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Abstract

Let σ(x) denote the sum of the divisors of x. The diophantine equation
σ(x) + σ(y) = 2(x + y) equalizes the abundance and deficiency of x and y.
For x = n and y = hn the solutions n are called h-perfect since the classical
perfect numbers occur as solutions for h = 1. Some results on h-perfect
numbers are determined.
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1. Introduction

Let σ(n) denote the sum of the divisors of n, that is,

σ(n) =

r∏

i=1

pαi+1
i − 1

pi − 1
for n =

r∏

i=1

pαi
i .

Since the classical antiquity there exist two famous problems for σ(n).
At first it is asked for perfect numbers n fulfilling

σ(n) = 2n.

All even perfect numbers are of the form n = (2p−1)2p−1 where p is a prime number
and where 2p−1 is a so-called Mersenne prime number, too. Nearly 50 such prime
numbers are known. The existence of odd perfect numbers is still unknown.

Secondly, it is asked for amicable number pairs x, y such that

σ(x)− x = y and σ(y)− y = x.
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Several thousand pairs are known. It remains unknown whether there are infinitely
many pairs.

Nonperfect numbers n are called abundant if σ(n) > 2n and called deficient
if σ(n) < 2n. Then it may be asked for perfect number pairs x, y fulfilling the
diophantine equation

σ(x) + σ(y) = 2(x+ y), (1.1)

that is, x and y equalize abundance and deficiency.
There exist many solutions x, y of (1.1). For fixed d let X and Y be the sets

of solutions x and y of σ(x) = 2x+ d and σ(y) = 2y − d, respectively. The sets X
and Y are finite (see [1], p. 169). Then all pairs x, y with x ∈ X and y ∈ Y are
solutions of (1.1).

It may be remarked that perfect and amicable numbers are special cases of
(1.1): Perfect numbers for x = y and amicable numbers for σ(x) = σ(y).

Here it is proposed to consider the special class of solutions of (1.1) when y is
a multiple of x, that is,

σ(n) + σ(hn) = 2(n+ hn) = 2n(h+ 1). (1.2)

If h = 1 then n is a perfect number. Therefore solutions n of (1.2) may be called
h-perfect numbers. Some results on h-perfect numbers are determined in the fol-
lowing.

2. Powers of two

For h = 2t all h-perfect numbers are dependent on a sequence of certain prime
numbers being similar to Mersenne prime numbers.

Theorem 2.1. A number n is 2t-perfect, t ≥ 1, if and only if it holds
n = 2α((2t + 1)2α − 1) where (2t + 1)2α − 1 is a prime number.

Proof. Suppose that n is 2t-perfect, t ≥ 1.
If (n, 2) = 1 then equation (1.2) implies

σ(n) + σ(n2t) = σ(n)(1 + 2t+1 − 1) = σ(n)2t+1 = 2n(1 + 2t).

Since the left term of (1.2) is divisible by 2t+1 whereas the right term of (1.2) is
divisible by 2 only, odd 2t-perfect numbers do not exist.

If n = s2α, α ≥ 1, (s, 2) = 1 then equation (1.2) yields

σ(s2α) + σ(s2t+α) = 2(s2α + s2t+α).

This is equivalent to

σ(s)((2t + 1)2α − 1) = (2t + 1)2αs with s = v((2t + 1)2α − 1), v ≥ 1, (2.1)

since ((2t + 1)2α − 1, (2t + 1)2α) = 1.
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If v > 1 then equation (2.1) determines

v((2t + 1)2α − 1) + v + 1 ≤ σ(v((2t + 1)2α − 1)) = v(2t + 1)2α,

a contradiction.
If v = 1 and if s = (2t + 1)2α − 1 is a composite number then equation (2.1)

yields
(2t + 1)2α < σ((2t + 1)2α − 1) = (2t + 1)2α,

again a contradiction.
If v = 1 and if s = (2t + 1)2α − 1 is a prime number then equations (2.1) and

(1.2) are fulfilled and n = s2α is 2t-perfect.

In [2] the first 16 and 12 prime numbers p = (2t+1)2α−1 are listed for t = 1 and
t = 2, respectively. Thus 10, 44, 184, 752, 12224, 49024,. . . are the first 2-perfect
numbers. The question for odd 2t-perfect numbers, t ≥ 1, is completely answered
by nonexistence whereas it is still open in the classical case of perfect numbers.

3. Nonexistence

For some classes of values of h it can be proved that h-perfect numbers do not
exist.

Theorem 3.1. For h = c2t, (c, 2) = 1, c ≥ 3, there are no even h-perfect numbers
if c+ 2 < 2t+2 and there are no h-perfect numbers if c+ 2 < 2t+1.

Proof. For even n let n = r2α, α ≥ 1, (r, 2) = 1. Now suppose that n is c2t-perfect
for c+ 2 < 2t+2. Equation (1.2) implies

(2α+1 − 1)σ(r) + (2α+t+1 − 1)σ(cr) = r2α+1(c2t + 1).

Using σ(cr) ≥ cr + σ(r) it follows

σ(r)(2α+1 − 1 + 2α+t+1 − 1) ≤ (2α+1 + c)r.

Then σ(r) ≥ r together with α ≥ 1 determines

2t+1 ≤ 2α+t+1 ≤ c+ 2,

a contradiction.
For odd n suppose that n is c2t-perfect for c+2 < 2t+1. Equation (1.2) implies

σ(n) + (2t+1 − 1)σ(cn) = 2n(1 + c2t).

With σ(cn) ≥ cn+ σ(n) it follows

2t+1σ(n) ≤ (c+ 2)n

and with σ(n) ≥ n the contradiction

2t+1 ≤ c+ 2

is obtained.
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For h < 100 by Theorem 3.1 no h-perfect numbers occur if h = 12, 20, 24, 40,
48, 56, 72, 80, 88, or 92.

The following theorem presents another example of partial nonexistence.

Theorem 3.2. There is no even 3t-perfect number, t ≥ 1.

Proof. Suppose that n = r2α is an h-perfect number for h = 3t, t ≥ 1, α ≥ 1,
(r, 2) = 1. Equation (1.2) yields

σ(r)(2α+1 − 1) + σ(r3t)(2α+1 − 1) = r2α+1(1 + 3t). (3.1)

Case I: (r, 3) = 1. It follows

σ(r)(2α+1 − 1)(1 + (3t+1 − 1)/2) = r2α+1(1 + 3t)

and equivalently

σ(r)(2α+1 − 1)(1 + 3t+1) = r2α+2(1 + 3t).

With σ(r) ≥ r the inequality

(2α+1 − 1)(1 + 3t+1) ≤ 2α+2(1 + 3t)

is obtained being equivalent to

(3t − 1)2α+1 ≤ 1 + 3t+1.

This is a contradiction for α, t ≥ 1 excluded α = t = 1. Then, however, the left
term of (3.1) is divisible by 3 and, in the contrary, 3 does not divide the right term
of (3.1) due to (r, 3) = 1.

Case II: r = s3β , β ≥ 1, (s, 3) = 1, and (s, 2) = 1 since (r, 2) = 1. By equation
(3.1) it follows

σ(s)(2α+1 − 1)(3β+1 + 3β+t+1 − 2) = s2α+23β(1 + 3t)

and with σ(s) ≥ s

2α+13β+1 + 2α+13t+β+1 − 2α+2 − 3β+1 − 3t+β+1 + 2 ≤ 2α+23t+β + 2α+23β .

This inequality is equivalent to

(3β(1 + 3t)− 2)(2α+1 − 3) ≤ 4

yielding a contradiction for α, β, t ≥ 1.
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4. Even perfect-perfect numbers

For some values of h there exist only a small number of h-perfect numbers.

Theorem 4.1. For h = 6 only 13 is h-perfect and for any other even perfect
number h there are no h-perfect numbers.

Proof. Let h = (2p − 1)2p−1 be an even perfect number, that is, p and 2p − 1 both
are prime numbers. Suppose that n is an h-perfect number.

For even n, that is, n = r2α, α ≥ 1, (r, 2) = 1, Theorem 3.1 implies the
condition 2p + 1 ≥ 2p+1 being impossible.

For odd n two cases are distinguished.
Case I: n = r(2p− 1)α = rqα, α ≥ 1, (r, 2p− 1) = (r, q) = 1. By equation (1.2),

σ(rqα) + σ(r2p−1qα+1) = 2rqα(1 + q2p−1)

and hence

σ(r)(qα+1 − 1 + (2p − 1)(qα+2 − 1)) = r(q − 1)(2qα + 2pqα+1).

With σ(r) ≥ r and 2p − 1 = q this yields

qα+1 − 1 + qα+3 − q ≤ 2qα+1 + qα+3 + qα+2 − 2qα − qα+2 − qα+1

and thus the contradiction
2qα ≤ q + 1.

Case II: (n, 2p − 1) = (n, q) = 1. Equation (1.2) yields

σ(n) + σ(nq2p−1) = 2n(1 + q2p−1),

σ(n) + σ(n)(2p − 1)(q + 1) = n(2 + q2p),

and thus
σ(n)(1 + q(q + 1)) = n(2 + q(q + 1)).

Since (1 + q(q + 1), 2 + q(q + 1)) = 1 it is necessary that

σ(n) = v(2 + q(q + 1)) with n = v(1 + q(q + 1)), v ≥ 1. (4.1)

If v > 1 in equation (4.1) then

v(1 + q(q + 1)) + v + 1 ≤ σ(n) = v(2 + q(q + 1))

is a contradiction.
If v = 1 in equation (4.1) and if 1 + q(q + 1) is a composite number then

2 + q(q + 1) < σ(n) = 2 + q(q + 1)

is a contradiction.
It remains that v = 1 in equation (4.1) and 1 + q(q + 1) is a prime number.

This, however, is impossible for odd prime numbers p since 3 divides 1+ q(q+1) =
1 + (2p − 1)2p due to 2p ≡ −1 (mod 3). Thus p = 2 determines 1 + q(q + 1) = 13
as the unique solution of equations (4.1) and (1.2) for h = (22 − 1)22−1 = 6.
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5. Small values of h

For h ≤ 16 the discussion is completed for h = 2, 4, 6, 8, 12, and 16. For h = 3,
9, and 10 even h-perfect numbers do not exist. So far no h-perfect numbers are
known for h = 3, 9, 10, and 13. The numbers n = 14 and n = 7030 are 5-perfect,
n = 135 and n = 1365 are 7-perfect, n = 182 is 11-perfect, n = 5 and n = 118 are
14-perfect, and n = 455 is 15-perfect.

Finally, there are two corollaries for the Fibonacci number F7 = 13 as conse-
quences of Theorems 3.1 and 4.1.

Corollary 5.1. Only 13 is an h-perfect number for any even perfect number h.

Corollary 5.2. Only 13 is a 3 · 2t-perfect number for any t ≥ 1.
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