pixel-to-pixel intensity variations, 

manifesting as a granular noise pattern known as speckle (Lee, 

2009). In incoherent SAR change detection, speckle affects the 

visual interpretation of the images, and can cause high false 

alarm rates and mis-detections. To mitigate these unwanted 

effects, noise treatment techniques are required. Let us assume 

that a log-transformed amplitude SAR image is expressed as: 

 

 x=y+ε (1) 

 

where x is the noise-corrupted log-amplitude SAR image, y is 

the image to recover, and ε is additive noise whose properties 

are unknown a priori. 

 

In this work we focus on noise suppression methods that work 

in a transformed domain with multiresolution decomposition 

and shrinking rules. The denoised image is recovered after back 

transforming the modified coefficients obtained in the forward 

transform. The design of these methods is based on the 

compressed sensing theorem (Starck, 2010), where it is assumed 

that the transform is able to represent the data in a sparse form. 

The preservation of details and appearance of artifacts are 

therefore linked to the veracity of this assumption, together with 

the accuracy of the shrinking rules and the thresholds involved. 

For instance, wavelets are known to provide a sparse 

representation for smooth or uniform areas and point-like 

targets, but fail to represent other types of image content as lines 

or edges. Multiple transforms that can compactly represent 

different types of data are then good alternatives to alleviate 

over-smoothing and artifacts. For this reason, and based on the 

basic principle of morphological diversity it is desirable to 

account for the different geometric features found in high 

resolution SAR imagery, exploiting the advantages of different 

morphological transforms when used in combination (Starck, 

2010). In this manner, a SAR image x is expressed as the 

combination of K transforms Ψ, when x is corrupted with 

additive Gaussian noise ε (with zero mean and standard 

deviation σε): 

 

 x= ∑ Ψkαk+ε

K

k=1

 (2) 

 

where αk is the matrix of coefficients of y in the transformed 

domain Ψk. An approximate solution to (2) can be found via 

MCA. This algorithm restricts the space of possible solutions or 

candidates by modelling a constraint optimization problem as 

follows:  

 

 min
α1,…,αK

∑‖αk‖1
1 s.t.   ‖x- ∑ Ψkαk  

K

k=1

‖

2

≤ σ

K

k=1

 (3) 

 

We need to find the set of coefficients αk of the K transforms 

which have the minimum ℓ1 norm (which produces a more 

sparse representation) and provide the minimum reconstruction 

error σ (fidelity to data). If all the components αl but αk are 

fixed, we can find a solution by soft-thresholding the 

coefficients of the marginal residuals rk, computed as: 

 

rk=x- ∑ Ψlαl

l≠k

 (4) 

 

The soft-thresholding shrinking rule is defined as: 

 

SoftThresh (X,T)=sign(X)(|X|-T) (5) 

 

where X is a generic real variable and the threshold T is 

computed via: 

 

 T=3*median(|w3-median(w3)|)/c0 (6) 

 

with 𝑤3 being the coefficients of the diagonal subband of the 

Haar wavelet of the input image x obtained at the first 

resolution scale, and c0=0.6745 (Starck, 2010; Mallat, 2008). 

 

The evaluation of (4) is the basis of the iterative kernel of the 

MCA algorithm used here. A break evaluates the performance 

of the method at each iteration. We opted for adaptive MCA-

MOM (Mean of Maximum) because it provides better 

performance when the components have high contrast, assuring 

that each transform gets at least one assigned component 

(Starck, 2010). Nonetheless, and due to mathematical 

limitations, all targets are expressed as a combination of all the 

transforms involved, and thus it is not possible to guarantee a 

perfect separation of shapes. Finally, after reaching the stopping 
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conditions, the output is defined as the morphological 

components xk=1…K
Niter  of the input image x. In this paper we 

exploit only the K components of the last iteration. 

 

2.3 MCA-based Change Detection 

A SAR change detector involves two main stages. First, a 

mathematical function f is applied to the SAR images x1 and x2 

recorded at two different time periods over the same 

geographical area. In this work we exploit a so-called 

Difference Image (DI), obtained when f is the difference 

between log-transformed x1 and x2. The subtraction is still the 

most common operator in SAR change detection, although other 

alternatives exist (Damini, 2013; Yousif, 2013; Ridd, 1998). A 

binary map is obtained by thresholding the DI. This map 

contains the detected changes in the form of classes (change or 

no change). 

 

To suppress most of the noise-induced errors inherently present 

in the DI, the data is decomposed into different image features 

using sparse representations of the image content by deploying 

a wavelet- and curvelet-based MCA, K=2 in equations (2-4). To 

avoid aliasing effects and guarantee translation invariance, we 

use a stationary wavelet transform (SWT) designed with the 

classic ‘a troux’ method. This wavelet transform provides better 

image restoration properties than decimated transforms (Starck, 

2010). However, Gibbs-like artifacts, or ringing, produced by 

this harmonic analysis introduces multiple false alarms, and 

thus, an additional strategy is required to remove them from the 

binary map. Due to translation invariance of the stationary 

wavelet transform, a cycle spinning method (Starck, 2010) does 

not yield improved results. We utilize a second resolution scale 

of the DI, in a fashion similar to decimated pyramid transforms 

(Starck, 2010). This additional scale is down-sampled by a 

factor L using an interpolation kernel that maintains the noise 

properties for the whole chain, such as Lanczos (Burger, 2012). 

The resulting resolution scale is referred as the DId. The two 

resolution scales are decomposed by MCA independently, with 

the curvelet transform remaining unchanged and the wavelet 

transform using a different wavelet base for each scale. For the 

second scale the mother wavelet has more vanishing moments, 

as the down-sampled DI contains less speckle (Mallat, 2008). 

After applying MCA to each resolution scale, the DI and the DId 

are re-expressed as: 

 

 DIMCA = ΨCURVαCURV+ΨSWT-db4αSWT-db4 (7) 

   

 DId-MCA= ΨCURVαCURV
d +ΨSWT-db8αSWT-db8

d  (8) 

 

where αCURV and  αCURV
d  are the denoised curvelet coefficients 

(i.e. iteratively soft-thresholded with Eq. (5)) of the DI and DId 

respectively. The sets αSWT-db4 and α
SWT-db8

d  are the denoised 

wavelet coefficients of the DI and the DId extracted with an 

Ingrid-Daubechies mother wavelet (Mallat, 2008) with 4 and 8 

vanishing moments respectively. 

 

Note that the exploitation of two resolution scales introduces 

multiple benefits; for instance, it is very effective at mitigating 

ringing or producing a migration of the artifacts to different 

image pixels; downsampling is the simplest noise suppresion 

mechanism to be integrated in a change detector; and noise 

supression of a downsampled image is better than suppressing 

the noise in an image and downsampling it (Burger, 2012). 

 

The global binary map is finally obtained with: 

 

 F= F1 ∧ F2 = (|DIMCA|≤T1) ∧ (|(DId-MCA)↑L|≤T1) (9) 

 

where ↑L represents an upsampling operator by a factor L, and 

F1 and F2 are the binary maps of each resolution scale after 

thresholding with T1.  

 

Additionally, with the shape information of the detected 

changes obtained via MCA, the change detector can account for 

some errors induced by differences between acquisition 

geometries. If no additional data in the form of digital surface 

models, interferometric or tomographic SAR imagery is 

available, some a priori knowledge of the content of the scene 

is therefore required; for instance in urban areas, the PSFs 

(Point Spread Functions) of the walls/roofs of the buildings 

migrate to different pixels among the data takes. We exploit the 

shape information obtained with MCA to suppress such 

geometry-based changes (i.e. lines, edges, contours…) while 

preserving real changes on the ground. In this manner, to 

remove the changes detected with a particular morphological 

component, we first threshold and combine the two binary maps 

of that component with:  

 

 Fcurv=(|ΨCURVαCURV|≤T1)∧(|(ΨCURVαCURV
d )↑L|≤T1) (10) 

 

Finally we extract those changes from the global binary map 

using: 

 

 G = F ∧ Fcurv (11) 

 

In this work, we use T1=3 decibels, chosen as the typical metric 

used to evaluate the resolution of a SAR image, in order to 

guarantee that when the point-like targets enter or leave the 

scene the changes are resolved in both range and azimuth. Note 

that all binary maps are obtained with the same threshold T1, 

although better results could be achieved if a particular 

component were evaluated using another set of thresholds. 
 

3. RESULTS 

The results are presented as an overlay of the binary map on top 

of the reference image. The maps contain two classes: the pixels 

marked in green/red indicate a significant increase/decrease of 

the radar brightness between the reference and test images, i.e. 

targets entered/left the area of interest. To ease the interpretation 

of the different targets, we include an aerial view of the areas of 

interest (Figure 2 and Figure 3). Corresponding RGB 

composites are shown in Figure 4 (a-b) and Figure 5 (a-b) 

respectively, produced with the reference image in the red 

channel and the test image in the green channel. In this manner, 

the most remarkable changes are highlighted in red and green, 

whereas yellow indicates a low probability of change. 

 

Figure 4 illustrates the changes detected in the industrial area of 

Oensingen. The right/left column of the figure contains the 

results when the acquisition geometries induce an incidence 

angle difference of 4 degrees/8 degrees respectively. Subfigures 

(c) and (d) show the output of the detector considering only 

noise-induced errors, whereas subfigures (e) and (f) are 

obtained after exploiting a priori knowledge of the acquisition 

geometries-induced changes. The same scheme was followed in 

Figure 5, where changes were detected from analysis of the 

residential area of the town. 

 

The results reveal that the changes detected with the curvelet 

component via MCA can be related to walls/roofs of the 

buildings and are thus, isolated. In this manner, the false alarms 

induced by the migration of the PSFs of the linear shapes can be 
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removed. Notice that due to the short-term scenario (see Table 

1) only cars and trucks represent real changes on the ground; 

thus the rest of the detected changes must be considered as false 

alarms.  

 

After manual inspection, subfigures 4 (e-f) contain most of the 

real changes, with the exception of some false alarms on the 

rooftops, which cannot be removed due to their blob-like shapes 

suited by the wavelet component. Subfigures 5 (e-f) have a 

more difficult visual evaluation; nonetheless, the changes 

detected in the parking area indicated by the blue rectangle 

reveal the movement of some cars, with a high likelihood of real 

change.  

 

4. DISCUSSION 

4.1 Analysis of the Results 

Our algorithm was evaluated concentrating on two different 

areas of interest. The first was strongly dominated by long 

linear structures as is typical for buildings in industrial areas, 

whereas the second contains smaller linear contours more 

representative of low-medium residential areas.  

 

When considering noise as the only source of error, we 

observed that the uniform areas of the image shown did not 

present false alarms. Due to the MCA inherited shape-

properties, well-defined structures such as edges, contours, cars, 

railways, and rooftops were clearly identifiable, generally 

outperforming the outputs provided by classical noise 

suppression methods.  

 

When the acquisition geometries exhibit incidence angle 

differences lower than 4 degrees, we observed that the targets 

on the ground, such as cars and trucks, can be detected and 

retained after removing the curvelet component. For an 

incidence angle difference of 8 degrees, we observed that the 

migration of the PSFs was considerably higher, and thus some 

false alarms were still present in the binary map after the 

removal of the curvelet component. This issue is also likely to 

be more severe with increasing differences in the incidence 

angles of the acquisition geometries. 

 

Utilizing the curvelet component, false alarms given by the 

artifacts produced by the processing chain, such as 

range/azimuth side-lobes and clutter areas, might be removed. 

 

4.2 Conclusions 

A novel change detector based on MCA was proposed to handle 

high resolution SAR imagery with a noise treatment able to 

preserve relevant details with well-defined structures. The 

method’s detection performance expedited manual inspection of 

both the changes and their origin. 

 

By exploiting the shape information, we can significantly 

improve the performance of the change detector when different 

acquisition geometries exist, given some prior knowledge about 

structures in the scene (as e.g. in urban areas). The method does 

not utilize additional SAR data, and it can be extended to retain 

other shapes by introducing their respective morphological 

components. However, for very different acquisition geometries 

additional data, such as multichannel SAR data sets or accurate 

digital surface models might be required. In future work we 

consider a detailed evaluation of the algorithm to circular 

geometries, as well as exploitation of the scattering mechanism 

classifications extracted from fully polarimetric data sets. 

Additionally, a more objective evaluation of the algorithm is 

currently on-going considering similar acquisition geometries, 

in areas where ground truth was recorded. 

 

 

 
Figure 2. Orthophoto of the industrial neighbourhood of 

Oensingen, (© swisstopo, 2006). 

 

 

 

 
Figure 3. Orthophoto of the residential neighbourhood of 

Oensingen, (© swisstopo, 2006). 
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(a) RGB composite: R=P0302, G=P0305 

 
(b) RGB composite: R=P0305, G=P0306 

 
(c) CD-MCA (all components): P0302-P0305 

 
(d) CD-MCA (all components): P0305-P0306 

 
(e) CD-MCA (without curvelet component): P0302-P0305 

 
(f) CD-MCA (without curvelet component): P0305-P0306 

Figure 4. Results of the change detector in the industrial neighbourhood. 
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(a) RGB composite: R=P0302, G=P0305 

 
(b) RGB composite: R=P0305, G=P0306 

 
(c) CD-MCA (all components): P0302-P0305 

 
(d) CD-MCA (all components): P0305-P0306 

 
(e) CD-MCA (without curvelet component): P0302-P0305 

 
(f) CD-MCA (without curvelet component): P0305-P0306 

Figure 5. Results of the change detector in the residential neighbourhood.
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