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Abstract

In this paper we introduce the notion of generalized (p-order) Sierpinski-
like triangle-pattern, and we define the Bi- and Fibo-nomial triangles (P∆,
F∆) and their divisibility patterns (P∆(p), F∆(p)), respect to p. We proof that
if p is an odd prime then these divisibility patterns actually are generalized
Sierpinski-like triangle-patterns.
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1. Introduction

Several authors investigated the divisibility patterns of Bi- and Fibo-nomial trian-
gles. Long (see [1]) showed that, modulo p (where p denotes a prime), Binomial
triangles (also called Pascal’s triangle) have self-similar structures (upon scaling
by the factor p). Holte proofed similar results for Fibonomial triangles (see [2, 3]).
Wells investigated (see [4]) the parallelisms between modulo 2 patterns of Bi- and
Fibo-nomial triangles. In this paper we introduce the notion of generalized (p-
order) Sierpinski-like triangle-pattern, and we proof that if p is an odd prime then
the divisibility patterns, respect to p, of the Bi- and Fibo-nomial triangles are
generalized Sierpinski-like triangle-patterns.
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2. Sierpinsky like binary triangle patterns

Definition 2.1. We define S(a, p, k) as generalized Sierpinsky-like binary triangle
pattern, where: a denotes the side-length of the starting triangle, p denotes the
order of the pattern, and k denotes the level of the pattern. The first level pattern
is an equilateral number triangle with side-lengths equal to a, and all elements
equal to 1 (row i, 1 ≤ i ≤ a, contains i elements equal to 1). We construct the
p-th order (p > 1), (k + 1)-th level pattern from the p-th order, k-th level pattern
(k ≥ 1) as follows:

• We multiply the k-th level triangle 1+2+ . . .+ p times and we arrange them
in p rows (row i, 1 ≤ i ≤ p, will contain i k-th level triangle) in such a way
that each triangle touches its neighbour triangles at a corner.

• The remaining free positions are filled by zeros.

Figure 1 shows the 3rd order, 1st, 2nd and 3rd level patterns, if the starting
side-length is 3. If we choose as starting side-length 4, then we have the patterns
from Figure 2.
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Figure 1: The 3rd order, 1st (a), 2nd (b) and 3rd (c) level patterns,
if the starting side-length is 3.
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Figure 2: The 3rd order, 1st (a), 2nd (b) and 3rd (c) level patterns,
if the starting side-length is 4.

3. Patterns in the prime-factorization of n and Fn

Definition 3.1. For any prime p ≥ 2, we define sequence x(r, p)r≥1 as the sequence
of the powers of p in the prime-factorization of n.

Let ap denote the subscript of the first natural number which is divisible by p.
Evidently, ap = p.

It is trivial that sequence x(r, p)r≥1 can be constructed as follows:

• Step 0: We start with x(r, p)r≥1 = 0

• Step 1: All ap-th elements 0 are increased with 1.

• Step 2: All p-th elements 1 are increased with 1.

• Step k: . . . All p-th elements equal to (k − 1) are increased with 1 . . .

Let nk denote the subscript of the first term of sequence x(r, p)r≥1 that is equal
to a given k ≥ 1. Evidently, nk = pk.

Definition 3.2. The well-known Fibonacci sequence is defined as follows:

F0 = 0, F1 = 1

Fr = Fr−1 + Fr−2, r > 1
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Definition 3.3. For any prime p ≥ 2, we define sequence y(r, p)r≥1 as the sequence
of the powers of p in the prime-factorization of Fr.

Let bp denote the subscript of the first Fibonacci number which is divisible by
p (restricted period of F (mod p)). Two well-known results (for proofs see [5, 6]):

Lemma 3.4. For any i ≥ 1, bi | r if and only if i | Fr.

Lemma 3.5. Let p be an odd prime and suppose pt divides Fr but pt+1 does not
divide Fr for some t ≥ 1. If p does not divide v then pt+1 divides Fr·v·p but pt+2

does not divide Fr·v·p.

A well-known conjecture in this subject:
Conjecture. For any prime p, Fbp is divisible by p exactly once.

Assuming the validity of the above conjecture an immediate consequence of
lemmas 3.4 and 3.5 is that sequence y(r, p)r≥1 can be constructed as follows:

• Step 0: We start with y(r, p)r≥1 = 0

• Step 1: All bp-th elements 0 are increased with 1.

• Step 2: All p-th elements 1 are increased with 1. (for p = 2 all p-th elements
1 are increased with 2)

• Step k: . . . All p-th elements appeared in step (k − 1) are increased with 1
. . .

Let mk denote the subscript of the first term of sequence y(r, p)r≥1 that is equal
to a given k ≥ 1. Evidently, m1 = bp.

Two immediate properties of sequence y are:
Property 1. Sequence y is characterized by several symmetry points: terms from
symmetric positions are identical.

yr = yj·mk−r = yj·mk+r = yp·mk−r, for any 0 < r < mk, j = 1 . . . (p− 1).

yr = yj·(mk/p)−r = yj·(mk/p)+r = ymk−r, for any 0 < r <
mk

p
, j = 1 . . . (p− 1).

Proof. Trivially results from Lemmas 3.4 and 3.5.

Property 2. For a fixed d the sum of the terms of a subsequence of length d is
minimal for the leftmost (starting with index 1) subsequence and maximal for the
rightmost (ending with index mk) one. We define

v(i, d) = yi+1−d + . . .+ yi, d = 1 . . .mk, i = d . . .mk,

u(i, d) = yi + . . .+ yi+d−1, d = 1 . . .mk, i = 1 . . . (mk + 1− d).

We have for a fixed d
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a) v(i, d) < v(mk, d), for any i = d . . .mk − 1

b) u(1, d) ≤ u(i, d), for any i = 2 . . . (mk + 1− d)

Proof. (a): According to the way sequence y was built we have:

• Step 0: All terms are 0 and consequently v(i, d) = v(mk, d), for any i =
d . . .mk − 1.

• Steps 1 . . . (k − 1): Since the increasing operations take place in equidistant
positions, and the term from position mk is increased in each step, we have
v(i, d) ≤ v(mk, d), for any i = d . . .mk − 1.

• Step k: Since in this step only the term from position mk is increased, we
have v(i, d) < v(mk, d), for any i = d . . .mk − 1.

Proof. (b): According to the way sequence y was built we have:

• Step 0: All terms are 0 and consequently u(1, d) = u(i, d), for any i =
2 . . . (mk + 1− d).

• Steps 1 . . . k: The number of equidistant increases along a fixed length se-
quence decreases as the position of the first increase increases. Since in each
step the position of the first increase (if it exists) of the leftmost subsequence
of length d is maximal (relative to subsequences that start in positions i > 1),
we have u(1, d) ≤ u(i, d), for any i = 2 . . . (mk + 1− d).

Note that properties 1 and 2 hold even we do not assume the validity of the
above conjecture. Since sequences x and y were constructed in a similar way,
Lemmas 3.4 and 3.5 hold for sequence x too (mk has to be replaced by nk).

4. Bi- and Fibo-nomial triangles

Definition 4.1. We define the r rows height Binomial triangle (also called Pas-
cal triangle) (P∆(r)) as an equilateral number triangle with rows indexed by i =
0 . . . (r − 1), the elements of rows indexed by j = 0 . . . i, and term (i, j) equal to:

P∆[i, j] =

i∏
i+1−j

t

j∏
1
t

Changing t by Ft in the definition of Binomial triangle we receive the corre-
sponding Fibonomial triangle.

Definition 4.2. We define the r rows height Fibonomial triangle (F∆(r)) as an
equilateral number triangle with rows indexed by i = 0 . . . (r − 1), the elements of
rows indexed by j = 0 . . . i, and term (i, j) equal to
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F∆[i, j] =

i∏
i+1−j

Ft

j∏
1
Ft

Definition 4.3. We also define the mod p binary Bi- and Fibo-nomial triangles
(P∆(p), F∆(p)) as follows: term (i, j) in the binary triangle is 0, if p divide term
(i, j) in the corresponding Bi- or Fibo-nomial triangle, otherwise it is 1.

P∆(p)[i, j] =

{
0 if p | P∆(p)[i, j]
1 otherwise

F∆(p)[i, j] =

{
0 if p | F∆(p)[i, j]
1 otherwise

Figures 1 and 2 (triangles c) shows the n3 = 27 and m3 = 36 row height mod 3
binary Bi- and Fibo-nomial triangles, respectively.

5. Main result

Lemma 5.1. Considering triangle F∆(p) (p an odd prime), for any i (0 ≤ i < mk)
segments F∆(p)[i, 0 . . . i], F∆(p)[mk+ i, 0 . . . i] and F∆(p)[mk+ i,mk . . . (mk+ i)] are
identical.

Proof. For i = 0 the validity of this lemma results trivially from the definition of
F∆(p). In the case of 0 < i < mk terms F∆(p)[i, j] and F∆(p)[mk + i, j] (j = 1 . . . i)
are identical since the denominators of terms F∆(p)[i, j] and F∆(p)[mk + i, j] are
identical, and the exponents of p in the factorizations of the numerators of these
terms are also identical. These exponents,

∑mk+r
mk+r+1−i xt and

∑r
r+1−i xt , are

equals since ymk+j = yj for any j = 1 . . . r. Since both row i and row mk + i are
symmetrical, it results that the segments of the first i + 1 and last i + 1 elements
of row mk + i are identical.

Lemma 5.2. Considering triangle F∆(p) (p an odd prime), for any i and j, where
0 ≤ i < mk and i+ 1 ≤ j < mk, term F∆(p)[mk + i, j] equals zero.

Proof. With respect to the exponent of p in the factorizations of term F∆[mk+ i, j]
we have

mk+r∑

mk+r+1−i

xt −
i∑

1

xt =

mk∑

mk+r+1−i

xt −
i∑

r+1

xt > 0.

The equality results from Property 1 and the inequality results from Property 2.b.
Consequently, F∆[mk + i, j] is dividable by p.

Lemma 5.3. Considering triangle F∆(p) (p an odd prime), segments F∆(p)[mk +
i, 0 . . .mk + i] and F∆(p)[f ·mk + i, g . . . (g+mk + i)], where 0 ≤ i < mk, 1 < f < p
and 0 ≤ g < f, are identical.
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Proof. With respect to the exponent of p in the factorizations of term F∆[f ·mk +
i, g + j], where 0 ≤ j ≤ mk + i, we have

f ·mk+r∑

f ·mk+r+1−(g·mk+i)

xt −
g·mk+i∑

1

xt

=

f ·mk+r−g·mk∑

f ·mk+r+1−(g·mk+i)

xt +

f ·mk∑

f ·mk+r−g·mk+1

xt +

f ·mk+r∑

f ·mk+1

xt −
g·mk∑

1

xt −
g·mk+i∑

g·mk+1

xt

=

f ·mk+r−g·mk∑

f ·mk+r+1−(g·mk+i)

xt +

f ·mk∑

f ·mk+r−g·mk+1

xt +

(f−g)·mk+r∑

(f−g)·mk+1

xt −
g·mk∑

1

xt −
g·mk+i∑

g·mk+1

xt

=

f ·mk+r−g·mk∑

f ·mk+r+1−(g·mk+i)

xt +

f ·mk∑

(f−g)·mk+1

xt −
g·mk∑

1

xt −
g·mk+i∑

g·mk+1

xt

=

f ·mk+r−g·mk∑

f ·mk+r+1−(g·mk+i)

xt −
g·mk+i∑

g·mk+1

xt

=

(f−g)·mk+r∑

(f−g)·mk+r+1−i

xt −
g·mk+i∑

g·mk+1

xt =

mk+r∑

mk+r+1−i

xt −
i∑

1

xt.

Which equals to the exponent of p in the factorizations of term F∆[mk + i, j].

Theorem 5.4. For odd prime p, P∆(p)(nk) is identical with S(n1, p, k).

The proof of this theorem follows the same train of thought as the next one.

Theorem 5.5. For odd prime p, F∆(p)(mk) is identical with S(m1, p, k).

Proof. We use mathematical induction. For k = 1 it is trivial that F∆(p)(1) is
identical with S(m1, p, 1). Assuming that F∆(p)(k) is identical with S(m1, p, k),
we prove that F∆(p) (k + 1) is identical with a S(m1, p, k + 1). Lemmas 5.1 and
5.2 show that rows [mk . . . 2 ·mk) follow the Sierpinski pattern. Lemma 5.3 shows:
since segments [j ·mk . . . (j+1)mk), (j = 2 . . . (p−1)) can be viewed as translations
of segment [mk . . . 2 ·mk), these also follow the Sierpinski pattern.
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