Sierpinski-like triangle-patterns in Bi - and Fibo-nomial triangles

Antal Bege, Zoltán Kátai

Sapientia University, Romania
bege@ms.sapientia.ro
katai_zoltan@ms.sapientia.ro

Abstract

In this paper we introduce the notion of generalized (p-order) Sierpinskilike triangle-pattern, and we define the Bi- and Fibo-nomial triangles (P_{Δ}, $\left.F_{\Delta}\right)$ and their divisibility patterns $\left(P_{\Delta(p)}, F_{\Delta(p)}\right)$, respect to p. We proof that if p is an odd prime then these divisibility patterns actually are generalized Sierpinski-like triangle-patterns. Keywords: Fibonacci sequence, Binomial triangle, Fibonomial triangle, Sierpinski pattern

MSC: 11B39, 11B65

1. Introduction

Several authors investigated the divisibility patterns of Bi- and Fibo-nomial triangles. Long (see [1]) showed that, modulo p (where p denotes a prime), Binomial triangles (also called Pascal's triangle) have self-similar structures (upon scaling by the factor p). Holte proofed similar results for Fibonomial triangles (see [2, 3]). Wells investigated (see [4]) the parallelisms between modulo 2 patterns of Bi- and Fibo-nomial triangles. In this paper we introduce the notion of generalized (p order) Sierpinski-like triangle-pattern, and we proof that if p is an odd prime then the divisibility patterns, respect to p, of the $\mathrm{Bi}-$ and Fibo-nomial triangles are generalized Sierpinski-like triangle-patterns.

2. Sierpinsky like binary triangle patterns

Definition 2.1. We define $S(a, p, k)$ as generalized Sierpinsky-like binary triangle pattern, where: a denotes the side-length of the starting triangle, p denotes the order of the pattern, and k denotes the level of the pattern. The first level pattern is an equilateral number triangle with side-lengths equal to a, and all elements equal to 1 (row $i, 1 \leq i \leq a$, contains i elements equal to 1). We construct the p-th order $(p>1),(k+1)$-th level pattern from the p-th order, k-th level pattern ($k \geq 1$) as follows:

- We multiply the k-th level triangle $1+2+\ldots+p$ times and we arrange them in p rows (row $i, 1 \leq i \leq p$, will contain $i k$-th level triangle) in such a way that each triangle touches its neighbour triangles at a corner.
- The remaining free positions are filled by zeros.

Figure 1 shows the 3rd order, 1st, 2nd and 3rd level patterns, if the starting side-length is 3 . If we choose as starting side-length 4 , then we have the patterns from Figure 2.

Figure 1: The $3^{\text {rd }}$ order, $1^{\text {st }}$ (a), $2^{\text {nd }}$ (b) and $3^{\text {rd }}$ (c) level patterns, if the starting side-length is 3 .

Figure 2: The $3^{\text {rd }}$ order, $1^{\text {st }}$ (a), $2^{\text {nd }}$ (b) and $3^{\text {rd }}$ (c) level patterns, if the starting side-length is 4 .

3. Patterns in the prime-factorization of \boldsymbol{n} and $\boldsymbol{F}_{\boldsymbol{n}}$

Definition 3.1. For any prime $p \geq 2$, we define sequence $x(r, p)_{r \geq 1}$ as the sequence of the powers of p in the prime-factorization of n.

Let a_{p} denote the subscript of the first natural number which is divisible by p. Evidently, $a_{p}=p$.

It is trivial that sequence $x(r, p)_{r \geq 1}$ can be constructed as follows:

- Step 0: We start with $x(r, p)_{r \geq 1}=0$
- Step 1: All a_{p}-th elements 0 are increased with 1.
- Step 2: All p-th elements 1 are increased with 1.
- Step k : ... All p-th elements equal to $(k-1)$ are increased with $1 \ldots$

Let n_{k} denote the subscript of the first term of sequence $x(r, p)_{r \geq 1}$ that is equal to a given $k \geq 1$. Evidently, $n_{k}=p^{k}$.
Definition 3.2. The well-known Fibonacci sequence is defined as follows:

$$
\begin{aligned}
& F_{0}=0, F_{1}=1 \\
& F_{r}=F_{r-1}+F_{r-2}, r>1
\end{aligned}
$$

Definition 3.3. For any prime $p \geq 2$, we define sequence $y(r, p)_{r \geq 1}$ as the sequence of the powers of p in the prime-factorization of F_{r}.

Let b_{p} denote the subscript of the first Fibonacci number which is divisible by $p(\operatorname{restricted}$ period of $F(\bmod p))$. Two well-known results (for proofs see [5, 6]):

Lemma 3.4. For any $i \geq 1, b_{i} \mid r$ if and only if $i \mid F_{r}$.
Lemma 3.5. Let p be an odd prime and suppose p^{t} divides F_{r} but p^{t+1} does not divide F_{r} for some $t \geq 1$. If p does not divide v then p^{t+1} divides $F_{r \cdot v \cdot p}$ but p^{t+2} does not divide $F_{r \cdot v \cdot p}$.

A well-known conjecture in this subject:
Conjecture. For any prime $p, F_{b_{p}}$ is divisible by p exactly once.
Assuming the validity of the above conjecture an immediate consequence of lemmas 3.4 and 3.5 is that sequence $y(r, p)_{r \geq 1}$ can be constructed as follows:

- Step 0: We start with $y(r, p)_{r \geq 1}=0$
- Step 1: All b_{p}-th elements 0 are increased with 1.
- Step 2: All p-th elements 1 are increased with 1. (for $p=2$ all p-th elements 1 are increased with 2)
- Step k : ... All p-th elements appeared in step $(k-1)$ are increased with 1

Let m_{k} denote the subscript of the first term of sequence $y(r, p)_{r \geq 1}$ that is equal to a given $k \geq 1$. Evidently, $m_{1}=b_{p}$.

Two immediate properties of sequence y are:
Property 1. Sequence y is characterized by several symmetry points: terms from symmetric positions are identical.

$$
\begin{aligned}
& y_{r}=y_{j \cdot m_{k}-r}=y_{j \cdot m_{k}+r}=y_{p \cdot m_{k}-r}, \text { for any } 0<r<m_{k}, j=1 \ldots(p-1) \\
& y_{r}=y_{j \cdot\left(m_{k} / p\right)-r}=y_{j \cdot\left(m_{k} / p\right)+r}=y_{m_{k}-r}, \text { for any } 0<r<\frac{m_{k}}{p}, j=1 \ldots(p-1) .
\end{aligned}
$$

Proof. Trivially results from Lemmas 3.4 and 3.5.
Property 2. For a fixed d the sum of the terms of a subsequence of length d is minimal for the leftmost (starting with index 1) subsequence and maximal for the rightmost (ending with index m_{k}) one. We define

$$
\begin{aligned}
& v(i, d)=y_{i+1-d}+\ldots+y_{i}, d=1 \ldots m_{k}, i=d \ldots m_{k} \\
& u(i, d)=y_{i}+\ldots+y_{i+d-1}, d=1 \ldots m_{k}, i=1 \ldots\left(m_{k}+1-d\right)
\end{aligned}
$$

We have for a fixed d
a) $v(i, d)<v\left(m_{k}, d\right)$, for any $i=d \ldots m_{k}-1$
b) $u(1, d) \leq u(i, d)$, for any $i=2 \ldots\left(m_{k}+1-d\right)$

Proof. (a): According to the way sequence y was built we have:

- Step 0: All terms are 0 and consequently $v(i, d)=v\left(m_{k}, d\right)$, for any $i=$ $d \ldots m_{k}-1$.
- Steps $1 \ldots(k-1)$: Since the increasing operations take place in equidistant positions, and the term from position m_{k} is increased in each step, we have $v(i, d) \leq v\left(m_{k}, d\right)$, for any $i=d \ldots m_{k}-1$.
- Step k : Since in this step only the term from position m_{k} is increased, we have $v(i, d)<v\left(m_{k}, d\right)$, for any $i=d \ldots m_{k}-1$.

Proof. (b): According to the way sequence y was built we have:

- Step 0: All terms are 0 and consequently $u(1, d)=u(i, d)$, for any $i=$ $2 \ldots\left(m_{k}+1-d\right)$.
- Steps $1 \ldots k$: The number of equidistant increases along a fixed length sequence decreases as the position of the first increase increases. Since in each step the position of the first increase (if it exists) of the leftmost subsequence of length d is maximal (relative to subsequences that start in positions $i>1$), we have $u(1, d) \leq u(i, d)$, for any $i=2 \ldots\left(m_{k}+1-d\right)$.

Note that properties 1 and 2 hold even we do not assume the validity of the above conjecture. Since sequences x and y were constructed in a similar way, Lemmas 3.4 and 3.5 hold for sequence x too (m_{k} has to be replaced by n_{k}).

4. Bi- and Fibo-nomial triangles

Definition 4.1. We define the r rows height Binomial triangle (also called Pascal triangle) $\left(P_{\Delta}(r)\right)$ as an equilateral number triangle with rows indexed by $i=$ $0 \ldots(r-1)$, the elements of rows indexed by $j=0 \ldots i$, and term (i, j) equal to:

$$
P_{\Delta}[i, j]=\frac{\prod_{i+1-j}^{i} t}{\prod_{1}^{j} t}
$$

Changing t by F_{t} in the definition of Binomial triangle we receive the corresponding Fibonomial triangle.

Definition 4.2. We define the r rows height Fibonomial triangle $\left(F_{\Delta}(r)\right)$ as an equilateral number triangle with rows indexed by $i=0 \ldots(r-1)$, the elements of rows indexed by $j=0 \ldots i$, and term (i, j) equal to

$$
F_{\Delta}[i, j]=\frac{\prod_{i+1-j}^{i} F_{t}}{\prod_{1}^{j} F_{t}}
$$

Definition 4.3. We also define the mod p binary Bi- and Fibo-nomial triangles $\left(P_{\Delta(p)}, F_{\Delta(p)}\right)$ as follows: term (i, j) in the binary triangle is 0 , if p divide term (i, j) in the corresponding Bi - or Fibo-nomial triangle, otherwise it is 1.

$$
\begin{aligned}
& P_{\Delta(p)}[i, j]=\left\{\begin{array}{cc}
0 & \text { if } p \mid P_{\Delta(p)}[i, j] \\
1 & \text { otherwise }
\end{array}\right. \\
& F_{\Delta(p)}[i, j]=\left\{\begin{array}{cc}
0 & \text { if } p \mid F_{\Delta(p)}[i, j] \\
1 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Figures 1 and 2 (triangles c) shows the $n_{3}=27$ and $m_{3}=36$ row height mod 3 binary Bi- and Fibo-nomial triangles, respectively.

5. Main result

Lemma 5.1. Considering triangle $F_{\Delta(p)}$ (p an odd prime), for any $i\left(0 \leq i<m_{k}\right.$) segments $F_{\Delta(p)}[i, 0 \ldots i], F_{\Delta(p)}\left[m_{k}+i, 0 \ldots i\right]$ and $F_{\Delta(p)}\left[m_{k}+i, m_{k} \ldots\left(m_{k}+i\right)\right]$ are identical.

Proof. For $i=0$ the validity of this lemma results trivially from the definition of $F_{\Delta(p)}$. In the case of $0<i<m_{k}$ terms $F_{\Delta(p)}[i, j]$ and $F_{\Delta(p)}\left[m_{k}+i, j\right](j=1 \ldots i)$ are identical since the denominators of terms $F_{\Delta(p)}[i, j]$ and $F_{\Delta(p)}\left[m_{k}+i, j\right]$ are identical, and the exponents of p in the factorizations of the numerators of these terms are also identical. These exponents, $\sum_{m_{k}+r+1-i}^{m_{k}+r} x_{t}$ and $\sum_{r+1-i}^{r} x_{t}$, are equals since $y_{m_{k}+j}=y_{j}$ for any $j=1 \ldots r$. Since both row i and row $m_{k}+i$ are symmetrical, it results that the segments of the first $i+1$ and last $i+1$ elements of row $m_{k}+i$ are identical.

Lemma 5.2. Considering triangle $F_{\Delta(p)}$ (p an odd prime), for any i and j, where $0 \leq i<m_{k}$ and $i+1 \leq j<m_{k}$, term $F_{\Delta(p)}\left[m_{k}+i, j\right]$ equals zero.

Proof. With respect to the exponent of p in the factorizations of term $F_{\Delta}\left[m_{k}+i, j\right]$ we have

$$
\sum_{m_{k}+r+1-i}^{m_{k}+r} x_{t}-\sum_{1}^{i} x_{t}=\sum_{m_{k}+r+1-i}^{m_{k}} x_{t}-\sum_{r+1}^{i} x_{t}>0
$$

The equality results from Property 1 and the inequality results from Property 2.b. Consequently, $F_{\Delta}\left[m_{k}+i, j\right]$ is dividable by p.

Lemma 5.3. Considering triangle $F_{\Delta(p)}$ (p an odd prime), segments $F_{\Delta(p)}\left[m_{k}+\right.$ $\left.i, 0 \ldots m_{k}+i\right]$ and $F_{\Delta(p)}\left[f \cdot m_{k}+i, g \ldots\left(g+m_{k}+i\right)\right]$, where $0 \leq i<m_{k}, 1<f<p$ and $0 \leq g<f$, are identical.

Proof. With respect to the exponent of p in the factorizations of term $F_{\Delta}\left[f \cdot m_{k}+\right.$ $i, g+j]$, where $0 \leq j \leq m_{k}+i$, we have

$$
\begin{aligned}
& \sum_{f \cdot m_{k}+r+1-\left(g \cdot m_{k}+i\right)}^{f \cdot m_{k}+r} x_{t}-\sum_{1}^{g \cdot m_{k}+i} x_{t} \\
& =\sum_{f \cdot m_{k}+r+1-\left(g \cdot m_{k}+i\right)}^{f \cdot m_{k}+r-g \cdot m_{k}} x_{t}+\sum_{f \cdot m_{k}+r-g \cdot m_{k}+1}^{f \cdot m k} x_{t}+\sum_{f \cdot m_{k}+1}^{f \cdot m_{k}+r} x_{t}-\sum_{1}^{g \cdot m_{k}} x_{t}-\sum_{g \cdot m_{k}+1}^{g \cdot m_{k}+i} x_{t} \\
& =\sum_{f \cdot m_{k}+r+1-\left(g \cdot m_{k}+i\right)}^{f \cdot m_{k}+r-g \cdot m_{k}} x_{t}+\sum_{f \cdot m_{k}+r-g \cdot m_{k}+1}^{f \cdot m k} x_{t}+\sum_{(f-g) \cdot m_{k}+1}^{(f-g) \cdot m_{k}+r} x_{t}-\sum_{1}^{g \cdot m_{k}} x_{t}-\sum_{g \cdot m_{k}+1}^{g \cdot m_{k}+i} x_{t} \\
& =\sum_{f \cdot m_{k}+r+1-\left(g \cdot m_{k}+i\right)}^{f \cdot m_{k}+r-g \cdot m_{k}} x_{t}+\sum_{(f-g) \cdot m_{k}+1}^{f \cdot m k} x_{t}-\sum_{1}^{g \cdot m_{k}} x_{t}-\sum_{g \cdot m_{k}+1}^{g \cdot m_{k}+i} x_{t} \\
& =\sum_{f \cdot m_{k}+r+1-\left(g \cdot m_{k}+i\right)}^{f \cdot m_{k}+r-g \cdot m_{k}} x_{t}-\sum_{g \cdot m_{k}+1}^{g \cdot m_{k}+i} x_{t} \\
& =\sum_{(f-g) \cdot m_{k}+r+1-i}^{(f-g) \cdot m_{k}+r} x_{t}-\sum_{g \cdot m_{k}+1}^{g \cdot m_{k}+i} x_{t}=\sum_{m_{k}+r+1-i}^{m_{k}+r} x_{t}-\sum_{1}^{i} x_{t} .
\end{aligned}
$$

Which equals to the exponent of p in the factorizations of term $F_{\Delta}\left[m_{k}+i, j\right]$.
Theorem 5.4. For odd prime $p, P_{\Delta(p)}\left(n_{k}\right)$ is identical with $S\left(n_{1}, p, k\right)$.
The proof of this theorem follows the same train of thought as the next one.
Theorem 5.5. For odd prime $p, F_{\Delta(p)}\left(m_{k}\right)$ is identical with $S\left(m_{1}, p, k\right)$.
Proof. We use mathematical induction. For $k=1$ it is trivial that $F_{\Delta(p)}(1)$ is identical with $S\left(m_{1}, p, 1\right)$. Assuming that $F_{\Delta(p)}(k)$ is identical with $S\left(m_{1}, p, k\right)$, we prove that $F_{\Delta(p)}(k+1)$ is identical with a $S\left(m_{1}, p, k+1\right)$. Lemmas 5.1 and 5.2 show that rows $\left[m_{k} \ldots 2 \cdot m_{k}\right.$) follow the Sierpinski pattern. Lemma 5.3 shows: since segments $\left[j \cdot m_{k} \ldots(j+1) m_{k}\right),(j=2 \ldots(p-1))$ can be viewed as translations of segment $\left[m_{k} \ldots 2 \cdot m_{k}\right)$, these also follow the Sierpinski pattern.

References

[1] Calvin T. Long, Pascal's Triangle Modulo p, The Fibonacci Quarterly, 19.5 (1981) 458-463.
[2] John M. Holte, A Lucas-Type Theorem for Fibonomial-Coefficient Residues, The Fibonacci Quarterly, 32.1 (1994) 60-68.
[3] Holte J. M., Residues of generalized binomial coefficients modulo primes, Fibonacci Quart., 38 (2000), 227-238.
[4] Diana L. Wells, The Fibonacci and Lucas Triangles Modulo 2, The Fibonacci Quarterly, 32.2 (1994) 111-123.
[5] Marc Renault, The Fibonacci Sequence Under Various Moduli, 1996. http:// webspace.ship.edu/msrenault/fibonacci/FibThesis.pdf
[6] Steven Vajda, Fibonacci \& Lucas Numbers, and the Golden Section, Ellis Horwood Limited, Chichester, England, 1989.
[7] Dale K. Hathaway, Stephen L. Brown, Fibonacci Powers and a Fascinating Triangle, The College Mathematics Journal, Vol. 28, No. 2 (Mar., 1997), 124-128. http://www.jstor.org/stable/2687437

