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Abstract. The aim of this paper is to introduce and study upper and
lowerω-continuous functions. Some characterizations and several proper-
ties concerning upper (resp. lower) ω-continuous functions are obtained.

1 Introduction

Generalized open sets play a very important role in General Topology and they
are now the research topics of many topologist worldwide. Indeed a significant
theme in General Topology and Real analysis concerns the various modified
forms of continuity, separation axioms etc. by utilizing generalized open sets.
Recently, as generalization of closed sets, the notion of ω-closed sets were
introduced and studied by Hdeib [4]. Several characterizations and properties
of ω-closed sets were provided in [1, 2, 3, 4, 5]. Various types of functions play
a significant role in the theory of classical point set topology. A great number
of papers dealing with such functions have appeared, and a good many of them
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have been extended to the setting of multifunction. The purpose of this paper is
to define upper and lowerω-continuous functions. Also, some characterizations
and several properties concerning upper (lower) ω-continuous functions are
obtained.

2 Preliminaries

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always
mean topological spaces in which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a space X. For a subset A of (X, τ),
Cl(A) and Int(A) denote the closure of A with respect to τ and the interior of
A with respect to τ, respectively. A point x ∈ X is called a condensation point
of A if for each U ∈ τ with x ∈ U, the set U ∩ A is uncountable. A is said
to be ω-closed [4] if it contains all its condensation points. The complement
of an ω-closed set is said to be an ω-open set. It is well known that a subset
W of a space (X, τ) is ω-open if and only if for each x ∈ W, there exists
U ∈ τ such that x ∈ U and U\W is countable. The intersection (resp. union)
of all ω-closed (resp. ω-open) set containing (resp. contained in) A ⊂ X is
called the ω-closure (resp. ω-interior) of A and is denoted by ωCl(A) (resp.
ω Int(A)). The family of all ω-open, ω-closed sets of (X, τ) is, respectively
denoted by ωO(X), ωC(X). We set ωO(X, x) = {A : A ∈ ωO(X) and x ∈ A}
andωC(X, x) = {A : A ∈ ωC(X) and x ∈ A}. Theω-θ-closure [3] of A, denoted
by ωClθ(A), is defined to be the set of all x ∈ X such that A ∩ ωCl(U) 6= ∅
for every U ∈ ωO(X, x). A subset A is called ω-θ-closed [3] if and only if A =
ωClθ(A). The complement of ω-θ-closed set is called ω-θ-open. A subset A is
called ω-regular if and only if it is ω-θ-open and ω-θ-closed. The family of all
ω-regular sets of (X, τ) is denoted by ωR(X). We set ωR(x) = {A : A ∈ ωR(X)
and x ∈ A}. A topological space X is said to be ω-closed if every cover of X by
ω-open sets has a finite subcover whose ω-closures cover X. Finally we recall
that a function f : (X, τ) → (Y, σ) is ω-continuous at the point x ∈ X if for each
open set V of Y containing f(x) there exists an ω-open set U in X containing
x such that f(U) ⊂ V. If f has the property at each point x ∈ X, then it is said
to be ω-continuous [5].

3 On upper and lower ω-continuous functions

Definition 1 A function f : X→ R is said to be:

(i) lower (resp. upper) ω-continuous at x1 if to each α > 0, there exists an
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ω-open set Ux1 such that f(x) > f(x1) − α (resp. f(x) < f(x1) + α) for
all x ∈ Ux1;

(ii) lower (resp. upper) ω-continuous if it is respectively so at each point of
X.

Example 1 Consider X = R with topology τ = {∅,R}, then τω = {∅,R,R \

Q} ∪ {(R \ Q) ∪ A : where A is a subset of Q}. Define f : X → R as follows:
f = χR\Q. f is lower ω-continuous but is not upper ω-continuous. In the same
form if we define g : X → R as follows: g = χQ, g is upper ω-continuous but
is not lower ω-continuous.

Theorem 1 A function f : X → R is lower ω-continuous if and only if for
each α ∈ R, the set {x ∈ X : f(x) ≤ α} is ω-closed.

Proof. Since the family of sets T = {R, ∅} ∪ {(α,∞) : α ∈ R} forms a topol-
ogy on R, f is lower ω-continuous if and only if f is ω-continuous from X

into the topological space (R, T). But (−∞, α] is a closed set in (R, T) and
hence f−1((−∞, α]) is ω-closed in X. But f−1((−∞, α]) = {x ∈ X : f(x) ≤ α}.
Therefore, {x ∈ X : f(x) ≤ α} is ω-closed. �

Corollary 1 A subset A of X is ω-open if and only if the characteristic func-
tion χA is lower ω-continuous.

Similarly for upper ω-continuity, we have the following characterization.

Theorem 2 A function f : X → R is upper ω-continuous if and only if for
each α ∈ R, the set {x ∈ X : f(x) ≥ α} is ω-closed.

Corollary 2 A subset A of X is ω-closed if and only if the characteristic
function χA is upper ω-continuous.

Theorem 3 Let {fα : α ∈ Λ} be a family of lower ω-continuous functions
from X into R, then the function M(x) = supα∈Λfα(x) (if it exists) is lower
ω-continuous.

Proof. Let λ ∈ R and M(x) < λ. Then fα(x) < λ, for all α ∈ Λ. Now
{x ∈ X : M(x) ≤ λ} =

⋂
α∈Λ

{x ∈ X : fα(x) ≤ λ}. But each fα being lower ω-

continuous, by Theorem 1, each set {x ∈ X : fα(x) ≤ λ} is ω-closed in X. Since
any intersection of ω-closed sets is ω-closed, M is lower ω-continuous. �
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Theorem 4 Let Λ be a finite index set and {fα : α ∈ Λ} be a family of lower
ω-continuous functions from X into R, then the function m(x) = minα∈Λ{fα(x)}
(if it exists) is lower ω-continuous.

Proof. It is enough to prove the case, when m(x) = min{f1(x), f2(x)}. Let
λ ∈ R and x0 ∈ X, since f1, f2 are lower ω-continuous from X into R, there
exists ω-open sets U1(x0) (resp. U2(x0)) such that f1(x) > f1(x0) + λ for all
x ∈ U1(x0) (resp. f2(x) > f2(x0) + λ for all x ∈ U2(x0) ). It follows that
for all x ∈ U1(x0) ∩ U2(x0), we obtain that m(x) > m(x0) + λ for all x ∈
U1(x0) ∩U2(x0). In consequence, the result follows. �

Remark 1 If Λ be an infinite index set and {fα : α ∈ Λ} be a family of lower
ω-continuous functions from X into R. Then the function m(x) = infα∈Λ
{fα(x)} (if it exists) may not be lower ω-continuous.

Example 2 For each natural number n, define fn = χ(− 1
n
, 1
n
) then m(x) = χ{0},

is not lower ω-continuous.

Theorem 5 Let {fα : α ∈ Λ} be a family of upper ω-continuous function
from X into R, then the function g(x) = infα∈Λ{fα(x)} (if it exists) is upper
ω-continuous.

Proof. Similar to the proof of Theorem 3. �

Theorem 6 Let Λ be a finite index set and {fα : α ∈ Λ} be a family of upper
ω-continuous functions from X into R, then the function M(x) = maxα∈Λ{fα(x)}
(if it exists) is upper ω-continuous.

Proof. Similar to the proof of Theorem 4. �

Remark 2 If Λ be an infinite index set and {fα : α ∈ Λ} be a family of upper
ω-continuous functions from X into R. Then the function m(x) = supα∈Λ
{fα(x)} (if it exists) may not be upper ω-continuous.

Example 3 Similar to Example 2.

Theorem 7 Let X be an ω-closed space and let f : X → R be a lower ω-
continuous function. Then f assumes the value m = infx∈X{f(x)}.
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Proof. Let α ∈ R be such that α > m. Then f being the lower ω-continuous,
the set Tα = {x ∈ X : f(x) ≤ α} is a nonempty (by the property of infimum) ω-
closed set in X. The family {Tα : α ∈ R and α > m} is a collection of nonempty
ω-closed sets with finite intersection property in the ω-closed space X; hence
it has nonempty intersection. Let x∗ ∈

⋂
α>m

Tα. Then f(x∗) = m. �

Theorem 8 If X is ω-closed, then any upper ω-continuous function f : X→
R attains the value M = supx∈X{f(x)}.

Proof. Similar to Theorem 7. �

Remark 3 If a real valued function f : X→ R from an ω-closed space is lower
ω-continuous as well as upper ω-continuous, then it is bounded and attains
its bounds.

Definition 2 Let f : X→ Y be a function, where X is a topological space and
Y is a poset. Then

(i) f is said to be lower (resp. upper) ω-continuous if f−1({y ∈ Y : y ≤ y0})
(resp. f−1({y ∈ Y : y ≥ y0})) is ω-closed in X for each y0 ∈ Y.

(ii) a partial order relation ≤ on a topological space X is said to be lower
(resp. upper) compatible if the set {x ∈ X : x ≤ x0} (resp. {x ∈ X : x ≥ x0})
is ω-closed for each x0 ∈ X.

Theorem 9 A topological space X is ω-closed if and only if X has a maximal
element with respect to each upper compatible partial order on X.

Proof. Suppose that X is not ω-closed. Then there exists a net {xλ : λ ∈ Λ}
which has no ω-accumulation point, where Λ is a well-ordered index set. We
define the set Aα = X\ωClθ({xβ : β > α}). We claim that for each x ∈ X,
x ∈ Aα for some α. In fact, x is contained in some ω-regular set R such that
R∩ {xβ : β ≥ λ} = ∅ for some β. Consider R = {R ∈ ωR(X) : R∩ {xβ : β ≥ λ} =
∅ for some β}. Let λR be the smallest index such that R∩ {xβ : β ≥ λR} = ∅; let
λx be the smallest element of M = {λR : R ∈ R}. We define the relation ≤ on X
as follows: x ≤ y if and only if Aλx ⊂ Aλy, that is, if and only if X\ωCl({xβ :
β ≥ λx}) ⊂ X\ωCl({xβ : β ≥ λy}), that is, if and only if ωCl({xβ : β ≥ λy})
⊂ ωCl({xβ : β ≥ λx}), that is, if and only if λx ≤ λy. Clearly ≤ is a partial
order relation on X. We claim that λx is the first element of M for which
x ∈ Aλx. In fact if α < λx and x ∈ Aα, then x /∈ ωCl({xβ : β ≥ α}). Then
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there exists R ∈ ωR(X) such that R ∩ {xβ : β ≥ α} = ∅, a contradiction. It
is obvious that for the corresponding λx there exists an Rλx ∈ R such that
Rλx ∩ {xβ : β ≥ λx} = ∅ and for any α < λx, Rλx ∩ {xβ : β ≥ λx} 6= ∅.
Also, Rλx ∩ {xβ : β ≥ λx} = ∅. Then Rλx ∩ ωCl({xβ : β ≥ λx}) = ∅, that is
Rλx ⊂ X\ωCl({xβ : β ≥ λx}) = Aλx and this happens for every x ∈ X. To show
≤ is upper compatible, it is sufficient to show that {x ∈ X : x ≥ x0} is ω-closed
for every x0 ∈ X. If possible, for some x0 ∈ X, {x ∈ X : x ≥ x0} is not ω-closed,
that is, there exists y ∈ ωCl({x ∈ X : x ≥ x0}) such that y < x0, Rλy is an
ω-regular set containing y such that x ∈ Rλy with x > y, that is, λx > λy, that
is x ∈ X\ωCl({xβ : β ≥ λy}) = Aλy. But λx is the first index such that x ∈ Aλx
and thus we arrive at a contradiction. Hence, ≤ is upper compatible. Further,
(X,≤) has no maximal element; in fact, if there be any, say x0, then for some
fixed ω, ωCl({xβ : β ≥ λ}) ⊂ ωCl({xβ : β ≥ α}) for every α ∈ M, that is,
xλ ∈ ωCl({xβ : β ≥ α}), for all α ∈M, a contradiction. Conversely, let S be a
linearly ordered subset of the topological upper compatible poset X. We denote
by Sx the set {y ∈ X : y ≥ x}. As the partial order on X is upper compatible,
each Sx is ω-closed. Since S is a linearly ordered subset of X, {Sx : x ∈ X} has
finite intersection property. Then

⋂
x∈S
Sx 6= ∅. Let x∗ ∈

⋂
x∈S
Sx. Then x∗ ≥ x, for

all x ∈ S. Therefore, by Zorn’s lemma X has a maximal element. �

Theorem 10 A topological space X is ω-closed if and only if X has a maximal
element with respect to each lower compatible partial order on X.

Proof. Similar to Theorem 9. �

Theorem 11 A topological space X is ω-closed if and only if each upper ω-
continuous function from X into a poset assumes a maximal value.

Proof. Suppose that X is not ω-closed, then there exists a net {xλ : λ ∈ M}

with no ω-accumulation point, where M is a well-ordered set. We assumes
that the topology on M is the order topology. Now, for each β ∈ M, Aβ =
ωCl({xλ : λ ≥ β}). We define a function f : X→M as follows: f(x) = βx, where
βx is the first element of the β’s for which x /∈ Aβ. This is well defined because
from the fact that M is well-ordered, obviously, f(x) has no maximal element.
We define the relation ≤ on X as follows: x ≤ y if and only if f(x) ≤ f(y).
Clearly, ≤ is a partial order relation on X. Now, for each x ∈ X, Sx = f

−1({z ∈
Y : z ≥ f(x)}) = {y ∈ X : y ≥ x}. As f is ω-continuous, each Sx is ω-closed and
hence ≤ is an upper compatible partial order relation on X. Then X being an
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ω-closed space, by Theorem 9 it has a maximal element x∗. Therefore, f(x∗)
is the maximal element of f(X). �

Theorem 12 A topological space X is ω-closed if and only if each lower ω-
continuous function from X into a poset assumes a minimum value.

Proof. Similar to Theorem 11. �
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