
Problem proposals

compiled by Clark Kimberling

These problems were posed by participants of the Fifteenth International Con-
ference on Fibonacci Numbers and Their Applications, Institute of Mathematics
and Informatics, Eszterházy Károly College, Eger, Hungary, June 27, 2012.

Problem 1 (posed by Heiko Harborth).
For F13 = 233 and F18 = 2584, this holds:

σ(F13) + σ(F18) = 2(F13 + F18).

Are there further pairs of Fibonacci numbers equalizing their abundance and defi-
ciency?

Problem 2 (posed by Heiko Harborth).
For 5 and 14, this holds: 5 is 14-perfect and 14 is 5-perfect, where n is h-perfect if

σ(n) + σ(nh) = 2(n+ hn).

Are there further pairs a, b such that a is b-perfect and b is a-perfect?

Problem 3 (posed by Heiko Harborth).
Find numbers n that are h-perfect for more than one value of h, where n is h-perfect
if

σ(n) + σ(nh) = 2(n+ hn).

Examples: 135 is 7-perfect and 55-perfect, and 5 is h-perfect for h ∈ {14, 806, 1166}.
Problem 4 (posed by Clark Kimberling).
Let rn be the greatest eigenvalue of the nth principal submatrix of the Fibonacci
self-fusion matrix, M . Let sn be the greatest eigenvalue of the nth principal sub-
matrix of the Fibonacci self-fission matrix, M̃ . Prove or disprove:

lim
n→∞

rn+1

rn
= lim

n→∞
sn+1

sn
=

3 +
√
5

2

(The matrices M and M̃ are presented in the Online Encyclopedia of Integer Se-
quences at A202453 and A202503.)
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Problem 5 (posed by Bill Webb).
A monic polynomial, all of whose coefficients are negative, will be called a negative
polynomial. Characterize polynomials that divide some negative polynomial. (For
example, every linear polynomial divides a negative polynomial.)

Problem 6 (posed by Joseph Lahr).
Evaluate these sums:

k∑

n=1

Fn2 and
k∑

n=1

Ln2 .

These sums are comparable to
∑k

n=1 e
n2

, which occurs in the Fourier transform of
chirp-signals, as typifed by the equation Sn = A cos(an2).

Problem 7 (posed by Larry Ericksen).
Let p(n) denote the nth prime, and let nk denote the kth value of n for which
p(n)+2 is prime. Find all k such that k(k+1) divides p(nk)+1. Example: k = 8,
n8 = 20, p(20) = 71, p(20)+ 1 = 8 · 9. In other words, k(k+1) divides the average
of the twin primes p(nk) and p(nk) + 2.

Problem 8 (posed by Larry Ericksen).
Let p(m) denote the mth prime. Find all pairs (m,n) such that reversing the digits
of m yields n and reversing the digits of p(m) yields p(n). Example: m = 12,
n = 21, p(m) = 37, p(n) = 73.

Problem 9 (posed by Lawrence Somer).
Let ax2+bxy+cy2 be a binary quadratic form with a, b, c integers and discriminant
D = b2 − 4ac 6= 0. Suppose that p is a prime such that p - D.

(a) Do there exist integers x0, y0 such that
(
ax20 + bx0y0 + cy20

p

)
= −1,

where
(

n
p

)
denotes the Legendre symbol?

(b) Answer (a) with a = 1.
(c) Answer (a) with a = 1 and c = ±1.
(d) Answer (a) with a = 1 and p such that

(
−D
p

)
= 1.

Problem 10 (posed by Neville Robbins).
A Wilf partition of n is a partition such that all distinct parts have distinct mul-
tiplicities, as in 6 = 4 + 1 + 1. Let f(n) be the number of Wilf partitions of n, as
typified by

n 0 1 2 3 4 5 6 7 8 9 10 11 12
f(n) 1 1 2 2 4 5 7 10 13 15 21 28 31

and sequence A098859 in the Online Encyclopedia of Integer Sequences.
(a) Prove that f(n) is strictly increasing for n ≥ 3.
(b) Obtain an explicit formula or recurrence for f(n).
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Problem 11 (posed by Gabriele Gelatti).
Examples gleaned from visual art suggest that if N is a positive integer, then the
product

Fn−4Fn−3Fn−2Fn−1FnFn+1Fn+2Fn+3Fn+4

is equal to a polynomial function of Fn, F
2
n , . . . , F

9
n . Following the presentation of

this problem, Kristóf Huszár sketched a proof that Fn−kFn+k = F 2
n+(−1)n−k+1F 2

k ,
which implies that

Fn

k∏

i=1

Fn−iFn+i = Fn

k∏

i=1

(F 2
n + (−1)n−i+1F 2

k ),

a polynomial in Fn of degree 2k + 1. Subsequently, Bill Webb described a general
form of identity, as follows. Let k = 4t + 1, where t > 0 (or, one may also start
with k = 4t or k = 4t+ 2 or k = 4t+ 3.) For any given j1, j2, . . . , jk, the product

Fn+j1Fn+j2 · · ·Fn+jk

can be written in the form

a1Fkn + a2(−1)nF(k−2)n + a3F(k−3)n + · · ·+ a2t+1Fn

+ b1Fk(n+1) + b2(−1)nF(k−2)(n+1) + b3F(k−3)(n+1) + · · ·+ b2tFn+1. (1)

The values of ai and bi are easily calculated as solutions of k + 1 linear equations.
The terms Fr(n+1) can be replaced by Frn+si or Lrn+si , and similarly for the
terms Frn. It appears likely that the correspondence between (j1, j2, . . . , jk) and
the coefficients ai and bi includes interesting cases; for example, when is (1) “short”?

Problem 12 (posed by Clark Kimberling, Heiko Harborth, and Peter Moses).
Discuss the triangular arrangements (as indicated by the example below, or of other
sorts) of the numbers 1, 2, . . . , n(n+1)/2 that have interlacing rows; i.e., each term
in the first n− 1 rows is between the two numbers just below it. For n = 3 :

3 3 3
2 5 2 5 2 5

1 4 6 1 4 6 4 1 6

3 3
2 4 2 4

5 1 6 6 1 5

4 4 4
2 5 2 5 2 5

1 3 6 1 6 3 3 1 6

4 4
3 5 3 5

1 6 2 2 6 1
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Problem 13 (posed by Curtis Cooper).
Find, or prove the nonexistence of, an algebraic identity of the form

(r1x
2 + s1xy + t1y

2)4 + (r2x
2 + s2xy + t2y

2)4

= (r3x
2 + s3xy + t3y

2)4 + (r4x
2 + s4xy + t4y

2)4 + (r5x
2 − s5xy − t5y2)4,

where x and y are variables, ri are positive integers, si and ti are nontrivial integers,
s5 > 0, and t5 = ±1.

Problem 14 (posed by Augustine Munagi).
Give an explicit bijective proof of the following proposition. The number of com-
positions of n in which 2 may appear only as a first or last part equals the number
of compositions of n+ 1 in which 2 is not a part.

Example: A005251(n + 2) is the number of compositions of n having at most
two 2s, which may occur only at endpoints; e.g., for n = 4, the compositions are (4),
(1, 3), (3, 1), (1, 1, 1, 1), (2, 2), (1, 1, 2), (2, 1, 1). For the other kind, A005251(n+1)
is the number of compositions of n having no 2; e.g., for n = 5, the compositions
are (5), (1, 4), (4, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 1, 1, 1).
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