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Abstract

A new type of cubic trigonometric Bézier curve has been introduced in
[1]. This trigonometric curve has two global shape parameters λ and µ. We
give a lower boundary to the shape parameters where the curve has lost the
variation diminishing property. In this paper the relationship of the two shape
parameters and their geometric effect on the curve is discussed. These shape
parameters are independent and we prove that their geometric effect on the
curve is linear. Because of the independence constrained modification is not
unequivocal and it raises a number of problems which are also studied. These
issues are generalized for surfaces with four shape parameters. We show that
the geometric effect of the shape parameters on the surface is parabolic.
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1. Introduction

Although classical polynomial curves, such as Bézier curve and B-spline curve still
play central role in computer aided geometric design, several new curves have been
developed in the last decade. The basic principle of curve design is still valid: the
curve is given by user-defined points (so-called control points) which are combined
with predefined basis functions. Keeping this principle in mind, the generalizations
show various directions of possible improvements in theory and practice as well,
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applying basis functions different from the polynomial ones. In several cases the
reason for this is either to provide a curve description method which can exactly
describe (and not only approximate) important classical curves, which cannot be
done by polynomial basis functions, or to simplify the computation of the curves
and their properties. The most well-known generalization is the rational Bézier
and B-spline curve [5], where rational functions are applied as basis functions, but
deriving these functions one can obtain high degree rational polynomials, which
may cause stability problems computing higher order derivatives.

The other way to improve the abilities of such a curve is the application of
trigonometric functions. Trigonometric spline curves can also represent important
curves, such as circle, lemniscate, etc. exactly, which cannot be done by polynomial
curves. The theoretical fundamentals for this kind of curves have been laid in
[10]. C-Bézier and uniform CB-spline curves are defined by means of the basis
{sin t, cos t, t, 1}, that was generalized to {sin t, cos t, tk−3, tk−4, . . . , t, 1} [11, 12,
13]. NUAT B-spline curves introduced by Wang et al. in [15], the non-uniform
generalizations of CB-spline curves. The other basic type is the HB-spline curve,
the basis of which is {sinh t, cosh t, t, 1}, and {sinh t, cosh t, tk−3, tk−4, . . . , t, 1} in
higher order [14, 10].

Another, not necessarily independent direction of generalization is the incor-
poration of shape parameters to the basis functions in order to provide additional
freedom in shape adjustment. One of the earliest methods in this way is β-spline
curve with two global parameters [7, 8]. Further methods have been provided by
direct generalization of B-spline curves as αB-splines in [9] and [6] and recently as
GB-splines in [4]. A spline curve with exponential shape parameters is defined and
studied in [28]. Some alternative spline curves with shape parameters can be found
in [2, 3, 29]. HB-spline curves, CB-spline curves and the uniform B-spline curves
have been unified under the name of FB-spline curves in [16, 17]. The evaluation
of these trigonometric spline curves are more stable than that of NURBS curves
[18, 19].

In the above mentioned papers the new curve types are defined and essential
properties are proved, but the more detailed geometric analysis of the curve has
not been provided, however, it is of great importance in applications. ‘How the
shape parameters influence the shape of the curve?’ and ‘How the curve can be
applied for interpolation problems?’ are just two of these questions. Constrained
modification of the curves is also a central issue of applications. These questions
are studied in several papers [20, 23, 24, 28, 26, 27].

The aim of this paper is to study the geometrical properties of a recently defined
new curve type. Our methods for finding paths of the curve points (Section 3) and
describing constrained modification (Section 4) follow the techniques developed in
[21] and [22] for B-spline and NURBS curves.

In [1] the authors defined a new type of curves called T-Bézier curve as follows.

Definition 1.1. For two arbitrarily selected real values of λ and µ, where λ, µ ∈
[−2, 1], the following four functions of t (t ∈ [0, 1]) are defined as cubic trigonometric
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Bézier (i.e. T-Bézier) basis functions with two shape parameters λ and µ:
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In the following sections we study the variation diminishing property, the effect
of the shape parameters for the curve and the constrained modification abilities of
this curve. Finally, the curve type is generalized for surfaces.

2. Variation diminishing

In the following, we will discuss new properties of the T-Bézier curve. In CAD
systems the variation diminishing property is necessary for a Bézier curve. When we
define a control polygon for a curve then we expect that the number of intersections
with the produced curve will be less than or equal to the number of intersections
with the defined control polygon.

Theorem 2.1. If λ < −2 or µ < −2 than the T-Bézier curve has lost its variatonal
diminishing property.

Proof. The derivatives of the basis functions with respect to a variable t are
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With the control points p0,p1,p2,p3 the tangent vectors at the points at t = 0
and t = 1 are π

(
1
2λ+1

)
(p1−p0) and π

(
1
2µ+1

)
(p3−p2) respectively, therefore if

λ < −2, than the direction of the tangent vector at the point at t = 0 is opposite
to the vector (p1−p0), and if µ < −2 , then the direction of the tangent vector at
the point at t = 1 is opposite to the vector (p3 − p2). The theorem follows.

Figure 1: The tangent vectors at points at t = 0 with λ = −1, 5
on the top left, t = 0 with λ = −2, 2 on the bottom left, t = 1 with
µ = −1, 5 on the top right and t = 1 with µ = −2, 2 on the bottom

right

3. The geometric effect of the shape parameters

The basis functions of the cubic trigonometric Bézier curve are contain two arbi-
trarily selected real values λ and µ as shape parameters. When these parameters
are changing the shape of the curve is altered too. If we have a given knot vector
t0 and one of the shape parameters is fix, than we can examine the path of the
T(t, λ, µ) point of the curve while the other shape parameter is varies between its
boundaries.

Theorem 3.1. If t ∈ [0, 1] and µ ∈ [−2, 1] is a constant, then the geometric effect
of the shape parameter λ is linear.
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Proof. Those basis function segments which does not include the shape parameter
λ, we can expect as constants. Let
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With these constants we can express the basis functions of the quadratic trigono-
metric polynomial curve:

b0(t) = c21λ,t(1− λc0λ,t) = c21λ,t − λc0λ,tc21λ,t
b1(t) = c0λ,tc1λ,t(2 + λ− λc0λ,t) = 2c0λ,tc1λ,t + λc0λ,tc1λ,t − λc20λ,tc1λ,t
b2(t) = c2λ,t
b3(t) = c3λ,t

The theorem follows.

Figure 2: The geometric effect of the shape parameter λ

Theorem 3.2. If t ∈ [0, 1] and λ ∈ [−2, 1] is a constant, then the geometric effect
of the shape parameter µ is linear.

Proof. Those basis function segments which does not include the shape parameter
µ, we can expect as constants. Let
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With these constants we can express the basis functions of the quadratic trigono-
metric polynomial curve:

b0(t) = c3µ,t
b1(t) = c2µ,t

b2(t) = c0µ,tc1µ,t(2 + µ− µc0µ,t) = 2c0µ,tc1µ,t + µc0µ,tc1µ,t − µc20µ,tc1µ,t
b3(t) = c21µ,t(1− µc0µ,t) = c21µ,t − µc0µ,tc21µ,t

The theorem follows.

Figure 3: The geometric effect of the shape parameter µ

The two shape parameters are independent of each other so they modify the
shape of the curve in separated ways. In a specific case we can examine the effect
of the two parameters when they simultaneously changing their value.

Theorem 3.3. If t ∈ [0, 1] is a constant and we run both of the shape parameters
at the same time, then the geometric effect of the shape parameters is linear.

Proof. Let k ∈ R, λ, µ ∈ [−2, 1] and µ = kλ, and consider the constants

c1λ,t , c2λ,t

from Theorem 3.1. With these constants we can express the basis functions of the
quadratic trigonometric polynomial curve:

b0(t) = c22λ,t(1− λc1λ,t) = c22λ,t − λc1λ,tc22λ,t
b1(t) = c1λ,tc2λ,t(2 + λ− λc1λ,t) = 2c1λ,tc2λ,t + λc1λ,tc2λ,t − λc21λ,tc2λ,t
b2(t) = c1λ,tc2λ,t(2 + kλ− kλc1λ,t) = 2c1λ,tc2λ,t + kλc1λ,tc2λ,t − kλc21λ,tc2λ,t
b3(t) = c22λ,t(1− kλc1λ,t) = c22λ,t − kλc1λ,tc22λ,t

The theorem follows.
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Figure 4: The shape parameters’ geometric effect

4. Constrained modification

If a point p is given, than we need to find the values of the shape parameters
λ, µ ∈ [−2, 1] with which the curve interpolates the point. Let the curve be

T(t, λ, µ) =
3∑

i=0

bi(t)pi,

where pi, i ∈ 0, 1, 2, 3 are the control points.

From the inordinate case when µ is fixed and only the value of λ is changing
to that case when λ is fixed every λ = kµ, k ∈ R paths are intersects the curve.
Within the boundaries the curve can interpolate the point p and the appropriate
value of the running parameter depends on the values of the shape parameters.

Figure 5: The appropriate section of the curve for interpolation

On the other hand, when we fix a point on the curve, then we can examine the
paths we discussed above. In this case we can show the permissible area of the
point of the curve.
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Figure 6: The permissible area of a point of the curve

If we consider the union of the permissible areas for every point of the curve,
than we get the permissible area of the whole curve.

Figure 7: The admissible area of the curve

As regards the above the constrained modification is unequivocal only when
λ = µ. In this case with a numerical method we can produce the appropriate value
of the running parameter t0, whereby the produced line interpolate the given point
p. Finally, the value of the shape parameters are given from

T(t0, λ, µ) = p,

where λ = µ.

Figure 8: Constrained modification of the curve

While we discussed the algorithm of the constrained modification, we have
assumed that the shape parameters are equivalent λ = µ. This condition isn’t
necessary, but if λ 6= µ, the count of the cases when the curve can interpolate a
given point p is infinite.
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Figure 9: Constrained modification of the curve with different
shape parameter values

5. Extension to surfaces

The cubic trigonometric Bézier surface made from the basis functions of the T-
Bézier curve. The shape parameters also modify the face of the surface with their
value, like in the case of the curve. In three dimension we expect only the case
when one of the two shape parameter is fix. In the other case (when we change the
other shape parameters) the proof is the same.

Theorem 5.1. If t, u ∈ [0, 1] and µ ∈ [−2, 1] is a constant, then the geometric
effect of the shape parameter λ is parabolic.

Proof. The cubic trigonometric Bézier surface is

T(t, u) =
3∑

i,j=0

bi(t)bj(u)pi,j ,

where

pi,j , i, j ∈ 0, 1, 2, 3

are the control points. Now we can express the coefficients.

b0(t)b0(u) = c21λ,tc
2
1λ,u
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b1(t)b2(u) = c0λ,tc1λ,tc2λ,u((1− c0λ,t)λ+ 2),

b1(t)b3(u) = c0λ,tc1λ,tc3λ,u((1− c0λ,t)λ+ 2),

b2(t)b0(u) = c21λ,uc2λ,t(−c0λ,uc2λ,tλ+ 1),
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b2(t)b1(u) = c0λ,uc1λ,uc2λ,t((1− c0λ,u)λ+ 2),

b2(t)b2(u) = c2λ,tc2λ,u ,

b2(t)b3(u) = c2λ,tc3λ,u ,

b3(t)b0(u) = c21λ,uc3λ,t(−c0λ,uc3λ,tλ+ 1),

b3(t)b1(u) = c0λ,uc1λ,uc3λ,t((1− c0λ,u)λ+ 2),

b3(t)b2(u) = c3λ,tc2λ,u ,

b3(t)b3(u) = c3λ,tc3λ,u ,

where c0λ,t , c1λ,t , c2λ,t , c3λ,t are presented in Theorem 3.1, and
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The theorem follows.

Figure 10: The geometric effect of the shape parameter λ

References

[1] Han, Xi-An, Ma, YiChen, Huang, XiLi, The cubic trigonometric Bézier curve
with two shape parameters. Applied Math. Letters Vol. 22 (2009), 226–231.

[2] Habib Z., Sakai M. and Sarfraz M. Interactive Shape Control with Rational
Cubic Splines, International Journal of Computer-Aided Design & Applications Vol.
1 (2004), 709–718.

[3] Habib Z., Sarfraz M. and Sakai M., Rational cubic spline interpolation with
shape control, Computers & Graphics Vol. 29 (2005), 594–605.

154 E. Troll



[4] Guo, Q., Cubic GB-spline curves, Journal of Information and Computational Sci-
ence Vol. 3 (2005), 465–471.

[5] Piegl, L., Tiller, W., The NURBS book. Springer Verlag (1995).

[6] Tai, C.L., Wang, G.J., Interpolation with slackness and continuity control and
convexity-prservation using singular blending, Journal of Computational and Applied
Mathematics Vol. 172 (2004), 337–361.

[7] Barsky, B.A., Beatty, J.C., Local control of bias and tension in β− splines, ACM
Transactions on Graphics Vol. 2 (1983), 109–134.

[8] Barsky, B.A., Computer graphics and geometric modeling using β− splines.
Springer-Verlag, Berlin (1988).

[9] Loe, K.F., αB-spline: a linear singular blending spline, The Visual Computer Vol.
12 (1996), 18–25.

[10] Pottmann, H., The geometry of Tchebycheffian splines, Computer Aided Geometric
Design Vol. 10, (1993) 181–210.

[11] Chen, Q. and Wang, G., A class of Bézier-like curves, Computer Aided Geometric
Design Vol. 20 (2003), 29–39.

[12] Zhang, J.W., C-curves, an extension of cubic curves, Computer Aided Geometric
Design Vol. 13 (1996), 199–217.

[13] Zhang, J.W., C-Bézier curves and surfaces, Graphical Models Image Processing Vol.
61 (1999), 2–15.

[14] Lü, Y., Wang, G. and Yang, X., Uniform hyperbolic polynomial B-spline curves,
Computer Aided Geometric Design Vol. 19 (2002), 379–393.

[15] Wang, G., Chen, Q. and Zhou, M., NUAT B-spline curves, Computer Aided
Geometric Design Vol. 21 (2004), 193–205.

[16] Zhang, J.W. and Krause, F.-L., Extend cubic uniform B-splines by unified
trigonometric and hyperbolic basis, Graphical Models Vol. 67 (2005), 100–119.

[17] Zhang, J.W. , Krause, F.-L. and Zhang, H., Unifying C-curves and H-curves by
extending the calculation to complex numbers, Computer Aided Geometric Design
Vol. 22 ( 2005), 865–883.

[18] Mainar, E. and Pena, J.M., A basis of C-Bézier splines with optimal properties,
Computer Aided Geometric Design Vol. 19 (2002), 291–295.

[19] Mainar, E., Pena, J.M. and Sanchez-Reyes, J., Shape preserving alternatives
to the rational Bézier model, Computer Aided Geometric Design Vol. 18 (2001),
37–60.

[20] Hoffmann, M., Juhász, I., Constrained shape control of bicubic B-spline surfaces
by knots, in: Sarfraz, M,., Banissi, E. (eds.), Geometric Modeling and Imaging,
London, IEEE CS Press (2006), 41–47.

[21] Juhász, I., Hoffmann, M., Modifying a knot of B-spline curves, Computer Aided
Geometric Design Vol. 20 (2003), 243–245.

[22] Juhász, I., Hoffmann, M., Constrained shape modification of cubic B-spline curves
by means of knots, Computer Aided Design Vol. 36 (2004), 437–445.

[23] Hoffmann, M., Y., Li, G., Wang, G.-Zh., Paths of C-Bézier and C-B-spline
curves, Computer Aided Geometric Design Vol. 23 (2006), 463-475.

Constrained modification of the cubic trigonometric Bézier curve . . . 155



[24] Li, Y., Hoffmann, M., Wang, G-Zh., On the shape parameter and constrained
modification of GB-spline curves, Annales Mathematicae et Informaticae Vol. 34
(2007), 51–59.

[25] Hoffmann, M., Juhász, I., Modifying the shape of FB-spline curves, Journal of
Applied Mathematics and Computing Vol. 27 (2008), 257–269.

[26] Hoffmann, M., Juhász, I., On the quartic curve of Han, Journal of Computational
and Applied Mathematics Vol. 223 (2009), 124–132.

[27] Troll, E., Hoffmann, M., Geometric properties and constrained modification of
trigonometric spline curves of Han, Annales Mathematicae et Informaticae Vol. 37
(2010), 165-175.

[28] Hoffmann, M., Juhász, I., Károlyi Gy.: A control point based curve with two
exponential shape parameters, BIT Numerical Mathematics (2014) (to appear).

[29] Papp, I., Hoffmann, M.: C2 and G2 continuous spline curves with shape param-
eters, Journal for Geometry and Graphics Vol. 11 (2007), 179–185.

156 E. Troll


