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Abstract

Sphere tracing, introduced by Hart in [5], is an efficient method to find ray-
surface intersections, provided the surface is represented by a signed distance
function (SDF) or a lower estimate of it.

This paper presents an interactive rendering framework for visualising ex-
act and estimate SDF representations. We demonstrate the performance of
the system by visualising 3D fractals and its modularity by rendering alge-
braic and meta surfaces. In addition, we discuss SDF estimation of algebraic
surfaces.

Keywords: Computer Graphics, Signed Distance Functions, Real-time Ren-
dering

MSC: 65D18, 68U05

1. Introduction

Rendering surfaces represented by signed distance functions (SDF) has not been
in the spotlight of computer graphics research. Even though fractals have been a
focus of much interest on on-line forums, literature on rendering a more general
representation of surfaces, namely direct visualisation of SDFs, is scarce; the latest
advancement in the field is the contribution of Keinert et. al. in [6] (2014).

A general SDF rendering engine has a far greater flexibility than incremental
image synthesis based systems; even ray-tracers of practice are limited to a fixed set
of surface approximations. In an SDF based rendering engine, CSG!-models, 3D



6 Cs. Bdlint, G. Valasek

fractals, algebraic surfaces, and meta-surfaces can all be rendered directly without
any pre-processing. This means that the surfaces appear in a considerably higher
quality than any pre-processed polygon approximation.

However, the main disadvantage of using SDFs is the lower rendering speed
compared to incremental image synthesis based rendering engines. Additionally,
traditional ray-tracers and game engines both use the same set of primitives (usually
polygons) which does not include SDFs. This paper focuses on the representation
and rendering of SDFs, with emphasis on the case of algebraic surfaces.

Previous work The algorithm for rendering SDFs known as sphere-tracing was
first investigated by Hart in [5] (1994). It is an iterative ray-tracing algorithm,
illustrated in Figure 1. This algorithm has been commonly used for the past two
decades for rendering SDFs, most notably fractals [3, 4, 7, 9].

"e'{::{ff‘fe'l.‘ """e'e:ﬁ‘:m»
o **&'I"!A!» |
N

Figure 1: Tlustration of the sphere-tracing algorithm in 2D.
At every point (red dot) along the ray, the distance to the surface is estimated, in this case, to
the union of a half-plane and a circle. This distance defines a sphere (green circles) in which there
are no intersections between the ray and the surface. Thus, sphere-tracing travels this distance
along the ray to get the next estimate of the intersection point.

Following a short overview of singed distance functions, we introduce an al-
gorithm for algebraic surface visualization. Approximating the surface normal is
common problem, for witch a novel method is presented in Section 5.

2. Signed Distance Functions

In this section, definitions and notations are introduced for future reference. Defi-
nition 2.2 is from Hart’s original work in [5].

Definition 2.1 (Distance to set). Let (X, d) be a metric space, x € X, and A C X.
Then let d(z, A) :=inf,ca d(x,a) (where inf () := +00).

Definition 2.2 ((Signed) Distance Function). The f : R®™ — R function is an
exact (singed) distance function, or (S)DF, if for any p € R™:

1CSG, Constructive Solid Geometry: A tree-like representation of the scene using primitive
objects as leaves, set operations as nodes, and transformations as edges. [2]
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) = d(p. () ( f(p)z{d@’boundw” if peD ) (2.1)

—d(p,bound(D)) if p& D
Where bound(D) = D \ int(D) denotes the boundary of a set.

Definition 2.3 (Distance Function Estimate). The f : R” — R function is a
(signed) distance function estimation if and only if there exists a ¢ : R" — [1, K)
bounded (K € R) function, such that f - ¢ is a (singed) distance function.

Remark 2.4. Besides the SDF being an upper bound to the estimate, Definition 2.3
provides a lower bound for the estimate, so sphere-tracing algorithms still converge.

The following theorem by Hart [5] describes how SDFs representing objects
can be combined to create more complex geometries using CSG-like constructions.
Figure 2a shows an application of the polynomial soft-min/max versions of set
operations to various geometries.

Theorem 2.5 (Set operations). Let f,g € R — R be (S)DF. Then

(i) { = 0}U{g = 0} = {min(f, g) = 0}, (i) {f = 0} " {g = 0} = {max(f, g) = 0},
(i3) {f = 0} \ {g = 0} = {max(f,—g) = 0}. Additionally, the min(f,g) and
max(f, g) are (singed) distance function estimates.

(a) Soft-min/max using 3 tori, 3 cylinders, 2 (b) Meta-surface of 2 spheres, 1 cube, 1 torus,
spheres, 1 cube, and 1 plane and 1 plane

Figure 2: Demonstration of the CSG model capabilities using our rendering engine

Moreover, by using different blending functions between primitive geometries
one can achieve the look of different phenomena, like water [8]. Figure 2b shows
meta surfaces rendered in our system.

3. Algebraic surface estimation

Let us now consider the problem of estimating SDFs to algebraic surfaces of the

n; Mj ng

form f(z,y,z) = Zzzmjkmiyjzk (aijx € R). To construct an SDF from this,
=0 j=0 k=0

we have to use the following theorem [5]
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Theorem 3.1. If feR™—R is a (S)DF, it is Lipschitz continuous, and Lip f = 1.

Therefore, for any Lipschitz continuous f function %pf is a signed distance

function estimate. Although algebraic surfaces are not Lipschitz continuous over
R3, they become Lipschitz over any finite bounded subset of space. In this case,
if the distance from a given point to the surface is r, the estimation would be

f)/Lip fl, ) = f(p)/LipST(p) f, where S,.(p) is the sphere with centre p and
radius r > 0. This provides the following fixpoint-iteration

f()

F(r,p) Ting o)/ r. (3.1)
Iterating F on its first argument, r, results in an estimation of the distance function.
Usually, we have to calculate the distance in a certain direction, for example
along a ray. Let s(t) :=p +t-v. We must calculate the Lipschitz constant of the

following on a given S,.(p) set.

ng Ny ng ) )

F®)= 3" aijk (pa + tva)' (py + tv,)” (p= +tv2)" (3-2)

i=0 j=0 k=0

The substitution method for calculating Lip;_, ,; f o s of (3.2) is treating this
expression as a f os € R[t, py, Py, Pz, Vg, Uy, U] seven variable polynomial. Mul-
tiplying out, then ordering the terms, we get N < n; + n; + ny + 1 number of
monomials in ¢. Let P, (p,v) - t" denote the nth monomial.

Therefore, Lip (P,(p,v) ") < n-r""|P,(p,v)| is the estimate of the Lips-

te[—r,r]

chitz constant of the nth monomial?, where r is from (3.1), and the sum of these
is the upper-estimate of the Lipschitz constant of f.

The problem with this approach is that in practice, we have to be able to
make symbolic calculations within the engine and generate GPU code based on the
algebraic surface given.

4. Taylor-series method

Our method is based on the fact that a Taylor expansion of a polynomial is itself.
To calculate P, (p,v) first we note that P, = % (f o s)(™(0). Now, let us find an

n!
efficient way to compute the nth derivative of f os. Let

gigr(t) = (po + tva)' (py +tvy) (ps +t0:)" (8 € [-r7]), (4.1)

ng M ng (n)()

gi'k ’L'Um j’U kvz
P, = i —2 . Let hii(t) == Y )
S0 I'n ZZZ“W n! et higi(t) Pa + tvg * Py + tuy * p. +tv,

i=0 j=0 k=0
" n m n—m
) — Z (m) gl(jk)hl(.jk ), where
m=0

1
Note that g;;; = gijk - hijk, S0 ggllj

20n estimating Lipschitz constants: [1]
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—n—1 —n—1 —n—1
R = (=1)" -l i<&+t) +3 (p—” +t> +k<’£ +t) . (42)

Vg Uy Vz

Thus, R g™ and P, can all be computed, and so is the following approxima-

ijk> gijk?
tion: nibng+ng e
Lip (fos) = Lip S Pt <SS nm YR (4.3)
[—r,r] te[—r,r] n—0 el

Finally, repeating the (3.1) iteration gives us the distance estimate.

. . . . . .
Algorithm 1: Calculating P, Algorithm 2: Fix-point iter-
In : p,v and f in sparce-form: ation
L I J; K,
w,y,2) =L A 2liyd1 2K
F@ v, 2) EZ_O L yL In : The ray p,vERS,andPERN
where A € R™ ; I,J, K €N coefficient vector from Algorithm
Out : P € RN is for Py, coefficients. 1 is given. For better convergence,
Temp G, H € RN for g;;p and hyjp. a A € (0, 1] relaxation constant,
P = 0.0 0): and rg > 0 starting radius, eg.
= (£(p),0,0,...,0); from linear approximation, is also
for | =0.. L—1do given
G = (pil . p;l X000, ., o); Out : 7 > 0 distance that can be
travelled along the
forn:luNfldc:L s(t)y=p+t-v (t>0) ray.
Hy g i=—(-1)™"n-1)!- Temp  : The Lipschitz constants will be
T ol T calculated in Lip > 0 variable.
I % +J % + K % |;
( vl Il KR R
for m=0..n —1do for i =0 .. iters do
n—1 Lip := 0;
| = ent("!) Gt forn—1. N do
Pp i= Pn + 2141 - Gn; | Lip:=Lip+n-r""1 Pyl

r@)
Lip

ri=r-(1—=X)+

A;

Figure 3: Novel algorithms for algebraic surface visualization.
First, using equations (4.1)—(4.3), the P, coefficients of the Taylor expansion of f o s are calculated.
Second, the fix-point iteration in (3.1) is used to find the right step size for the sphere-tracing algorithm.

Implementing this approach is easier as it does not require symbolic expres-
sions and complex code generation, see the algorithms on Figure 3. Figure 4 sum-
marises our results. The algorithm can be stopped at any derivative thus achieving
quadratic complexity in the number of derivatives and linear in the number of
terms.

OHONC

Linear: 14.75ms Quadratic: 17.33ms Taylor: 19.36ms

Figure 4: Comparison of SDF estimations with capped amount of steps along a ray.
The algebraic surface fx, Kk, (z,y,2) = (22 4+ 3% + 22)(K12? + Kay?) — 22(2? + y?) = 0 has a singular
line that makes it hard to visualize from this angle. The Taylor method converges closer to the surface
in less steps in about the same time as the traditional linear and quadratic SDF approximations. The

light-blue means it only takes one step, and in the red region it takes 70.
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5. Normal estimation

The surface normal at p € {f = 0} is defined as the unit vector norm(p) = %,
for any surface defined by the differentiable implicit function f € R® — R.

In this section, we focus on calculating the normal numerically. The one-sided
(forward or backward) difference method gives an error of O (¢) for the derivative.
A more accurate method is the symmetric difference:

1 f($+€7y72)—f($—67y,2) 9
Vf(ac,y“z) = % : f($7y+67z) —f(a:,y—e,z) +O(6 ) . (51)
f(%vaJFE) 7f(x7y7zie)

The idea of our approach is to take the following vectors (or stencil)

v :=[+1,0,0]7, w3 :=[0,4+1, 0], w5 := [0, 0,+1] ",

V2 1= [_13 Oa O]T’ Vg4 = [03 _17 0}T7 Ve = [07 03 _1]T7
then (5.1) is equivalent to V f(p) = 5- Zle f(p+€-v;) - v;, thus we define
6
1
norm(p) = E;f(p—i—e-vi)mi . (5.2)

where Z € R is the normalising constant. This means that the samples of the
function are taken at the vertices of an octahedron.

mean | median

10 —one-sided one-sided 119 562
5 —tetrahedron tetrah. 113 843

o
E _ocLahedron(symmetric) octah. 1.0 1.0
cube cube 0.6 0.7

—icosahedron .

dodecahedron icosah. 0.5 0.1
10710 1 dodecah. 0.5 0.1

// std max

’ one-sided 382 306
/ tetrah. 265 313
» ’ | octah. 1.0 1.0
10 / cube 0.5 0.6
f icosah. 0.4 0.3
;- e dodecah. 0.4 0.3

T 108 10 10% 102

(a) Error in relation to €. Line breaks when the angle between (b) Relative error to symmet-
the analytic and the numeric estimation is zero. ric difference for e = 0.01

Figure 5: Error of normal estimators measured in cosine distance®.
Our tetrahedron kernel performs slightly better than the one-sided approach and results in a marginally
lower mean error with lower variance. Cube, icosahedron and dodecahedron kernels also slightly out-
performed the symmetric difference, but they also take considerably more samples.

According to our measurements, an optimal stencil vector set would consist of
equal length vectors that fill the space evenly, so the best kernels in these cases

3cosine distance(a, b) = 1— cosine _similarity(a,b) = 1 — cos(f) = 1 — m
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consisted of vertices of platonic solids. Taking every second vertex of a cube gives
us the fastest kernel, the tetrahedron:

vy = [+1, 41,417, vg = [+1, =1, =1] T, vz := [-1,+1, 1] ", vy := [-1, -1, +1] .
This is as fast as the first-order divided difference, but it gave empirically better
results as shown on Figure 5. Other platonic solids were also investigated.

Potentially, even higher accuracy can be achieved by sampling surface of the unit
sphere with a sequence of low discrepancy, like a Halton sequence. However, this
is usually not needed, because the length of the SDF estimate’s gradient is usually
close to one. Moreover, the normal is needed for calculating lighting effects, and
small errors are not visible.

The implementation supports multiple normal calculation algorithms. The
tetrahedron kernel proved to be faster than the first-order divided difference one.
Symmetric or octahedron kernels introduced barely visible differences in quality
along hard edges.

6. Implementation

Figure 6: Mandelbulb fractal displayed with our rendering engine.
Maximum quality was reached after 156.2ms render time. Shadows were at maximum quality
after 436.2ms. GPU utilisation was 97-99%. GPU: NVidia 640M (480 GFLOPS).

The rendering engine supports operating in a progressive mode, which means
when the camera is not moving, the image quality continues to increase. Therefore,
the engine is optimised for static scenes. The C++ and OpenGL implementation is
highly efficient achieving near 100% GPU utilisation and provides several features.

Firstly, swapping algorithms between passes was a free operation due to the
OpenGL subroutines running on the GPU. This and the algorithms inter-compa-
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tibility can be used for a short statistical training to determine the best schedule
of algorithms for a given scene.

Secondly, a CSG model creator was also implemented. The user can either write
the program computing the SDF directly or build the CSG tree from primitives
and other program codes both using a built-in graphical interface.

Finally, the shader programs, including subroutines, were generated on-the-
fly, thus the code for the scene geometry is embedded into the code running on
the GPU. This greatly reduced both the distance function evaluation times and
memory consumption.

7. Summary

This paper presented a direct signed distance function visualisation framework and
its application to rendering algebraic surfaces.

We proposed a local signed distance function estimation method to such sur-
faces and investigated the precision of various surface normal estimation heuristics.
We benchmarked the performance of the system by rendering complex scenes in-
corporating CSG elements, meta-surfaces, and the Mandelbulb fractal.

The framework proved to be highly efficient. In addition, it is highly modular,
and outperformed current fractal-viewers [3, 4, 7, 9] in both quality and speed.
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Abstract

A new modification of the N interaction model [5], which based on the
3-interactions model of Backhausz-Mori [1]. This is a growing model, what
evolves by weights. In every step N verticies will interact by form a star
graph. We can choose vertices uniformly or according to their weights (pref-
erential attachment). Our aim is to show asymptotic power-law distributions
of the weights. The proofs are based on discrete time martingale methods.
Numerical result is also presented.

Keywords: random graph, network, scale-free, power-law

MSC: 05C80, 60G42.

1. Introduction

Barabasi and Albert [2] gave an explanation for the frequently observed phe-
nomenon that many real-life networks are scale free, i.e., they have power-law
degree distribution. To describe real-life networks such as the WWW, social and
biological networks, they introduced a random graph model. They defined an evolv-
ing graph using the preferential attachment rule, what leads to scale-free graphs.
Preferential attachment rule in a random graph model means, that when a new
vertex is born, then the probability that the new vertex will be connected to an
old vertex is proportional to the degree of the old vertex.

* Attila Perecsényi was supported through the New National Excellence Program of the Min-
istry of Human Capacities

15
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In [4] a new network evolution model was introduced. In this paper, we shall
study the same model. Consider an increasing sequence of weighted undirected
graphs. The evolution of the graphs is based on creations of N-star subgraphs.
Throughout the paper we call a graph N-star graph if IV vertices form a star, that
is it has one central vertex, what is connected with N — 1 peripheral vertices. We
start at time 0, and the initial graph is an N-star graph. This graph and all of
its (N — 1)-star subgraphs and all vertices have initial weights 1. Now we increase
the size of the graph as follows. At each step N vertices interact with each other.
It means that, we draw all non-existing edges between the peripheral vertices and
the center vertex, so that, the vertices will form an N-star graph and the weights
are increased by 1. The non-existing elements of the graph have weight 0.

We have two options in every step. On the one hand, with probability p, we
add a new vertex, and it interacts with IV — 1 old vertices. On the other hand,
with probability 1 — p, we do not add any new vertex, but N old vertices interact.
Here 0 < p <1 is fixed.

When a new vertex is born, we have two possibilities again. With probability
r, we choose an (N — 1)-star graph according to to their weights (i.e. preferential
attachment), and the new vertex is connected to its central vertex. Here preferential
attachment means that the probability that we choose an (N — 1)-star subgraph
is proportional to its weight. With probability 1 — r, we choose N — 1 old vertices
uniformly at random and they will form an N-star graph with the new vertex, so
that, the new vertex will be the center. Here uniform choice means that all subsets
of vertices with cardinality N — 1, have the same chance. Here 0 < r <1 is fixed.

In the other case, when we do not add any new vertex, we have two opportu-
nities again. On the one hand, with probability ¢, we choose an old N-star graph
according to their weights (i.e. preferential attachment). That is the chance of an
N-star subgraph is proportional to its weight. Then we increase the weights inside
the N-star subgraph chosen. On the other hand, with probability 1 — ¢, we choose
uniformly N old vertices, and they form an N-star graph, so that, we choose the
center out of the chosen N vertices uniformly. Here 0 < ¢ <1 is fixed.

In [4] power law distribution of the weights of the vertices was shown. In
this paper Theorem 2.1 shows that the weights of the N-stars have power law
distribution. In the proof we use the Doob-Meyer decomposition and the method
of [3].

2. Power law distribution of the weights of N-stars

Let S(n,w) denote the number of N-stars with weight w, and let S,, denote the
number of all N-stars after n steps. Furthermore, V;, denotes the number of vertices
after n steps.

Theorem 2.1. Let 0 <p<1and0<gq. Forallw=1,2,... we have

S(n,w)

S — Su (2.1)
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almost surely as n — oo, where s, w = 1,2,... are positive numbers satisfying
the recurrence relation

1 h(w—1) .
= T w = w—1y 17 2'2
51 h+1’ 5 hw+1s ! ifw> (2:2)

where h = (1 — p)q. Moreover,

Sy ~ Cw~(1+7) (2.3)
asw — oo, with C = +T" (1+ ).
Proof. First we show that

S(n,w)

— ky (2.4)

almost surely as n — oo for any fixed w. Here k,,, w =1,2,... are fixed nonnega-
tive numbers.

We compute the conditional expectation of S(n,w) with respect to F,,_; for
w > 1. Let S(n,0) =0 for all n. For n,w > 1 we have

E (S(n,w)|Fn-1) =pn,w—1)S(n—1L,w—1)4+ (1 —pn,w))S(n —1,w)+

+orw [P+ (1 =p)(1—q) <1 - Vi’”)] : (2.5)

(NN
where
p(n,w)=(1-p)|q— qu)(’}vll)f\’]' (2.6)
Let

=[[a-pmw)™ w>1 (2.7)

=1

It is easy to see that the above random variable is F,,_; measurable. Applying the
Marcinkiewicz strong law of large numbers for the number of vertices, we have

Vo, =pn+o (n1/2+€) (2.8)

almost surely, for any € > 0.
Using (2.8) and the Taylor expansion for log(1 + z) we obtain

1-p1-9)_, -1
log ¢(n,w) = Zlog(l—h—w —hwzz—&-O(l)
N i=1
where the error term is convergent as n — co. It means

c(n,w) ~ hyn™® (2.9)
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almost surely as n — oo and h,, is a positive random variable.
Let us consider the following process:

Z(n,w) = ¢(n,w)S(n,w) forw > 1.

Here {Z(n,w), Fn,n =1,2,...} is a nonnegative submartingale for any fixed
w > 1. By the Doob-Meyer decomposition of Z(n,w), we can write

Z(n,w) = M(n,w) + A(n,w)

where M (n,w) is a martingale and A(n,w) is a predictable increasing process. The
general form of A(n,w) is the following:

A(n,w) =RBZ(1,w) + > [E(Z(i,w)|Fi—1) — Z(i — 1,w)]. (2.10)

=2

Now from (2.5) and (2.10), we have

Aln,w) =EZ(1,w) Jric l (t,w—=1)S( — 1L,w—1)+
=2

+61,0 (p +(1-p(1-q) (1 - (Vf?i:)lN>>] . (2.11)
N

Let B(n,w) be the sum of the conditional variances of Z(n,w). In the following
we give an upper bound for B(n,w):

n

B(n,w) =) D*(Z(i,w)|Fi-1) ZE{ E (Z(i,w)|Fi1))* |Fima} =

=2

= Z c(i, w)’B{(S(i,w) — E(S(i,w)|Fi—1))* | Fim1} <

3

<) (i, w)?B{(S(i,w) — S(i — 1,w))* | Fim1} <

< Xn:c(i, w)2 =0 (n2hw+1) . (2.12)

Above we used that c(n,w) is F;_1 measurable, (2.5) and the fact that, at each
step only one N-star is involved in interaction.
We use induction on w. Let us consider the case when w = 1. From (2.9) and

(2.11), we have
Si—1
p+(1-p)(1—q) <1 - (V“)Nﬂ ~

A(n,1) =EZ(1,1) + zn: c(i, 1)
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Nghmh [p+(1p)(1q) <1SZ§;1)] Nth (2.13)

as n — oo. Using (2.12), we have
B(n,1) =0 (n2h+1) ,
o
B(n,1)2 log B(n,1) = O (A(n,1)).
The conditions of Proposition VII-2-4 of [6] is fulfilled, so we have
Z(n,1) ~ A(n,1) (2.14)

almost surely on the event {A(n,1) — oo} as n — oo. So from (2.9), (2.13) and
(2.14), we obtain

Sn,1) _ Z(n,1)  A(n,1) hin"*t(1—h) 1-h

1
n cn,)n  c(n,1)n hinhn 1+h

=k >0, (2.15)

as n — oo.
Let w > 1. Suppose that (2.4) is true for all weight less than w. Now from
(2.8), (2.9) and (2.11), using the induction hypothesis, we obtain

A(n,w) =EZ(1,w) + Z (c(i,w)p(i,w — 1)S(i — 1w — 1)) ~

wh+1

(2.16)

N wh+1

~ -1 (1-pa-
~ > hai™ ki [h“’ -1, (d=p) ‘D] ~ kw1 hwh(w — 1)
2 1
=2

almost surely as n — oo. We see that the conditions of Proposition VII-2-4 are
true, so we have Z(n,w) ~ A(n,w). Therefore, from (2.9) and (2.16), we have

S(n,w)  Z(n,w)  A(n,w)  kw-1hwh(w — 1)%:11 B
n cnwn  c(n,w)n hyn@hn B
h(w —1)
= i —— =K., 2.1
kw 1 wh+1 kw ( 7)
Now we show that g
2n B, (2.18)
n

almost surely as n — oo where B =1 — h.

First we compute the conditional expectation of S,, with respect to F,_1. We
can see that the number of N-stars increases if and only if the number of N-stars
of weight 1 increases, so we have

Sn—l

E{Sn|]:n—1} = Sn—l +p+(1 —p)(l _q) (1 - W

> =Yp—-15.-1+ B, (219)
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where )
Tn—1 = 1-— (1 7p)(1 - Q)ﬁ
("N
Let
n—1
Gn = H(’Yi)717 n 2> 1. (220)
=1

Here G,, is an F,,_1 measurable random variable. Furthermore, let
Zn=G,S, forl<n. (2.21)
From (2.19), we obtain
E{Zn|Fp_1} = Zn_1 + BG,,. (2.22)

We can see that {Z,,, F,,n = 1,2,...} is a nonnegative submartingale. Applying
again the Doob-Meyer decomposition for Z,,, we have

Zn = Mn + An,

where M, is a martingale and A, is a predictable increasing process. From (2.10)
and (2.22), we obtain

n
A,=EZ +B Z G;. (2.23)
=2
By (2.8) and applying the Taylor expansion for log(1 4 z), we can give lower and
upper bounds for G;, so we obtain

Cin < A, < Csn, (2.24)

where C7 and Cy appropriate positive constants. Let B,, be the sum of the condi-
tional variances of Z,. In the following we give an upper bound for B,,:

n

B, =Y D*(Zi|Fi1) = Y B{(Z —E(Zi|Fi1))*|Fia} =

=2 =2

n

= Ean?E{(SZ— —E(SiFi—1))?|Fic1} < > GIE{(Si — Si1)?|Fi1} <

=2 =2

n
<@ <om (225

i=2
where C3 is a positive constant. Above we used that G; is F;_; measurable and
the fact that, at each step, at most one N-star can be born. Using (2.25), we

have By *log B, = O(A,). From (2.24), we can see that A, — co as n — 00, so
applying Proposition VII-2-4 of [6], we obtain

Zp ~ A, (2.26)
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almost surely as n — co.
Using (2.26) and (2.23), we have

K, Zn A, EZ 2
— ~Y 2.2
n G,n G’nn Gnn 22 (2.27)
almost surely.
Finally, from (2.4) and (2.18), we obtain
S(n,w) _ Snw) n ke _ s (2.28)

almost surely as n — oo. By using (2.28) for (2.15) and (2.17), we have the
recurrence of s,, (cf. (2.2)). Applying several times (2.2), we obtain

-1) -1 10 (w) (14 +
sw:slﬂ hli (w-1t LIl f). (2.29)
hi+ hH]1(J+ i) hr(w+l+3)
Since Zqouo:l sy = 1, the sequence si, o, ... is a proper discrete probability distri-
bution.
Now applying Stirling’s formula for (2.29), we obtain the power law distribution
(2.3). O

3. Numerical result

In this section we present a numerical result. The 4-star model was generated with
parameters p = 0.5, ¢ = 0.5 and r» = 0.5. We simulated n = 10° steps. To visualize
the power law distribution we used log-log scale. Figure 1 shows that the weight
distribution of 4-stars is indeed power law distribution.

4-stars | p=0.5 r=0.5 q=0.5 | step=10"5
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Figure 1: The weight distribution of 4-stars
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Abstract

Choosing the right programming environment has a great influence on the
efficiency of the educational, learning and problem solving processes. While
there are many good examples for such environments for the younger genera-
tion, which involve block-based programming, gamified learning, appropriate
language of the tasks and user interface design, introductory programming
courses in higher education rarely take into account the role of the program-
ming environment. In this article we have analyzed a typical problem solving
process in an introductory programming course with a special focus on the
programming environment. We have found that many distracting factors may
make the learning process difficult.

Based on our investigation we introduce a web-based programming en-
vironment which takes into account the special needs of newcomers to the
programming land. This environment tries to exclude the distracting factors
and support the problem solving process in a right way. Beside our method-
ological considerations, the technical background of supporting traditional
programming languages, such as C+-, in the web browser is also presented.
Finally we make methodological recommendations how this tool can be a
part of the teaching and learning process through different types of tasks and
learning organizing methods.

Keywords: web, teaching, programming, development environment, higher
education
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1. Introduction

Choosing the right programming environment has a great influence on the efficiency
of the educational, learning and problem solving processes. There are many good
examples for such environments mainly for the younger generation, taking into
account the specific needs of users of these ages. The user interface design is ap-
propriate: nice and colourful for the youngest ones, or comes in different thematic
flavours from toys, computer games or films (e.g. [1]) for teenagers. The task de-
scriptions are usually simple and straightforward according to age of the students.
The chosen programming language is mainly block-based (like [2]) for the intro-
ductory lessons, because it hides the syntactic difficulties behind the blocks, and
beginner students only have to deal with the semantic meanings of the blocks, and
how to place them one after another or inside to achieve the task. And finally, task
solving is often wrapped in a gamified clothes, making the learning process fun and
challenging (e.g. [3]).

Introductory programming courses in higher education, however, often consid-
ers novice programmer students, as if they have a lot of experience in handling
complex processes, but usually this is not the case, no matter how much this would
be expected. Treating them as “mature” programmers involves: using code-based
programming language from the very beginning, giving them mathematical prob-
lems to solve, and using professional or professional-like integrated development
environments (IDE), while students need to cope with the more essential mental
model of programming. It is hard for the students without any former programming
experience to take such big steps in many areas of the programming field. Curricu-
lum should pay attention to gradually introduce newer and newer topics, in order
to evenly distribute the cognitive load and thus make the knowledge processing
much more effective by students.

Programming, however, is not just coding, it is part of a more general task,
problem solving. Problem solving begins with the interpretation of the task de-
scription, continues with abstracting out and describing the data and their rela-
tions contained therein (specification), then it provides a solution as a sequence of
elementary steps in an abstract language (pseudo-code, algorithm), which is finally
implemented in the given or chosen programming language (coding). Problem solv-
ing, however, does not end with this latter step even in a narrower scope, as we
have to make sure that the program works correctly by testing it, and the detected
errors need to be corrected. For smaller programs and tasks, the problem solving
may end here. Introductory courses require such programming environments that
support both the basic steps and skills of problem solving and the coding phase at
the same time.

In this article first we analyse a typical problem solving process in an introduc-
tory programming course with a special focus on the programming environment.
After this and based on our investigation, we look for better alternatives than using
the traditional IDEs, and propose a programming environment which tries to meet
the required expectations.
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2. Analysing traditional programming environments

In this chapter a typical problem solving process will be analysed, assuming that
it takes place in an introductory programming lesson in higher education with
students with different preconceptions about programming and problems solving.
In order to serve this kind of heterogeneity, the course needs to introduce every
concept from the basics to build a systematic knowledge common for everyone.
Accordingly, the tasks are relatively small, even at the end of the course there are
no tasks that need to be disassembled into several files.

Let us review the problem solving process from the aspect of the tools and
development environments. The first step is to get to know the task. This can be
done verbally, written on a board, or projected to the wall. The task description
can be paper-based or digital. Digital material may be published on a general
website or in a dedicated task library. Its format can be any of the well-known
document formats (HTML, PDF, docx, etc.). Typically, the task description can
be accessed in a different software environment from the one where implementation
would take place.

The next two steps, specification and algorithm, are designed for planning. Plan-
ning is traditionally done on paper or on a board. As a new phenomenon, however,
it is increasingly common for students to write notes on their digital devices and,
on the one hand, they do not have an exercise book or pen, and on the other hand,
performing the above two design steps with traditional editors (e.g. text or image
editors) is a much larger task than doing it manually. Thus, students are prone
to skip this planning step more and more frequently. However, this article does
not want to address this issue. The message of this part of problem solving is that
planning considerations are implemented in a different environment or tool than
coding.

The spectacular and creative part of problem solving is the implementation
phase, when the plan (pseudo-code) turns into code. This step often occurs in a
development environment. These specific environments are chosen because they
contain all the whistles and bells needed for convenient development in the chosen
programming language, as opposed to a generic code editor, where setting up a
basic programming session is a time-consuming task and often the user interface
does not support simple usage scenarios.

Integrated Development Environments (IDEs) are prepared with tools for edit-
ing, compiling, and running certain types of programs (such as CodeBlocks, Visual
Studio, Netbeans). They are convenient to use and the default settings are often
sufficient. Their big disadvantage, however, is that they are designed to write much
more complex programs than an initial course needs. Usually a single file is enough
for solving a simpler task, but IDEs generally think in the concept of projects with
many files. Their interface is often very complicated, as they provide many func-
tionalities through menus, toolbars, panels, and settings. They give much more
than is needed, and this may distract the attention.

Another thing that can make the usage of any kind of desktop environment
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problematic is the installation process. Editors should be installed in classrooms,
and they need to be installed at home computers by the student. Desktop appli-
cations may have other dependencies, and they need to run on different operating
systems. This complexity may lead to errors.

One of the final steps after coding is testing (followed by detecting and correct-
ing errors), consisting of two steps: syntax and semantic checking. Syntax errors
are revealed during compilation: the error list usually appears in a separate panel,
and in better environments the error is indicated in the source code as well.

Semantic testing has two important parts: preparing the test cases and the
executing the tests. In worse scenarios test cases are announced only verbally, but in
better cases they are written to the board or to the exercise book. Testing is initially
made manually: the students enter the input data manually in the command line
window and monitor the response of the program. The command line usually
appears in a separate window independently of the developer environment. For
longer inputs, tests are written to a file, which are redirected to the standard input
of the running program. Creating these test files can be done in the development
environment or in another program. Redirection is often not possible in IDEs, so
testing requires the opening of a command line window, which adds complexity to
this step.

Development in a traditional environment is often supplemented with online
judging systems (e.g. [4, 5]), which verify the code objectively. These systems
usually contain only the task descriptions and the batched, automated verification
services, the development is still performed in separate IDEs.

Analysing this process, several problems can be identified in the relation of
programming environments and introductory courses, beginner students:

e IDEs are too general: they are general-purpose development environments,
and are not intended to support specific, methodologically-based problem
solving processes, which would be better for beginner students. They are
only focus on the implementation part of this process.

e IDEs can not guide the student, it is left for the teacher or the students
themselves.

e Other knowledges are also needed, e.g. using the command line, redirecting,
uploading and downloading files.

e Considering the available number of lessons per week, teaching the different
tools and the whole toolchain proportionally takes much more time than
teaching the essentials of problem solving, compared to their importance.

e If students come from a gamified environment, using professional IDEs is big
gap to leap through.

Looking at the number of supporting programs, the whole workflow is too com-
plex: in order to achieve their goals, students need to focus on eight different

sources of information on seven different platforms:

1. Task description (separate window)
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Design (board or exercise book)

Coding (IDE)

Compilation (IDE, separate panel)

Running (separate console)

Writing test files (separate window)

Testing with files (separate console)
Automated testing (separate web application)

e I e

Considering the heterogeneity of these introductory courses, mainly coming
from the previous knowledges of students, and the complex workflow that tra-
ditional programming environments provide, some demands can be formulated
against a programming environment:

e Support beginners: complex processes should be made easier or left out.

e Be specific for introductory courses: it is not needed to be prepared for
solving complex tasks. Introductory courses has simple tasks. Support these
and support them well.

e Support simple programs: programs consist of one file, they need to read
from standard input and write to standard output.

e Support the steps of task solving process: programming environment should
lead the students’ hand during the process, and should support all of the
important steps of task solving process.

e Support methodology: what is important methodologically, it should be sup-
ported by the environment, if it is possible.

e Support curriculum: be flexible enough to support different introductory
curriculum.

e User-friendly interface: ignore every distracting element from the user inter-
face.

e Monitor students’ performance: support monitoring of the progression, and
make room for further personalization (e.g. giving different tasks for different
students based on their results).

e Stand-alone usage, practice mode: the programming environment should be
used with or without the teacher’s direction.

e No installation: be platform-independent avoiding errors during installation.

3. Existing alternatives as solutions

Beside the traditional development environments there are other programming plat-
forms that can provide an alternative solution for the problematic aspects of in-
troductory programming courses introduced above. Every alternative environment
tries to operate with a simplified user interface, where all the necessary information
is available in the same program. It is common in every environment that they
are web-based which provides all the features that the web platform can bring:
ubiquity, no-installation set-up for the user, easier maintenance. Of course, these
environments are different according to their specific needs.
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The first group of these programming environments consists of the online learn-
ing platforms, like CodeAcademy [6] or Khan Academy [7]. They are designed to
be used alone without any external guidance; they proceed forward in small steps,
introducing small amount of new knowledge at one time. They are using textual
descriptions or video tutorials to introduce a topic, and an online editor with au-
tomatic tests for practising. It would be hard to use them in a certain curriculum
or in a lesson, and they do not support some parts of the task solving procedure,
like planning, manually testing and debugging.

The members of the second group are the online code editor environments, such
as CodingGround [8], Rextester [9], jDoodle [10], or Ideone [11]. They are web-
based IDEs, with single or multiple file support, and sometimes with a built-in
console (CodingGround). Usually standard input can be specified, and they give
back the result of the compilation and the text of the standard output. They try
to be general, so they can not support many of the demands that were formu-
lated against an introductory programming environment: there is no place to give
or collect task descriptions (or at least in comments), they do not support the
methodologically formed steps, they do not support testing. However, these envi-
ronments are great examples, that the development of command line applications
can be achieved in browsers with the help of the web-platform.

A variation of the latter group is the online programming contest platforms or
code training platforms such as CodeChef [12] or Codewars [13]. They are more
than the previous group in a sense that they provide task description, automated
tests for checking the solution, and sometimes manual tests can be given also. But
they are lack of flexibility, activity monitoring can not be fulfilled, and teachers
can not give their own tasks to the system. From this point of view they operate
as a combination of an online IDE and judge system.

The last group of alternative environments is consist of those online editors
which try to focus on educational problems. One of those web-based platform is
repl.it [14]. It started as an online IDE with a built-in console, but later it was
extended with some very useful educational tools, like classroom management,
creating assignments, automated tests, monitoring student activities, giving task
descriptions. These features are great and comes handy in certain situations, but
manual testing is missing among those features, and thus some methodology-based
requirements are not fulfilled.

4. The proposed programming environment

Our proposed programming environment tries to solve those issues which come from
the scattered nature of the traditional programming environments along with some
methodological considerations to help beginner students in learning programming.
The first version of our in-browser programming environment [15] eliminated the
distracting elements, pulled together the different type of tasks, except for the
planning phase, into one user interface, where the task description, the coding area,
the input and outputs of manual tests, and automatic tests took place. With these
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it kept the attention in one place, it supported the steps of the problem solving
process, and code editing had all the features a beginner needed in a comfortable,
user-friendly environment. One of the main features of the first version was that
it worked in an isolated environment without internet connection (offline). But
this latter feature was this environment main drawback: it narrowed the potential
programming languages into JavaScript and TypeScript (or, strictly speaking, any
language that can be compiled in the browser), it did not give any chance to monitor
students activities, only one user test could be given.

Learning from the drawbacks of the first version, the new version of the pro-
posed programming environment was rewritten from ground up around similar user
interface design principles, but with very different operations in the background.
The user interface of the new environment can be seen in Figure 1. It is divided
into two parts. Task description, manual and automatic tests are available in a
tabbed panel on the left, while an easy-to-use and feature-rich code editor fills
the right side of the browser window with the necessary buttons and informations.
The workflow is the following: students can choose among the available tasks in
the drop-down menu beside the logo; can read the task description; can make the
planning outside of the environment; can implement the solution in the code edi-
tor; can make multiple manual tests to determine the correctness of the solution
by themselves; can verify the solution with the help of automatic test prepared by
the teacher.

Progenv  Feladatok ~

Sajat tesztek Kod

Uj teszt |} Osszes futtatésa ® Hibapanel [ Szintaxisvizsgilsta Betiiméret: == mmm | Tesstelés
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Figure 1: The user interface of the proposed programming envi-
ronment

The heart of the application, the background mechanism was moved to server
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side, where far more opportunities are available. The new architecture can be seen
in Figure 2. Every operation that needs some language-specific feature (syntax
checking, compilation, testing) sends a request to a REST API (Representational
State Transfer Application Programming Interface) on the server side. Due to
security reasons compilation and execution needs to be run in a sandboxed envi-
ronment. The HTTP response contains the results of the requested operation, and
this information is displayed on the interface.

Server

Docker container

Syntax checking Running Automated tests

REST API

Browser

Editor

Figure 2: The schematic architecture of the proposed programming
environment

This version of the environment follows the concept of single-page applications.
The technologies that were used involves React, React-router, MobX, Monaco ed-
itor, Flexbox, Markdown on the client side, and node.js, express.js, Docker on the
server.

5. Discussion and summary

The main advantage of the proposed programming environment that it keeps the
problem solving process in focus (instead of the environment). It gains time both on
the students’ and the teacher’s side. With different tasks and monitoring it opens
up possibilities towards personalization and differentiated works. The web platform
makes it possible to get rid of the installation process, to learn independently
of time and place, and with sufficient automations it can offer off-class learning
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opportunities [16, 17].
The following type of tasks can be used in this environment:

e implementing a solution from scratch (or with minimal initial code);

e implementing one or more specific functions, the other part of the code is
written already;

e correcting errors in a pre-made, but wrong program; it develops code reading.

Summarizing, the proposed web-based programming environment can help the
learning processes of beginner students in an introductory programming course.
The environment is comfortable, has a non-distracting user interface, supports
methodology, workflow and curriculum, and its flexible, language-agnostic archi-
tecture opens up new way towards personalisation and user monitoring. In this
form it could support in-class and stand-alone usage as well.

There are many ideas for further development. User management is still miss-
ing, there should be pages where new tasks can be prepared, where task and user
assignment could be achieved. User activity monitoring and personalisation would
be great, and it could serve as a potential assignment platform as well. Debugging
is still an issue.
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Abstract

The TSP is the problem to find the shortest path in a graph visiting
every nodes exactly once and returning to the start node. Due to the high
complexity of TSP, there exists no algorithm for global exact optimization
with polynomial cost. In order to provide an acceptable solution for real
life problems, the TSP are usually solved with some heuristic optimization
problem. The paper proposes a multi layered optimization model, where
the node set is partitioned into clusters or into hierarchy of clusters. Based
on the test experiments the proposed method is superior to the single level
optimization method for both the TSP and MTSP problems.
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1. Introduction

The Traveling Salesman Problem (TSP) is one of the most intensively investigated
optimization problem in graph theory. The TSP is a problem to find the shortest
path in a graph visiting every nodes exactly once and returning to the start node
[5]. The solution path is a Hamiltonian cycle of the graph. The TSP is a NP-hard
problem [1], that means it is at least as hard as the hardest problems in NP.

The formal model of TSP can be given with the following linear programming
description:

e N: number of nodes in the graph
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e wu;: the position of the i-th city in the solution path

D: distance matrix; d;; is the weight of the edge from the i-th node to the
j-th node; the distance values are non-negative values

e X: adjacency matrix of the Hamilton cycle; x;; = 1 if there is a directed edge
in the path from the i-th node to the j-th node; otherwise x;; = 0

N N
the objective function of the path optimization is: Y > d;jz;; — min
i=1j=1

N
o every node has only one incoming edge: Vj (i # j) : > iy =1
i=1

N
e every node has only one outgoing edge: Vi (i # j) : > x5 =1
j=1

e there is only a single tour covering all cities: u; — u; + Nx;j; < N — 1.

In the case of multi-salesman traveling (MTSP) problem more than one cycles
should be generated ( each salesman has a separate cycle) and each node is visited
only by one salesman. For MTSP, the formal model should be extended with the
following elements:

e M : number of salesmen

e constraints on the depo node (start and stop):

N

N
;0 22\47 Z.’on =M.
j=1

=1

Due to the high complexity of TSP, there exists no algorithm for global exact
optimization with polynomial cost. For example, the Held-Karp algorithm solves
the problem in O(n?2") complexity. In order to provide an acceptable solution
for real life problems, the TSP is usually solved with some heuristic optimization
method.

From the family of popular evolutionary algorithms, the following methods are
used most widely to find the good approximation of the optimal Hamiltonian cycle:

e Genetic algorithm [6]: the parameter vectors are optimized using the selec-
tion, crossover and mutation operators;

e Particle swarm optimization [7]: more agents are generated which move ran-
domly but the optimum found by them is reinforced by other members of the
colony;

e Ant Colony Optimization [8]: more agents are generated which collaborate
with their environment;

e Tabu search [9]: the local search phase is extended with prohibitions (tabu)
rules to avoid unuseful position testings.
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Considering the standard heuristic algorithms, we can highlight the following
methods:

e Nearest neighbor algorithm [10]: it selects the nearest unvisited node as the
next station of the route;

e Pairwise exchange of edges [10]: two disjoint edges are removed from the
route and two new edges are involved into the route to reduce the total cost.

In our investigation, we have focused on the most widely used method, the
application of Genetic Algorithm.

2. Solving TSP using Genetic Algorithm

In Genetic Algorithm, the chromosomes or individuals are the basic building blocks
in search state representation. In the TSP problem, a state of the search space
corresponds to a route in the graph, i.e. to a permutation of the nodes. In our
implementation, the permutation is given with the sequence of node indexes in
order of traversing. Thus the route (ni,n4,n3, n5,n2) is given with the sequence
(1,4,3,5,2).

In the case of MTSP problem, the chromosome should represent the description
of every cycles. There are four main representation forms for genotypes in the
MSTP problem [11]:

e One chromosome technique (a special gene is used to separate the different
cycle sections);

e Two chromosome technique: one chromosome is used for the description of
the linked cycles, while the second contains the sections for the different
agents;

e Multi chromosome technique: each agent has a specific chromosome to de-
scribe its route; the different chromosomes should be synchronized;

e Two-part chromosome technique: the chromosomes contain two parts. The
first part is the linked list of the separate cycles, while the second part contains
the cycle length values for the separate agents. For example, the chromosome
((1,5,6,2,3,4)(4,2)) describe the following graph routes:
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Figure 1

The implemented program applies the two-part chromosome technique to solve
the MTSP problem. Regarding the genetic operators, the mutation of the route
segment is performed with a swap operation. For example, the (1,5, 6,2, 3,4) route
is modified to (1,5,6,4,3,2). In the case of two-part chromosome technique, the
two segments are altered separately. In the agent segmentation part, the muta-
tion is executed with selection of two positions where one of the values will be
increased and the other will be decreased by one. For example, a mutation of
((1,5,6,2,3,4)(4,2)) can be given with ((1, 3,6,2,5,4)(3, 3)). For the crossover op-
eration, the partially matched crossover method was implemented. In this method,
some gene pairs are selected for substitution and the corresponding gene values are
replaced with their substitution values. In the case of MTSP, only the route cycle
part is altered with the crossover operation.

In our analysis, the base TSP and MTSP algorithms using genetic algorithms
are used as baseline algorithms to be compared with the algorithm using node
clustering.

3. Clustering Methods in Optimization

In the optimal route of the TSP, the edges usually connect the nearest nodes to
each others. It would have no sense to make big jumps over and back among the
nodes. This kind of behavior induces the heuristic rule of locality: near nodes in the
route are near in the route graph too. Based on this heuristic assumption, it seems
reasonable to group the near nodes into clusters and to perform a hierarchical
optimization. There is a within-cluster optimization to determine the optimal
route within the cluster and there is an intra-cluster optimization to determine
the optimal path among the clusters. This approach implements the widely used
divide and conquer concept, the problem of big complexity will be split into several
subproblems of lower complexity.

In the literature, a big variety of clustering methods can be found. Most of the
methods belong to the category of distance-based (discriminative) clustering [8]
,where the similarity between the objects are determined first and then the groups
of similar objects are constructed. The main benefit of the distance-based methods
is the simplicity and the descriptive power of the corresponding algorithm. In the
case of model based clustering / generative clustering [7] approaches, a model type
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is specified a priori. A set of probabilistic generative models are defined, where each
model corresponds to a group. The model for the cluster indexed by ¢ is given with
a parameter set \;. The method of expectation maximization is used to determine
the assignments between the objects and clusters.

From another orthogonal viewpoint, the clustering methods can be categorized
as hierarchical and partitional clustering. In the case of hierarchical method [12], a
hierarchy of partitions are generated. At the top level, all objects are assigned to a
single top-cluster, while the leaf nodes corresponds to the objects as singleton clus-
ters. The most widely used hierarchical clustering method is the HAC [13] method,
which uses an agglomerative clustering [14] algorithm, where existing groups are
merged with similar objects / groups into new extended groups.

The partitional clustering [14] methods partition the objects into groups based
on some optimization criteria. The objects are usually re-assigned from one group
to some other group during the learning process. The k-means [15] clustering
uses this partitional approach where clusters are represented by the centroids of
the cluster members. This k-means method is the dominant method on the field
of cluster analysis and also we have implemented this clustering as the baseline
method in our investigation.

The input of the k-means method is the object set in a vector space and the
initial set of the cluster centroids. The number of the required clusters and the
initial positions of the centroids should be given as input parameters. The goal of
the algorithm is to optimize the intra-cluster distances, i.e. the within-cluster sum
of squares :

SSE = i > d*(z,e;)

i=1xeC;

In the formula, C; denotes the i-th cluster with the centroid ¢;. For the evalu-
ation of the clustering, we have used the Silhouette measure [16]:
— __bk—
Sk = 'rna;(azl,cbk)
where
ay: the average distance of xj to objects in cluster Cj
by: the average distance of xj to objects in nearest cluster different from Cj.

4. Solving TSP using Clustered Vertices

In the literature, there are only few publications on application of clustering in TSP
problems. In [2], the k-means clustering technique is implemented in the proposed
two-levels optimization system. The work analyzes only the one-salesman problem
and does not discuss the method of the intra-cluster optimization level. Only the
one traveling salesman problem is investigated also in the work [4], where the HAC
clustering method was applied. The publication [3] proposes a solution for the
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multi salesmen TSP domain. First the clusters of the nodes are generated and
then each cluster is assigned to a single salesman.

In our investigation, which uses the k-means clustering method, we have ex-
tended the existing approaches with three novel elements:

e introduction of tree and multi level optimization
e adaption of k-means clustering to the MSTP problems.
e optimal selection of the k£ value

The three level optimization means that a hierarchy of k-means clustering is
built up on the node set. In the single level clustering, the number of the nodes
within a cluster was usually too high, thus the applied genetic algorithm could
not achieve a good result. In order to reduce the complexity of the input data
for within cluster TSP, the generated clusters can be clustered into subclusters in
order to use the genetic algorithm with smaller node sets.

The multi level optimization can be used also for solving the MSTP problems.
In this case, the top level corresponds to the salesmen, the number of clusters is
equal to the number of salesmen. The resulted clusters can be sub-clustered into
smaller sets for the genetic algorithm to solve the separate TSP problems.

The desktop test program was developed in Java and it uses the WEKA API
to perform the clustering operations.

5. Test Results

We have performed several tests for both the TSP and MTSP problems with clus-
tering and without clustering. The parameter ranges and of the test runs is given
in Table 1 .

TSP MTSP TSP with | TSP with MTSP with
no no 2-level 3-level 2-level
clustering | clustering | clustering | clustering clustering

mumber of 165000 | 101000 | 10-1000 | 10-1000 10-1000

nodes
number of |y g 1000 1000 1000 1000
iterations

size of 100 100 100 100 100
population

Table 1: The parameter range of the tests

Regarding the efficiency of the different methods, Table 2 summarizes the qual-
ity of the optimization (length of the shortest path found by the algorithm). It
can be seen that the application of the clustering module improves significantly the
efficiency of the optimization process.
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TSP TSP with | TSP with MTSP MTSP with
number of

no 2-level 3-level no 2-level

nodes . . . . .

clustering | clustering | clustering | clustering clustering

50 763 523 550 1328 1043
200 4358 1106 1202 6473 2385
400 10938 1647 1791 16820 4177
1000 36156 5801 3528 41052 6097

Table 2: The length of the local optimum route

The time costs of the different optimization process is shown in Table 3 .

TSP TSP with | TSP with MTSP MTSP with
number of

no 2-level 3-level no 2-level

nodes . . - . .

clustering | clustering | clustering | clustering clustering

50 5.9472 5.4596 9.2239 3.1367 6.2551
200 50.6509 20.6353 25.492 46.3972 21.1015
400 90.4167 4.384 6.1536 66.3395 4.6927
1000 729.451 12.1869 12.7243 555.1245 11.3891

Table 3: The run time of optimization process (sec)

The Figure 2 shows the generated routes for a sample MSTP problem with
a single source and destination node. In Figure 3 and Figure 4, the two main
clustering methods are compared from the viewpoint of clustering efficiency. Our
experiences show that both methods have the same efficiency, they can provide
very similar results. Regarding the optimal route length, the average distance is
about 4%. The two clustering methods show a larger difference from the viewpoint
of execution costs. Here, the k-means methods provides a faster execution than
the HAC method.

Klaszterezett MTSP

Figure 2: Optimum route of a sample MTSP problem
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Figure 3: Optimum route with the different clustering methods
(N = 1000)

Execution cost
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Figure 4: Execution cost of the route optimization (N = 1000)

6. Conclusion

For TSP problems with high number of nodes, the multi layered optimization is
superior to the single level optimization. In the proposed multi layered optimiza-
tion, the node set is partitioned into clusters or into hierarchy of clusters. The top
cluster covers the whole input domain. For each cluster, a separate within cluster
optimization is performed and then the local, cluster-level routes are merged into
a global route. Based on the test experiments the proposed method is superior to
the single level optimization method for both the TSP and MTSP problems.
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Abstract

Deallocation of dynamically allocated memory belongs to the responsibil-
ity of programmers in the C and C++ programming languages. However,
compilers do not support the work of the programmers with error or warning
diagnostics. Thus the result of this behaviour can be memory leak. Programs’
memory consumption may be unreasonably big and even the operating sys-
tem can be too slow because of the swapping.

We present some different scenarios when memory leak occurs. We show
the root cause of the scenarios. This paper presents existing tools for de-
tecting or avoiding memory leak. These tools work in different ways. We
analyze the smart pointers of C++11 standard, Valgrind that is a run-time
heap profiler, Hans Boehm’s garbage collector and the Clang Static Analyzer.
We present the pros and cons of the tools. We analyse how difficult it to use
these tools, how the efficiency is affected and how these tools can be enhanced
for overcome unwanted memory leak. We present our proposals to make the
tools more effective.

Keywords: C++, smart pointers, memory leak, garbage collection

MSC: 68N15 Programming languages

1. Introduction

Memory leak can occur in programs written in C/C++ because the deallocation
task of dynamically allocated heap memory belongs to the programmers. There is
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no compiler support for this task and no background job for automatic deallocation.
There are pros and cons of this approach. It can be also a problem that memory
management of C and C+- is not the same. Programmers use malloc and free in
C programs, but in C++ new and delete is used typically. However, C’s constructs
are available in C+-, as well. These constructs do not just syntactically differ but
have different semantics, so it can be problem if one mixes them up in the source
code. However, new and delete also have versions for one object and for arrays
that should not be mixed [2].

However, C++ is an ever evolving language that has been upgraded with new
language constructs and new standard libraries in the last years [10]. Furthermore,
a bunch of new subtle tools (e.g. static analysers) become available for better
development. In this paper we analyse how the modern tools help us bypassing
memory leaks. We deal with Valgrind framework that finds memory leak at run-
time, and Clang Static Analyzer that is a modern, continuously improving static
analyser. We present the C++11’s standard smart pointers and the non-standard,
but well-known Boehm garbage collector. We analyse what are pros and cons of
these constructs.

This paper is organized as follows. We present the tools that are evaluated in
this paper in section 2. We present some of our examples that cause memory leak
in section 3. We have a large number of test cases to evaluate the tools. We analyse
the tools based on the examples and other aspects in section 4. Finally, this paper
concludes in section 5.

2. Tools

In this section we present tools that help us overcome memory leaks. The tools
work in different ways. We distinguish these tools if they prevent or detect memory
leaks.

2.1. Valgrind and Memcheck

Valgrind is a widely-used framework that is able to execute the code with many
special validation features and gaining profiling information [7]. This tool executes
the code in special “mocked” environment, so the code is untouched, and compiled,
linked as usually [8]. However, this safe runtime execution has large overhead, so
it cannot be used in production.

Valgrind is a comprehensive tool for detecting problems at runtime, but its
primary aim is memory leak detection. It distinguishes different memory leak

types:

e Definitely lost: no pointer points to the allocation when the program termi-
nates

e Indirectly lost: no pointer points to that space which were able to access and
deallocates the current allocation (e.g. if a root element of a binary tree is
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definitely lost than every other nodes in the tree is indirectly lost).
e Still reachable: there is at least one pointer that points to the allocation

e Possibly lost: there is at least one pointer that points to the allocation but
it is not exactly the same address that the new or malloc returns.

2.2. Clang Static Analyzer

Clang is a compiler infrastructure that is based on LLVM [5]. It has many related
tools. Clang Static Analyzer uses static analysis and symbolic execution to detect
different problems in the code [4]. It can realize divison-by-zero problems, using of
uninitialized variables based by examining the source code. As a static analyser it
does not execute the code.

The Clang Static Analyzer has three checkers that aim at detecting memory
leaks in the source code:

e unix.MismatchedDeallocator — searches for incorrect deallocation, when
new/delete and malloc/free are used together.

e unix.Malloc — searches for incorrect malloc allocated heap usage (e.g. dou-
ble free, memory leak, etc.)

e alpha.cplusplus.NewDeleteLeaks — finds memory leak when the memory
is allocated with new.

2.3. Boehm Garbage Collector

Many programming languages use garbage collector to ensure the minimalization
of memory leak. C/C+-+ does not offer standard garbage collection (C++11 in-
troduces a minimal ABI [1]). The Boehm garbage collector is able to work in C
and C-++ programs. It keeps track all variables in the program to check when it
can safely execute the deallocation in the background. It uses a modified mark-
and-sweep algorithm [3]. It has different interfaces for C and C++-like memory
management.

2.4. Smart pointers

The standard smart pointers are able to deallocate memory when the smart pointer
objects go out of scope. Smart pointers take advantage of the C++ template con-
struct, so they are independent of the type of the managed memory. C++ template
construction is very important feature regarding the performance. Effectiveness of
C-++ template constructs is still evaluated. The basic operations of smart pointers
are those of the raw pointers but smart pointers offer some convenience meth-
ods. Different standard smart pointer types are available. However, dealing with
memory usage optimization in concurrent execution is still problematic.
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The smart pointers are based on the RAII (resource acquisition is initializa-
tion) principle: constructors and destructors are automatically executed in a well-
defined moment [6]. Invocation of these operations is based on the smart pointer
objects lifetime. The major standard smart pointers are std::unique_ptr<T>,
std: :shared_ptr<T> and std: :weak_ptr<T>.

3. Examples

In this section we define examples that are used for evaluation. We have about
sixteen use cases. In this section we present some of these. We have analysed how
we can modify the examples for garbage collection or smart pointers.

The very first example is a simple one:

int main()
{
int * p = new int;

}

Valgrind and Clang Static Analyzer detect the memory leak. However, a min-
imal modification presents the strong limitation of static analysis. If the memory
allocation is executed in a function in a different compilation unit then the static
analyser does not detect it. This modification does not affect Valgrind because
Valgrind works at runtime and does not mind compilation units.

This example can be modified using a smart pointer to avoid memory leak:

#include <memory>

int main()
{
std: :unique_ptr<int> p(new int);

}

This example can be modified using garbage collector as well. This GC takes
advantage of the fact that operator new can be overloaded:

#include "./gc_cpp.h"

int main(Q)
{

int * p = new(UseGC) int;
}

The following example presents the differences between C and C++ memory
routines:
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#include <cstdlib>

class Vec
{
public:
Vec() {3}
“Vec() { deletel] p; }
void init(int i) { p = new int[i]; }

private:
int * p;

};

int main()

{
Vec * vec_pointer_new = new Vec;
vec_pointer_new->init(5);
delete vec_pointer_new; // no memory leak
Vec * vec_pointer_malloc = (Vec*)malloc(sizeof (Vec));
vec_pointer_malloc->init(5);
free(vec_pointer_malloc); // memory leak

}

The malloc and free is responsible only for the memory management and
cannot deal with C++’s constructs like constructor and destructor. The new and
delete related to objects’ lifetime, so these constructs call constructor and de-
structor, respectively. This can result in memory leak. Valgrind can detect this
leak, but Clang Static Analyser does not report it.

One can think that memory leak obviously can be avoided with the help of
smart pointers, but it is not true actually:

#include <cstdlib>
#include <memory>

int main()
{

int * p = (int*)malloc(sizeof (int));

std::unique_ptr<int> u_p(p); // mismatched malloc()/delete
}

However, smart pointers offer possibility to pass custom deallocation code snip-
pet but it is not enforced. This problem can be realized at runtime with Valgrind,
but cannot be realized with Clang Static Analyser. The major problem is that the
C-++ standard does not offer functor for free. One can develop it, but there is
no standard approach for this scenario. On the other hand, functors have other
difficulties [9)].



48 D. Papp, N. Pataki

Static analysers have an important advantage. These tools do not deal with
runtime parameters and are able to check every execution paths. Let us consider
the following code snippet:

#include <cstdlib>
#include <iostream>

int main()
{

int * p = new int;

int input;
std::cin >> input;

switch(input)

{

case 0: // do something
break;

default: // do something else
delete p; break;

}
} // memory leak if input==0

This potential memory leak is not guaranteed to be checked with Valgrind, but
can be detected with Clang Static Analyzer because it does not deal with execution.

4. Evaluation

We have analysed the tools based on the extended set of test cases that we presented
in the previous section. The tests revealed the following results:

e Valgrind detects most of the memory leaks in the examples. If the leak is
occured on the execution the tool was able to find it. One of the major prob-
lems with Valgrind that complex applications are difficult from the viewpoint
of execution.

e Clang Static Analyzer finds less memory leak than Valgrind. The major
problem is related to cross-translation units and destructor calls. However,
this approach does not mind execution paths.

e All memory leaks can be overcome with the garbage collector.

e Smart pointers do a good work in most cases but there are some use cases
when smart pointers can also be used erroneously.

After the test cases, we have evaluated the tools based on the following charac-
teristics as well:
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e Setup — How difficult is to start the work with this tool

e Documentation — How detailed, well-structured the documentation of the tool
is

e Portability — Which platforms can be used

e Further improvements — Is it a mature tool or is it a continuously improving
one

e Appreciation — Is it a widespread tool
e Runtime overhead — How the tool affects the runtime

e Memory consumption overhead — How the tool affects the memory consump-
tion

e Compilation time overhead — How the tool affects the compilation time
e False positives — Does the tool report a problem that is not problem actually

e Green field projects or code legacies — Does the tool support big code legacies
or is it useful for new projects

e C or C++ support - How the tool is affected by C or C+-+ code
Our experiences based on the previous characteristics:

e Valgrind is an honored, well-known, widely-used tool. (For instance, dur-
ing the development of Mozilla Firefox, OpenOffice, MySQL, NASA Mars
Exploration Rover, Blender and CMake Valgrind has been used [11].) Tt is
a mature tool, but there are limitations in portability. It does not affect
the compilation time, but has overhead, so it cannot be used in production
environment. It supports C and C+-+, as well.

e Clang Static Analyser does not affect the runtime circumstances, but the
usage can take long time and has a rather big memory consumption. The
documentation is not perfect. It can report false positives. It can be used
with C and C++ code, as well. It can be used with code legacies.

e Boehm GC is not a well-documented one, it is hard to set up. It is difficult
to use with code legacies. The garbage collector cannot be a standardized
one, the community does not support it.

e Smart pointers: well-documented, portable because of the standard. Smart
pointers increase the productivity but they cannot work together with pure

C.
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5. Conclusion

The memory management can be still problematic in C and C++ code. However,
there are many tools that can help the programmers to avoid memory leak. We pre-
sented some tools for avoiding or detecting memory leaks: static analyser, runtime
validation, smart pointers and a garbage collector. We defined a set of test cases to
evaluate these tools. After this, we defined other aspects to evaluate and measure
the tools’ convenience. Based on these we have a comprehensive evaluation of these
tools.
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Abstract

“The transparent cup” is the title of pictures which show an interesting
phenomenon: The circular boundary ¢ of the depicted plate appears as an
ellipse which seems to coincide with the view of the reflection of ¢ in the
coffee-cup. Is this just by chance or is there a geometric theory behind?

In one example the circle ¢ is the focal circle of the reflecting one-sheet
hyperboloid, and for this particular case the displayed phenomen is a con-
sequence of focal properties of quadratic surfaces. The tangent cones drawn
from a fixed point P to a family of confocal quadrics are confocal and have
therefore coinciding axes. These axes are the surface normals to the par-
ticular quadrics passing through P. Also the cones connecting P with the
focal conics are included in the considered set of confocal cones. Therefore,
all focal conics share the property: In each perspective, the images of these
curves and their reflections belong to the same conic.

The goal of the paper is to highlight the geometric background, i.e., to
focus on confocal conics and their spatial counterparts.
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1. Reflection in conics and vertical cylinders

The stimulus for this article is a photograph showing a coffee-cup, which is made
of ceramics and stands on a plate'. The cup looks transparent since the circular
boundary of the plate is completely visible, even its section behind the cup. This
apparent transparency is caused by the reflection in the cup: The mirror of the
plate’s visible boundary appears as an exact continuation of itself. Similar effects
can be seen in Figure 1. Is this incidental, or is there a theory behind?

Figure 1: Why does the bounding circle of the plate continue in
the reflection? (By courtesy of Kuno KNOBL [4])

Just to fix the terminology, we emphasize that under ‘reflection’ in a conic or
quadric we understand the physical reflection and not the projective inversion in
a quadric?. We study the physical reflection in its geometric idealization, which
is defined as a transformation applied, in general, to non-directed lines [ in the
following way: at each point P of intersection with the mirror R, i.e., the reflecting
curve or surface, the line [ is reflected in the tangent plane 7p or the normal line
np to R at P.3 The line | can have more than one point of intersection with R
and hence more than one image. Note that each tangent line at P to R remains
fixed.

To begin with, we recall the optical property of conics (see Figure 2, left).
The reflection in an ellipse transforms rays emanating from one focus onto rays
passing through the other focus. The same holds for hyperbolas when we ignore
the orientation of the line. And finally, this optical property is also valid for each
parabola when the ideal point of its axis is accepted as the second focus. Since
the tangents drawn from a point X to an ellipse share the angle bisectors with the
pair of lines connecting X with the focal points [1, p. 42|, we can formulate a more
general optical property (see Figure 2, right).

1See http://imgur.com/N10ESE1, retrieved April 2017.

2The latter is also known under the name ‘projective inversion’; it is a rational transformation
where corresponding points are conjugate with respect to (‘w.r.t.”; in brief) a given quadric and
collinear with a given center.

3In the two-dimensional case, the reflection in any smooth curve preserves the density dp A de
of oriented lines (satisfying x cos ¢ + ysin ¢ = p). For further details note |3, p. 6].
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Figure 3: Closed billiards with three or five reflections in an ellipse

Theorem 1.1. If any ray is reflected in a conic c then the incoming and the
outgoing ray are tangent to the same conic ¢y being confocal with c.

We recall that two conics are called confocal if they share the focal points. If in
the family of confocal ellipses the minor semi-axis tends to zero the ellipse degener-
ates into the segment bounded by the two foci. This reveals that the statement of
Theorem 1.1 includes the original optical property, too. Analogous degenerations
show up as limits of confocal hyperbolas or parabolas.

Iterated reflections of any ray produce billiards. Due to Theorem 1.1, billiards
in an ellipse ¢ are always circumscribed to another ellipse ¢y being confocal with
c. If one billiard inscribed in ¢ and circumscribed to c¢g closes after n reflections
then all these billiards close, independently of the choice of the initial point on ¢
(Figure 3). This is a well known example of a Poncelet porism [1, p. 429]. All
these closed billiards have even the same length, due to Graves’ theorem (see [3] or
[9] with much more details on billiards and reflections). By the same token, similar
properties hold for billiards between two confocal ellipses (Figure 4).

We continue with a rather popular case of a reflection which is often used for
producing anamorphoses [5]: Let a right cylinder R in vertical position be the
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reflector. As illustrated in Figure 5, if observed from the center C, a point @ of
the horizontal ground plane is visible at P € R. We call P an reflected image
of @ in R w.r.t. the center C. The surface normal np to the cylinder at P is
horizontal. Therefore the two segments PQ and PC' of the reflected ray have the
same inclination, and np is the interior angle bisector of ZQPC, also, when seen
in the top view.

As a consequence, for given center C' and point @, a reflected image P € R has
its top view P’ on a strophoid, a curve of degree 3 [7]. This is the locus of points X
in the ground plane such that a bisector of the angle QX C’ passes through a given
center M, which in our case coincides with the top view of the axis of R (Figure 6).
Obviously, there is a second point of intersection between the strophoid and the
cylinder R such that the interior angle bisector of ZQP'C’ passes through M’.
This shows that point @ can (theoretically) have two reflected images P, P € R;
the second one P lies on the back wall.

Figure 7 shows also the trajectory q of @@ when a reflected image P on R runs
along the horizontal circle p C R. These trajectories are circular only in two
particular cases: Either P € R lies in the ground plane or P has exactly half of the
height of C' over the ground plane. Otherwise, the trajectories are Pascal limagons.

This can be proved as follows (see Figure 7, left): The reflection at P € R acts
like the reflection in the surface normal np and maps the line PC onto the line
PQ. If P has the height z over the ground plane, then the reflection in np maps @
onto a point P» in the height 2z on the line PC . Let P run with angular velocity
w along the parallel circle p C R. Then the intersection point P, of CP with the
plane in the height 2z runs with the same angular velocity w on a horizontal circle
p2 with center My on the cone connecting p with C.

In the top view we obtain @’ when Pj € p) is reflected in n/5, which rotates with
angular velocity w about M’. This shows that the trajectory ¢ of ) is traced when
a first bar M’'M) rotates about M’ with angular velocity 2w while a second bar

Figure 4: Closed billiards between confocal ellipses (20 reflections)
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Figure 5: Reflection in a right cylinder R: point @ in the ground
plane and a reflected image P (by courtesy of Georg GLAESER)

MQf rotates with the (absolute) velocity w. A dyad M’'M}Q{ moving this way
generates as path of its endpoint a particular trochoid, namely a Pascal limacon ¢’
[10, p. 155], provided that no moving bar has length zero.

2. Confocal quadrics

The word ‘quadric’ stands now for regular surfaces of degree 2, i.e., for those of full
rank 4. Of course, surfaces of degree 2 can also be cylinders or cones (rank 3), pairs
of planes (rank 2), or double-counted planes (rank 1). In the projective setting,
when cones of degree 2 are regarded as sets of tangent planes, they are dual to
conics.

Definition 2.1. Two quadrics are called confocal if they have common axes and
they intersect each plane of symmetry along confocal conics.
Let £ be a tri-axial ellipsoid with semiaxes a, b and ¢ in standard position.
Then the one-parameter set of quadrics being confocal with £ is given as
22 Y2 52
+ +
a?+k 2+k  E+Ek

=1 for keR\{-a? —b* —c*}. (2.1)

In the case a > b > ¢ > 0 this family includes (see Figure 8)

—c? <k <oo tri-axial ellipsoids &,
for —b% <k < —c? one-sheet hyperboloids H,
—a? < k < —b? two-sheet hyperboloids Hs.

Their intersections with the plane z = 0 share the focal points (£va? — b2, 0, 0).
In y = 0 the common foci are (£va? — ¢2, 0, 0), and in z = 0 (0, +vb? — ¢2, 0).
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CN

Figure 6: For a given center C' and point @ ) in the ground plane
the top views of the reflected images P and P lie on a strophoid

C//

Figure 7: Parallel circles p on R are the reflected images of Pascal
limagons ¢ in the ground plane
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Figure 8: Confocal quadrics intersect mutually along their curva-
ture lines (by courtesy of Boris ODEHNAL)

As limits for k — —c? and k — —b? we obtain ‘flat’ quadrics, i.e., the

‘ 2 Y2
the focal ellipse f.: o + Pk 1, z=

the focal hyperbola  f: T p_a2 1, y=

These two conics form a pair of focal conics: each is the locus of apices of right
cones passing through the other conic [1, p. 137ff]. As a member of the confocal
family, the two focal conics have to be seen as sets of tangent planes. Then they
are rank 3 quadrics. According to this interpretation, all lines in space which meet
any focal conic f in at least one point, are tangent lines of f. When below we speak
of a proper tangent line, then we mean an ordinary tangent of the plane curve f.

The quadrics being confocal with an elliptic paraboloid P, can be represented
as ) )
€z Y

PR CR

a*+k  b*+k

In the case a > b > 0 this one-parameter set includes

~22—k=0 for keR\{-a? -b’}. (2.2)

—b?<k<oo or k< —a? elliptic paraboloids P,,

f
o —a? <k < —b? hyperbolic paraboloids P,.
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For all k, the vertices of the paraboloids have the coordinates (0,0, —k/2). Point
(0,0,b%/2) is the common focal point of the principal sections in the plane x = 0,
and (0,0,a%/2) is the analogue for the sections with y = 0.

i Ph

Figure 9: A hyperbolic paraboloid Pj together with its focal
parabolas f1 and f2 (by courtesy of Georg GLAESER)

The limits for k — —a? or k — —b? define the pair of focal parabolas

y2

a2 — b2

2

a2 — b2

—224b=0, y=0,
+224+a*>=0, =0

within the confocal family (Figure 9). For this pair of parabolas (compare with [1,

Fig. 4.15] holds the same as mentioned above for an ellipse and its focal hyperbola.
For the sake of brevity, we ignore here the special cases of confocal quadrics of

revolution. However, we recall that confocal quadratic cones can be given as

$2 y2 Z2

= 2 2 2
a2+k+b2+k_02_k—0v keR\{-a” 0% c}. (2.3)

Their intersections with the unit sphere result in confocal spherical conics. If
a > b > 0 then for k > ¢ and k < —a? the cones do not contain real points other
than the origin. The ‘flat’ limit for £ — —b? is a sector bounded by the lines

x z
\/&2 — 12 \/b2 + c2

in the plane y = 0. These lines g1, g2 are called focal lines or focal azes of the cones,
since they pass through the focal points of the corresponding spherical conics [1,
p. 436ff]. The optical property, as shown in Figure 2, left, is also valid for spherical

=0 (2.4)
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conics. Therefore the reflection in a quadratic cone transforms planes through one
focal axis g1 into planes through the other axis gs.

In the case ¢ = b we obtain confocal cones of revolution. Their focal axes
coincide in the common axis of revolution.

Theorem 2.2. In dual setting, confocal quadrics form a one-parametric linear
system (range) of quadrics sharing the isotropic tangent planes. Hence, the range
includes the absolute conic as a rank-3 dual quadric.

Similarily, confocal quadratic cones form a range, which includes the isotropic cone
with the same apex. Since pairs of isotropic tangent planes of a quadratic cone
intersect along a focal axis, confocal cones have common focal axes.

Proof. In order to obtain the tangential equations, we note that the plane satisfying
ug + urT + ugy + uszz =0
is tangent to any surface of the confocal family (2.1) if and only if
(—ud + a®u? + b*u3 + 2u3) + k(uf +uj +u3) = 0.

This is a linear combination of the homogeneous dual equation of £ and that of
the set of isotropic planes. The homogeneous dual equations of confocal parabolas
satisfying (2.2) have a similar form, namely

(a®u? + b*u3 — 2uguz) + k(ui + u3 +u3) = 0.
Finally, the dual equations of confocal cones, as given in (2.3), are
up =0, (a*u? 4+ b*ud — ul) + k(u? +ud +u2) =0,

and they show again a range, spanned by the given cone (k = 0) and the isotropic
cone with their common apex at the origin. O

Theorem 2.3. The cones or cylinders drawn from any finite or ideal point P
tangent to the quadrics of a confocal family or connecting P with one of the included
focal conics are confocal. For finite P, the common and mutually orthogonal planes
of symmetry of these confocal cones are tangent to one of the three quadrics passing
through P.

Proof. The considered tangent cones share all isotropic planes which are common
to the confocal quadrics and pass through P. Hence, the cones are confocal, too.
This is a classical result attributed to C. G. J. JACOBI 1834 [8, p. 204] and a special
case of a theorem concerning ranges of surfaces of degree 2.

The tangent cone from P to a quadric Q splits into pencils of planes with two
real or complex conjugate axes if and only if Q passes through P. Then the two
axes are generators of @ and span the tangent plane at P. On the other hand, the
planes spanned by the axes of singular cones are the common planes of symmetry of
the confocal cones. This confirms that confocal quadrics form a triply-orthogonal
system of surfaces. O
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Let a tangent line [ of a quadric Qg pass through any point P on the quadric Q
being confocal with Qg. Then, by virtue of Theorem 2.3, the reflection of [ at P in
Q is again tangent to Qy, since the tangent plane 7p to Q is a plane of symmetry
of the cone of tangents drawn from P to Q. Thus we obtain the spatial analogue
of Theorem 1.1.

Corollary 2.4. Let Q and Qg be two different quadrics in a confocal family. Then
the reflection in Q maps the line complez of tangents of Qqy onto itself. In particular,
the complex of lines meeting any focal conic f of Q remains fized.

We only report that, in general, a given line contacts two surfaces of a confocal
family, and the tangent planes at the respective points of contact are orthogonal
(see, e.g., [9, p. 65]). This can be concluded from the spatial version of the De-
sargues involution theorem. However, there are exceptions, called focal azes |8,
pp. 205-206]: Such a line [ has the property that the isotropic planes through I are
tangent to any quadric and therefore to all confocal quadrics.

Lemma 2.5. Fach focal axis | of a quadric Q is either a generator of a ruled
quadric confocal with Q@ or a proper tangent of a focal conic of Q. At each point
P €, the focal axis | of Q is also a focal axis of the cone drawn from P tangent
to @ or to any other confocal quadric.

Proof. Each plane through a generator [ of a ruled quadric is tangent to this quadric
at a particular point of [. Therefore also the isotropic planes through [ touch the
quadric.

The tangent cone or cylinder with apex P comprises all tangent planes of @ which

Figure 10: The perspective of the focal hyperbola coincides with its
reflected image in the ellipsoid € (by courtesy of Boris ODEHNAL)
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pass through P. If [ is a focal axis of such a cone or cylinder then the isotropic
planes through [ are tangent to the cone and, hence, also to Q. [l

Corollary 2.4 is the main reason for the optical effects mentioned at the begin-
ning (Figure 1): Let a quadric Q and a central projection with center C be given.
If any line [ of sight, which meets a focal conic f of Q at a point @1, is reflected
at the point P # C in Q, then the transformed line still meets f at any point
Q2. Hence, the perspective images of point 1 and P are coinciding, where P is
the reflected image of Q2 w.r.t. C. This holds for all @, € f. Therefore in the
perspective the focal conic f and its reflected image in Q w.r.t. C' belong to the
same conic (“Theorem of the Transparent Cup”).

The quadric in Figure 1 is a one-sheet hyperboloid of revolution, and f passes
through the focal points of the meridians. In Figure 10 we have a reflecting ellipsoid
& and its focal hyperbola f.

We can even replace the focal conic f by any other quadric in the confocal
family and claim, as given below.

Corollary 2.6. Let a reflecting quadric Q@ be given together with a confocal quadric
Qo. Then in a perspective with any center C, the quadric Qqy and its reflected image
in Q w.r.t. C' have coinciding contours. This is also valid when Qg degenerates into
a focal conic f: The perspective of f coincides with that of its reflected image in

Q.

3. Reflecting cones in a quadric

By virtue of Theorem 2.4, a line meeting a pair of focal conics f1 and fs keeps this
property after reflection in any quadric being confocal with f; and fo. The set of
such lines is the union of cones of revolution with apices on the focal conics. Now
we check what happens if the generators of one of these cones are reflected.

Theorem 3.1. Let Q be a quadric with focal conics fi and fo. The cone Cy of
revolution, which connects any point Sy € f1 with fa, intersects Q along two conics
c1 and co. The reflection in Q along the conic ¢;, i = 1,2, transforms Cy again in
a cone C; of revolution passing through fo with an apex S; € f1 (Figure 11).

Proof. The tangent cones drawn from point Sy € f; to the quadrics of the given
confocal family are confocal with the cone Cy connecting Sy with fs. Since the
latter one is a cone of revolution, they all are cones of revolution with the proper
tangent tg, to fi at Sp as their common axis. These cones are tangent to the
isotropic planes through tg,; the respective lines of contact are isotropic lines in
the plane orthogonal to tg, through Sp.

On the other hand, the poles of a fixed plane w.r.t. the quadrics of a range are
collinear. For each isotropic plane through ¢g,, which touches all quadrics confocal
with Q, the points of contact are alined with two points: Sy as the touching point
with f1, and the respective absolute point as the touching point with the absolute



62 H. Stachel

Figure 11: The reflection in the quadric Q transforms the right
cone with apex Sy € f1 onto two right cones with apices 51,52 € fi

conic. Hence, the quadric Q, like any other confocal quadric, contacts the cone Cy
at two points. Consequently, the curve of intersection Q NCy splits into two conics
c1 and ¢z, both passing through the points of contact on the line ¢§ , polar to tg,
w.r.t. @. Figure 11 shows the scene after being orthogonally projected into the
plane of the focal conic fi.

Let P; denote the apex of the tangent cone C; of Q along ¢; for i = 1,2. In
accordance with Lemma 2.5, the two proper tangents drawn from P; to f; are
the focal axes of C;. One of them is tg,, the other contacts f1 at S; (Figure 11).
As already noted, the reflection in C; transforms planes through tg, into planes
through P;S;. Due to the contact between C; of Q along ¢;, for each point X € ¢;
the reflection in @ maps the line Sy X onto a line meeting the axis P;S;. On the
other hand, by virtue of Corollary 2.4, the reflected line must also meet f; (and f2).
Hence, the reflection of SoX coincides with S; X, as stated in Theorem 3.1. For all
X € ¢;, the planes spanned by the incoming and outgoing ray, which contain also
the surface normal nyx to Q, have the common trace SpS; in the plane of f;. O

The given proof reveals that Theorem 3.1 can be generalized by replacing the
focal conic fo with any confocal quadric Q.

Theorem 3.2. Let Q and Qg be two confocal quadrics. Then the reflection in Q
transforms each cone of revolution, which is tangent to Qqy, into two cones of the
same type.
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Remark 3.3. It can be shown that, conversely, the only smooth cones which by
reflection in a general quadric correspond again to a cone, are those mentioned in
Theorem 3.2.

From a limiting case of Theorem 3.1 we learn how the well known reflecting
property of a satellite-TV receiving dish changes when the paraboloid of revolution
is replaced with a general elliptic paraboloid.

Figure 12: The reflection in the elliptic paraboloid P transforms
the right cone with apex Sp € fi onto the right cone with apex
S1 € f1 and a pencil of lines parallel to the axis a in the plane €

Theorem 3.4. Let P be any paraboloid other than a paraboloid of revolution.
Then the reflection in P maps all lines | being parallel to the azis a of P onto
lines meeting both focal parabolas fi1 and fo of P. The pencil of those parallels | to
a, which lie in a plane € orthogonal to the plane of f1, is mapped onto a cone of
revolution with apex Sy € f1.

The latter can also be concluded as follows (see Figure 12). Let ¢o denote the
parabola P Ne. The tangent cone of P along ¢y is a parabolic cylinder Cy with
apex P, at infinity. After an orthogonal projection with center P, the cylinder Co
appears as a parabola C3. In this view the reflection in Q along ¢y is seen as a
planar reflection in C§ which transforms lines parallel to the parabola’s axis onto
lines through the focus of C3'. This focus coincides with the view of Sy, which is
the point of f; with the proper tangent tg, passing through P;.

Remark 3.5. The bundle of parallels to the axis a of the paraboloid P consists of
all lines orthogonal to a plane. By virtue of the Theorem of Malus and Dupin [6,
p. 446], the property of being a normal line congruence is preserved under reflection
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in a surface. The surfaces orthogonal to the lines meeting the pair of focal parabolas
of P are parabolic Dupin cyclides [1, p. 147ff]. We recall that the surfaces, whose
normals intersect an ellipse and its focal hyperbola, are general Dupin cyclides.
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Abstract

The optimization of operator workload in Air Traffic Control systems is
of high importance regarding both safety and efficiency of air transportation.
The default means of optimizing workload in practice is division of traffic
among controllers by splitting the airspace into sectors. Decisions about
opening or closing sectors are made by a human supervisor who can some-
times encounter difficulties during decision making, especially when facing
uncommon traffic situations.

This makes it advisable to create a decision support tool designed to au-
tomate decision making by suggesting a sector configuration based on traffic
complexity to the supervisor. The main modules of this tool are centered on
a model of cognitive functions that have to be executed by the supervisor
throughout the decision making process. The functions include prediction of
future traffic, calculation of complexity and determining optimal sector states
to finally produce the optimal configuration. In this paper, we outline the
formal description of the functionality of the tool’s modules, focusing on the
algorithms they should implement.

Keywords: Air Traffic Control, decision support, neural network
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1. Introduction

The Air Traffic Control (ATC) system is responsible for ensuring the safe and
efficient movement of aircraft in controlled airspace. Controlled airspace is the
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section of the atmosphere in which all air vehicles are compulsively required to
comply with the instructions of Air Traffic Control Officers (ATCOs). ATCOs
observe traffic in the airspace in real time and issue clearances in order to separate
aircraft on conflicting routes or help them evade thunderstorm areas or restricted
airspace. As ATCOs can pay attention to a limited number of aircraft at the
same time, when traffic increases, the airspace is divided into sectors with different
responsible ATCOs.

Nowadays the division of airspaces is done by using deterministic geographical
and/or altitudinal borders. If such a border is actually in use for dividing the
airspace, it will be referred to as an active border, otherwise it will be referred to
as an inactive border. If a sector does not contain any inactive borders, it will be
called an elementary sector. A certain combination of active borders will be referred
to as a sector configuration. A theoretical combination of one or more elementary
sectors will be simply referred to as a sector, while sectors that are present in a
specifed sector confguration will be referred to as active sectors. In general, sectors
can assume the “split” (contains more than one active sector), “armed” (used on its
own) or “merged” (part of an active sector) state.

Making and executing decisions related to sector configuration change is done
by a designated person, known as the supervisor. The supervisor is responsible
for assigning ATCOs to newly activated sectors, replacing personnel in already
active sectors and above all for making decisions about when to change sector
configuration and which should be the new configuration to use.

In a general airspace, a great amount of possible sector configurations may exist
and different sector configurations usually mean a different distribution of traffic
among ATCOs. The basic aim of sectorization is to keep the workload of ATCOs
near the optimum level which means that they should neither be assigned too
difficult nor too simple traffic situations as both can lead to higher error rates [1, 2|.
Since workload is not only influenced by traffic volume (i.e. the number of aircraft)
but also by traffic complexity (and other complexity factors related to airspace,
equipment, operators etc.)[3], finding the optimal sector configuration for a certain
traffic situation can not be done via a simple algorithm based on the number of
aircraft in sectors. Instead, the optimal sector configuration can be interpreted as
a product of a complex function based on the above mentioned complexity factors.
Note that many Air Navigation Service Providers use the number of aircraft to
determine a suitable basic sector configuration. Supervisors can then change this
basic configuration taking into account other factors based on their experience.

In ATC centers, the above function is realized by the supervisor. Due to the
complexity of this decision and the fact that supervisors may differ in experience,
skills and /or decision-making preferences, the actual sector configuration produced
depends on the supervisor. Therefore, it is prone to human error, especially in
case of uncommon traffic situations. In order to increase the probability of using
safe and efficient sector configurations, it is advisable to provide an automated
advisory tool that can suggest sector configuration solutions to the supervisor who
can decide to approve or reject them. In this paper, we provide an overview of the
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functional requirements of a tool that fulfils the mentioned purpose by presenting
a model to formally describe the decision making process (Section 2), providing a
more detailed description about the tool’s modules which are based on this model
(Sections 3 and 4) and drawing conclusions (Section 5).

2. Model of the decision making process

As it was adumbrated in the previous section, the tool needs to use the same data
that is available to supervisors and produce a sector configuration as an output. In
other words, it should mimic the decision making mechanism of a human supervisor.

The first step in the decision making process is the collection and evaluation of
different data that can be relevant to ATCO workload and thus sector configuration.
The data used by supervisors as input for their decisions can originate from any of
the following sources:

e Radar data (real time position, flight level and speed vector of aircraft)
e Flight plan data (scheduled route of aircraft)

e Airspace restriction data (due to thunderstorm or scheduled restrictions)

In order to create an appropriate model of the data evaluation process, it is im-
portant to consider the timely nature of the supervisor’s decision. When making
their decisions, supervisors are aware that performing a sector configuration change
requires a certain amount of time, because ATCOs have to get familiar with the
traffic situation before assuming control and newly assigned ATCOs even have to
man their workstations first. In real life situations, this procedure requires 10-20
minutes to complete. Such an amount of time is enough for considerable changes
to happen in the characteristics of air traffic. This means that the supervisor can
not simply rely on the data that is valid at the time of the decision but should
make projections and create a mental picture of traffic expected in 10-20 minutes
and then use this for actual decision making.

Formalizing the above, let Dgr, Dpp and Drgra be sets of radar data, flight plan
data and temporary airspace restriction data respectively, which are available at
the moment of the decision, although Dpp and Drgra contain information about
the future. In the model of the decision making process, Dr and Dpp are used
first by a projection function (Fp) that creates a set of projected radar data (DF)
whith a structure similar to Dg but it is valid at the time of configuration change.

FPZDRXDFP%DII; (21)

After projecting future traffic based on actual aircraft movement and flight
plans, the supervisor has to update the mental picture by considering areas of
the airspace that are restricted to flight by thunderstorm or scheduled restrictions
by other parties using the airspace. This correction is modelled by the corrected
projection function (Fop) which transforms the set of projected radar data into
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corrected projected radar data (DEC) by using a set of data about temporary
airspace restrictions (Drga).

Fop: DE x Drra — DEC (2.2)

Once the mental picture of the (corrected) projected situation is available,
the supervisor analyzes it by evaluating the characteristics of air traffic and the
airspace. In the model, these characteristics are represented by so called com-
plexity factors. Complexity factors each describe a certain attribute of traffic (or
airspace structure) by a numeric value. The set of complexity factors (C') can con-
tain different parameters such as the number of descending aircraft or the number
of aircraft pairs on conflicting routes (further examples can be found in [3, 6, 7]).
Set C turns out as the product of the complexity calculation function (F¢) which
transforms corrected projected radar data into complexity factors.

Fc:DEC = C (2.3)

When the supervisor has successfully evaluated the projected traffic situation,
the most complex (and thus the most difficult to model) stage of the decision mak-
ing process takes place. In this stage, the supervisor tries to figure out which would
be the optimal sector configuration by taking all the complexity factors into con-
sideration simultaneously with different “weights” depending on their significance.
In the model, this process is represented by two successively executed functions.
The first function is called the sector state function (Fsg) and it is responsible for
assigning a set of sector states (5) to the sectors based on the set of complexity
factors. S contains the state (i.e. “split”, “armed” or “merged”) that is considered
optimal for each sector under the given circumstances.

Fesg:C — S (2.4)

The second function is the sector configuration function (Fs¢) which transforms
the sector state set produced by Fgg into a sector configuration which can be
interpreted as a corrected set of sector states (S©).

Fse - S — SC (2.5)

Including Fs¢ in the model is necessary because Figg models a highly complex
function and thereby it is likely to produce some erroneous states in S. FErrors
in S can mean that there is no applicable sector configuration in which every
sector would have the state considered optimal. This can happen for example if
two partially overlapping sectors are both assigned “armed” as their optimal state.
These errors can be corrected by Fs¢ if it applies certain restrictions about possible
sector configurations and rules to handle inconsistent sector states.
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Figure 1: Modules of the decision support tool

3. Creating and correcting projected radar data

Projected radar data is created by using actual radar data and flight plan data in
a similar manner as supervisors would use such data types. Therefore, it has to
be understood how supervisors create their mental picture about future traffic in
reality. When it comes to predicting future position, flight level and speed, aircraft
can be classified into the following three categories:

1. Approaching aircraft outside the airspace with radar data only

2. Approaching aircraft outside the airspace with radar data and flight plan
data synchronized

3. Aircraft already in the airspace

The future parameter values of aircraft in the first category can only be calculated
by using actual radar data, because there is no information about the expected
changes in direction, flight level or speed. A radar data record for a particular
aircraft in a specified point in time contains information about the geographic
distance from a specified point in two perpendicular directions (integer = and y),
the speed vector’s coordinates in the same directions (integer v, and v,) and flight
level (integer ). These data can be used by the tool for the simple projection of
the aircraft’s position by implementing a function that uses the following equation
(with to representing the time belonging to the data record and tp representing
the time of the predicted situation 15 minutes after ¢g):

Itp == I’f,g + U’I‘(tP - t0)7ytP = yto + Uy(tP - tO) (3'1)

In case of aircraft in the second and third category, data prediction is primly
based on flight plan data, because it provides more information about an aircraft’s
expected future characteristics. The flight plan of a particular aircraft contains
the identifiers of the next n waypoints to cross (W;..W,,) along with the expected
speeds (v, ..vw, ) and expected flight levels (Iy,..lw, ) upon crossing each way-
point. Besides these data, we can also assume that the tool has access to the
geographic coordinates of the waypoints (xw,..xw,; Yyw,--yw,, )-

Based on the cruising speeds and the distance between subsequent waypoints,
the tool can calculate the expected time of crossing each waypoint (¢tw,..tw,, ) and



70 B. Szdmel, G. Szabé

thus determine which will be the last (IW;) and next (IW;) waypoint of the aircraft
at tp. If this information is available, the aircraft’s expected position at ¢tp can be
obtained from the following equations where 0(tp) is the average speed between
tw, and tp supposing that the aircraft changes speed from vy, to vy, by constant
acceleration:

ij - yVVZ

« = arctan (3.2)
Z‘Wj — l‘Wi
A it — tw)
o(tp) = vw, + 5 (3.3)

.Z‘(tp) = Tw; + f)(tp) COSOt(tp - tWi), y(tp) = Yw; + ’D(tp) sin Oz(tp — tW{,) (34)

Once the radar data is produced for tp, it also has to be produced for time
tp which represents a moment in time 10 seconds after tp. This is necessary
because some of the complexity factors’ values can only be produced by functions
that require information about the vertical dynamics of traffic which can only be
obtained from the comparison of flight levels for the same aircraft at two different
points in time.

The correction of projected radar data is required if certain sections of the
airspace are restricted to the aircraft controlled by the ATC center in scope. The
restriction can be planned if airspace is in use by other parties (e.g. military) in
a predefined time and manner or unplanned if thunderstorm activity is present
making the section unsafe to fly through. In this phase of designing the advisory
tool, the two types of restriction will be handled by using the same algorithm.

In a real life air traffic situation, aircraft avoid entering restricted airspace sec-
tions by flying a modified route planned by the ATCO. When the supervisor makes
a prediction about the future traffic situation, he or she has to take such modified
routes into consideration and so does the tool. In order to achieve this, the tool
has to implement an algorithm that simulates avoidance of restricted airspaces by
modifying flight plan data. This algorithm would first decide whether a given air-
craft is expected to cross a restricted section if it flies according to its initial flight
plan data. This can be decided by analyzing whether any of the expected route’s
upcoming sections intersects with the restricted airspace section (modelled as a
polygon). If an intersecting section is found, the given aircraft’s flight plan data
set has to be extended by replacing the intersecting section with multiple sections
that do not intersect with the polygon. Calculating coordinates of the replacment
sections can either be done by using an off-the-shelf model (like the geometric
recourse model in [4] or the dynamic rerouting model in [5]) or by developing a
purpose-made algorithm which is outside the scope of this paper. Once the addi-
tional sections are added, the aircraft’s projected radar data has to be calculated
by using the newly modified flight plan data.
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4. Calculating sector states and —configuration

When projected radar data is available for a future situation, it is used by the
tool’s complexity calculation module for producing the actual values of complexity
parameters. Complexity parameter values are calculated by applying simple geo-
metric functions which are described in [6] along with the set of complexity factors
planned to be used by the tool. Complexity calculations have to be performed for
the whole airspace as well as each sector inside it given that they can be used as
active sectors in a practical sector configuration.

Complexity values of each sector are then passed on to the tool’s central logic
module as real numbers. The central logic module’s main function uses neural
network based estimation to produce the optimal state for each sector. To make
this function applicable, training of the neural network has to be performed before
starting to use the tool in order to obtain the values of the network’s weight param-
eters. These weight parameters have to be made accessible to the tool in a database
and they should be continuously modified in accordance with the user’s feedback.
A more detailed description about applying neural network logic for sector state
estimation — including the training process of the networks — can be seen in [7].

The trained neural network’s function (Fsg) transforms a vector of complexity
factors (c) into a sector state matrix (S). The rows of S each represent a sector
while the columns represent possible sector states (split, armed and merged). As
an example, in case of the Hungarian airspace where there are 31 usable sectors,
S is a 31x3 matrix. S consists of real numbers between 0 and 1 with each number
providing information about how close the given state is to the optimal one in case
of the given sector.

Fsg ic— S (41)

Getting the optimal sector configuration requires turning the sector state matrix
(S) into a sector border matrix (B) via function FsS which is responsible for
eliminating errors from the state matrix.

Fsc - S— B (42)

In case of the Hungarian airspace, B is a 2x4 matrix with the two lines rep-
resenting the east (‘E’) and west (‘W’) sectors of the airspace while the columns
represent the altitudinal borders in E and W. Elements of the matrix assume the
value 1 if the represented border is active in the configuration and 0 otherwise.
Fsc is only executed by the tool if the airspace has to be split according to S,
otherwise the airspace itself will be the optimal configuration. Fs¢ is represented
in the tool’s logic as a function that iterates through the lines of S and compares
the split, armed and merged values in each line. Based on the comparison results, it
modifies the elements of B from 0 to 1 in accordance with the following algorithm:

1. If the ‘E’ (or ‘W’) sector’s state with the highest value is not the split state,
‘E’ (or ‘W’) should be used as an armed sector.
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2. If an elementary sector’s armed state has a higher value than its merged state,
it should be armed, so the values representing its lower and upper border in
B should be set to 1.

3. If a non-elementary sector’s split value is higher than the armed and merged
value, it has to be split. Sectors that have to be split are evaluated in the
following steps, which are repeated until none of the conditions are fulfilled
and no additional split operations are necessary.

4. If a sector contains 4 borders, it has to be split at the border with the highest
average split value (i.e. the average split value of all sectors that contain the
given border), so the given border’s value in B should be set to 1.

5. If a sector contains 2 or 3 borders, it has to be split at the border with the
highest average split value but only if it exceeds 0,5.

6. If a sector contains exactly 1 border, it has to be split if the border’s average
split value exceeds 0,8.

When B has been created with the above algorithm, the configuration has to
be displayed visually to the supervisor as graphical and/or textual information.

5. Conclusion

A decision support tool that can suggest sector configurations to supervisors would
be useful for enhancing ATC safety. Developing such a tool requires creating a
functional model of the real decision making process and implementing the func-
tions of this model. The latter can not be done without solving such problems as
the lack of flight plan data for certain aircraft, the presence of restricted airspace
sections or the errors in sector states calculated by neural networks. Thes can be
solved via different algorithms presented (or referred) in this paper.

Due to the simplifications and ommitances in the design of the model and its
functions, the dependability of the tool’s suggestions can not be guaranteed in
the first phase of usage. In order to subdue this issue and continuously improve
dependability, the tool should contain a feedback function (by requesting direct
feedback from the supervisor or simply monitoring the actual configurations used)
through which it can modify its own parameters (e.g. weights of the neural net-
work). Details of the feedback function are expected to be presented in later works.
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Abstract

Apriori is the most well-known algorithm for finding frequent itemsets
(FIs) in a dataset. For generating interesting association rules, we also need
the so-called frequent closed itemsets (FCIs) that form a subset of FIs. Apri-
ori has a simple extension called Apriori-Close that can filter FCIs among
FIs. However, it is known that vertical itemset mining algorithms outperform
the Apriori-like levelwise algorithms. FEclat is another well-known vertical
miner that can produce the same output as Apriori, i.e. it also finds the Fls
in a dataset. Here we propose an extension of Eclat, called Eclat-Close that
can filter FCIs among FIs. This way FEclat-Close can be used as an alternative
of Apriori-Close. Experimental results show that Eclat-Close performs much
better than Apriori-Close, especially on dense, highly-correlated datasets.

Keywords: data mining, frequent itemsets, association rules, algorithms
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1. Introduction

In data mining, frequent itemsets (FIs) and association rules play an important
role [1]. Due to the high number of patterns, various concise representations of FIs
have been proposed, of which the most well-known representations are the frequent
generators (FGs) and the frequent closed itemsets (FCIs) [2, 3]. There are a num-
ber of methods in the literature that target FCIs and/or FGs, but most of these
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algorithms are levelwise methods [4, 5]. It is known that depth-first algorithms
usually outperform their levelwise competitors.

In this paper, we present an algorithm called Fclat-Close, which is a single-pass,
depth-first, vertical FI+FCI miner. The approach behind FEclat-Close is derived
from the one used in the Eclat [6] vertical miner. Eclat outputs the entire family
of FIs hence what we needed to design was a mechanism to recognize FCIs among
FIs. The task performed by FEclat-Close can be described as the computation of
frequent equivalence classes. The nice surprise with Eclat-Close came when we
measured its performance. Despite its relatively low level of optimization, our
algorithm systematically outperformed its levelwise competitor, Apriori-Close.

The remainder of the paper is organized as follows. Basic concepts are provided
in Section 2. Section 3 presents the Apriori-Close algorithm, which is our levelwise
competitor. Section 4 introduces Fclat-Close, which is the main contribution of the
paper. Experimental results are provided in Section 5. Finally, Section 6 concludes
the paper.

2. Basic Concepts

The following 5 x 5 sample dataset: D = {(1, ABDE), (2, AC), (3, ABCE),
(4, BCE), (5, ABCE)} will be used as a running example. Henceforth, we refer
to it as dataset D.

We consider a set of objects or transactions O = {o01,02,...,0m}, a set of
attributes or items A = {a1,as,...,a,}, and a relation R C O x A. A set of
items is called an itemset. Each transaction has a unique identifier (tid), and a
set of transactions is called a tidset. The tidset of all transactions sharing a given
itemset X is its image, denoted by ¢(X). For instance, the image of {A, B} in
D is {1,3,5}, ie., t(AB) = 135 in our separator-free set notation. The length
of an itemset X is |X|, whereas an itemset of length ¢ is called an i-itemset. The
(absolute) support of an itemset X, denoted by supp(X), is the size of its image, i.e.
supp(X) = [t(X)|. An itemset X is called frequent, if its support is not less than a
given minimum support (denoted by min_ supp), i.e. supp(X) > min_supp. An
equivalence relation is induced by ¢ on the power-set of items p(A): equivalent
itemsets share the same image (X = Z iff t(X) = t(Z)). Consider the equivalence
class of X, denoted [X]. The equivalence class [X] has a unique maximum w.r.t.
set inclusion (a closed itemset).

Definition 2.1. An itemset X is closed if it has no proper superset with the same
support.

A closure operator underlies the set of closed itemsets; it assigns to X the
maximum of [X] (denoted by «(X)). Naturally, X = ~(X) for closed X. For
instance, in our dataset D, the closure of B is BFE, while the closure of BC' is
BCE.
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3. Levelwise Exploration with Apriori-Close

The most well-known levelwise algorithm, without doubt, is Apriori [7]. This algo-
rithm addresses the problem of finding all frequent itemsets in a dataset. Apriori
has been followed by lots of variations, and several of these levelwise algorithms
concentrate on a special subset of frequent itemsets, like closed itemsets or genera-
tors. Mannila and Toivonen provided a general framework for levelwise algorithms
in [8]. The levelwise algorithm for finding all FIs is a breadth-first, bottom-up algo-
rithm, which means the following. First it finds all 1-long frequent itemsets!, then
at each i*" iteration it identifies all i-long frequent itemsets. The algorithm stops
when it has identified the largest frequent itemset. Frequent itemsets are computed
iteratively, in ascending order by their length. At each iteration one database pass
is needed to count support values, thus the number of database passes is equal
to the length of the largest frequent itemset. This approach is very simple and
efficient for sparse, weakly correlated data. The levelwise algorithm is based on
two basic properties.

Property 3.1 (downward closure). All subsets of a frequent itemset are frequent.?

Property 3.2 (anti-monotonocity). All supersets of a non-frequent itemset are
non-frequent.

Apriori-Close was proposed in [9]. This algorithm is an extension of Apriori and
it can identify not only frequent, but frequent closed itemsets too simultaneously.
The idea is the following. By definition, a closed itemset has no proper superset
with the same support. At each i*" step all i-long frequent itemsets are marked as
“closed”. At the next (i+ 1) iteration for each (i+1)-long itemset we test if it has
an i-long subset with the same support. If so, then the i-long frequent itemset is
not a closed itemset and we mark it as “not closed”. When the algorithm terminates
with the enumeration of all frequent itemsets, the itemsets still marked as “closed”
are the frequent closed itemsets of the dataset. Experiments show that this kind
of filtering of closed itemsets does not induce any serious additional computation
time.

4. The Eclat-Close Algorithm

In this section we present the Eclat algorithm [6], which serves as a basis for Eclat-
Close. Eclat can only find FIs, while Eclat-Close makes it possible to filter FCls
among FIs. Fclat-Close is our extension and this section is the main contribution
of the paper.

IThat is, first it identifies all frequent items (attributes).
2The name of the property comes from the fact that the set of frequent itemsets is closed w.r.t.
set inclusion.
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Figure 1: IT-tree: Itemset-Tidset search tree of dataset D with
min_supp = 2

4.1. Eclat

Eclat was the first Fl-miner using a vertical encoding of the database combined
with a depth-first traversal of the search space (organized in a prefix-tree) [6].

Vertical miners rely on a specific layout of the database that presents it in an
item-based, instead of a transaction-based, fashion. Thus, an additional effort is
required to transpose the global data matrix in a pre-processing step. However,
this effort pays back since afterwards the secondary storage does not need to be
accessed anymore. Indeed, the support of an itemset can be computed by explicitly
constructing its tidset which in turn can be built on top of the tidsets of the
individual items. Moreover, in [10], it is shown that the support of any k-itemset
can be determined by intersecting the tid-lists of any two of its (k—1)-long subsets.

The central data structure in a vertical FI-miner is the IT-tree that represents
both the search space and the final result. The IT-tree is an extended prefix-tree
whose nodes are X x t(X) pairs. With respect to a classical prefix-tree or trie,
in an IT-tree the itemset X provides the entire prefix from the root to the node
labeled by it (and not the difference with the parent node prefix).

ExaMPLE. Figure 1 presents the IT-tree of our example. The traversal order is
indicated above the nodes. Observe that the node ABC x 35 for instance can be
computed by combining the nodes AB x 135 and AC x 235. To that end, tidsets
are intersected and itemsets are joined. The support of ABC is readily established
to 2.

4.2. Eclat-Close

In this subsection we present the Fclat-Close algorithm in detail. As mentioned
before, Eclat-Close is based on Eclat. Eclat-Close traverses the IT-tree in a pre-
order way, from left to right (see Figure 1), and it filters FCIs while extracting FIs
from a dataset. The output of Eclat-Close is the list of frequent equivalence classes
(see Table 1).
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tidset eq. class members closure support
(optional)
1235 A A 4
135 AB, ABE, AE ABE 3
35 ABC, ABCE, ACE | ABCE 2
235 AC AC 3
1345 B, BE, E BE 4
345 BC, BCE, CE BCE 3
2345 C C 4

Table 1: Eclat-Close builds this table, which is actually a hash
table. The key is a tidset and the value is a row

Eclat-Close builds a hash table, as depicted in Table 1. The key of the hash is
a tidset, while the value of the hash is a row object. A row object represents an
equivalence class and it has the following fields: (1) tidset (by definition all item-
sets in an equivalence class have the same tidset), (2) equivalence class members,
(3) closure (the largest element in an equivalence class; this is a unique element),
and (4) support (this is the cardinality of the tidset).

The algorithm works the following way. When a new FI is found in the IT-tree,
it is tested if it belongs to an already discovered equivalence class, i.e. we test if
its tidset is in the hash. If it is not present in the hash, then it belongs to a new
equivalence class, thus a new row is added to the hash. If its tidset is in the hash,
then the following steps are performed. First, the itemset is added to the row’s list
of equivalence class members. Second, the itemset is added to the row’s closure
using a union operation.

EXAMPLE. Eclat-Close builds a hash table, as depicted in Table 1. A row object
represents an equivalence class. The algorithm starts enumerating the 15 FIs of
D using the traversal strategy of Fclat (as seen in Figure 1). The first node is
A x 1235. The tidset 1235 is not yet in the hash, thus a new row is added in the
hash table (tidset: 1235; eq. class members: A; closure: A; support 4). The nodes
AB x 135 and ABC x 35 are also added as new rows. The next FIis ABCE x 35,
but its tidset is an existing key in the hash. Let r denote the row whose tidset is
35. ABCE is added to r’s “eq. class members” and “closure” fields. The “closure”
column is the union of its former value ABC and ABCE, which yields ABCE.
The end result is shown in Table 1.

When the algorithm stops, the itemsets in the “closure” field are completed, i.e.
they represent the closures of the equivalence classes. If we are only interested in
FCIs, the column “eq. class members” can be omitted. This way FEclat-Close can
be used as a pure FCI-miner algorithm. The pseudo code of Eclat-Close is provided
in Algorithm 1.
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Algorithm 1 (pseudo code of Eclat-Close):
hashTable: the table structure (as seen in Table 1)
1) start the Eclat algorithm and assign the current node to the variable curr
2
3) if curr.tidset not in hashTable:
4) row.tidset < curr.tidset
5) row.eq_class_members < curr.itemset // optional
6) row.closure < curr.itemset
7 row.support < cardinality (row.tidset)
8) hashT able.add(row)
9) else:
10) row <— hashTable.get(curr.tidset)
11) row.eq__class_members.add(curr.itemset) // optional
12) row.closure < row.closure U curr.itemset
13) )
14) // hashTable is filled; it contains all the frequent equivalence classes

5. Experimental Results

In our experiments, we compared Eclat-Close with Apriori-Close and Charm [11].
Apriori-Close was presented in Section 3. Charm is a very efficient vertical algo-
rithm, also based on Eclat. Charm reduces the search space to the minimum, i.e.
it explores FCIs only. Since Charm is a state-of-the-art algorithm, we also compare
Eclat-Close against it. All three algorithms were implemented in Java. The exper-
iments were carried out on an Intel Quad Core i5-2500 3.3 GHz machine running
under Manjaro GNU /Linux with 4 GB RAM. All times reported are real, wall clock
times as obtained from the Unix time command between input and output. For
the experiments we have used the following datasets: T20I6D100K, T25110D10K,
C20D10K, C73D10K and MUSHROOMS. The T20 and T253 are sparse datasets,
constructed according to the properties of market basket data that are typical
weakly correlated data. The C20 and C73 are census datasets from the PUMS
sample file, while the MUSHROOMS* describes mushrooms characteristics. The
last three are highly correlated datasets.

The execution times of the algorithms are illustrated in Table 2. The table also
shows the number of FIs and FCIs. Apriori-Close finds all Fls and filters FCls.
Eclat-Close does the same thing, but in a vertical, depth-first fashion. Charm is
similar to Eclat, but it reduces the search space to FCIs only.

The experiments show that Eclat-Close outperforms Apriori-Close on all data-
sets. The difference is especially spectacular on dense datasets. FEclat-Close per-
forms very similarly to Charm, though it explores a much larger search space. It

Shttp://www.almaden.ibm.com/software/quest/Resources/
4nttp://kdd.ics.uci.edu/
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min_supp execution time (sec.) # FIs | # FCIs
Apriori-Close ‘ Eclat-Close ‘ Charm
T20I6D100K
10% 1.30 0.87 0.69 7 7
0.75% 10.15 1.01 2.70 4,710 4,710
0.50% 16.98 1.44 3.64 26,836 26,208
0.25% 43.03 4.62 7.38 155,163 | 149,217
T25110D10K
10% 0.42 0.31 0.27 20 20
0.75% 2.97 0.47 0.79 17,073 7,841
0.50% 16.54 1.04 1.30 302,284 52,033
C20D10K
30% 7.90 0.31 0.29 5,319 951
20% 19.82 0.35 0.34 20,239 2,019
10% 48.58 0.55 0.47 89,883 8,777
5% 106.75 0.77 0.65 352,611 21,213
C73D10K
95% 10.09 0.58 0.37 1,007 93
90% 144.64 0.63 0.43 13,463 942
85% 440.65 0.70 0.53 46,575 2,359
MUSHROOMS
40% 1.00 0.29 0.27 505 124
30% 2.83 0.32 0.28 2,587 425
15% 45.20 0.43 0.34 99,079 2,210
10% 184.84 0.76 0.40 600,817 4,850

Table 2: Response times of Eclat-Close

can be due to the fact that Charm needs to apply several tests on an itemset to
decide if it is closed. These extra tests give some overhead to Charm.

As a conclusion, we can say that Fclat-Close performs much better than its
levelwise competitor Apriori-Close, and it is comparable to Charm.

6. Conclusion

In this paper we presented a vertical, depth-first algorithm that finds frequent
equivalence classes, i.e. it explores FIs and filters FCIs among them.

When testing the performance of Eclat-Close w.r.t. efficient comparable alter-
natives from the literature, it came out that our algorithm performed surprisingly
well for its level of optimization. We tend to see that fact as an indication that
any improvement that avoids exploring the entire family of FIs has good chances
of becoming the best performing algorithm in its class.

Currently, we only concentrated on FCIs among FIs, but it would be interesting
to filter frequent generators as well. Having the generators in an equivalence class
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as well, we could produce interesting association rules easily. We plan to extend
Eclat-Close in this direction.
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Abstract

Distance fields have been presented as a general representation for both
curves and surfaces [4]. Using space partitioning, adaptive distance fields
(ADF) found their way into various applications, such as real-time font ren-
dering [5].

Computing approximate distance fields for implicit representations and
mesh objects received much attention. Parametric curves and surfaces, how-
ever, are usually not part of the discussion directly. There are several algo-
rithms that can be used for their conversion into distance fields. However,
most of these are based converting parametric representations to piecewise
linear approximations [7].

This paper presents two algorithms to directly compute distance fields
from arbitrary parametric plane curves. One method is based on the rasteri-
zation of general parametric curves, followed by a distance propagation using
fast marching. The second proposed algorithm uses the differential geometric
properties of the curve to generate simple geometric proxies, segments of os-
culating circles, that are used to approximate the distance from the original
curve.

Keywords: Computer Graphics, Distance Fields, Geometric Modeling
MSC: 65D17, 65D18, 68U07

1. Introduction

Distance fields are samples of the signed or unsigned distance function to a geomet-
ric object. They are a versatile representation of curves and surfaces and have been
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successfully applied in many areas of geometric modeling and computer graphics.
Distance fields can simplify otherwise sophisticated operations, such as morphing
between geometries with different topologies [3], and also speed up costly queries
like collision detection.

Computation of distance fields from implicit representations has been exten-
sively studied in the literature [7], but direct conversion of parametric curves or
surfaces is less often exposed.

This paper presents two methods to convert parametric plane curves to sampled
distance fields over a uniform grid.

The first method discretizes the parametric curve to grid cells. These cells are
then used to form the boundary condition of the eikonal equation that defines the
signed distance function of the parametric curve. Solving this equation using fast
marching results in a highly efficient, approximate solution to the distance field.

The second method uses osculating circle segments to create a piecewise circular
approximation to the original curve and extracts gridpoint distances using these
circle segments as proxies for the original curve. This approach provides simple
means to control the trade-off between accuracy and speed of execution.

These two methods are related in that they consist of a sampling and an approx-
imation step. In rasterization, we sample the continouos problem first and then
compute an approximate solution. In the osculating circle scenario, first we approx-
imate the original curve with continuous proxies and then sample grid distances
from these entities.

2. Rasterization-based distance field generation

One of the key components in real-time computer graphics is the high speed ras-
terization of geometric primitives. There are highly efficient algorithms to rasterize
line segments [1], conic sections, and even higher order algebraic curves [6]. Never-
theless, research on the rasterization of general parametric curves is less prominent
in the literature and they are usually discussed only in terms of lower degree poly-
nomials, e.g. cubic Bezier curves [2].

The first method proposed in this paper to compute the distance field of a
parametric curve consists of two steps:

1. Rasterize the input curve onto the distance field grid
2. Propagate distances over the grid from the rasterized cells

Step 1 requires a robust, gap-free, as in 8-connected, discretization of the input
curve r(t) : [0,1] — E3. This operation is inherently representation-aware, that is,
it needs to know the particular basis and control data by which r(¢) is represented.

For the sake of simplicity, we assume we are given a uniform grid, that is,
a collection of rectangles of equal width and heigh. This way, the grid can be
considered as collection of cells accessed by two dimensional integer indices, i.e.
Grid =10,1,..,W —1] x [0,1, .., H — 1], where W, H € N are the number of colums
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and rows, respectively. Rasterization should generate a gap-free subset Rasters C
Grid.

Step 2 starts with the cells in Rasters and sets the distances to zero for these.
Then it proceeds by using the fast marching method to compute the distance of
every cell from Rasters. It does not rely on any prior information about the original
representation of the curve, all it requires is the set of rasterized cells and the grid
onto which the distances should be propagated.

2.1. Rasterization

Let r(t) : [0,1] — E? be a regular parametric curve, i.e. |r'(t)| # 0,t € [0,1]. Let
D > 0 denote the common width and height of all cells, measured in the units of
the space in which the curve is embeded in.

The proposed rasterization method relies on a naive, curve traversal approach:
starting from the ¢ = 0 parameter, let us increase the parameter value by some
At > 0 such that we travel approximately D units along the curve, i.e. the arc
length between ¢ and ¢ + At is &~ D. Evaluate the curve at this new point, find the
closest grid cell, and if it is connected to the last cell in Rasters, add its index to
it as well. If the connection is broken, we have to decrease At until the new point
on the curve is rasterized onto a cell that is connected to Rasters.

To find the required At > 0 change of parameter, we have to compute the
inverse of the arc-length function. The arc-length function is defined as s(t) =
fo |v’(z)|dx : [0,1] — [0, L] and since r(t) is regular, s(t) is strictly increasing, i.e.
it has an inverse denoted by t(I) = s~1(1) : [0, L] — [0, 1].

The n-th derivative of the arc-length function can be expressed in terms of
the derivatives of the curve up to n. More precisely, in the case of the first three
derivatives, we have

(PO W) ) ) () ()
; “)‘( ) - ()] T OF

The above expressions can be simplified by using the Frenet coordinates of the
derivatives: let t,n: [0, 1] — R? denote the unit tangent and normal vectors of the
curve and let z;(t) = r@(t) - t(¢) and y;(t) = r@(t) - n(t). It can be easily shown
that

y3(t)
X1 (t)

where k(t) denotes the curvature function of the curve.

s'(t) =a1(t), $"(t) =mat) , () = +as(t) = w2 (H)21(8)” + 23(t)
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Let us now omit the parameter of evaluation from the formulas. Using that the
derivative of the inverse function can be written as

1
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the derivatives of the inverse of the arc-length function can be expressed as
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is the Taylor expansion of t = s~1 about [ € [0, L].
We can compute the required At change of parameter to advance approximately
D units along the curve by evaluating the Taylor expansion with D

1 D%z, D3 y% + x311 — 393%

Note that this means that this method is only rasterizing grid cells through
which the curve passes through at least D units long consequitively sans approxi-
mation error. As a result, generally, we do not rasterize every cell that the curve
touches, but the total arc-length of the curve within the omitted cells is small,
provided the inverse arc-length approximation is precise enough and D is selected
properly.

In practice, we have to keep track of whether the truncation introduced such an
error that creates a gap during rasterization. This can be verified by comparing the
integer grid coordinates of the previous and the new rasters. Should a gap occur,
we can use a simple binary search between ¢ and t 4+ At to find the parameter that
corresponds to a curve point that rasterizes onto a grid cell that does not break
the connectivity of the rasters or, better yet, until the arc-length between the two
points is indeed closer to D. Using the latter as a stop criteria may or may not be
possible, depending on our computational and time constraints.

2.2. Distance propogation

The second step of the algorithm can be formulated as an eikonal equation: the
rasterized cells, denoted by Rasters, form the zero set of the unknown signed
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distance function f(z,y) of the curve r(t), and we are looking for a solution over
the entire Grid such that

[Vf(x)| =1 for x € Grid
f(x) =0 for x € Rasters

This can be solved on the grid using fast marching in O(N log N) time [8], where
N denotes the number of grids, but there are linear solvers for the problem [9].

3. Osculating cirlce-based distance field generation

The rasterization based method proves to be an efficient sequential algorithm,
however, its accuracy, as shown in the test results section, may be lacking for
certain applications. The method proposed in this section aims to improve on
accuracy and provides a user-controllable parameter to balance between speed and
precision.

The method constitutes of the following steps:

1. Adaptively sample the curve and compute osculating circles at samples
2. Select segments of the osculating circles to approximate the curve
3. Compute cell distances from osculating circle segments

Step 1 and 2 do a pre-processing of the input curve. The goal is to create a
collection of circular segments as the approximation of the original curve from the
osculating curcles. The number of osculating circles can be set by the user with
or without taking into account the particular geometric complexity of the input
curve. The more osculating circles there are, the smaller the mean and maximum
error becomes, but the execution time is also increasing.

Step 3 speeds up distance computations by taking advantage of the piecewise
circular structure of the curve approximant.

The following subsections discuss these three steps in detail.

3.1. Sampling the curve

In order to adapt the number of segments to the particular curve in question, one
has to find a measure of complexity for parametric curves. Initially, we used the
curvature function plot to determine this complexity scalar by counting the number
of local extrema of the curvature function. The user could select the number of
osculating circles we sample between these extrema.

However, our tests have shown that for the case of distance field computation,
an equidistant parameter sampling of the curve generates roughly the same quality
distance approximation as sampling the curve adapted to the curvature extrema.
As a result, we suggest the use of equidistant parameter sampling in time critical
situations. Figure la illustrates the osculating circles obtained by this process.
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(a) Osculating circles. (b) Circular segment.

Figure 1: Osculating circles sampled along the curve (left). The
representation of a single circular segment consists of o, 8 > 0 an-
gles, associatied with the osculating curve at sample r; (right).

3.2. Determining the piecewise circular curve approximant

If all osculating circles are determined, we have to select segments on each, such
that they put together form at least a globally G° approximation to the curve.

Let to =0 < t; <ty < ... <ty = 1 denote the selected sampling parameters
along the curve. Then r; = r(¢;) are the curve points and the unit tangent and
normal vectors are t; = [r'(¢;)]o and n; = [(r'(¢;) x r”(¢;)) x r'(t;)],, respectively,
where [a]g denotes normalization, i.e. [a]g = ay ifa#0.

Curvature at ¢; is denoted by k;, their recipocals, i.e. the radii of the osculating
circles are p; = %i, and the centers of the osculating circles are ¢; = r; + p;n;.

Since the circular segments have to include r;, we can define the segments used
for approximation as two angles measured away from n;, the left angle «; and the
right angle f3;, see Figure 1b.

At the two endpoints we do not want to extend beyond the original curve, i.e.
ag=0and By =0.

In case of a general point, consider the three osculating circles at ¢;_1,%;,t;41.
If the (¢ — 1)-th and 4-th osculating circles intersect, let a; be the angle that cor-
responds to the intersection point that is closer to r; and still lies on the left of
it, i.e. on the opposite direction of t;. If the circles are non-intersecting, or the
intersection lies in the opposite direction, let us pick «; such that it points to the
point that is the closest to % The (8; angle is determined similarly.

3.3. Distance computation

The reason for the gain in execution time lies in the fact that distance computation
from a circular arc can be resolved by three point-point distance checks. We can
use the distance of the point from the circular segment in the cone determined by
c; and the «;, B; spans, which is either |[x —c|— p; or |x—c¢|+ p;, depending whether
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x — ¢ forms and angle less than 90 degrees with n;. For points that are outside of
this cone, we can check against the endpoints of the circular segments.

4. Test results

We benchmarked the execution time of both proposed algorithms and used a brute
force, geometric Newton-Raphson based distance field as the ground truth for accu-
racy tests. A pure Python, sequential CPU implementation was used to compare
the run times. After running a batch of 1000 random curves, we obtained the
runtime and accuracy statistics for the distance field generation methods. The
osculating circle based method used 7 osculating circles to approximate the curve.

execution time (seconds) error
method mean std. dev. max mean  std. dev.
brute force | 0.36 0.03 0 0 0
raster 0.014 0.0029 30.64% 21.53%  24.65%
osculating | 0.16 0.036 7.28% 0.46%  4.23%

The errors are relative errors with respect to the distance values obtained from
the brute force method. Both tests were conducted on 1000 random quntic Bézier
curves and the distance transform was carried out on a 16 x 16 grid.

In a sequential environment, the rasterization based approach proved to be
superior, however, the accuracy suffered greatly from the initial quantization of
distance values, i.e. the setting of distances to zero for rasterized cells. This,
however, is necessary for most fast marching algorithms.

The accuracy (measured as mean error) of the osculating circle based approach
is two orders of magnitude better than that of the rasterization method.

Another focus of our tests was to determine how does the number of osculat-
ing circles correlate with the error statistics. The following table shows these as
we increase the number of equidistantly sampled osculating circles. Interestingly,
replacing the equidistant sampling strategy did not alter the error significantly,
however, it is subject to future research to find computationally viable sample
parameter selection methods that could increase distance field accuracy.

no. of circles | mean error std. dev.
5 10.54% 88.86%
10 1.2% 11.95%
15 0.26% 1.79%
25 0.15% 1.4%
35 0.11% 1.08%

It is also important to note that creating a massively parallel implementation
of the osculating circle based method is trivial, whereas the rasterization method
suffers from the difficulties that arise when migrating fast marching to this setting,
making it much harder to implement on e.g. GPUs.
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Simple parallelization of the brute force method is also possible, however, one
advantage of the osculating circle based method is that the actual distance trans-
form part, where we measure the cell distances from the curve approximation,
does not depend on the original representation of the curve, while the brute force
algorithm has to rely on it throughout its execution.

5. Conclusion

This paper proposed two algorithms for the problem of direct conversion of para-
metric plane curves to distance fields. We compared these methods with each other
and to a brute force distance field generation algorithm.

In sequential environments, the rasterization based method proved to be the
fastest. However, if accuracy is required, the osculating circle based approach offers
a superior solution. It relies on the prior knowledge of the representation of the
curve, even though to a lesser extent than the brute force approach, which has to
be taken into account when it comes to implementation.
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