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Abstract

We consider here the sequence g,, defined by the non-homogeneous recur-
rence relation gn42 = gnt1 +gn + At", n >0, A# 0 and t # 0, «, 5 where
a and f are the roots of > — 2z —1=0and go = 0, g1 = 1.

We give some basic properties of g,.Then using Elmore’s technique and
exponential generating function of g, we generalize g, by defining a new
sequence G,. We prove that G,, satisfies the recurrence relation G,4+2 =
Gn+1+ Gn + At"e™t.

Using Generalized circular functions we extend the sequence G, further
by defining a new sequence Qn(x). We then state and prove its recurrence
relation. Finally we make a note that sequences G (z) and Qn(z) reduce to
the standard Fibonacci Sequence for particular values.

1. Introduction

The Fibonacci Sequence {F,,} is defined by the recurrence relation
Fn+2 :Fn+1+Fn,n20 (11)

with

F():O, and F1:].
We consider here a slightly more general non-homogeneous recurrence relation
which gives rise to a generalized Fibonacci Sequence which we call The Pseudo

Fibonacci Sequence. But before defining this sequence let us state some identities
for the Fibonacci Sequence.
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2. Some Identities for {F,}

Let o and 8 be the distinct roots of 22 — x — 1=0, with

1 ) 1—-+5
a:ﬂ and ﬁzw. (2.1)
2 2
Note that
a+8=1, af=-1 and a—p=+5 (2.2)
Binets formula for {F,,} is given by
n _ An
B =P (2.3)
V5
Generating function for {F,} is
F()—iF e (2.4)
x-nzo W R :
Exponential Generating Function for {F,} is given by
e Foxn et _ BT
Blz)=) = . (2.5)
= nl V5

3. Elmores Generalisation of {F},}

Elmore [1] generalized the Fibonacci Sequence {F,,} as follows. He takes Ey(x) =
E(z) as in (2.5) and then defines E,,(x) of the generalized sequence {E, (z)} as the
n'® derivatives with respect to = of Eg(z). Thus we see from (2.5) that
ae®t — Bne,@w
Eolx) =29 2 ¢
(z) 7

Note that n_ gn
E,(0) = @ P _
V5

The Recurrence relation for {E,,} is given by

Eni2(z) = Enga(2) + En(2).

F,.

4. Definiton of Pseudo Fibonacci Sequence

Let t # «, 8 where o, § are as in (2.1). We define the Pseudo Fibonacci Sequence
{gn} as the sequence satisfying the following non-homogeneous recurrence relation.

Ont2 =0gnt1+Gn + A" n>0,A#0 and t#0,a,p (4.1)
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with go = 0 and g1 = 1. The few initial terms of {g,} are

92:1+A7
93:2+A+At.

Note that for A = 0 the above terms reduce to those for {F)}.

5. Some Identities for {g,}

Binet’s formula: Let

A
=p(t) = 5.1
p=p(t) = 53— (5.1)
Then g, is given by
At™
et n S 2
gn = 10" + 28 +t2—t—1 (5.2)
=c1a" 4 8" + pt", (5.3)
where 1~ p(t)(t — B)
— Pt h) 5.4
c1 P (5.4)
p)(t—a)—1
=—. 5.5
c2 P (5.5)
The Generating Function G(z) = > gna™ is given by
n=0
r+2%(A—t)
G(z) = 1—a2t#0. 5.6
(@) = o ey 1-at# (5.6)
Note from (5.6) that if A = 0
x
Gz)=——
() 1—x—a?’
which, as in section (2.4), is the generating function for {F),}.
The Exponential Generating Function E*(z) = gjjn is given by
n=0
E*(z) = c16°® + c9€P® + pe, (5.7)

where ¢ and ¢y are as in (5.4) and (5.5) respectively. Note that if A=0 we see
from (5.3), (5.4) and (5.5) that

=0 Cfi 67;1
p ) 1 2 \/ga

so that E*(z) reduces to eazjgm which, as in (2.5), is the Exponential generating
function for {F,}.
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6. Generalization of {g,} by applying
Elmore’s Method

Let
Ej(x) = E*(z) = c1e™ + cyeP® + pe®t

be the Exponential Generating Function of {g,} as in (5.7). Further, let G, (z) of
the sequence {G,, ()} be defined as the n'* derivative with respect to = of Eg(x),
then

Gn(x) = 10" + cof"eP® + pt"e®. (6.1)

Note that
Gr(0) = c1a™ 4+ 28" + pt" = g, (6.2)
which, in turn, reduces to F, if A = 0.

Theorem 6.1. The sequence {G,(x)} satisfies the non-homogeneous recurrence
relation

Gio(r) = Guy1(x) + G (z) + At"e™. (6.3)

ook R.H.S. = c;a"T1e?® o8 ef” 4 ptntlert
+ Claneaw + CQﬂne,Ba: + ptnea:t + Atnezt
=cia"e(a+1) + 8" (B + 1)
+ et (t 4+ 1) + p(t? —t — 1)t"e™.

Since o and S are the roots of 22 —2 —1 =0, a+1 = a® and S+ 1 = 82 so that
(6.4) reduces to

(6.4)

R.H.S = c;a" 26 4 ¢ 872" 4 pt"F2e™ = G, 1o(). O

7. Generalization of Circular Functions

The Generalized Circular Functions are defined by Mikusinsky [2] as follows: Let

o0 tn’l‘+j
Z j=0,1,....,r—1; r>1, (7.1)
o nr +j
0 tnr—i—j
M, : = -1y— 4j=0,1,...,7=1; r>1. 7.2
5= oy (72)
Observe that
N1 O(t) = et NQ,O(t) = COSht, Ng,l(t) = sinh t,

M1 Q(t) =€ t, Mg,o(t) = COS t, M271(t) = sint.
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Differentiating (7.1) term by term it is easily established that
Nyj—pt), 0<p<j
NE ) =4 7 ) (7.3)
N’r,r-l-j—p(t); 0<j<j<p<r
In particular, note from (7.3) that
Ny (8) = Nio 1),

so that in general

Further note that

8. Application of Circular functions
to generalize {g,}

Using Generalized Circular Functions and Pethe-Phadte technique [3] we define
the sequence @, (z) as follows. Let

Qo(z) = 1N, o(a* ) + caNyo(8*x) + pNyo(t7 ), (8.1)

where o = /7, * = /7 and t* = t'/", r being the positive integer. Now define
the sequence {Q,(z)} successively as follows:

Qi(@) = Q) (@), Qo) = Q" (a),
and in general
Qn() = QF™ (@),

where derivatives are with respect to 2. Then from (8.1) and using (7.4) we get

Qi1(z) = ciaN,o(a*x) + c2f N, o (8 x) + ptNyo(t* ),

Q2(7) = c10® N, o(a*x) + 282N, 0(B*x) + pt* N, o(t*z),

Qn(z) = c1a"Nyg(a*x) + 28" Ny o(8*x) + pt" N, o(t" ). (8.2)
Observe that if r =1, 2 =0, A =0, {Q,(x)} reduces to {F,}.

Theorem 8.1. The sequence {G,(x)} satisfies the non-homogeneous recurrence
relation

Qni2(z) = Qui1(z) + Qunlx) + At" N, o(t"z). (8.3)
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Proof.

R.H.S. = c1a"" N, g(a*z) + c2B" T N, o(B*z) + pt" TN, o (t*2)
+ c1a™ N, o(a™ ) + 2" N, o(8%x) + pt" Ny o(t*x) + At" N, o(t" )
=c1a"N,o(@'z)(a+ 1) + 28" Ny o (B 2)(B+ 1) + "Ny o(tz)(pt +p+ A). (8.4)

Using the fact that a and 3 are the roots of 22 —x — 1 = 0 and (5.1) in (8.4) we
get

RILS. = ¢;a" 2N, o(a*z) + c2B" 2N, o(B*z) + pt" 2N, o (t*2) = Qio(z). O

It would be an interesting exercise to prove 7 identities for @, (z) similar to
those proved in Pethe-Phadte with respect to P, (z) [3].
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