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A B S T R A C T 

This paper deals with the development a finite element of laminated planar gantry based 
on the positional formulation whose kinematics enables independent turns and variation 
of slab thickness in an extension of the Layerwise theory. The objective is to verify the 
results obtained with the element proposed in this work and to compare its efficiency in 
relation to the two-dimensional finite elements. In addition, the analyzes are performed in 
order to verify the consistency, the efficiency and the robustness of the formulation with 
respect mainly to the correct representation of the stresses distributions.  

It is intended, therefore, to obtain an element capable of performing non-linear geometric 
analyzes in structures of plane porticoes composed of laminated composite materials with 
thin or thick cross-section. Thus, the results of strain distributions and stresses are 
expected to be more realistic along the thickness and interfaces, aiming at future 
modelling of the lamination failure process by delamination or sliding. The finite element 
proposed in this work presents a kinematics based on the Layerwise theory, but with 
positions intrinsically compatible by the positional mapping functions themselves. The 
formulation is geometric nonlinear with the possibility of large displacements and 
rotations and the proposed kinematics allows to represent the Zigzag effect and the 
transverse heterogeneity.  In all examples, numerical analyzes are performed on the Ansys 
software using two-dimensional finite elements. 

1 Introduction               

According to Carrera [1], any theory for analysis of laminated composites as well as a finite element developed with this 
theory should consider the following complex aspects of a laminated structure: plane anisotropy of the laminate, transverse 
heterogeneity, Zig-Zag effect and interlaminar continuity. The anisotropy in the laminate plane arises when the physical and 
mechanical properties change according to the direction considered in the plane. Laminates composed of fiber composites 
have high strength and stiffness along the fibers, but these properties are smaller in the transverse direction, since there is 
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practically only the influence of the composite matrix. This leads, according to Carrera [1], to a high flexibility in the 
transversal direction, as much in relation to the shear as in relation to the axial tensions. 

According to Jones [2] and Reddy [3], a more relevant consequence of blade plane anisotropy relates to the coupling 
between the normal and shear deformations which greatly increases the difficulties in the solution procedures of laminated 
structures. Jones [2] and Reddy [3] also report that this anisotropy can produce an additional coupling between the 
deformations contained in the plane and outside it, leading to the occurrence of large displacements even at low loading 
levels. 

The transverse heterogeneity represents the change of the physical and mechanical properties along the thickness due to 
the different materials employed in each blade. At the interfaces, this heterogeneity produces discontinuity of the first 
derivative of the displacement field with respect to the coordinate z (or 3), located along the thickness of the laminate [1-4]. 

The hypothesis of a linear behavior for the stress-strain relationship is widely accepted and widely used in engineering, 
since composite materials are strongly linear away from the rupture situation, with linearity generally superior to that of 
metals [5]. However, when the objective of the analysis is to identify the material failure, the effects of physical non-linearity 
may be important for the realistic identification of this phenomenon [6]. 

In view of all that has been discussed, it is concluded that the analysis of laminated composites presents major challenges, 
since the stress distributions in the conventional formulations are discontinuous and imprecise and their improvement is 
essential to define efficient failure criteria related to the laminated composite structures. Therefore, it is justified to use a 
discrete theory for slides in addition to the consideration of non-linear effects, since the search for a numerical formulation 
that realistically represents the stress distributions along the thickness and at the interfaces of a laminate considers the 
presence of these effects. 

Many formulations are developed considering a partial Layerwise expansion of the displacement field from a Layerwise 
cubic variation superimposed with a piecewise function. By imposing compatibility of displacements and continuity of 
transverse stresses on the interfaces, the number of problem variables becomes independent of the number of slides. Already 
cited works with these characteristics are those of [7-11]. Other works are those of di Sciuva [12, 13], which superposed a 
third-order Layerwise expansion with Heaviside functions, and Icardi [13], which adopted a displacement field similar to that 
of  [13, 14] to propose a finite curvilinear element with eight nodes for laminated plate analysis. 

In this work, the formulation developed follows a kinematics similar to that adopted by the Layerwise laminate theory 
and uses the finite element method of positional [15-19] for the analysis of laminated flat frames considering geometric non-
linearity. Thus, it is expected to obtain a more realistic distribution of tensions along the thickness and at the interfaces. The 
physical non-linearity is not considered, being proposed as future work. 

2 Formulation 

The kinematics of the laminated element is similar to that of the homogeneous element [16-17] and [20] when the cross 
section is composed of only one layer. In the case of rolled sections, an expansion of the kinematics of the homogeneous 
element is carried out in such a way as to allow the layers to have the possibility of independent rotation and variation of 
thickness, but with compatible interface positions. This is done by assigning independent nodal generalized vectors to the 
section of each layer. 

The positional mapping of the element in the initial and current configurations is performed from the positions of a 
reference line that can be located on any layer. In this way, the degrees of freedom of the element are constituted by the 
positions of the nodes in the reference line and by generalized vectors that define the plane of the section of each layer. 

The developed element allows having different homogeneous and isotropic materials in each layer and the constitutive 
model used to represent the behavior of these materials is that presented in [21-22]. 

The Layerwise theory assumes hypotheses that allow the representation of the anisotropy in the plane of the laminate, 
the transverse heterogeneity, the Zigzag effect and the interlaminar continuity. 

Distributions of axial stress in the longitudinal direction and mainly of axial stress and shear in the transverse direction 
are obtained with excellent precision. The interlaminar continuity of the transversal stresses is not guaranteed, but the 
discontinuity is smaller, because the transversal deformations are discontinuous due to the independent rotation of the layers. 
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This discontinuity of the transverse stresses can be reduced by increasing the discretization of the section, since the number 
of layers of the numerical model is independent of the number of layers composing the laminate. After this, the interlaminar 
continuity is easily recovered by calculating the mean of the stresses obtained for the layers adjacent to a given interface. 

The proposed element allows the analysis of plane frames [23] consisting of thin or thick laminates, not being subject to 
problems of matrix malfunctioning for these types of problems. The bad conditioning arises in the modeling of thin laminates 
and due to the presence of thin layers, even in thick laminates. Large variations of elastic properties of the constituent 
materials of the layers can also lead to problems of matrix malfunction. 

Thus, when two-dimensional finite elements or finite elements developed using Reddy's Layerwise theory [3] are used 
to analyze laminated plane frames, inaccuracies in the results for the tension distributions, especially the transverse ones, 
may arise, requiring an excessive refinement of the mesh of finite elements to avoid bad conditioning 

2.1 2.1 Positional mapping of the initial and current settings 

The mapping of the finite element of laminated plane frame is performed by interpolating the positions of nodal points 
located on a reference line (LR - in lower case) and the generalized vectors tangent to the nodal planes of each layer. With 
this interpolation, the positions of any point in the element can be defined. 

The positional mapping is performed in such a way that the reference line can be assigned to any layer and there is no 
need to be located in the center of the layer. This freedom to choose the positioning of the reference line allows assigning 
constraint on the positions of nodes located in any point of the cross section of the element and not only in the centroid of the 
section as in the case of the homogeneous plane frame element. 

The initial configuration and the current configuration have their positions mapped in a similar way. In the initial 
configuration, the location of the reference line and node positions are information provided during pre-processing. The 
generalized vectors are unitary, normal to the reference line and can be obtained from the tangent vector. 

In the current configuration, the positions of the reference line nodes and the generalized vectors of each layer constitute 
the degrees of freedom of the element, the unknowns of the problem being non-linear. In Figure 1, the idea of the positional 
mapping for an element consisting of five layers and cubic degree for the longitudinal polynomial interpolation employed is 
illustrated. 

To allow locating the reference line on any layer and any position within this layer, the positional mapping of a given 
layer in the initial and current settings depends on whether that layer coincides with the Reference Layer (LR) or whether it 
is above or below this. Thus, three distinct expressions for positional mapping are required. 

 

Figure 1 - Positional mapping of the laminated plane frame element 

Let k be a map to be mapped in the initial configuration. The equations of positional mappings are expressed by: 
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a) Mapping for layer k equal to the Reference Layer (LR): 

 ( ) ( )0
1, 2 1, 2

k kf xξ ξ ξ ξ=  

 ( ) ( )j 1 2 1Φ Φ
2

k
k i

j w w
ed vξ ξ ξ

      +      
  (1) 

With i = 1, 2 and j, w = 1, … (gr + 1). 

In this equation, ( )0
1, 2

k f ξ ξ  represents the positional mapping function of initial configuration ( )1, 2
k x ξ ξ from the 

dimensionless space for the layer k = LR, ( )1, 2
k ix ξ ξ represents the initial position in the direction i of any point located in 

k;  i
jx is the position in the direction i of the node j located on the reference line (lr), jd is the distance between the node j in 

the reference line and the center of the layer k, and ke is the thickness of the layer k,  k i
wv is the component in the i direction 

of the unit vector belonging to the plane of the cross section of layer k passing through the node w and ( )1Φw ξ  is the form 

function associated with the node w consisting of a Lagrange polynomial with degree corresponding to the variable gr. 

The vectors k i
wv  normal to the axis located in the center of the layers are obtained in a manner analogous to the vectors 

of the homogeneous plane frame element, [17].  

The layers are always considered to be parallel in the initial configuration, so the vector of each layer is identical to the 
normal version of the reference line. 

In this mapping, the first plot identifies the positions of all points belonging to the reference line and, given one point of 
that reference line, the second plot identifies the positions of all points in the cross section of the layer k.  

When 2 1ξ = −  the point is located at the lower interface of k, when 
( )j 1

2

Φj
k

d

e

ξ
ξ =  the point is located on the reference 

line, when  2 0ξ =  the point is located in the center of k and when   2 1ξ =  the point is located in the upper interface of k.  

In Figure 2, the mapping of any point of dimensionless coordinates  ( )1 2,  a bξ ξ= =  is illustrated. 

 

 

Figure 2 - Positional mapping of any point of the Reference layer in the initial configuration 
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b) Mapping for the layers k below the Reference Layer (LR): 

 ( ) ( )0
1, 2 1, 2

k kf xξ ξ ξ ξ=  

 ( ) ( ) ( ) ( ) ( ) ( )
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1, 2 j 1 j 1 1 1 1
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With i = 1, 2 and j, w = 1, …., (gr + 1). 

In this equation, LRe   and LR i
wv   are the thickness of the LR and the component in the direction i of the vector belonging 

to the plane of the cross section of the LR passing through the node w, respectively, and m, me  and m i
jv   are analogues for 

the layers below LR, ie, from layer k + 1 to LR - 1. The other variables have a similar description to that of Equation (1). 

In the mapping represented in equation (2), the first plot identifies the positions of all points belonging to the reference 
line and, given a point of that reference line, the second plot identifies the position of the point located at the lower interface 
of the LR and the third plot locates the point at the lower interface of the layer immediately above the mapped layer. Finally, 
the fourth plot maps all points of the cross section of layer k. When 2 1ξ = −  the point is located at the lower interface of k, 

when  2 0ξ = the point is located in the center of k and when 2 1ξ =   the point is located in the upper interface of k. 

In Figure 3, there is an illustration of mapping any point with dimensionless coordinates ( )1 2,  a bξ ξ= = . 

 

Figure 3- Positional mapping of any point in the initial configuration of a layer lower than the Reference Layer. 

c) Mapping for the layers k above the Reference Layer (LR): 
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With i = 1, 2 and j, w = 1, …., (gr + 1). 

In this equation, and  me  and m i
jv  are, for each layer m from LR +1 to k - 1, the thickness and the component in the 

direction i of the vector belonging to the plane of the cross section of the layer m in the nodal plane w, respectively. The other 
variables have similar descriptions to the descriptions of Equations (1) and (2). 

In this mapping, the first plot identifies the positions of all points belonging to the reference line and, given a point on 
that reference line, the second plot identifies the position of the point located at the upper interface of the LR and the third 
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plot finds the point on the interface of the layer immediately inferior to the mapped layer. Finally, the fourth plot maps all 
points of the cross section of layer k. When 2 1ξ = −  the point is located at the lower interface of k, when 2 0ξ =  the point is 

located in the center k and when 2 1ξ =  the point is located in the upper interface of k. In Figure 4, there is an illustration of 

the mapping of any point with dimensionless coordinates ( )1 2,  a bξ ξ= = . 

 

Figure 4- Positional mapping of any point in the initial configuration of a layer above the Reference layer 

The positional mapping for the current configuration is totally analogous to mapping the initial configuration by replacing 
the initial positions k ix   and i

jx   by the current positions  k iy  and  i
jy  and the vectors LR i

jv  , m i
jv  and k i

jv  by the generalized 

vectors LR i
jg , m i

jg  and k i
jg  in all mapping expressions. 

In this way, the layer mappings in the current configuration are expressed by: 

a) Mapping of layer k equal to the Reference Layer (LR): 

 ( ) ( )1
1, 2 1, 2
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      = + +       
 (4) 

With i = 1, 2 and j, w = 1, …., (gr + 1). 

b) Mapping of the layers k below the Reference Layer (LR): 
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With i = 1, 2 and j, w = 1, …., (gr + 1). 

c) Mapping of the layers k above the Reference Layer (LR): 
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With i = 1, 2 and j, w = 1, …., (gr + 1). 

In these expressions, the current positions of the nodes located on the reference line, represented by i
jy , and the 

generalized vectors of the nodal sections of each sheet k i
jg  constitute the degrees of freedom of the finite element laminated. 

The element was developed in order to allow the use of any number of layers to compose the cross section and any degree to 
the polynomial approximation functions.  

3 Numerical treatment  

In all, two examples were analyzed to evaluate different aspects of the formulation. The results obtained with the finite 
element proposed in this work are compared to the results obtained from analytical solutions and to the results obtained 
through numerical analyzes with two-dimensional finite elements performed in Ansys software. In the latter case, the finite 
element employed was PLANE42. This is a finite two-dimensional rectangular element with four nodes that employs linear 
shape functions to interpolate nodal displacements. 

In the analysis carried out in Ansys, a very refined discretization was employed, the results of which are used as reference 
for comparison. In addition, also the analyzes with discretizations equivalent to the discretizations used in the analysis made 
with the finite element laminated are carried out. For this, a number of PLANE42 elements equal to the number of layers 
were added between two nodes of the discretization with the element of laminated plane frame. This work aimed to compare 
the performance of the element proposed in this work in relation to two-dimensional finite elements that can present problems 
of matrix mismatch when used in the analysis of laminated plane frames. This may lead to the need for refinement of the 
two-dimensional finite element mesh and consequently to increase computational cost. 

The objective with the analysis of the first four examples is to verify the different aspects of the formulation. Thus, the 
first example is constituted by a homogeneous biased beam subjected to the action of a uniform distributed load. In this 
example, the main objective is to verify the convergence of the discretization both in relation to the number of elements and 
in relation to the number of layers used to represent the cross section. The problem was analyzed for three situations with the 
relation between span and height of the beam (S = L/h0) assuming the values of 2, 4 and 10. In all analysis, the displacement 
and stress distributions along the cross section at different points of the beam are verified. 

In the second example, a biased sandwich beam with uniform distributed loading applied to the upper face is analyzed. 
The beam is similar to the first problem and was also analyzed for the three span and height ratios (S = 2, 4 and 10). The 
main objective with this example is to verify the accuracy of the displacement and stress distributions along the cross section 
for the rolled case, as well as to evaluate the efficiency of the element in problems whose S ratio varies from thin to thick. In 
addition, the possibility of applying distributed forces outside the reference line is verified. 

Having verified the formulation in the previous examples, two frames consisting of one and five decks, with laminated 
sections, were proposed and analyzed. The results of the displacement distributions along the cross section of some points 
are presented. 

As far as the literature review of this work continued, no examples of laminated plane frames were found in the literature. 
All the problems found were restricted to laminated beams analyzed in the linear regime. Thus, this example contributes with 
results that may be used in future verification of formulations that deal with the problem of geometric nonlinear analysis of 
laminated plane frames. 

In summary, it was sought, with these analyzes, to verify the various aspects of the formulation of the laminated plane 
frame element in addition to evaluating its efficiency and consistency. 

3.1 Homogeneous beam biased with distributed force 

In this first example, a biased and homogeneous single beam subjected to the action of uniformly distributed loading is 
analyzed, as shown in Figure 5. The geometric characteristics of the cross section and the elastic parameters of the material 
are also represented in said figure. 
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Figure 5 - Geometry, loading and elastic parameters for the problem. 

In all analyzes, the distributed force was applied in a single increment, because the value of the force considered is low 
to maintain the problem in the regime of small deformations and to allow a comparison with the analytical solution obtained 
from the Classical Theory of Beams (CTB) that is based on Euler-Bernoulli's kinematic hypotheses. Moreover, a Poisson 
coefficient (ν) null is also adopted. It is worth mentioning that the distributed force is applied to the upper face of the beam 
while the reference line is located on the lower face, where the supports are. 

The problem was analyzed for three situations with the relation between span and height of the beam (S = L/h), assuming 
the values of 2, 4 and 10. We sought to verify the ability of the formulation to accurately represent the displacement 
distributions and tensions for problems with relation between span and height corresponding to slender beams and high beams 
(wall beams). 

In order to evaluate the convergent ability of the formulation, the beam was discretized with a number of cubic finite 
elements ranging from 2, 4, 8 and 16. Twenty layers were used to discretize the cross section, since this was the number of 
layers provided a good distribution for the transverse shear stress. This was verified for the case of the beam with S = 10, 
which was analyzed by a discretization composed by 4 finite elements and by a number of layers ranging from 1, 2, 4, 8, 20 
and 40. 

The solution process based on the Newton-Raphson method was controlled by means of the convergence criteria in 
position and force with tolerances of 10-9 and 10-6 respectively. The number of Gauss points used in the numerical integrations 
of the internal forces vector and the Hessian matrix was 4 x 20 (span x height) on each layer. This quantity of Gauss points 
was adopted after a comparative study of the values obtained for the horizontal displacement u of the lower face of the section 
located 2.5 m from the left support, from the vertical displacement v and of the axial tension S11 of the lower face of the 
localized section in the middle of the span of the beam. In this study, numerical integrations were performed with the number 
of Gauss point’s variable up to a limit of 20 x 20. 

This study was performed for the beam of the case S = 10, discretized with 4 finite elements and with a number of layers 
ranging from 1, 2, 3, 4, 8 and 20 layers. 

From these observations, it is reasonable to assume that 4 Gauss points along the longitudinal direction is sufficient for 
the finite element with degree of cubic interpolation and that more Gaussian points along the transverse direction are required 
the larger the number of layers adopted. 

The computational implementation of the formulation does not allow the adoption of different amounts of Gaussian 
points in each layer. Thus, it was not possible to identify if there are differences in the amount of Gauss points needed for the 
layers close to the Reference layer and for the layers distant from the layer. 

Thus, to guarantee a correct numerical integration and since the problems presented in this work do not have a high 
degree of freedom, 4 x 20 Gauss points were adopted in all analyzes. 

In Figure 6, the results of a convergence analysis for the case of the beam whose relationship between span and height 
(S) is equal to 10. The beam is discretized with 4 cubic elements and only the number of layers is varied. As can be seen, 
from 1 layer in the discretization of the section, the results for the displacement u and for the axial stress S11 already coincide 
with the analytical solution and with the numerical solution obtained in the Ansys from a very refined discretization. 
However, the shear stress S12 was only reasonably represented from a discretization with 8 layers. From 20 to 40 layers, the 
improvement in the representation of tension S12 occurred only in the lower and upper faces, where the values are the lowest. 

As there was no significant gain in stress distributions after increasing from 20 to 40 layers, in all other analyzes 
performed in this example and in Examples 1.2, a discretization of the 20 layers section was adopted.  
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The analysis of the beams with a relationship between span and height (S) equal to 2, 4 and 10 were performed by varying 
only the number of finite elements (4, 8 and 16 elements). The results of the horizontal displacement distributions u, axial 
stress in the longitudinal direction S11, axial stress in the transverse direction S22 and shear stress S12 are shown in Figure 7, 
Figure 8, Figure 9 and Figure 10, respectively. All the stresses represented are average between elements and the interlaminar 
continuity of the stresses is represented by calculating the average values obtained at the interfaces of the adjacent layers. In 
these figures, also the average results obtained through numerical analyzes performed in Ansys using the two-dimensional 
finite element PLANE42 are shown. The equivalence between the finite positional element and the PLANE42 element mesh 
was made so that there is a PLANE42 element between two nodes and one element on each layer. The number of degrees of 
freedom is also conserved. This equivalence results in the following association: 

• Positional with 4 cubic elements and 20 layers  ⇔ PLANE42 with 12 x 20 mesh elements; 

• Positional with 8 cubic elements and 20 layers ⇔ PLANE42 with a mesh of 24 x 20 elements; 

• Positional with 16 cubic elements and 20 layers ⇔ PLANE42 with mesh of 48 x 20 elements. 

The analytical results obtained from the CTB (only for the case with S = 10) and those obtained by means of analyzes in 
the Ansys using a very refined discretization are also presented and adopted as reference to evaluate the precision of the 
results obtained with the element of laminated planar frame. 

 

 
Figure 6 - discretization with 4 cubic elements and variation of the number of layers (Case with S = 10). 

 
The displacement distributions shown in Figure 3 were correctly obtained with a discretization in 4 finite elements. The 

shape of the section was plotted in accordance with the results of the analytical solution based on the CTB, in the case with 
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S = 10, and the numerical solution obtained in the Ansys with a refined mesh. It is worth noting that the proposed finite 
element was able to represent the curved shape of the section for the case of the beam with S = 2. 

It is also observed that the results obtained with the equivalent meshes in the Ansys show some influence of the matrix 
malfunction suffered by the two-dimensional finite element. For the beam with S = 10, the PLANE42 elements have greater 
distortion and there were differences in the displacement distribution obtained. For the beam with S = 2, the PLANE42 
elements are less distorted due to the greater beam height and there are practically no differences in the displacement 
distribution. All these aspects mentioned above are also verified for the distribution of axial stresses S11 in the longitudinal 
direction, as can be seen in Figure 8. 

As shown in Figure 9 and Figure 10, the axial strain distributions S22 and S12 shear stress required a larger discretization 
(8 finite elements) for an acceptable representation. However, a good agreement with the results of the analytical solution 
based on the CTB, in the case with S = 10 and tension S12, and of the numerical solution obtained in the Ansys with a refined 
mesh was reached for a discretization with 16 finite elements. 

Despite the requirement for a greater discretization, the results obtained in the Ansys with equivalent meshes were not 
better than those obtained with the laminated plane frame element. This is observed mainly for the S12 shear distributions in 
the case of the beams with S = 4 and S = 10. In these beams, the two-dimensional element PLANE42 seems to suffer from 
problems of matrix malfunctioning due to a greater distortion of the element generated by the equivalent discretization and 
by the smaller height of the beams. 

 

     

Figure 7 - Displacement in direction 1 (u) for section at 2.5 m from left support. 

 

3.2 Biased sandwich beam with distributed force 

The same beam of the previous example is analyzed, but now the section is composed of three layers forming a sandwich 
laminate composite. The layers of the faces have a thickness corresponding to 5% of the total height and modulus of elasticity 
equal to 100 times the modulus of elasticity of the layer that composes the core. The geometric characteristics of the cross 
section and the elastic parameters of the material are shown in Figure 11. 

The problem was analyzed again for three situations with the relation between span and height of the beam (S = L / h0) 
assuming the values of 2, 4 and 10. It was therefore sought to verify also in the case of a laminated beam the ability of the 
formulation to accurately represent the displacement and stress distributions in problems with different slenderness ratios. 
The beam was discretized with 16 finite elements and 20 layers, 4 on the lower face layer, 12 on the core layer and 4 on the 
upper face layer (4/12/4 notation). 
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Figure 8 - Axial tension S11 for section located in the middle of the span. 

     

Figure 9 - Axial tension S22 for section located in the middle of the span. 

 

Figure 10 - Shear stress S12 for section at 2.5 m from left support. 

This discretization was adopted based on the observations extracted from the convergence analyzes performed in the 
previous example. 

In all analyzes, the distributed force was applied in a single increment and the solution process based on the Newton-
Raphson method was controlled by means of the convergence criteria in position and force with tolerances of 10-9 and 10-6, 
respectively. The number of Gauss points employed in the numerical integrations of the internal forces vector and the Hessian 
matrix was 4 x 20 on each discretization layer. 
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Figure 11 - Geometry, loading and elastic parameters of the problem 2. 

The results of the analyze are presented through the distributions of (Fig. 12), longitudinal axial stress S11 (Figure 13), 
axial cross-stress S22 (Figure 14) and shear stress S12 (Figure 15). All stresses shown are averages between elements and the 
interlaminar continuity of the axial stress S11 between layers of the same material and the transverse stresses S12 and S22 
between any layers is represented by averaging the values obtained at the interfaces of the adjacent layers.  

 

Figure 12 - Displacement in direction 1 (u) for section at 2.5 m from left support. 

In these figures, also the average results obtained from numerical analyzes performed in Ansys using the two-dimensional 
finite element PLANE42 are shown. The equivalence between the finite positional element mesh and the PLANE42 element 
was done in a manner analogous to the previous example. This equivalence results in the following association: 

• Positional with 16 cubic elements and 20 layers (4/12/4) ⇔ PLANE42 with a mesh of 48 x 20 elements, with 20 
distributed on 4/12/4. 

Results obtained from numerical analyzes performed on Ansys using very refined discretization are also presented and 
adopted as reference. 

Thus, the accuracy of the results obtained with the laminate plane frame element was excellent, since an excellent 
agreement with the reference results was achieved as shown in the representation of the horizontal displacement u, the 
longitudinal axial tension S11, the transverse axial tension S22 and the shear stress S12 in Figure 12, Figure 13, Figure 14, 
Figure 15, respectively. 

The results obtained in Ansys using the two-dimensional finite element PLANE42 through an equivalent mesh showed 
less precision for the tensions S11 and S12 in the region around the interfaces between the layers. This lower precision is 
attributed to a possible matrix malfunction caused by both the distortion of the PLANE42 element and the change in the 
elastic properties of the material in the interface region. 

Depending on the performance achieved, the possibility of applying distributed forces outside the element reference line 
can be considered as consistent. All of these observations highlight the suitability and efficiency of the proposed element to 
analyze thin-walled (portico) or non-plane (plate) problems, consisting of laminated composites. 
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Figure 13  - Axial stress S11 for section located in the middle of the span. 

  

Figure 14 - Axial tension S22 for section located in the middle of the span. 

 

Figure 15 - Shear stress S12 for section at 2.5 m from left support. 

The analysis of the two examples allowed evaluating several characteristics of the formulation of the laminated frame 
plane element. The results obtained were satisfactory and both the element formulation and its computational implementation 
performed in FORTRAN programming language were verified. 

From the results obtained in Example 1, it was found that a finer finite element mesh is needed to obtain a suitable 
representation of the stress distributions along the cross section, particularly the shear stresses. Regarding the displacements, 
a much smaller discretization already converges to the values adopted as reference. Another important observation is that an 
increasing number of Gaussian points distributed along the thickness of the layers is necessary as the amount of layers used 
in the section discretization is increased. 
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In Examples 2, the possibility of applying distributed forces and concentrated forces outside the element reference line 
was evaluated and considered consistent since satisfactory results were obtained for the displacement and stress distributions 
in the cross sections. In this example, it has also been found that the use of the two-dimensional element PLANE42 in the 
Ansys program presents problems of matrix mismatch caused by the distortion of the elements and the abrupt variation in 
the elastic properties of the material from one layer to another. This fact is not observed in the laminated   plane element, 
demonstrating its efficiency to analyze plane problems (thin or not) made of laminated composites. 

The penalization technique employed to perform coupling of elements was also efficient. Its versatility was verified in 
the possibility of representing connections with any rigidity. Finally, results of the displacement distributions along the cross 
section were presented for two proposed frame examples. Thus, a contribution is made to reduce the difficulty in finding 
results of nonlinear geometric analyzes in examples of laminated plane frames, glimpsing future work applications. 

4 Conclusions 

The formulations of two positional finite elements were developed, implemented and verified by analysis of problems 
with analytical and numerical solutions available in the literature or found from numerical analyzes performed in Ansys 
software. The first element developed was the homogeneous plane frame with degrees of freedom composed of nodal 
positions and by generalized vectors representing the rotation and the variation in the height of the cross section. Problems 
with varied characteristics of geometry, loading, contour and stiffness of the links between bars were analyzed. The results 
confirmed the consistency, efficiency and robustness of the element formulation, since an excellent agreement with reference 
results was verified. Thus, the element is suitable to carry out geometric nonlinear analysis in structural models of plane 
frame whose current configurations can present great displacements and rotations, but with linear elastic behavior for the 
material that must exhibit moderate deformations. In view of the good performance presented by the homogeneous plane 
frame element, a natural expansion of its kinematics was used for the development of the laminated plane frame element. 
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