On second order non-homogeneous recurrence relation

${ }^{a}$ C. N. Phadte, ${ }^{b}$ S. P. Pethe
${ }^{a}$ G.V.M's College of commerce \& Eco, Ponda GOA, India
${ }^{b}$ Flat No. 1 Premsagar soc., Mahatmanagar D2, Nasik, India

Abstract

We consider here the sequence g_{n} defined by the non-homogeneous recurrence relation $g_{n+2}=g_{n+1}+g_{n}+A t^{n}, n \geq 0, A \neq 0$ and $t \neq 0, \alpha, \beta$ where α and β are the roots of $x^{2}-x-1=0$ and $g_{0}=0, g_{1}=1$.

We give some basic properties of g_{n}. Then using Elmore's technique and exponential generating function of g_{n} we generalize g_{n} by defining a new sequence G_{n}. We prove that G_{n} satisfies the recurrence relation $G_{n+2}=$ $G_{n+1}+G_{n}+A t^{n} e^{x t}$.

Using Generalized circular functions we extend the sequence G_{n} further by defining a new sequence $Q_{n}(x)$. We then state and prove its recurrence relation. Finally we make a note that sequences $G_{n}(x)$ and $Q_{n}(x)$ reduce to the standard Fibonacci Sequence for particular values.

1. Introduction

The Fibonacci Sequence $\left\{F_{n}\right\}$ is defined by the recurrence relation

$$
\begin{equation*}
F_{n+2}=F_{n+1}+F_{n}, n \geq 0 \tag{1.1}
\end{equation*}
$$

with

$$
F_{0}=0, \quad \text { and } \quad F_{1}=1
$$

We consider here a slightly more general non-homogeneous recurrence relation which gives rise to a generalized Fibonacci Sequence which we call The Pseudo Fibonacci Sequence. But before defining this sequence let us state some identities for the Fibonacci Sequence.

2. Some Identities for $\left\{\boldsymbol{F}_{n}\right\}$

Let α and β be the distinct roots of $x^{2}-x-1=0$, with

$$
\begin{equation*}
\alpha=\frac{(1+\sqrt{5})}{2} \quad \text { and } \quad \beta=\frac{(1-\sqrt{5})}{2} . \tag{2.1}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\alpha+\beta=1, \quad \alpha \beta=-1 \quad \text { and } \quad \alpha-\beta=\sqrt{5} . \tag{2.2}
\end{equation*}
$$

Binets formula for $\left\{F_{n}\right\}$ is given by

$$
\begin{equation*}
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}} \tag{2.3}
\end{equation*}
$$

Generating function for $\left\{F_{n}\right\}$ is

$$
\begin{equation*}
F(x)=\sum_{n=0}^{\infty} F_{n} x^{n}=\frac{x}{\left(1-x-x^{2}\right)} \tag{2.4}
\end{equation*}
$$

Exponential Generating Function for $\left\{F_{n}\right\}$ is given by

$$
\begin{equation*}
E(x)=\sum_{n=0}^{\infty} \frac{F_{n} x^{n}}{n!}=\frac{e^{\alpha x}-e^{\beta x}}{\sqrt{5}} \tag{2.5}
\end{equation*}
$$

3. Elmores Generalisation of $\left\{\boldsymbol{F}_{n}\right\}$

Elmore [1] generalized the Fibonacci Sequence $\left\{F_{n}\right\}$ as follows. He takes $E_{0}(x)=$ $E(x)$ as in (2.5) and then defines $E_{n}(x)$ of the generalized sequence $\left\{E_{n}(x)\right\}$ as the $n^{\text {th }}$ derivatives with respect to x of $E_{0}(x)$. Thus we see from (2.5) that

$$
E_{n}(x)=\frac{\alpha^{n} e^{\alpha x}-\beta^{n} e^{\beta x}}{\sqrt{5}} .
$$

Note that

$$
E_{n}(0)=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}=F_{n}
$$

The Recurrence relation for $\left\{E_{n}\right\}$ is given by

$$
E_{n+2}(x)=E_{n+1}(x)+E_{n}(x) .
$$

4. Definiton of Pseudo Fibonacci Sequence

Let $t \neq \alpha, \beta$ where α, β are as in (2.1). We define the Pseudo Fibonacci Sequence $\left\{g_{n}\right\}$ as the sequence satisfying the following non-homogeneous recurrence relation.

$$
\begin{equation*}
g_{n+2}=g_{n+1}+g_{n}+A t^{n}, n \geq 0, A \neq 0 \quad \text { and } \quad t \neq 0, \alpha, \beta \tag{4.1}
\end{equation*}
$$

with $g_{0}=0$ and $g_{1}=1$. The few initial terms of $\left\{g_{n}\right\}$ are

$$
\begin{aligned}
& g_{2}=1+A \\
& g_{3}=2+A+A t
\end{aligned}
$$

Note that for $\mathrm{A}=0$ the above terms reduce to those for $\left\{F_{n}\right\}$.

5. Some Identities for $\left\{g_{n}\right\}$

Binet's formula: Let

$$
\begin{equation*}
p=p(t)=\frac{A}{t^{2}-t-1} \tag{5.1}
\end{equation*}
$$

Then g_{n} is given by

$$
\begin{align*}
g_{n} & =c_{1} \alpha^{n}+c_{2} \beta^{n}+\frac{A t^{n}}{t^{2}-t-1} \tag{5.2}\\
& =c_{1} \alpha^{n}+c_{2} \beta^{n}+p t^{n} \tag{5.3}
\end{align*}
$$

where

$$
\begin{align*}
& c_{1}=\frac{1-p(t)(t-\beta)}{\alpha-\beta} \tag{5.4}\\
& c_{2}=\frac{p(t)(t-\alpha)-1}{\alpha-\beta} \tag{5.5}
\end{align*}
$$

The Generating Function $G(x)=\sum_{n=0}^{\infty} g_{n} x^{n}$ is given by

$$
\begin{equation*}
G(x)=\frac{x+x^{2}(A-t)}{(1-x t)\left(1-x-x^{2}\right)}, \quad 1-x t \neq 0 \tag{5.6}
\end{equation*}
$$

Note from (5.6) that if $\mathrm{A}=0$

$$
G(x)=\frac{x}{1-x-x^{2}}
$$

which, as in section (2.4), is the generating function for $\left\{F_{n}\right\}$.
The Exponential Generating Function $E^{*}(x)=\sum_{n=0}^{\infty} \frac{g_{n} x^{n}}{n!}$ is given by

$$
\begin{equation*}
E^{*}(x)=c_{1} e^{\alpha x}+c_{2} e^{\beta x}+p e^{x t} \tag{5.7}
\end{equation*}
$$

where c_{1} and c_{2} are as in (5.4) and (5.5) respectively. Note that if $\mathrm{A}=0$ we see from (5.3), (5.4) and (5.5) that

$$
p=0, \quad c_{1}=\frac{1}{\sqrt{5}}, \quad c_{2}=\frac{-1}{\sqrt{5}}
$$

so that $E^{*}(x)$ reduces to $\frac{e^{\alpha x}-e^{\beta x}}{\sqrt{5}}$ which, as in (2.5), is the Exponential generating function for $\left\{F_{n}\right\}$.

6. Generalization of $\left\{g_{n}\right\}$ by applying Elmore's Method

Let

$$
E_{0}^{*}(x)=E^{*}(x)=c_{1} e^{\alpha x}+c_{2} e^{\beta x}+p e^{x t}
$$

be the Exponential Generating Function of $\left\{g_{n}\right\}$ as in (5.7). Further, let $G_{n}(x)$ of the sequence $\left\{G_{n}(x)\right\}$ be defined as the $n^{\text {th }}$ derivative with respect to x of $E_{0}^{*}(x)$, then

$$
\begin{equation*}
G_{n}(x)=c_{1} \alpha^{n} e^{\alpha x}+c_{2} \beta^{n} e^{\beta x}+p t^{n} e^{x t} \tag{6.1}
\end{equation*}
$$

Note that

$$
\begin{equation*}
G_{n}(0)=c_{1} \alpha^{n}+c_{2} \beta^{n}+p t^{n}=g_{n} \tag{6.2}
\end{equation*}
$$

which, in turn, reduces to F_{n} if $A=0$.
Theorem 6.1. The sequence $\left\{G_{n}(x)\right\}$ satisfies the non-homogeneous recurrence relation

$$
\begin{equation*}
G_{n+2}(x)=G_{n+1}(x)+G_{n}(x)+A t^{n} e^{x t} . \tag{6.3}
\end{equation*}
$$

Proof.

$$
\begin{align*}
\text { R.H.S. }= & c_{1} \alpha^{n+1} e^{\alpha x}+c_{2} \beta^{n+1} e^{\beta x}+p t^{n+1} e^{x t} \\
& +c_{1} \alpha^{n} e^{\alpha x}+c_{2} \beta^{n} e^{\beta x}+p t^{n} e^{x t}+A t^{n} e^{x t} \\
= & c_{1} \alpha^{n} e^{\alpha x}(\alpha+1)+c_{2} \beta^{n} e^{\beta x}(\beta+1) \tag{6.4}\\
& +p t^{n} e^{x t}(t+1)+p\left(t^{2}-t-1\right) t^{n} e^{x t} .
\end{align*}
$$

Since α and β are the roots of $x^{2}-x-1=0, \alpha+1=\alpha^{2}$ and $\beta+1=\beta^{2}$ so that (6.4) reduces to

$$
\text { R.H.S }=c_{1} \alpha^{n+2} e^{\alpha x}+c_{2} \beta^{n+2} e^{\beta x}+p t^{n+2} e^{x t}=G_{n+2}(x) .
$$

7. Generalization of Circular Functions

The Generalized Circular Functions are defined by Mikusinsky [2] as follows: Let

$$
\begin{gather*}
N_{r, j}=\sum_{n=0}^{\infty} \frac{t^{n r+j}}{(n r+j)!}, \quad j=0,1, \ldots, r-1 ; \quad r \geq 1, \tag{7.1}\\
M_{r, j}=\sum_{n=0}^{\infty}(-1)^{r} \frac{t^{n r+j}}{(n r+j)!}, \quad j=0,1, \ldots, r-1 ; \quad r \geq 1 . \tag{7.2}
\end{gather*}
$$

Observe that

$$
\begin{array}{lll}
N_{1,0}(t)=e^{t}, & N_{2,0}(t)=\cosh t, & N_{2,1}(t)=\sinh t \\
M_{1,0}(t)=e^{-t}, & M_{2,0}(t)=\cos t, & M_{2,1}(t)=\sin t
\end{array}
$$

Differentiating (7.1) term by term it is easily established that

$$
N_{r, 0}^{(p)}(t)=\left\{\begin{array}{l}
N_{r, j-p}(t), \quad 0 \leq p \leq j \tag{7.3}\\
N_{r, r+j-p}(t), \quad 0 \leq j<j<p \leq r
\end{array}\right.
$$

In particular, note from (7.3) that

$$
N_{r, 0}^{(r)}(t)=N_{r, 0}(t)
$$

so that in general

$$
\begin{equation*}
N_{r, 0}^{(n r)}(t)=N_{r, 0}(t), r \geq 1 \tag{7.4}
\end{equation*}
$$

Further note that

$$
N_{r, 0}(0)=N_{r, 0}^{(n r)}(0)=1
$$

8. Application of Circular functions to generalize $\left\{\boldsymbol{g}_{\boldsymbol{n}}\right\}$

Using Generalized Circular Functions and Pethe-Phadte technique [3] we define the sequence $Q_{n}(x)$ as follows. Let

$$
\begin{equation*}
Q_{0}(x)=c_{1} N_{r, 0}\left(\alpha^{*} x\right)+c_{2} N_{r, 0}\left(\beta^{*} x\right)+p N_{r, 0}\left(t^{*} x\right) \tag{8.1}
\end{equation*}
$$

where $\alpha^{*}=\alpha^{1 / r}, \beta^{*}=\beta^{1 / r}$ and $t^{*}=t^{1 / r}, r$ being the positive integer. Now define the sequence $\left\{Q_{n}(x)\right\}$ successively as follows:

$$
Q_{1}(x)=Q_{0}^{(r)}(x), \quad Q_{2}(x)=Q_{0}^{(2 r)}(x)
$$

and in general

$$
Q_{n}(x)=Q_{0}^{(n r)}(x)
$$

where derivatives are with respect to x. Then from (8.1) and using (7.4) we get

$$
\begin{align*}
& Q_{1}(x)=c_{1} \alpha N_{r, 0}\left(\alpha^{*} x\right)+c_{2} \beta N_{r, 0}\left(\beta^{*} x\right)+p t N_{r, 0}\left(t^{*} x\right), \\
& Q_{2}(x)=c_{1} \alpha^{2} N_{r, 0}\left(\alpha^{*} x\right)+c_{2} \beta^{2} N_{r, 0}\left(\beta^{*} x\right)+p t^{2} N_{r, 0}\left(t^{*} x\right), \\
& Q_{n}(x)=c_{1} \alpha^{n} N_{r, 0}\left(\alpha^{*} x\right)+c_{2} \beta^{n} N_{r, 0}\left(\beta^{*} x\right)+p t^{n} N_{r, 0}\left(t^{*} x\right) . \tag{8.2}
\end{align*}
$$

Observe that if $r=1, x=0, A=0,\left\{Q_{n}(x)\right\}$ reduces to $\left\{F_{n}\right\}$.
Theorem 8.1. The sequence $\left\{G_{n}(x)\right\}$ satisfies the non-homogeneous recurrence relation

$$
\begin{equation*}
Q_{n+2}(x)=Q_{n+1}(x)+Q_{n}(x)+A t^{n} N_{r, 0}\left(t^{*} x\right) \tag{8.3}
\end{equation*}
$$

Proof.

$$
\begin{align*}
& \text { R.H.S. }= c_{1} \alpha^{n+1} N_{r, 0}\left(\alpha^{*} x\right)+c_{2} \beta^{n+1} N_{r, 0}\left(\beta^{*} x\right)+p t^{n+1} N_{r, 0}\left(t^{*} x\right) \\
& \quad+c_{1} \alpha^{n} N_{r, 0}\left(\alpha^{*} x\right)+c_{2} \beta^{n} N_{r, 0}\left(\beta^{*} x\right)+p t^{n} N_{r, 0}\left(t^{*} x\right)+A t^{n} N_{r, 0}\left(t^{*} x\right) \\
&=c_{1} \alpha^{n} N_{r, 0}\left(\alpha^{*} x\right)(\alpha+1)+c_{2} \beta^{n} N_{r, 0}\left(\beta^{*} x\right)(\beta+1)+t^{n} N_{r, 0}\left(t^{*} x\right)(p t+p+A) . \tag{8.4}
\end{align*}
$$

Using the fact that α and β are the roots of $x^{2}-x-1=0$ and (5.1) in (8.4) we get

$$
\text { R.H.S. }=c_{1} \alpha^{n+2} N_{r, 0}\left(\alpha^{*} x\right)+c_{2} \beta^{n+2} N_{r, 0}\left(\beta^{*} x\right)+p t^{n+2} N_{r, o}\left(t^{*} x\right)=Q_{n+2}(x)
$$

It would be an interesting exercise to prove 7 identities for $Q_{n}(x)$ similar to those proved in Pethe-Phadte with respect to $P_{n}(x)$ [3].

Acknowledgments. We would like to thank the referee for their helpful suggestions and comments concerning the presentation of the material.

References

[1] Elmore M., Fibonacci Functions, Fibonacci Quarterly, 5(1967), 371-382.
[2] Mikusinski J. G., Sur les Fonctions, Annales de la Societe Polonaize de Mathematique, 21(1948), 46-51.
[3] Pethe S. P., Phadte C. N., Generalization of the Fibonacci Sequence, Applications of Fibonacci Numbers, Vol.5, Kluwer Academic Pub. 1993, 465-472.
[4] Pethe S. P., Sharma A., Functions Analogous to Completely Convex Functions, Rocky Mountain J. of Mathematics, 3(4), 1973, 591-617.

