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Abstract

The compositions, or ordered partitions, of integers, fall under certain
natural classes. In this expository paper we highlight the most important
classes by means of bijective proofs. Some of the proofs rely on the properties
of zig-zag graphs - the graphical representations of compositions introduced
by Percy A. MacMahon in his classic book Combinatory Analysis.
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1. Introduction

A composition of a positive integer n is a representation of n as a sequence of
positive integers which sum to n. The terms are called parts of the composition.

Denote the number of compositions of n by c(n). The formula for c(n) may be
obtained from the classical recurrence relation:

c(n+ 1) = 2c(n), c(1) = 1. (1.1)
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Indeed a composition of n+ 1 may be obtained from a composition of n either by
adding 1 to the first part, or by inserting 1 to the left of the previous first part.
The recurrence gives the well-known formula: c(n) = 2n−1.

For example, the following are the compositions of n = 1, 2, 3, 4:

(1)

(2), (1, 1)

(3), (1, 2), (2, 1), (1, 1, 1)

(4), (1, 3), (2, 2), (3, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 1, 1)

When the order of parts is fixed we obtain the partitions of n. For example, 4
has just 5 partitions – (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

This is an expository paper devoted to a classification of compositions according
to certain natural criteria afforded by their rich symmetry. We will mostly employ
the extensive beautiful machinery developed by P. A. MacMahon in his classic text
[3]. His original analysis of the properties of compositions seems to have received
scarce attention in the literature during the last half-century.

Percy Alexander MacMahon was born in Malta on 26 September 1854, the son
of brigadier general. He attended a military academy and later became an artillery
officer, attaining the rank of Major, all the while doing top-class mathematics
research.

According to his posthumous contemporary biographer, Paul Garcia [2],

“MacMahon did pioneering work in invariant theory, symmetric function the-
ory, and partition theory. He brought all these strands together to bring coherence
to the discipline we now call combinatorial analysis. . . . ”

MacMahon’s study of compositions was influenced by his pioneering work in
partitions. For instance, he devised a graphical representation of a composition,
called a zig-zag graph, which resembles the partition Ferrers graph except that the
first dot of each part is aligned with the last part of its predecessor. Thus the
zig-zag graph of the composition (5, 3, 1, 2, 2) is

• • • • •
• • •

•
• •
• •

(1.2)

The conjugate of a composition is obtained by reading its graph by columns,
from left to right: the graph (1.2) gives the conjugate of the composition
(5, 3, 1, 2, 2) as (1, 1, 1, 1, 2, 1, 3, 2, 1).

The zigzag graph possesses a rich combinatorial structure providing several
equivalent paths to the conjugate composition. The latter are outlined in Section 2.

We will sometimes write C |= n to indicate that C is a composition of n, and the
integer n will be referred to as the weight of C. A k-composition is a composition
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with k parts. The conjugate of C will be denoted by C ′.
Now following MacMahon, we define, relative to a composition C = (c1, c2, . . . , ck):

The inverse of C is the reversal composition C = (ck, ck−1, . . . , c2, c1).
C is called self-inverse if C = C.
C is inverse-conjugate if it’s inverse coincides with its conjugate: C ′ = C.
The zigzag graph of a composition C can be read in four ways to give generally

different compositions namely C,C ′, C, C
′
. Exceptions occur when C is self-inverse,

or when C is inverse-conjugate, in which case only two readings are obtained.
We deliberately refrain from applying generating function techniques in this

paper for the simple reason that the apparent efficacy of their use has largely been
responsible for obscuring the methods discussed.

2. The conjugate composition

In this section we outline five different paths to the conjugate composition.

ZG: The Zig-zag Graph, already defined above.

LG: The Line graph (also introduced by MacMahon [3, Sec. IV, Ch. 1, p. 151])
The number n is depicted as a line divided into n equal segments and separated

by n − 1 spaces. A composition C = (c1, . . . , ck) then corresponds to a choice of
k−1 from the n−1 spaces, indicated with nodes. The conjugate C ′ is obtained by
placing nodes on the other n − k spaces. Thus the line graph of the composition
(5, 3, 1, 2, 2) is

• • • • ,

from which we deduce that C ′ = (1, 1, 1, 1, 2, 1, 3, 2, 1). It follows that C ′ has
n− k + 1 parts.

SubSum: Subset Partial Sums:
There is a bijection between compositions of n into k parts and (k− 1)-subsets

of {1, . . . , n− 1} via partial sums (see also [6]) given by

C = (c1, . . . , ck) 7→ {c1, c1 + c2, . . . , c1 + c2 + · · ·+ ck−1} = L. (2.1)

Hence C ′ is the composition corresponding to the set {1, . . . , n− 1} \ L.
BitS: Encoding by Binary Strings

It is sometimes necessary to express compositions as bit strings. The procedure
for such bit-encoding consists of converting the set L into a unique bit string B =
(b1, . . . , bn−1) ∈ {0, 1}n−1 such that

bi =

{
1 if i ∈ L
0 if i /∈ L.
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The complementary bit string B′, obtained from B by swapping the roles of 1 and
0, is then the bit encoding of C ′.

DD: Direct Detection of Conjugates
There is an easily-mastered rule for writing down the conjugate of a composition

by inspection. A sequence of x consecutive equal parts c, . . . , c will be abbreviated
as cx. First, the general composition has two forms, subject to inversion:

(1) C = (1a1 , b1, 1
a2 , b2, 1

a3 , b3, . . . ), ai ≥ 0, bi ≥ 2;
(2) E = (b1, 1

a1 , b2, 1
a2 , b3, 1

a3 , . . . ), ai ≥ 0, bi ≥ 2.
The conjugate, in either case, is given by the rule:

(1c) C ′ = (a1 + 1, 1−1+b1−1, 1 + a2 + 1, 1−1+b2−1, 1 + a3 + 1, . . . )
= (a1 + 1, 1b1−2, a2 + 2, 1b2−2, a3 + 2, . . . ).

Similarly,
(2c) E′ = (1b1−1, a1 + 2, 1b2−2, a2 + 2, . . . ).

For example, (1, 3, 4, 13, 2, 12, 6)′ is given by

(1 + 1, 13−2, 1 + 1, 14−2, 1 + 13 + 1, 1 + 12 + 1, 16−1) = (2, 1, 2, 12, 5, 4, 15).

The various approaches to the conjugate composition obviously have their mer-
its and demerits. The strength of the DD method is that it often provides a general
form of the conjugate composition explicitly.

3. Special classes of compositions

We will need the following algebraic operations:
If A = (a1, . . . , ai) and B = (b1, . . . , bj) are compositions, we define the con-

catenation of the parts of A and B by
A|B = (a1, . . . , ai, b1, . . . , bj).

In particular for a nonnegative integer c, we have A|(c) = (A, c) and (c)|A = (c, A).
Define the join of A and B as

A ]B = (a1, . . . , ai−1, ai + b1, b2, . . . , bj).
The following rules are easily verified:

1. A|B = B|A.
2. (A|B)′ = A′ ]B′.

Note that (A, 0) ]B = A ] (0, B) = A|B.

3.1. Equitable decomposition by conjugation
The conjugation operation immediately implies the following identity:

Proposition 3.1. The number of compositions of n with k parts equals the number
of compositions of n with n− k + 1 parts.
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The two classes consist of different compositions except when n is odd and
k = (n+1)/2 = n− k+1. In the latter case the two classes are coincident. Indeed
since there are c(n, k) =

(
n−1
k−1
)
compositions of n with k parts, we see at once that

c(n, k) = c(n, n− k + 1).
Thus the set W (n) of compositions of n may be economically stored by keeping

only the sets W (n, k) of k-compositions, k = 1, . . . , bn+1
2 c, whereby the remaining

compositions are accessible via conjugation.
Looking closely at this idea, assume that the elements of each set W (n, k) are

arranged in lexicographic order, and list the sets in increasing order of lengths of
members as follows:

W (n, 1),W (n, 2), . . . ,W (n, bn+1
2
c)

︸ ︷︷ ︸
generates W (n) via conjugation

,W (n, bn+1
2
c+ 1), . . . ,W (n, n− 1),W (n, n). (3.1)

This arrangement implies one of the beautiful symmetries exhibited by many sets
of compositions:

If the set divisions are removed to reveal a single list of all compositions of n,
then the j-th composition from the left and the j-th composition from the right are
mutual conjugates. In other words, the j-th composition is the conjugate of the
(n− j + 1)-th composition, from either end.

This arrangement is illustrated for compositions of n = 1, 2, 3, 4 (see Section 1).

3.2. Equitable four-way decomposition
Define a 1c2-composition as a composition with the first part equal to 1 and last
part > 1. The following are analogously defined: 2c1-composition, 1c1-composition,
and 2c2-composition.

Then observe that the 2c1-compositions are inverses of 1c2-compositions, and
that the set of 2c2-compositions form the set of conjugates of the 1c1-compositions.
It turns out that the set of compositions of n splits naturally into four subsets of
equal cardinality corresponding to the four types of compositions.

Theorem 3.2. Let n be a natural number > 1. Then the following classes of
compositions are equinumerous:

(i) 1c1-compositions of n.
(ii) 1c2-compositions of n.
(iii) 2c1-compositions of n.
(iv) 2c2-compositions of n.

Each class is enumerated by c(n− 2).

Proof. By the remark immediately preceding the theorem, it suffices to establish a
bijection: (i) ⇐⇒ (ii). An object in (ii) has the form C = (1, c2, . . . , ck), ck > 1.
Deleting the initial 1 and subtracting 1 from ck gives (c2, . . . , ck − 1) = T , a
composition of n − 2. Now pre-pend and append 1 to obtain (1, c2, . . . , ck − 1, 1),
which is a unique composition in (i). Lastly, also note that the passage from C to
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T is a bijection from (i) to the class of compositions of n − 2. In other words the
common number of compositions in each of the classes is c(n− 2).

Example. When n = 5, the four classes are given by:
(i) (1, 3, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 1, 1);
(ii) (1, 4), (1, 2, 2), (1, 1, 3), (1, 1, 1, 2);
(iii) (4, 1), (2, 2, 1), (3, 1, 1), (2, 1, 1, 1);
(iv) (2, 1, 2), (2, 3), (3, 2), (5).

Remark 3.3. An Application: Since Theorem 3.2 implies c(n) = 4c(n − 2), it can
be applied to the generation of compositions of n from those of n− 2 in an obvious
way. Such algorithm is clearly more efficient than the classical recursive procedure
via the compositions of n− 1 (see (1.1)). Thus to compute the compositions of 5,
for example, it suffices to use the set W (3) = {(3), (2, 1), (1, 2), (1, 1, 1)}, together
with the quick generation procedures corresponding to the bijections in the proof
of Theorem 3.2.

A further saving of storage space can be attained by combining this four-way
decomposition with the conjugation operation. Then to store the set W (n) of
compositions of n it would suffice to hold only one half of W (n − 2), arranged as
previously described.

As a mixed refinement of Theorem 3.2 we have the following identity, which is
a consequence of conjugation.

Proposition 3.4. The number of compositions of n with one or two 1’s which can
appear only as a first and/or last part equals the number of compositions of n into
1’s and 2’s whose first and/or last part is 2.

For example, when n = 5, the two classes of compositions mentioned in the
proposition are:

(1, 4), (4, 1), (1, 2, 2), (1, 3, 1), (2, 2, 1);

(2, 1, 1, 1), (1, 1, 1, 2), (2, 2, 1), (2, 1, 2), (1, 2, 2).

3.3. Self-inverse compositions
Self-inverse compositions constitute the next easily distinguishable class of compo-
sitions. Their enumeration is usually straightforward. The number of parts of a
composition C will also be referred to as its length, denoted by `(C).

We remark that MacMahon [3] proved most of the results in this sub-section,
in the case of k-compositions, using the LG method.

Proposition 3.5.

(i) The number of self-inverse compositions of 2n is c(n+ 1).

(ii) The number of self-inverse compositions of 2n− 1 is c(n).
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Proof. We prove only part (i) (the proof of part (ii) is similar). Firstly, if C is a
self-inverse composition with `(C) odd, then C has the form:

C = (c1, . . . , ck−1, ck, ck−1, . . . , c1), where ck is even. Thus
C = (c1, . . . , ck−1, ck/2) ] (ck/2, ck−1, . . . , c1) ≡ A ]A,

where A = (c1, . . . , ck−1, ck/2) runs over all compositions of n.
If `(C) is even, then C has the form C = (c1, . . . , ck−1, ck, ck, ck−1 . . . , c1) ≡

B|B, where B = (c1, . . . , ck−1, ck) runs over all compositions of n.
It follows that there are as many self-inverse compositions of 2n into an odd

number of parts as into an even number of parts. Using the above notations, a
simple bijection is C ≡ A ]A 7→ A|A, and conversely, C ≡ B|B 7→ B ]B.

The essential results on self-inverse compositions are summarized below.

Theorem 3.6. The following sets of compositions have the same number of ele-
ments:
(i) self-inverse compositions of 2n− 1.
(ii) self-inverse compositions of 2n of odd lengths.
(iii) self-inverse compositions of 2n of even lengths.
(iv) self-inverse compositions of 2n− 2.
(v) compositions of n.

Proof. (i) ⇐⇒ (ii): if (c1, . . . , ck−1, ck, ck−1, . . . , c1) is in (i), then

(c1, . . . , ck−1, ck + 1, ck−1, . . . , c1)

is in (ii), and conversely.
(i) ⇐⇒ (iv): if (c1, . . . , ck−1, ck, ck−1, . . . , c1) and (c1, . . . , ck−1, ck, ck, ck−1, . . . , c1)
belong to (iv), then (i) contains (c1, . . . , ck−1, ck + 1, ck−1, . . . , c1) and

(c1, . . . , ck−1, ck, 1, ck, ck−1, . . . , c1),

respectively.
Lastly, since the cases (ii) ⇐⇒ (iii) ⇐⇒ (v) have been demonstrated with the
proof of Proposition 3.5, the theorem follows.

4. Inverse-conjugate compositions

Let C be a k-composition. If C is inverse-conjugate, then k = |C| − k + 1 or
|C| = 2k−1. Thus inverse-conjugate compositions are defined only for odd weights.
In fact, every odd integer > 1 has a nontrivial inverse-conjugate composition. For
instance, (1, 2k−1) and (1k−1, k) are both inverse-conjugate compositions of 2k−1.

Consider a general composition,

C = (1a1 , b1, 1
a2 , b2, . . . , 1

ar , br), ai ≥ 0, bi ≥ 2.

Then, using the DD conjugation rule in Section 2, we obtain

C ′ = (a1 + 1, 1b1−2, a2 + 2, 1b2−2, . . . , 1br−1−2, ar + 2, 1br−1).
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Thus the conditions for C to be inverse-conjugate are

br = a1 + 1, br−1 = a2 + 2, . . . , b1 = ar + 2.

Hence we have proved:

Lemma 4.1. An inverse-conjugate composition C (or its inverse) has the form:

C = (1br−1, b1, 1
br−1−2, b2, 1

br−2−2, b3, . . . , br−1, 1
b1−2, br), bi ≥ 2. (4.1)

Note that the sum of the parts is 2(b1 + · · ·+ br)− (r− 1)(2)− 1 ≡ 1 (mod 2),
as expected.

Let (c1, . . . , ck) be an inverse-conjugate composition of n > 1. For any index
j < k with cj+1 6= 1, consider the sub-composition (c1, . . . , cj). First, notice the
following relation between the two “halves” of (4.1):

(1br−1, b1, . . . , bj , 1br−j−2) = (br−j − 1, 1bj−2, br−j+1, . . . , 1
b1−2, br)

′. (4.2)

Therefore, if |C| = 2k − 1, it is possible for the weight of either side of (4.2) to be
exactly k − 1. The latter case implies an instructive dissection of C:

C = (1br−1, b1, . . . , bj , 1
br−j−2)|(1) ] (br−j − 1, 1bj−2, br−j+1, . . . , 1

b1−2, br)

= (1br−1, b1, . . . , bj , 1
br−j−2)|(1) ] (1br−1, b1, . . . , bj , 1br−j−2)′.

where the last equality follows by conjugating both sides of (4.2).
The gist of the foregoing discussion is summarized in the next theorem.

Theorem 4.2. If C = (c1, . . . , ck) is an inverse-conjugate composition of n =
2k − 1 > 1, or its inverse, then there is an index j such that c1 + · · ·+ cj = k − 1
and cj+1 + · · ·+ ck = k with cj+1 > 1. Moreover,

(c1, . . . , cj) = (cj+1 − 1, cj+2, . . . , ck)
′ (4.3)

Thus C can be written in the form

C = A|(1) ]B such that B′ = A, (4.4)

where A and B are generally different compositions of k − 1.

It follows that an inverse-conjugate composition C of n > 1 cannot be self-
inverse, even though C is also inverse-conjugate (in contrast with the so-called
self-conjugate partitions of n > 2 [1, 4]).

The theorem implies the following result of MacMahon which he demonstrated
using the LG method.

Theorem 4.3 (MacMahon). The number of inverse-conjugate compositions of an
odd integer n > 0 equals the number of compositions of n which are self-inverse.
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Proof. We describe a bijection α between the two classes of compositions by in-
voking Theorem 4.2. If C |= 2k − 1 is inverse-conjugate, then C can be written in
the form C = A|(1) ] B or C = A ] (1)|B for certain compositions A,B, of k − 1
satisfying B′ = A.

In the first case we use (4.3) to get α(C) = A|[(1) ]B]′, which is a self-inverse
composition of the type A|(1)|A.

The second case, C = A ] (1)|B, implies that there is a part m > 1 such that
C = X|(m)|B, with X |= M < k − 1. Now split m between the two compositions
as follows: X|(m− 1)] (1)|B = (X,m− 1)] (1, B), which is in the first-case form.
Hence α(C) = (X,m − 1) ] (1, B)′, giving a self-inverse composition of the type
Y |(d)|Y , with d an odd integer > 1.

Conversely given a self-inverse composition, T = (b1, . . . , br) ≡ B|(d)|B of 2k−
1, we first write T as the join of two compositions of k − 1 and k, by splitting the
middle part. The middle part, by weight, is bj+1 such that sj = b1+ · · ·+bj ≤ k−1
and sj + bj+1 ≥ k. Thus

T 7→ (b1, . . . , bj)|(k−1−sj)](k−tj)|(bj+2, . . . , br) ≡ X|(k−1−sj)](k−tj)|X,
where tj = bj+2 + · · ·+ bk.

Hence α−1(T ) = X|(k − 1− sj) ] (k − tj , X)′, which is inverse-conjugate.

Example. Consider the inverse-conjugate composition of 15 given by

C = (1, 1, 1, 2, 3, 1, 2, 4).

Then since 1 + 1 + 1 + 2 < 7 and 1 + 1 + 1 + 2 + 3 > 7, we have

C = (1, 1, 1, 2)|(3)|(1, 2, 4)→ (1, 1, 1, 2, 2)] (1, 1, 2, 4)′ = (1, 1, 1, 2, 2)] (3, 2, 1, 1, 1),

which gives T = (1, 1, 1, 2, 5, 2, 1, 1, 1), a self-inverse composition of 15. Conversely,

(1, 1, 1, 2, 5, 2, 1, 1, 1)→ (1, 1, 1, 2, 2) ] (3, 2, 1, 1, 1)′ = (1, 1, 1, 2, 2) ] (1, 1, 2, 4),

which gives back (1, 1, 1, 2, 3, 1, 2, 4).
It can also be verified that C ′ = (4, 2, 1, 3, 2, 1, 1, 1) corresponds to the self-

inverse composition (4, 2, 1, 1, 1, 2, 4) = T ′ under the bijection.

Corollary 4.4. There are as many inverse-conjugate compositions of 2n − 1 as
there are compositions of n.

Proof. The proof can be deduced from Theorem 3.6 and Theorem 4.3, but we give
a direct proof. If n = 1, the composition (1) belongs trivially to the two classes of
compositions. So assume n > 1.

Let (c1, . . . , cn) be any inverse-conjugate composition of 2n− 1. Then by (4.4)
there is an index j such that c1 + · · ·+ cj = n− 1 or ck−j+1 + · · ·+ ck = n− 1.

There are c(n−1) inverse-conjugate compositions (c, . . . , cn) in which c1+ · · ·+
cj = n− 1, n > 1, and there distinct conjugates (i.e., inverses). Since there are no
self-inverse inverse-conjugate compositions, the total number of inverse-conjugate
compositions of 2n− 1 is 2c(n− 1) = c(n), as required.
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We can also give a bijection. According to Theorem 4.2 every inverse-conjugate
composition (c1, . . . , cn) satisfies c1 + · · · + cj = n − 1 and cj+1 + · · · + cn = n
with cj+1 > 1, or c1 + · · · + cj = n and cj+1 + · · · + cn = n − 1 with cj > 1, for
a certain index j. Now with each inverse-conjugate composition of the first type
associate the composition of n given by (c1, . . . , cj , 1), and with each of the second
type associate, (c1, . . . , cj), which is already a composition of n.

This gives the required bijection.

Example. We illustrate the second part of the proof of Corollary 4.4. There are
8 inverse-conjugate compositions of 7:

(1, 1, 1, 4), (1, 1, 2, 3), (1, 2, 2, 2), (1, 3, 1, 2),

(2, 1, 3, 1), (2, 2, 2, 1), (3, 2, 1, 1), (4, 1, 1, 1).

The corresponding list of compositions of 4, under the bijection, is:

(1, 1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 3), (2, 1, 1), (2, 2), (3, 1), (4).

5. Further consequences

The machinery developed here can be used to relate compositions directly with bit
strings, that is, finite sequences of 0’s and 1’s.

Theorem 5.1.
(i) The number of compositions of n + 1 without the part m equals the number of
n-bit strings that avoid a run of m− 1 ones.

(ii) The number of compositions of n+1 in which m may appear only as a first or
last part equals the number of n-bit strings that avoid 01m−10.

Proof. To prove part (ii) we give a bijection between the two sets, using the Sub-
Sum and BitS conjugation methods. If C = (m, c1, c2, . . . ) |= n + 1, ci 6= m > 1,
then the image of C under the bijection (2.1) is L = (m,m+ c1,m+ c1 + c2, . . . ).
Since ci 6= m for all i, no pair of consecutive terms in L are separated by m − 1
elements. So the bit encoding of C avoids 10m−11. The same conclusion obviously
holds if we start with a composition that does not contain m as a part. Thus the
desired bijection is the map that takes a composition C of n with no intermediate
m’s to the bit encoding of the conjugate C ′.

The proof of part (i) is similar.

It turns out that the two classes of compositions in Theorem 5.1 are equinu-
merous, for m = 2, provided the weights differ by unity.

Theorem 5.2. The number of compositions of n in which 2 may appear only as a
first or last part equals the number of compositions of n+ 1 without 2’s.
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Proof. We provide a recursive proof. Let dn be the number of compositions of n
in which 2 may appear only as a first or last part, and let cn be the number of
compositions of n without 2’s.

Then, we first observe that

dn = cn + 2cn−2 + cn−4, (5.1)

since dn enumerates the set consisting of compositions without 2’s, those with
exactly one 2 at either end, and those with two 2’s at both ends.

The enumerator cn fulfills the following recurrence relations.

cn = 2cn−1 − cn−2 + cn−3; (5.2)

cn = cn−1 + cn−2 + cn−4; (5.3)

with the initial values c1 = c2 = 1.
For (5.2), we note that a composition counted by cn can be found in three ways:

(i) by adding 1 to the last part of a composition counted by cn−1, provided we
exclude compositions of n− 1 with last part 1;

(ii) by appending 1 to a composition counted by cn−1; and
(iii) by appending 3 to a composition counted by cn−3, since the previous two

types exclude the latter.
The numbers of compositions of n generated are, respectively, cn−1 − cn−2, cn−1
and cn−3. Hence altogether we obtain (5.2).

For (5.3), note that compositions counted by cn with first part 1 are also counted
by cn−1; those with first part > 1, that is, first part ≥ 3, are counted by cn−2,
with the exception of those with first part equal to 4. The latter are obtained by
appending 4 to compositions of n− 4 with no 2’s. Hence the result.

Now using (5.3) and (5.2), we obtain
dn = cn+2cn−2+cn−4 = cn+2cn−2+cn−cn−1−cn−2 = 2cn−cn−1+cn−2 = cn+1,

as required.

We are presently unable to give a direct bijection between the two sets of com-
positions in Theorem 5.2. The theorem can, of course, be formulated in terms of
bit strings using the BitS conjugation method (cf. Theorem 5.1):

Corollary 5.3. The number of n-bit strings avoiding 010 is equal to the number
of (n+ 1)-bit strings avoiding isolated 1’s.

However, even in this new form, the difficulty of finding a bijective proof seems
to persist. It is possible to give a recursive proof of Corollary 5.3 that is similar to
the proof of Theorem 5.2.
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