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Abstract

An n-dimensional Riemannian space V" is called a Riemannian space
with cyclic Ricei tensor [2, 3|, if the Ricci tensor R;; satisfies the following
condition

Rijix + Rjk,i + Rri,; =0,

where R;; the Ricci tensor of V", and the symbol ”,” denotes the covariant
derivation with respect to Levi-Civita connection of V™.

In this paper we would like to treat some results in the subject of geodesic
mappings of Riemannian space with cyclic Ricci tensor.

Let V" = (M",gi;) and V" = (M",g,;) be two Riemannian spaces on
the underlying manifold M™. A mapping V" — V" is called geodesic, if it
maps an arbitrary geodesic curve of V" to a geodesic curve of Vn‘[4]

At first we investigate the geodesic mappings of a Riemannian space with
cyclic Ricci tensor into another Riemannian space with cyclic Ricci tensor.

Finally we show that, the Riemannian - Einstein space with cyclic Ricci
tensor admit only trivial geodesic mapping.
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1. Introduction

Let an n-dimensional V" Riemannian space be given with the fundamental tensor
gij(z). V™ has the Riemannian curvature tensor R}, in the following form:

R (2) = 0T (2) + T (2)Dj (2) — 0T (x) = T5(2)Tka (), (1.1)

where F; () are the coefficients of Levi-Civita connection of V.
The Ricci curvature tensor we obtain from the Riemannian curvature tensor
using of the following transvection: Rf; (z) = Rj(z)!.

Definition 1.1. [2, 3] A Riemannian space V" is called a Riemannian space with
cyclic Ricci tensor, if the Ricci tensor of V" satisfies the following equation:

Rij,k + Rjkﬂ' + Rki,j =0, (1.2)

where the symbol ”,” means the covariant derivation with respect to Levi-Civita
connection of V.

Definition 1.2. [4] Let two Riemannian spaces V" and V" be given on the un-
derlying manifold M,, . The maps: v : V" — V" is called geodesic (projective)
mappings, if any geodesic curve of V™ coincides with a geodesic curve of V.

It is wellknown, that the the geodesic curve x%(t) of V™ is a result of the second
order ordinary differential equations in a canonical parameter ¢:

A%yt X dz® dzf
S 4T (n) " =0, L.
a2 ap(®) dt dt (1.3)

We need in the investigations the next:

Theorem 1.3. [{] The maps: V" — V" s geodesic if and only if exits a gradient
vector field 1;(x), which satisfies the following condition:

f;k(x) =Ty (2) + b () + 61,15 (), (1.4)

and

Definition 1.4. [1] A Riemannian space V" is called Einstein space, if exists a
p(x) scalar function, which satisfies the equation:

Ry; = pla)gy; (@). (1.5)

1The Roman and Greek indices run over the range 1, ..., n; the Roman indices are free but
the Greek indices denote summation.
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2. Geodesic mappings of Riemannian spaces with
cyclic Ricci tensors

It is easy to get the next equations [4]:
Rij = Rij + (n — 1)ty (2.1)

where v;; = 1; ; — ¥;9p; and
T (2)R, (2.2)

— OR;;
ij,k = Oxk _sz( )R ij(x)Raia

where T () are components of Levi-Civita connection if
At now we suppose, that V" in a Riemannian space with cyclic Ricci tensor,
that is
Rijr+ Rjri + Riij = 0. (2.3)

Using (2.2) we can rewrite (2.3) in the following form

8:(;’3 —Lip(@)Raj — Ujp(2) Rait
j,k — T (x)Rok — Fkl(I)Ra]+ (2.4)
art
8E i = = = -
axlj‘ — T}, (2)Rai — Tiy(2) Rax = 0.

From (1.4) and (2.1) we can compute:
OBy 0 = DV05) (05, 0) )08+ 26 (0000 (R + (0 — 1)~
~(T5(0) 4 ¥y ()07 + )6 (R + (1 — )+

OB 2 (02 D) (06 0) 44450105+ 461 2)0) (R + (1 — 1)~
() ()98 ()00 (R + (n— 1))+
OBtk (0 10ki) (0 (@) + () + 52

oxJ
=T (@) + ¥i(2)d7 + 1 (2)05) (Rak + (n — 1)thar) = 0.

07 )(Rai + (n = 1)tai)—

That is
%x F?k( )R F;Xk( )Rai+
+ ;{ I'%(2)Ra F;jz( JRaj+ ¢ Rijk + Rjki + Ry j
( )Rak:+

4+ s _ rgj (x)Rm
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awzkj — (n = DI (2)a; — (@) Rij — (n — 1) (2)p;—

—Yi(@)Rij — (n — D)bw(2)i; — (n — DI (2)Yai — 15(2) Rei—
—(n = DY (@) i — Yr(z) Ryi — (n — 1)bg ()i +

+(n— )a(;l}]f (n — D)0 (2)thar, — ¥ (x)Rix — (n — 1)y ()b —

—i(x)Rjr, — (n — )bs(2)j6 — (n — T3 (2)baj — Un(x) Rij—
—(n = Dhg()2hij — ti(x) Rij — (n — 1)thi (@) thy;+

= D2 1) (@) — () By (n— D)y

= (x) Ry — (n — 1) (2) i — (n — D)IF () Yar — vi(z) Rjr—
—(n = )aps(2) Vi1 — j(x) Rix — (n — 1) (x)hy, = 0.

If we suppose, that V™ has cyclic Ricci tensor we have:

+(n—1)

(1) (G5 = T = il ) +
(G
(3

— 4, (x
—(n —1)(4¢

(9’(/ij

—Fa Yhak — ng(x)waj>+

P(Ijj Z/}az - (‘T)wak) +

VRjk — 405 (2) Ry — dabi (@) Rij—
(@) Yk + 40 (2) g + i (2)1hij) = 0
That is
(n = 1) (Vi ke + ik + Vrig)—
—4(¢i(z)Rjk + 1/Jj (:L‘)Rki + Yy, (z)Rij)— (2.5)
—4(n — 1) (s (@) ik + ¢ (2)¥ki + Pr(x)thiz) = 0.

Theorem 2.1. V" and V" Riemannian spaces with cyclic Ricci tensors have com-
mon geodesics, that is V" and V" have a geodesic mapping if and only if exists a
Y;(x) gradient vector, which satisfies the condition:

(n = 1) (Wijn + ik + Vrig)—

—4(Yi(2) Rji + ¢ (x) Ryi + Yn(z) Rij)—
—4(n — 1) (i ()5 + 5 (@) ki + Yr(x)i;) =0
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3. Consequences
A) If ;5 = 0, then Ei]’ = R;;, and 9, ; = 1;%;, so we obtain:

V(@) Rj + ¥ (x) Rii + Yr(z) Rij = 0. (3.1)

B) If the V" is a Riemannian space with cyclic Ricci tensor and at the same time
is a Einstein space, then we get

pYi(x)gik + pYi(2)gri + pYr(r)gi; = 0

that is
n;(x) + 2¢;(x) = 0, (3.2)
SO
(n+2)i(z) = 0. (3.3)
It means

Theorem 3.1. A Riemannian-Einstein space V™ with cyclic Ricci tensor admits
into V" with cyclic Ricci tensor only trivial (affin) geodesic mapping.
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