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Abstract

Heuristically, the base b, size a Tojaaldi sequence of size k, T (a,b)
k , is the

sequence of initial digits of the (k+1)−digit Generalized Fibonaaci numbers,
defined by F

(a)
0 = 0, F

(a)
1 = 1, F

(a)
n = aF

(a)
n−1 + F

(a)
n−2, n ≥ 2. For example,

T (1,10)
2 = 〈1, 2, 3, 6, 9〉 corresponding to the initial digits of the three-digit

Fibonacci numbers, 144, 233, 377, 610, 987. In [1] we showed that (eventually)
there are at most b Tojaaldi sequences and conjectured that there are exactly
b Tojaaldi sequences. Based on computer studies we also conjectued that the
Tojaaldi sequences are Benford distributed. We prove these two conjectures
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1. Introduction and goals

The goal of this paper is to prove the two conjectures presented in [1]. For purposes
of completeness we will repeat the necessary definitions, conventions and theorems
from [1]. For pedagogic purposes we will also repeat key illustrative examples.
However, the reader should consult [1] for details on proofs and the well-definedness
of definitions.

An outline of this paper is as follows: In this section we present all necessary
definitions and propositions. In the next section we state the main Theorems of [1]
as well as the two conjectures. In the final section we prove the conjectures.
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Notational Conventions. Throughout this paper if {n ∈ N : P (n)} is the
set of integers with property P then we notationally indicate the sequence of such
integers (with the natural order inherited from the integers) by 〈n ∈ N : P (n)〉.
Throughout this paper discrete sequences and sets will be notationally indicated
with angle brackets and braces respectively.

Definition 1.1. For integers a ≥ 1, n ≥ 0, the generalized Fibonacci numbers are
defined by

F
(a)
0 = 0, F

(a)
1 = 1, F (a)

n = aF
(a)
n−1 + F

(a)
n−2, n ≥ 2.

The generalized Fibonacci numbers can equivalently be defined by their Binet form

F (a)
n =

αna − βna
D

,D = αa − βa =
√
a2 + 4, αa =

a+D

2
, βa =

a−D
2

. (1.1)

When speaking about the generalized Fibonacci numbers, if we wish to explicitly
note the dependence on a, we will use the phrase the a-Fibonacci numbers.

The following identity is useful when making estimates.

Lemma 1.2. For integers k ≥ 1,m ≥ 1,

F
(a)
m+k = αkaF

(a)
m + F

(a)
k βma . (1.2)

Definition 1.3. The base b, a-Tojaaldi sequence of size k is defined and notation-
ally indicated by

T (a,b)
k =

〈⌊
F

(a)
n

bk

⌋
: n ≥ 1, bk ≤ F (a)

n < bk+1

〉
, k ≥ 0. (1.3)

The base b, a-Tojaaldi set (of the a-Fibonacci numbers) is defined and notationally
indicated by

T (a,b) = {T (a,b)
k : 0 ≤ k <∞}.

Example 1.4. Heuristically, a Tojaaldi sequence is the sequence of initial digits of
all base b size a Fibonacci numbers, with a fixed number of digits. So, for example,
T (1,10)
2 = 〈1, 2, 3, 6, 9〉, corresponding to the initial digits of the 3-digit Fibonacci

numbers: 144,233,377,610,987.

Remark 1.5. The theorems of this paper carry over to the generalized Lucas num-
bers with extremely minor modifications.

The Tojaaldi sequences were initially studied by Tom Barrale who manually
compiled tables of them from 1997-2007. Michael Sluys then contributed computing
resources enabling computation of Tojaaldi sequences for the first (approximately)
half million Fibonacci numbers. This computer study was replicated by Hendel
using alternate algorithms. This computer study contains important information
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about the distribution of Tojaaldi sequences which is the basis of the conjecture
that the Tojaaldi sequences are Benford distributed.

The name Tojaaldi is an acronym formed from the initial two letters of Barrale’s
family: Thomas, Jared, Allison, and Dianne, his eldest, second eldest son, daughter
and wife respectively. (The third letter of "Thomas" was used rather than the
second because it is a vowel.)

Definition 1.6. For integers b ≥ 2, a ≥ 1, n0(a, b) is the smallest positive integer
such that

F (a)
n = i · bj , is not solvable for integers 1 ≤ i ≤ b− 1, n ≥ n0(a, b). (1.4)

Example 1.7. Clearly, n0(1, 10) = 1, n0(2, 10) = 1 and n0(1, 12) = 13.

Definition 1.8. For integer k, n(k) = n(k,a,b) is the unique integer defined by the
equation

F
(a)
n(k) < bk ≤ F (a)

n(k)+1, k ≥ 1. (1.5)

Definition 1.9. For fixed integers a ≥ 1 and b ≥ 2, j(a,b) is the unique non-
negative integer satisfying the inequality,

αj(a,b)a < b < αj(a,b)+1
a . (1.6)

Definition 1.10. Let k1(a, b) be the smallest positive integer such that for all
k ≥ k1(a, b), (i) n(k) ≥ n0(a, b), and (ii) n(k) ≥ j(a, b). An integer k ≥ k1(a, b) will
be called non-trivial while other positive integers will be called trivial. Similarly, a
Tojaaldi sequence T (a,b)

k will be called non-trivial if k is non-trivial. We notationally
indicate the set of all non-trivial, base b, a-Tojaaldi sequences, by T (a,b)

.

Lemma 1.11. For non-trivial k,

#T (a,b)
k ∈ {j(a, b), j(a, b) + 1}. (1.7)

Proof. [1, Proposition 2.5].

Example 1.12. j(1, 10) = 4, n0(1, 10) = 1, and n(1, 1, 10) = 6. Hence, by (1.7),
T (1,10)
0 is the only base 10, 1-Tojaaldi sequence with 6 elements.

Lemma 1.13. If k is non-trivial then (i) F (a)
n(k) ≤ i·bk, 1 ≤ i ≤ b−1⇒ F

(a)
n(k) < i·bk

(ii) #T (a,b)
k ∈ {j(a, b), j(a, b) + 1}, (iii) F (a)

n(k)+p > bk ⇔ αpaF
(a)
n(k) > bk, 1 ≤ p ≤

j(a, b) + 1.

Proof. [1, Proposition 2.8].

Remark 1.14. Non-triviality was introduced to avoid only a few aberrent Tojaaldi
sequences such as T (1,10)

0 . In general, restricting ourselves to non-trivial sequences
is not that restrictive. For example, k1(1, 10) = 1 and k1(1, 12) = 3.
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Definition 1.15. For fixed a, b, and x ∈ [α−1a , 1), the base b, real, a-Tojaaldi
sequence of x is defined by

T (a,b)
x = 〈bαkaxc : 1 ≤ k ≤ m, with m defined by αma x < b ≤ αm+1

a x〉.

Remark 1.16. T (a)
z has different definitions depending on whether z is an integer

or non-integer. This should cause no confusion in the sequel since the meaning will
always be clear from the context.

Definition 1.17. For integer k, a ≥ 1, and b ≥ 2,

x = x(k) = x(k, a, b) =
F

(a)
n(k)

bk
, k ≥ 1. (1.8)

Lemma 1.18. For integer k, a ≥ 1, and b ≥ 2,

T (a,b)
x(k) = T (a,b)

k , (1.9)

and
x(k) ∈ (α−1a , 1). (1.10)

Proof. [1, Proposition 2.14]

Definition 1.19. For each integer, 1 ≤ i ≤ b, e(i) = e(i,a) is the unique integer
satisfying. αe(i)−1a ≤ i < α

e(i)
a .

Definition 1.20. The (a, b)-partition refers to

〈Bi : 1 ≤ i ≤ b+ 1〉 = 〈1, i

α
e(i)
a

: 1 ≤ i ≤ b〉. (1.11)

Remark 1.21. By our notational convention on the use of angle brackets, the Bi
simply sequentially order the { j

α
e(j)
a

}1≤j≤b. Consequently, the Bi, 1 ≤ i ≤ b + 1,

partition the interval [ 1
αa
, 1), into b semi-open intervals with B1 = α−1a and Bb+1 =

1.

Example 1.22. Table 1 presents the (1,10)-parition and other useful information.

Lemma 1.23. For a fixed a ≥ 1, b ≥ 2, (a, b)− partition, 〈Bi : 1 ≤ i ≤ b+ 1〉, and
a real y ∈ [Bm, Bm+1), 1 ≤ m ≤ b,

T (a,b)
Bm

= T (a,b)
y . (1.12)

Proof. [1, Proposition 2.15].

Example 1.24. x = x(1, 1, 10) = 0.8. Inspecting Table 1,

x ∈ [B6, B7) = [0.76, 0.81).

It is then straightforward to verify, as shown in Table 1, that

T (1,10)
0.8 = 〈1, 2, 3, 5, 8〉 = T (1,10)

1 . (1.13)
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1
α

7
α5

3
α3

8
α5

5
α4

2
α2

9
α5

6
α4

10
α5

4
α3 1

0.62 0.63 0.71 0.72 0.73 0.76 0.81 0.88 0.90 0.94 1.00

11246 11247 11347 11348 11358 12358 12359 12369 1236 1246

3,888 21,250* 3,396* 2,068* 8,515 11,158** 13,980* 5,465* 8,515 10,583* 88,818

Table 1: Row 3 of this table contains the ten base 10, 1-
Tojaaldi sequences of size at least 1. Row 4 presents the nu-
merical frequencies of Tojaaldi sequences. Row 1 contains the
(1,10)-partition of [α−1, 1) by Bi, 1 ≤ i ≤ b, defined in Defini-
tion 1.17. Row 2 contains two digit numerical approximations
of the Bi. In row 4, the number of asterisks indicate the differ-
ence between (actual) observed and Benford (predicted) frequen-
cies, 88818 · log(Bi+1)−log(Bi)

log(1)−log(α−1)
. To illustrate our notation, there are

11158 occurrences of the Tojaaldi sequence 〈1, 2, 3, 5, 8〉 among the
Tojaaldi sequences of sizes 1 to 88818. The Benford densities de-
scribed in Definition 1.28 and Proposition 1.29, predict there should

be 88818 ·
(
log(9)−log(α5)

)
−
(
log(2)−log(α2)

)
log(α)

≈ 11156 occurrences, and
hence we have placed two asterisks on the 11158 entry to indicate
a difference of two between the observed and predicted frequencies.

In the sequel we will assume integers a, b are fixed. This will allow us to ease
notation and drop the functional dependency on a, b. So for example we will speak
about k1 instead of k1(a, b).

In the sequel we will speak about an integer K ≥ k1(a, b). In several proofs we
will speak about the effect of K growing arbitrarily large.

Definition 1.25. The sequence {y(k)}k≥K , is recursively defined by

y(K) = x(K) =
F

(a)
n(K)

bK
,

y(k) = y(k − 1)

{
αj+1
a

b , if y(k − 1)
αj+1
a

b < 1,
αja
b , if y(k − 1)

αj+1
a

b > 1, for k > K.
(1.14)

Definition 1.26. The sequence {ny(k)}k≥K , is defined by ny(k) = 0, for k < K,
and

ny(k) = ny = #{K ≤ i ≤ k : y(i)
αj+1
a

b
> 1}, k ≥ K. (1.15)

Lemma 1.27.

y(k) =
F

(a)
n(K)

bK

(
αja
b

)k−K
αny(k−1)a , for k ≥ K. (1.16)

Proof. A straightforward induction.
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Definition 1.28. The sequence {nx(k)}k≥K , is defind by nx(k) = 0, for k < K,
and

nx(k) = #{K ≤ i ≤ k : x(i)
αj+1
a

b
> 1}, k ≥ K. (1.17)

Remark 1.29. The definitions and propositions we have just presented are almost
identical to those in [1, Section 3]. The sole difference is that [1] restricts these
definitions and propositions to the caseK = k1 while here, we have allowedK > k1.
It is this small subtlety which will allow us to prove that most x(k) are arbitrarily
close to y(k) for large enough k > K.

Example 1.30. Let a = 1, b = 10. Then k1(a, b) = 1. By (1.14) and (1.8),

{y(1), . . . , y(4)} = {F6

10
= 0.8, 0.8872, 0.9839, 0.6744} ≈

{x(1), . . . , x(4)} = { 8
10
,
89

100
,
987

1000
,
6765

10000
}.

Note that x(i)− y(i) ≈ 0.003.

Definition 1.31. An integer k ≥ K will be called exceptional relative to (a, b) if
nx(k − 1) 6= ny(k − 1). Otherwise, k will be called non-exceptional.

Example 1.32. let a = 1, b = 10. Then j(a, b) = 4 and n(1, a, b) = 6.
By Definition 1.14, x(44) = F212

1044 = 0.9034, to four decimal places. By Definition

1.21, y(44) = 0.9006. But y(44)α
5
a

10 = 0.9988 < 1, while x(44)α
5
a

10 = 1.0019 > 1, and
consequently x(44) 6= y(44), implying by Definition 1.26 that 45 is exceptional.

Note, that by Definition 1.21, y(45) = 0.9988. while by Definition 1.14, x(45) =
0.6192.

Hence, for the exceptional value of 45, x(45) and y(45) are not close. In fact,
y(45)−x(45) > 0.37. The "spikes" in Figures 1 and 2 correspond to the exceptional
integers and show that they are rare.

Figure 1: Distribution of b 1
x(n)−y(n) +0.5c for 2 ≤ n ≤ 200, for the

1-Fibonacci numbers and base 10. The x(n) and y(n) are defined
in Definitions 1.14 and 1.21 respectively.
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Figure 2: Distribution of b 1
x(n)−y(n) +0.5c for 2 ≤ n ≤ 200, for the

2-Fibonacci numbers and base 10. The x(n) and y(n) are defined
in Definitions 1.14 and 1.21 respectively.

Definition 1.33. Let [a, b) be an interval on the real line and let
X ∼ Uniform([a, b)) be a random variable uniformly distributed over this space.
If for some constant c > 1, the random variable Y satisfies Y = cX, c > 1, over
the space [ca, cb), then we say that Y is Benford distributed over [ca, cb), and we
notationally indicate this by Y ∼ Benford([ca, cb).

Lemma 1.34. If Y ∼ Benford([ca, cb), then for ca ≤ c1 ≤ c2 ≤ cb,

P rob(c1 < Y < c2) =
logc(

c2
c1
)

b− a .

Remark 1.35. For a proof see [1, Proposition 4.3]. For general references on the
Benford distribution see the bibliography in [1]. Notice that the restriction of the
spaces and random variables Y and X to spaces of countable dense subsets of [a, b)
does not change the proposition conclusion.

Example 1.36. Table 1, which presents 88,818 Tojaaldi sequences, allows illus-
tration of the Benford sequence (and Conjecture 2).

Each of these 88,818 Tojaaldi sequences involve 4 or 5 Fibonacci numbers. Thus
the 88,818 Tojaaldi sequences involve 3888×5+21250×5+. . .+10583×4 = 424992
Fibonacci numbers. Since the Fibonacci numbers are Benford distributed, we expect
log10(

10
9 )×88818 = 19446.6 Fibonacci numbers beginning with 9. But 〈1, 2, 3, 5, 9〉

and 〈1, 2, 3, 6, 9〉 are the only Tojaaldi sequences having Fibonacci numbers begin-
ning with 9; so we observe 13980 + 5465 = 19445 Fibonacci numbers beginning
with 9.

We can repeat this numerical exercise for each digit (besides 9). We can then
compute the χ−square statistic, χ2 =

∑9
i=1

(Oi−Pi)2
Pi

= 0.0004 showing a very
strong agreement between theory and observed frequency for the Fibonacci-number
frequencies.

Similarly, as outlined in the caption to Table 1, we may compute observed and
expected Tojaaldi-sequence frequencies; the associated χ−square statistic is 0.0013,
suggesting that the Tojaaldi sequences are Benford distributed. This numerical
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study motivates Conjecture 2 which will be formally stated in the next section and
proven in the final section of this paper.

Definition 1.37. The uniform discrete measure used when making statements
about frequency of Tojaaldi sequences on initial segments of integers, is given by
the following discrete probablity measure.

PL(T (a,b)
k0

) =
#{k : T (a,b)

k = T (a,b)
k0

, 1 ≤ k ≤ L}
#{T (a,b)

k : 1 ≤ k ≤ L}
, L ≥ 1, (1.18)

with # indicating cardinality and k0, k, L are integers.

2. Main theorems and conjectures

Conjecture 1. For all b ≥ 2, a ≥ 1, #T (a,b)
= b.

Theorem 2.1. For b > 1, and arbitrary a ≥ 1,

#T (a,b) ≤ b.

Proof. [1, Theorem 2.9]

Lemma 2.2. For given (a, b) let 〈Bi : 1 ≤ i ≤ b + 1〉 be an (a, b)-partition, and
let z0 be an arbitrary point in the real space [α−1a , 1) with the continuous uniform
measure. Then

Prob(Tz = Tz0) =
µ([Bi, Bi+1))

µ([α−1a , 1))
,

where i is picked so that [Bi, Bi+1) contains z0.

Proof. [1, Theorem 4.1]

Theorem 2.3. For any integer K ≥ k1, {y(i) : i ≥ K} is Benford distributed over
the space [α−1, 1).

Proof. [1, Theorem 4.5] (with K replacing k1 throughout the proof.)

Conjecture 2. The {x(i)}i≥k1 are Benford distributed.

3. Proof of the two conjectures

In this section we prove the two main conjectures which we restate as theorems.
Prior to doing so we will need some preliminary propositions.

Lemma 3.1. {ny(k)}k≥K is non-decreasing and unbounded as k goes to infinity.
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Proof. By Definition 1.22, ny(k) is non-decreasing. Suppose contrary to the propo-
sition there is a k0 such that for all k ≥ k0, ny(k) = ny(k0). We proceed to derive
a contradiction, proving that ny(k) is unbounded as k goes to infinity.

First, we show, using an inductive argument, that y(k) ∈ (α−1a , 1), for k > K.
The base case, when k = K is established by Definition 1.21 and equation (1.10).
The induction step is established by Definitions 1.21 and 1.8.

Returning to the proof of Proposition 3.1, note that according to Definition
1.21, there are two cases to consider, according to whether y(k0)

αj+1
a

b < 1, or

y(k0)
αj+1
a

b > 1. We assume y(k0)
αj+1
a

b < 1, the treatment of the other case be-
ing almost identical. Then since we assumed ny(k) = ny(k0), k ≥ k0, we have

y(k0)
(
αj+1
a

b

)n
< 1, for all integer n ≥ 0, a contradiction, since by Definition 1.8,

(
αj+1
a

b

)n
goes to infinity as n gets arbitrary large. This contradiction shows that

our original assumption that y(k) is bounded is false. This completes the proof.

Lemma 3.2. For non-exceptional k > K

|x(k)− y(k)| ∈
(
α−2n(K)−1
a , α−2n(K)

a

)
. (3.1)

Proof. [1, Proposition 3.6] with K replacing k1 in both the proposition statement
and throughout the proof.

Remark 3.3. As noted in the previous section, because we replaced k1 by K,
the lower bound estimate of the difference in (3.1) is going to 0. Consequently
{x(i)}i≥K is asymptotically approaching {y(i)}i≥K . Formally, we have the follow-
ing Corollary.

Corollary 3.4. As k varies over non-exceptional k,

lim
k→∞

|x(k)− y(k)| = 0.

Proof. Immediate, by combining Propositions 3.1 and 3.2.

Lemma 3.5. Using Definition 1.17, let 〈Bi : 1 ≤ i ≤ b+ 1〉 = 〈1, i

α
e(i)
a

: 1 ≤ i ≤ b〉
be an (a, b)-partition. Then the #{TBi , 1 ≤ i ≤ b} = b, that is, the TBi are distinct.

Proof. Following [1, Proposition 2.15], define a b × j(a, b) + 1 matrix, A(k, l) =
Bkα

l
a, 1 ≤ k ≤ b, 1 ≤ l ≤ j(a, b) + 1, so that by Definition 1.13

TBk = 〈bA(k, 1)c, . . . , bA(k,m)c〉, and by Definitions 1.16, 1.17 and 1.8, m equals
j(a, b) or j(a, b) + 1. Recall the following facts about the matrix A :
(I) A(k, e(i(k))) = i(k); (II) no other cell entries (besides (k, e(i(k)))) can have
exact integer values; (III) A is strictly increasing as one goes from top to bottom
and left to right, that is, A(k, l) < A(k′, l′) if either (i)l < l′ or (ii) l = l′, k < k′.

Using these three facts we see that bA(k′, e(i(k))c < A(k, e(i(k)), for k′ < k,
1 ≤ k ≤ b, i(k) 6= b. Hence, TBk′ 6= TBk , for k′ < k. An almost identical argument
applies when i(k) = b. Hence the TBi are distinct as was to be shown.
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Example 3.6. We can illustrate the proof using Table 1. By Table 1, B4 = 8
α5 ,

implying that the 5th member of the sequence TB4
equals 8 and the 5th member

of the previous sequences, TBk , 1 ≤ k < 4, are strictly less than 8 as confirmed by
Table 1.

Note also the special case B9 = 10
α5 , implying that the 5th member of the

sequence TB9 is empty while the 5th member of the previous sequences, TBk , 1 ≤
k ≤ 8, are non-empty, as confirmed by Table 1.

The next three propositions show that exceptional k (as defined in Definition
1.26) are rare. First we prove the following proposition, which provides an alternate
recursive definition to x(k), defined in Definition 1.14.

Lemma 3.7. The sequence {x(k)}k≥K , is recursively defined by

x(K) =
F

(a)

n(K)

bK
,

x(k) =




x(k − 1)

α
j+1
a
b + F

(a)
j+1

β
n(k−1)
a
bk

, if x(k − 1)
α
j+1
a
b < 1,

x(k − 1)
α
j
a
b + F

(a)
j

β
n(k−1)
a
bk

, if x(k − 1)
α
j+1
a
b > 1, for k > K.

(3.2)

Proof. If k = K the proposition is true by Definition 1.14. If k > K, then by
Definitions 1.3, 1.7 and Proposition 1.10

n(k)− n(k − 1) = #T
(a,b)
k−1 ∈ {j, j + 1}.

Consequently, there are two cases to consider. We treat the case n(k) = n(k −
1) + j, the treatment of the other case, n(k) = n(k − 1) + j + 1, being similar.

But then, by Proposition 1.12,

F
(a)
n(k) = αjaF

(a)
n(k−1) + F

(a)
j βn(k−1)a .

Equation (3.2), follows by dividing both sides of this last equation by bk and ap-
plying Defintion 1.14.

Prior to stating the next two propositions, it may be useful to numerically
illustrate the proof method. The following example continues Example 1.27.

Example 3.8. Let a = 1, b = 10. Then by Definition 1.8, j(a, b) = 4. By Definitions
1.22 and 1.24,

ny(43) = nx(43),

implying by Definition 1.26, that 44 is not exceptional. By Definition 1.21, y(44) =
0.9006; by Definition 1.14, x(44) = 0.9034. Application of Defintions 1.22 and 1.24
require use of α

5
a

10 = 0.9017. Observe that

y(44) = 0.9006 < 0.9017 < 0.9034 = x(44).

Consequently,

y(44)
α5
a

10
< 1;x(44)

α5
a

10
> 1.
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Therefore, by Definitions 1.22 and 1.24

ny(44) = ny(43) + 1;nx(44) = nx(43).

Hence, by Definition 1.26, k = 45 is an exceptional value. Notice that y(44) and
x(44) are close in value as predicted by Proposition 3.2. The values of x(45) and
y(45) may now be computed using Definition 1.22 and Proposition 3.6,

y(45) = 0.9988;x(45) = 0.6192.

Here, y(45) and x(45) are not close. More precisely, y(45) is close to 1 while x(45)
is close to α−1a .

But by applying Definitions 1.22 and 1.24 we see that

ny(45) = ny(44);nx(45) = nx(44) + 1,

implying that
ny(45) = nx(45),

in other words, 46 is not exceptional. We in fact confirm that y(46) and x(46) are
indeed close as required.

y(46) = 0.6846 < 0.6867 = x(46).

We may summarize this numerical example as follows: (I) Most k are non-
exceptional. (II) For an exceptional k to occur, one of x(k − 1), y(k − 1) must be
greater than αj+1

a

b while the other is less. (III) This occurs rarely because most
k are non-exceptional and hence, by Proposition 3.2, x(k) and y(k) are usually
numerically close. (IV) If k is exceptional then x(k) will be close to α−1a while
y(k) will be close to 1. (V) Consequently k + 1 will not be exceptional and in fact
x(k + 1) and y(k + 1) will again be close to each other.

The next proposition formalizes this example.

Lemma 3.9. If k is exceptional then k − 1 and k + 1 are non-exceptional.

Proof. Assume that k is exceptional and k−1 is not exceptional. This assumption is
allowable, since by Definitions 1.21, 1.22 and 1.24, K and K+1 are not exceptional
and therefore the "first" exceptional k must be preceded by a non-exceptional value.
We proceed to show that k+1 is not exceptional. Therefore, the "2nd" exceptional
k is preceded by a non-exceptional k. Proceeding in this manner we will always
be justified if we assume the predecessor of an exceptional k is not exceptional.
Consequently, we have left to prove that k + 1 is not exceptional.

By Definitions 1.26, 1.22 and 1.24, for k to be exceptional we must have one of
x(k − 1)

αj+1
a

b and y(k − 1)
αj+1
a

b greater than one while the other is less than one.
We treat one of these cases, the treatment of the other case being similar.

Accordingly, we assume

ny(k − 2) = nx(k − 2) −→ k − 1 is not exceptional, (3.3)
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and we further assume

y(k − 1) <
(αj+1

a

b

)−1
< x(k − 1) −→ y(k − 1)

αj+1
a

b
< 1, x(k − 1)

αj+1
a

b
> 1. (3.4)

Combining Proposition 3.2 with (3.4) we obtain

y(k − 1) >
(αj+1

a

b

)−1 − 1

α
2n(K)
a

, x(k − 1) <
(αj+1

a

b

)−1
+

1

α
2n(K)
a

. (3.5)

Hence, by Definition 1.21 and Proposition 3.6,

y(k) = y(k − 1)
αj+1
a

b
, x(k) = x(k − 1)

αja
b

+ F
(a)
j

β
n(k−1)
a

bk
. (3.6)

Using equation (3.4), Definitions 1.26, 1.22 and 1.24, we confirm that

ny(k − 1) = ny(k − 2), nx(k − 1) = nx(k − 2) + 1 −→ k is exceptional. (3.7)

Again, by Definition 1.26, to decide whether k + 1 is exceptional we need to
compute ny(k) and nx(k). We first compute ny(k).

Appplying equations (3.6) and (3.5) to Definition 1.22, we have

y(k)
αj+1
a

b
= y(k − 1)

(αj+1
a

b

)2
>
αj+1
a

b
− α2j+2

a

b2α
2n(K)
a

. (3.8)

j and b are O(1) (relative to the choice of K) while we may chose K arbitrarily
large. It follows that as K goes to infinity,

y(k)
αj+1
a

b
>
αj+1
a

b
− α2j+2

a

b2α2n(K)
≈ αj+1

a

b
> 1. (3.9)

Consequently by (3.9), Definition 1.22, and (3.7)

ny(k) = ny(k − 1) + 1 = ny(k − 2) + 1. (3.10)

.
We now carry out a similar analysis on x(k). By Proposition 3.6 we have

x(k)
αj+1
a

b
=
(
x(k − 1)

αja
b

+ F
(a)
j

β
n(k−1)
a

bk
)αj+1

a

b
(3.11)

Applying the upper bound for x(k − 1) presented in (3.5) we obtain after some
straightforward manipulations

x(k)
αj+1
a

b
<
αja
b

+ α2j+1−2n(K)
a

1

b2
+ F

(a)
j α(j+1)

a

β
n(k−1)
a

bk+1
≈ αja

b
< 1. (3.12)

Hence, by Definition 1.24 and equation (3.7),

nx(k) = nx(k − 1) = nx(k − 2) + 1. (3.13)

Equations (3.10) and (3.13) together imply that nx(k) = ny(k), and hence, by
Definition 1.26, k + 1 is not exceptinoal as was to be shown.

This completes the proof.
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Lemma 3.10. Prob({k : k is exceptional}) = 0.

Proof. By Proposition 3.8, exceptional k occur as singletons (that is, two consec-
utive integers cannot be exceptional). Furthermore, by Proposition 3.2, if k is
exceptional k − 1 is non-exceptional and

x(k − 1), y(k − 1) ∈
((αj+1

a

b

)−1 −
(
α2n(K)
a

)−1
,
(αj+1

a

b

)−1
+
(
α2n(K)
a

)−1)
.

By Theorem 2.3 the {y(i)}i≥K are Benford distributed and hence the probability
of y(k − 1) being in an open interval whose width is going to 0, may be made as
small as we please.

But by Proposition 3.8 every exceptional k is uniquely associated with a non-
exceptional k.

This completes the proof.

We can now prove the two conjectures.

Theorem 3.11. The {x(n)}n≥1 are Benford distributed.

Proof. Consider an arbitrary set (of reals), B ⊂ (α−1a , 1). To prove the theorem,
we must show that Prob(B ∩ {x(n)}n≥1) equals the desired Benford-distribution
probability.

By Definition 1.28 and Proposition 1.29 we know that Prob(B ∩ {y(n)}n≥1) =
log(My)−log(my)
log(1)−log(α−1

a )
, with My = sup (B ∩ {y(n)}n≥1) and my = inf (B ∩ {y(n)}n≥1) .

Define Mx = sup (B ∩ {x(n)}n≥1) and mx = inf (B ∩ {x(n)}n≥1) . By Corollary
3.3, |My−Mx| and |my−mx| can be made arbitrarily small. The result immediately
follows.

Theorem 3.12. For all b ≥ 2, a ≥ 1, #T (a,b)
= b.

Proof. By Theorem 2.1, #T (a,b) ≤ b. It therefore suffices to prove #T (a,b) ≥ b.
The proof is constructive.

Using Definition 1.17, let 〈Bi : 1 ≤ i ≤ b + 1〉 = 〈1, i

α
e(i)
a

: 1 ≤ i ≤ b〉 be an
(a, b)-partition. For 1 ≤ i ≤ b, pick a non-exceptional x(ni) ∈ (Bi, Bi+1), for some
integer ni. x(ni) exists since by Theorem 3.7, {x(n)}n≥1} is Benford distributed
and hence dense in (α−1a , 1).

But then by Proposition 1.19, Tx(ni) = TBi ; by Proposition 3.4, the TBi are
distinct; and by Proposition 1.15, Tx(ni) = Tni . Hence, we have produced at least
b distinct Tojaaldi sequences as was to be shown.
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