
A DYNAMIC PROTOCOL FOR 
COOPERATIVE COURSEWARE 

DEVELOPMENT 

INTRODUCTION 

In many language laboratories 
throughout the country, computers have 
overtaken traditional audio laboratory sys
tems as the primary instructional tool. This 
is likely due to the fact that computers can 
integrate various media within one interac
tive platform. Also, computers that allow 
students to record their voices are now com
monplace and virtually every other func
tion offered by traditional audio lab sys
tems can be performed by computers. While 
this metamorphosis is taking place, power
ful authoring environments designed for 
non-programmers are being developed. 
Many of these authoring tools have most of 
the functions oflow-level programming lan
guages, such as Pascal or C, but include 
enhancements, such as graphics tools and 
built-in drivers for multi-media peripher
als. These developments have caught the 
attention of educators, who can now create 
their own CAl (computer-assisted instruc
tion) materials to meet their specific instruc
tional needs. 

Vol. 26, No.1, Winter 1993 

Thomas F. Thibeault 
Southern Illinois University 

at Carbondale 

Technology has been part of the 
language instruction repertoire for several 
decades. The wide-spread proliferation of 
language laboratories in the 60's and 70's 
has provided a solid base for the implemen
tation of CAl in the language-learning pro
cess. Since the advent of low-cost, high
performance computers and sophisticated 
authoring tools, a seemingly logical step in 
the evolution of language laboratories has 
taken place; language laboratories are be
coming a major resource for in-house 
courseware development. As a result, many 
laboratory directors suddenly find them
selves wearing the hat of CALL (computer
assisted language learning) project man
ager or consultant. However, the hat does 
not always fit without making some alter
ations. For example, the current generation 
oflaboratory directors was not likely trained 
to wear this hat and many are not aware of 

Thomas F. Thibeault, Ph.D. (Universitiit I 
Salzburg) is Director of the LAnguage Media 
Center at Southern Illinois University at 
Carbondale and an Asst. Prof. of German. 
Note: The protocol is available from the 
author for further testing. 

7 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Biodiversity Informatics

https://core.ac.uk/display/187509326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Protocol for Cooperative Courseware Development 

formal strategies and production systems 
needed to take a courseware project from 
idea to reality. There is, therefore, a need to 
educate oneself about the process of 
coursewaredevelopment.Fortunately, there 
is an abundance of resources1 available in 
the areas of courseware development and 
instructional design. There is another chal
lenge for laboratory directors serving as 
project managers/ consultants; the process 
of developing CALL courseware involves 
many diverse areas, such as instructional 
design, programming, technical expertise, 
familiarity with several languages, research 
design, graphics, pedagogy, etc. Few people 
can claim expertise in all these areas. Most 
will have to rely on the expertise of others 
where gaps exist. As a result, the majority of 
high-quality courseware developed is the 
result of a team effort. 

As soon as the team concept comes into 
play, theprocessofcommunication becomes 
priority number one. As Faiola (1989, 17) 
puts it, "To understand the primary deter
rent to efficient courseware development, 
team communication must first be consid
ered." He cites a study at Johns Hopkins 
University which determined that two ma
jor hindrances to effective courseware de
velopment were the time required for com
munication within the team and the ''lack of 
ability, clarity and skill to convey and re
ceive communicated information." It is safe 
to say that effectiveness of communication 
is a primary factor that determines the over
all quality of the courseware production 
system. Poor production systems can be 
blamed for the poor quality of many 
courseware packages (Karrer, 1987, 24). 
There must be an effective, dynamic chan
nel of communication between each mem
ber of the team so that goals, project status, 
responsibilities, assignments, deadlines, etc. 
are clear in the minds of all members at all 
times. Breakdowns in communication can 
lead to inefficient use of time, unnecessary 
repetition of work, misunderstandings, 

frustration and general chaos. At Southern 
Dlinois University, we have developed a 
protocol that serves this need for an effec
tive communication vehicle. It is dynamic 
in the sense that it can be modified to accom
modate specific needs, it can be easily up
dated as circumstances require and updates 
can be distributed to other team members 
quickly and easily. The protocol is sup
ported by specific strategies and authoring 
tools designed to reduce the development 
time of courseware. These will be covered in 
more detail later. 

THE INSTRUCfiONAL MODEL 

The protocol is based on a tri-level in
structional model (Gustafson, 1991, 29) de
veloped by the Instructional Development 
Institute (101) and showninFig.1. Although 
the model was originally designed for de
veloping courses, we have adapted it spe
cifically for developing CALL courseware. 
The model starts with the process of defin
ing instructional needs, analyzing the learn
ing environment and specifying the organi
zational structure of the courseware. The 
second level focuses on development and 
includes establishing objectives, specifying 
methods of implementation, and construct
ing prototypes to test a given approach. The 
last level deals with the evaluation process 
which includes testing the prototype, ana
lyzing the results, and modifying the pro
gram based on the results of the testing 
procedure. The diagram in Figure 1 gives 
an overview of the instructional model. 

THE COMPUTER-BASED PROTOCOL 

The courseware project protocol which 
we developed is actually a HyperCard com
puter program similar in function to IDioM 
(Gustafson and Reeves, 1990), a HyperCard 
stack which uses instructional design prin
ciples to assist in course development. Our 
version uses the diagram in Fig. 1 as a main 
menu. By clicking on the titles of each 

8 IALL Journal of Language Learning Technologies 



Thomas F. Thibeault 

Figure 1. IDI Instructional Model (from University Consortium for Instructional Development 
and Technology, formerly National Special Media Institute.) 

Identify Problems Anal yze Setti ng 0 rga nize Management 

- Assess needs _ A udi e nee Conditions - Tasks 
""" Establish Priorities Re 1 evant Resources Res po nsi bil iti es 

State problem Timeli nes 

Identify Objectives Specify Methods Construct Prototypes 

- Terminal _ Learning _ I rmndonal Materials 
""" Enabling 

Test Prototypes 

- Conduct tryout -Co 11 ect eval uati on 
data 

individual box, the user can branch off to a 
11Card" that deals specifically with these
lected topic. On each card there is a scrolling 
text field for each sub-topic where the de
veloper can enter the appropriate informa
tion. Each field has a heading that corre
sponds to the sub-headings in the main 
menu. One feature allows users to access a 
list of questions and ideas under a given 
heading. The list provides them with que
ries regarding essential information that 
should be included under that heading. 
Some of these prompts are global in nature 
and may not apply in all cases. Others are 
more specific and warrant serious consider
ation. The prompts can be edited in re
sponse to varying instructional needs and 
to experience gathered over time. The idea 
is to maintain flexibility and let the protocol 
serve as a tool, without allowing it to 
mandate specific goals, objectives or 
strategies. Figure 2 below shows a sample 

Vol. 26, No. 1, Winter 1993 

Instruction Evaluation Materials 
Media 

Analyze Results I m p 1 e me nt I Rec yc 1 e 

Objectives Review 
~ Methods - Decide 

Evaluation Act 
techniques 

NSMI/1971 

screen dealing with organizational 
management on the DEFINE level. After 
the instructional design is complete, the 
entire protocol can be printed out and dis
tributed to the members of the project team. 

In addition to the project protocol, we 
have developed supporting materials such 
as templates and plug-in routines for vari
ous types of CALL exercises and activities. 
The templates allow developers to enter the 
items, directions, grammar review, etc. into 
special master fields. The information is 
then distributed throughout the template in 
the appropriate locations. The template con
tains all the algorithms needed to present 
the cues, process the student input and gen
erate a performance record. Though a given 
template may lack flexibility in its range of 
applications, it can be modified to suit the 
specific needs of the instructor and 
students. Plug-in routines a reprogramming 

9 



Protocol for Cooperative Courseware Development 

Fig. 2. Project Protocol - Sample Screen Showing Prompts, Features and Entries 

DEFINE 
Organize Hanagement EJ ttenu EJB~ 

Taslcs Res po nsi bil i ties Timelines 

What are the .Q Project manager will ~ 1 Jun - SME submits ~ 
preparatory tasks that be responsible for: iiiii item proto co 1 iini 
must be carried out? 1 . calling organizationa 1 IIIII 7 Jun - item protoco 1 Iiiii 

What are the 
development tasks? 

meetings nm is transferred to 11111 

nn~ template bn ::m 
2. developing basic 
algorUhms 

~ ::::: 
iiiii programmer gm 
!iii! J!lli 

What are the 
implementation tasks? 

~iii 1 0 Jun - SME checks ~~ 
3. supervising iiii! accuracy of prototype 1 ::m 
programmer niii initia 1 debugging JJII! What are the 

evaluation tasks? 4. writing teohnioa 1 ~~14 Jun - Testing with om 
section of documentation ~~m experimenta 1 group IIIII 

5. supervising 
~ evaluation 
0 

routines that perform a specific function 
and can be integrated into any project. One 
example is a routine for analyzing student 
input. 

For faculty members who suffer from 
incurable computerphobia, but do acknowl
edge the merits of CALL for their students, 
we provide paper-based protocols for list
ing the cues, responses, feedback, features, 
etc. These can then be transferred to the 
computer by student workers assigned to 
the language laboratory. Items can also be 
written with a word processor and then 
pasted into a template. 

THE PROCESS BEGINS 

The process of courseware development 
starts when an instructor approaches the 

mii begins ::::: 
m:: lim I 23 Jun - evaluation ~ 
0 data due 0 

laboratory director about an idea for a piece 
of courseware. This idea usually comes about 
as a result of specific instructional needs 
perceived by the instructor. In one case, a 
member of the German faculty developed 
an animated module that conceptualized 
the use of case with two-way prepositions 
for his bewildered students. The module 
contrasted a man jumping on top of a table, 
Der Mann springt auf dem Tisch (dative), as 
opposed to a man jumping onto a table, Der 
Mann springt auf den Tisch (accusative). This 
module can now be easily plugged into any 
CALL program dealing with this topic. Simi
lar modules could be developed to demon
strate the concept of House Verbs in French 
or the difference between ser and estar in 
Spanish. 

10 IALL Journal of Language Learning Technologies 



THE DEFINE LEVEL2 

Identify Problems 

During the initial brainstorming session, 
the laboratory director, who generally serves 
as the project manager, works through the 
project protocol with the subject matter ex
pert (SME). The first session with the SME 
focuses on the DEFINE level of the protocol, 
though the DEVELOPandEVALUATElev
els may also be discussed in general terms. 
During this session, it is not likely that the 
protocol will be completed in great detail, 
but working through the protocol helps 
clarify goals, objectives, strategies and de
sign considerations. The major emphasis 
during this first session is on the target 
audience, defining the problem, the overall 
design of the program and screen design. 
Questions and ideas prompted by the pro
tocol under the sub-heading Identify the Prob
lem are: 

a. What are the general instructional 
needs? This can be defined in terms of 
grammar concepts, cultural issues, com
munication skills, proficiency levels, etc. 

b. Describe the target audience (proficiency 
level). 

c. Prioritize the subject matter/target au
dience. If this is a large-scale project, 
which areas or audiences should be ad
dressed first? 

d. What is the nature of the problem? Are 
students having difficulty remember
ing the genders of nouns? Are their 
essays riddled with errors in word or
der? Are they particularly weak in lis
tening comprehension? Do they have 
difficulty reading specialized texts, such 
as newspaper articles in business 
Spanish? 

Vol. 26, No.1, Winter 1993 

Thomas F. Thibeault 

e. How serious is the problem? Does it 
warrant the investment in time an4 re
sources to develop software as a solu
tion? 

f. How is the target audience affected? 
Which learning modes are affected? 
What is the effect on grades and perfor
mance? What is the effect on attrition? 
These items could provide useful informa
tion if included in the evaluation process. 

Analyze Setting 

The next step, Analyze Setting, focuses on 
the learning environment and relevant re
sources: 

a. Describe the learning environment. Will 
the students work individually, in pairs, 
in small groups or as a class? 

b. How much time will be available per 
session? How will this affect motiva
tion and concentration? 

c. How many sessions will be needed to 
accomplish the objectives of the pro
gram? How will this affect motivation? 

d. What kind of hardware do you want to 
use? Type of computer? How much 
RAM will be needed? What kind of 
storage devices will be required (floppy, 
hard disk, CD-ROM drive, videodisc 
player)? Will students need to record 
their voices? 

e. Are enough computers available to ac
complish the objectives within the de
sired time-frame? 

f. What kind of supporting software will 
you want to use? Spelling checker? 
Sound editor for original recordings? 
Sound clips for special effects? 
Graphics program for creating original 
graphics? Animation program? Clip art? 

11 



Protocol for Cooperative Courseware Development 

Organize Management 

The final step on the DEFINE level is 
Organize Management. The effectiveness of 
the courseware development process de
pends on clearly defined roles, tasks, as
signments and deadlines. Faulty lines of 
communication can result in wasted effort, 
redundancy and lost time. Considering the 
great public relations effort that must often 
be made to sell the faculty on CALL, it is 
wise to keep their frustration levels down 
by keeping management and organization 
up. This section of the protocol first prompts 
the following questions concerning tasks: 

a. What are thepreparatorytasks that must 
be carried out? Writing the items, ac
ceptable answers, feedback statements, 
help statements, directions, etc., and 
selecting the authoring tools. 

b. What are the development tasks? Sys
tems analysis, programming, develop
ing algorithms, screen design, digitiza
tion of images and sound, etc. 

c. Whataretheimplementationtasks? Ar
ranging for students to test the pro
gram, integrating the software into the 
curriculum, encouraging colleagues to 
adopt the software in their courses. 

d. What are the evaluation tasks? Estab
lishing the research design, keeping 
trackofstudentperformance,determin
ing 11bugs," content errors and typo
graphical errors, determining the level 
of increased proficiency, determining 
the affective response of students and 
instructors. 

The next step, according to the protocol, 
is to determine the make-up of the project 
team. The members that make up the team 
can vary from project to project. The core of 
the team is the project manager, subject 
matter expert and programmer. For 

large-scale or highly sophisticated projects, 
there may be a need to include an educa
tional technologist with expertise in inter
facing pedagogical theory with technologi
cal applications. A systems analyst may 
also be useful to help determine the best 
hardware and software configuration for a 
specific situation. Resource personnel can 
also be found in university media centers, 
computer science departments and even in 
business departments if the developer has 
entrepreneurial aspirations. In many cases, 
an individual may play more than one role, 
depending on the financial and personnel 
resources available; it is generally prefer
able to have a few good people on the team 
rather than a lot of partially-committed or 
semi-competent people. Leiblum (1989, 16) 
puts this in perspective when he states, 11H 
you want a track and field team to win the 
high jump, you find one person that can 
jump seven feet, not seven people who can 
jump one foot." 

The make-up of the team will most likely 
be decided by the project manager and the 
SME. The decisions they make collectively 
and individually will be determined, in large 
part, by the types of tasks to be carried out 
and the various responsibilities assigned 
to each team member. Tasks can include: 

Item generation 
Technical design 
Screen design 
Pedagogical design 
Evaluation procedure 
Programining 
Archiving code & data 
Developing time lines 
Writing documentation 

This list could be extended considerably, 
depending on the size and scope of the 
project. 

The last major component of the 
organizational scheme is the timeline. The 
importance of effective time-management 
cannot be overemphasized. Brooks (1982, 

12 IALL Journal of Language Learning Technologies 



26), father of the IBM System/360, states, 
11More software projects have gone awry for 
lack of calendar time than for all other causes 
combined." Virtually every grant agency 
requires a time line for proposals submitted, 
because timelines are effective at helping 
researchers and developers keep up the pace 
and stay on task. They are a concrete re
minder of accountability and commitment. 
Specific deadlines should be established for 
each major task to be accomplished. In addi
tion to timelines, there is an abundance of 
project management software available 
through mail order catalogues and local 
dealers. These may be quite helpful, but 
something as low-tech as a hand-drawn 
PER'fl chart may serve equally well for 
smaller projects. There are four rules of 
thumb that we, as developers, follow re
garding time management: 

Rule 1: To calculate the actual time 
needed to develop a given project, make 
your best time estimate for each major task 
listed in the protocol, sum up the total time 
and multiply by two. 

Rule 2: The more people involved in a 
team, the longer the development process 
will take. 

Rule 3: Debugging and evaluation will 
require more time than planning and cod
ing together. Planning can take twice as long as 
coding (Higgins, 1984, 104). 

Rule 4: The more time you spend on 
planning, the less time you will have to 
spend on debugging. 

THE DEVELOP LEVEL 

Once the preparatory tasks are defined, 
the development process moves to the 
DEVELOP level within the protocol. 

Vol. 26, No.1, Winter 1993 

Thomas F. Thibeault 

Identify Objectives 

The first task is to establish specific ob
jectives for the program. The objectives 
should be defined in terms of what the 
student will be able to accomplish after 
working with a specific program for a cer
tain amount of time or a certain number of 
times (tenninal). The SME should also de
termine which preliminary skills or what 
background knowledge is required to ac
complish the objectives of the program (en
abling). Some programs give students the 
option of trying out an example or two to 
determine the level of comprehension. Help 
features, such as glossaries or concept re
views, can serve to fill in proficiency or 
knowledge gaps. 

Specify Methods 

The next step on the DEVELOP level is to 
specify the pedagogical approach, includ
ing methods of learning, instruction and 
media implementation. This can refer to a 
particular pedagogical theory or an eclectic 
collection of pedagogical principles. Hunka 
(1989, 14) states that 11Courseware should 
not necessarily follow a single instructional 
or learning theory" and that the "design of 
the instructional sequences should be deter
mined by the nature of the task." According 
to Prabhu (1987, 108), one of the main vir
tues of the eclectic approach is the flexibility 
to adopt the best of all worlds. The empirical 
evaluation of the program should include 
an instrument for measuring the suitability 
of the pedagogical design. Certain ques
tions must also be answered regarding the 
instructional process. The protocol asks 
questions such as: 

a. How will the instruction take place? In 
the language laboratory with/without 
the assistance of the instructor? In class 
using an LCD projection panel? Will 
the introductory material be offered by 
the instructor in class or on the 

13 



Protocol for Cooperative Courseware Development 

computer as a tutorial? Will the 
program provide feedback after each 
response or only at the end of the exer
cise? Which learning modes (visual, 
auditory, tactile, kinesthetic) can be used 
effectively with the software. 

b. Is there a particular sequence for the 
courseware? If so, how is the student 
instructed to proceed? Where does this 
program fit in the sequence? 

c. Are students required to tum in perfor
mance records each time they use the 
program or only after reaching a certain 
level of mastery? 

d. Describe your instructional strategy in 
detail. 

There are several additional consider
ations to be made regarding instructional 
strategy. Developers should consider a va
riety of approaches and not cling to what 
Papert (1980, 32) calls the QWERTY phe
nomenon. This phenomenon alludes to the 
usual keyboard lay-out which was devised 
to slow down typists in order to prevent 
jamming the keys. With modem typewrit
ers and word processors, the rationale for 
this system has long since disappeared, yet 
the general public has not adopted speedier 
and more practical keyboard lay-outs. Papert 
uses this analogy in the area of instructional 
computing when he says, 11The use of drill 
and practice is only one example of the 
QWERTY phenomenon in the computer 
domain" (33). We now have the tools to 
develop materials that integrate various 
media and allow implementation of other 
CAl approaches. 

Another consideration is whether the 
instructional strategies will be teacher-ori
ented or learner-oriented. Hubbard (1982, 
238) describes teaching strategies as 11a 
strategy on the part of the teacher for aiding 
the student in gaining proficiency in the 

target language." He goes on to say that a 
leamerstrategy"involves focusing more on 
those strategies that the learner may come 
to employ and control independently." 
Higgins (1988, 14) offers a similar perspec
tive using his analogy of magister vs. peda
gogue. When the computer functions as a 
magister, it parallels the teacher-oriented 
approach by presenting the concepts, giv
ing examples and following a pre-defined 
structure. When it functions as a pedagogue, 
the content and flow are determined by the 
student, the programs are less structured 
and more varied in format, and the students 
must work at a higher cognitive level to 
compensate for the lack of structure. 

A third consideration deals with student 
interaction and the computer. Although CAl 
lessons are generally intended for individual 
use, Smith (1989, 19) encourages coopera
tive learning experiences with computers. 
In this way, the interaction is not just be
tween the student and the computer; rather 
the computer serves as a catalyst to stimu
late interaction between two or more learn
ers. 

Overbaugh (1991, 3) specifies three types 
of course structures that can be applied to 
CAl design. These include: 

a. Elaboration-the traditional method, 
starts with small, easy or concrete con
cepts and works up sequentially to large, 
hard or ~bstract concepts. 

b. Inquiry Leaming-thestudentisguided 
through a process to prove, modify or 
disprove a given hypothesis; this 
method is more rigid than elaboration 
but allows deeper processing of con
cepts. 

c. Discovery-no pre-established hypo
thesis is given; students discover or 
rediscover principles or concepts; 
discovery is often the best method, but 

14 IALL Journal of Language Learning Technologies 



the traditional learning environment is 
not conducive to this approach. 

Wyatt (1982, 87) lists 14 types of CAl 
instructional formats that developers can 
implement: 

1. Tutorial-introduction to new material 

2. Drill and Practice-allowing mastery 
of material already presented 

3. Game-peer competition, scoring, tim
ing of activities 

4. Holistic Practice-high level context
ualized activities, such as CLOZE 
exercises 

5. Modeling-demonstrating how to per
form a language task 

6. Discovery-providing situations in 
which linguistic generalizations can be 
made; e.g. inferring rules for generat
ing comparative forms 

7. Simulation-experiment with language 
use 

8. Adventure Reading-interactive, stu
dent as detective 

9. Annotation-providing a wide range 
of language notes on vocabulary, syn
tax, plot, etc. during reading or listen
ing activity 

10. Idea Processor-planning and editing 
outlines before writing activities or af-
ter lectures · 

11. Word Processor 

12. On-line Thesaurus 

13. Spelling Checker 

Vol. 26, No.1, Winter 1993 

Thomas F. Thibeault 

14. Textual Analysis-style checkers, such 
as Grammatik 

The last item requiring specification in 
this section of the protocol is the use of 
various kinds of media in the program. 
Developers must consider what kinds of 
media will be used (video, audio, hard
copy documentation) and whether certain 
kinds of media will be used to address spe
cific instructional objectives. For example, 
we developed a prototype vocabulary pro
gram which uses still images and 2-second 
segments taken from a videodisc. The im
ages and segments provide visual cues to 
prompt the student instead of using English 
as a meta-language. The intent was to train 
the student to associate the image, and not 
the English equivalent, with the correspond
ing word in the target language. Digitized 
sound was used to record the word on the 
computer so that the student could hear it 
pronounced by a native speaker while 
watching the image. Thus, the visual and 
auditory modes were engaged to create an 
association with the vocabulary item. Tac
tile reinforcement was added when the stu
dent typed the word out, as required by the 
program. 

Construct Prototypes 

The third step on the DEVELOP level is 
Construct Prototypes. At this stage, produc
tion of the instructional materials begins. A 
model of the program is developed where 
the basic algorithms, program flow and 
screen design are worked out. Before the 
actual construction, the team must decide 
which authoring tools to use. The SME 
should submit cues, acceptable correct an
swers, feedback statements, directions, re
view information and/or other help fea
tures. The protocol contains a special card 
for entering this information. Another card 
serves as a drawing board for designing the 
screen. The protocol should also contain a 
detailed narrative on how the program 

15 



Protocol for Cooperative Courseware Development 

should operate as well as a description of all 
features and functions. This information 
can be used to develop the printed and/ or 
on-line documentation. The need for a pro
totype is not as great if the developers opt to 
use a tested template where many of the 
features and functions are pre-defined. This 
greatly reduces the work load and time 
needed to produce a finished program. 

In order to determine the effectiveness 
of a given piece of software, evaluation 
materials or functions are included as part 
of the program features. A description of 
these features is entered into the appropri
ate field of the protocol. Each program in
cludes a performance record of the student, 
showing the items where errors were made, 
the student's answers and the correct an
swers. Since many of our programs allow 
students to "peek" at the answer as a last 
resort, the performance record also indi
cates how many times they took advantage 
of that option. Performance records can also 
be printed out for further study or for the 
instructor's use. A cognitive evaluation of 
the program can be obtained using the pre
test/post-test method based on the infor
mation obtained through the performance 
records. 

Another evaluation feature is tracking 
codes built into the program. These track
ing codes keep track of how the students use 
the program, for example, which features 
and functions they use. This resulting data 
is applied to make improvements in future 
versions of the program. 

A third measure of evaluation is a sub
jective questionnaire which is used to deter
mine the student's affective response to the 
program. The questionnaire solicits basic 
demographic information, but also covers 
questions on how the students felt about the 
design of the program, the content, the 
instructional approach, etc. 

THE EVALUATE LEVEL 

The evaluation portion of the courseware 
development process is often neglected or 
passed over quickly. This is likely due to the 
logistical challenges of organizing a formal 
empirical evaluation. In order to have a 
reasonable sample size, it is often necessary 
to enlist the cooperation of other colleagues 
who may have different priorities or are 
overburdened with their own responsibili
ties. Also, many universities have policies 
against requiring students to participate in 
experiments within the context of their 
courses. Few students have the time or de
sire to take on additional work on an experi
mental basis. Another problem arises when 
determining which students should partici
pate in the experimental group as opposed 
to the control group. Students in the control 
group may consider themselves placed at a 
disadvantage because they are denied ac
cess to the new materials. Students in the 
experimental group may feel that participa
tion distracts them from the essentials of the 
course and could have an adverse effect on 
their grades. In spite of the many obstacles 
regarding evaluation, field testing and for
mal evaluation of the courseware are essen
tial to determine the level of effectiveness, 
the response of the students and the areas 
for improvement. Ideally, the development 
of a given piece of software never really 
ends. The IMPLEMENT/RECYCLE phase 
should continue as long as the software is in 
use. This accounts for the multiple versions 
found in corrimercialsoftware. From a peda
gogical perspective, this recurring cycle is 
necessary to ensure that the software truly 
meets the instructional needs of the stu
dents. 

Test Prototypes 

In conducting a tryout of the courseware, 
the instructor can avoid many of the above
mentioned logistical pitfalls in the evalua
tion process by integrating the software into 

16 IALL Journal of Language Learning Technologies 



the curriculum through the language 
laboratory. Elementary-level courses fre
quently offer an additional credit hour for 
laboratory work. This allows, for example, 
three classroom sessions and one labora
tory session per week. The instructor should 
be present during the laboratory session to 
actively observe the students' performance 
and serve as a resource when necessary. The 
collection of evaluation data should take 
place in regular intervals, depending on the 
design of the evaluation process. This can be 
accomplished by requiring the students to 
print out their performance records. Other 
evaluation measures, such as tracking the 
students' use of specific features, can be 
printed out on the same protocol. 

Analyze Results 

The analysis of the results should be 
conducted in terms of objectives, methods 
and evaluation techniques. This can be 
addressed by answering the following ques
tions: 

1. Are students reaching the objectives set 
in the DEVELOP phase of the instruc
tional design? 

2. Are the selected methods appropriate 
for the stated instructional goals? How 
do students respond to this method? 
Are there other approaches worth con
sidering? 

3. Is the evaluation design appropriate for 
determining the effectiveness of the 
courseware? Do the evaluation data 
provide the information being sought? 

Implement/Recycle 

The structure of the protocol/instruc
tional design model implies a linear ap
proach to development, but the last block, 
labeled Implement/Recycle, indicates that the 
maintenance of the software is a cyclical 

Vol. 26, No.1, Winter 1993 

Thomas F. Thibeault 

process. In effect, the development process 
never ends, nor should it end if the 
long-term goal is to produce courseware 
that truly meets the instructional needs of 
the teacher and the learning needs of the 
student. The ability to constantly field test 
and improve a piece of instructional soft
ware within one's own academic setting is 
probably the best justification for in-house 
courseware development. As a result of this 
process, the quality of such software can 
even exceed that of commercially produced 
products. 

CONCLUSION 

Foreign language educators and lan
guage laboratory directors who wish to 
delve into the high-tech craft known as 
courseware developmentnow have the tools 
to do so. The importance of using protocols 
as a tool to facilitate communication among 
project team members cannot be overem
phasized. The dynamic protocol described 
here not only facilitates communication, but 
also feeds developers with essential ques
tions and ideas for consideration in all areas 
of courseware development. It can have a 
great influence on the effectiveness of the 
production system and on the quality of the 
courseware produced through that system. 

NOTES 

1. ERIC lists over eighty references under 
"Courseware Development." These ref
erences are geared more toward the aca
demic side of courseware development. 
There are also several books written for 
academic developers, software engineers 
and computer scientists. These tend to be 
very technical, but they contain a wealth 
of information worth perusing. I highly 
recommend the book, The Mythical Man
Month, by Frederick Brooks, Jr. 

2. Please refer to Fig. 1 for an overview of the 
individual components and their corre-

17 



Protocol for Cooperative Courseware Development 

sponding sub-headings in this section. 
The main components listed under each 
sub-heading are printed in bold in the 
narrative. 

3. An organizational chart showing a se
quence of tasks and corresponding dead
lines. 

REFERENCES 

Brooks, F. P. The Mythical Man-Month. Read
ing, MA: Addison Wesley, 1982. 

Faiola, T. "Improving Courseware Devel
opment Efficiency: The Effects of 
Authoring Systems on Team Roles and 
Communication." Educational Computing 
(Aug. 1989): 16-19. 

Gustafson, K. L. Survey of Instructional De
velopment Models with an Annotated 
Bibliography. 2nd ed. Syracuse: Informa
tion Resources Publications, 1991. 

Gustafson, K. L. and T. C. Reeves. "IDioM: 
A Platform for a Course Development 
Expert System." Educational Technology 
(March 1990): 19-25. 

Hall, K. A., R.C. Comer and J.A. Merrill. 
Taxonomy of Instructional Strategies for 
Computer-Based Education. Minneapolis: 
Control Data Corporation, 1981. 

Higgins, J. Language, Learners and Comput
ers. London: Longman, 1988. 

Higgins, J. and T. Johns. Computers in l.Jm
guage Learning. London: Collins ELT, 
1984. 

Hubbard, P. L. "Language Teaching Ap
proaches, the Evaluation of CALL Soft
ware, and Design Implications." In Mod
ern Media in Foreign Language Education: 
Theory and Implementation, edited by Wil-

liam Flint Smith, 227-254. The ACfFL 
Foreign Language Education Series, 
Lincolnwood, IL: National Textbook 
Company, 1987. 

Hunka, S. "Design Guidelines for CAl 
Authoring Systems." Educational Com
puting (Nov. 1989): 12-17. 

Karrer, U. "In Search for Quality Enhance
ment Factors: An Exploration of Production 
Systems for Quality Courseware Develop
ment. Report of an Informative Trip through 
the U.S.A. in Spring 1987. Dissertation, U 
Ziirich, 1987. 

Leiblum, M.D. "Some Principles of Com
puter-Assisted Instruction, or How to 
Tame the Flaming Beast." Educational 
Computing (March 1984): 16-18. 

Overbaugh, Richard C. "Research Based 
Guidelines for Computer Based Instruc
tion Development." Boston: Eastern 
Educational Research Association, 13 
Feb.1991. 

Papert, S. Mind-Storms. New York: Basic 
Books, 1980. 

Prabhu, N. S. Second Language Pedagogy. 
Oxford: Oxford University Press, 1987. 

Smith, P. E. "Some Learning and Instruc
tional Theory Considerations for the 
Develop~ent of Computer Related In
structional Materials." Educational Com
puting (Nov. 1989): 18-19. 

Wyatt, D. H. 11 Applying Pedagogical Prin
ciples to CALL Courseware Develop
ment." In Modern Media in Foreign Lan
guage Education: Theory and Implementa
tion, edited by William Flint Smith, 85-
98. The ACTFL Foreign Language Edu
cation Series, Lincolnwood, IL: National 
Textbook Company, 1987. 

18 IALL Journal of Language Learning Technologies 


