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ASYMPTOTIC POINCARÉ MAPS ALONG THE
EDGES OF POLYTOPES

HASSAN NAJAFI ALISHAH, PEDRO DUARTE, AND TELMO PEIXE

Abstract. For a class of flows on polytopes, including many ex-
amples from Evolutionary Game Theory, we describe a piecewise
linear model which encapsulates the asymptotic dynamics along
the heteroclinic network formed out of the polytope’s vertexes
and edges. This piecewise linear flow is easy to compute even in
higher dimensions, which allows the usage of numeric algorithms
to find invariant dynamical structures such as periodic, homoclinic
or heteroclinic orbits, which if robust persist as invariant dynami-
cal structures of the original flow. We apply this method to prove
the existence of chaotic behavior in some Hamiltonian replicator
systems on the five dimensional simplex.
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1. Introduction

Given a flow on a polytope, leaving all its faces invariant, we call
flowing edge to any edge of the polytope consisting of a single orbit
flowing between the two endpoint singularities. The purpose of this
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2 ALISHAH, DUARTE, AND PEIXE

paper is to present a new method to encapsulate and analyze the as-
ymptotic dynamics of the flow along the heteroclinic network formed
by the flowing edges and the vertex singularities of the polytope.

Natural examples of such dynamical systems arise in Evolutionary
Game Theory (EGT), which was the background motivation for the
present work. Even though the phase space of the dynamical systems
arising from EGT are usually simplexes or products of simplexes, we
state our results in the more general context of simple polytopes in
order to have a mathematically comprehensive approach which is also
open to new examples.

The replicator equations, introduced by P. Taylor and L. Jonker [20],
as well as the polymatrix replicator equation, studied by authors in [1,
2], induce flows on simple polytopes in the scope of applicability of
the present results. Polymatrix replicator equations extend the class
of bimatrix replicator equations [16,17].

The use of cross-sections and return maps to analyze dynamics along
heteroclinic cycles is an old tool going back to Poincaré. In the con-
text of EGT there is already an extensive literature on the study of
boundary heteroclinic cycles [3,5,6,10,11,14]. The dynamics along he-
teroclinic networks has also been widely studied in the context of flows
with symmetries [9, Chapter 6]. All these studies use the Poincaré map
itself [18, Chapter 6] or its linearization [12, Chapter 17], usually for a
bifurcation analysis of families of vector fields. Our method developed
to analyze the dynamics along the vertex-edge heteroclinic network is
applicable to a wide class of flows on polytopes, with few apriori hy-
pothesis on their dynamics. For instance, some of the cumbersome
conditions in the previously referenced works can be reformulated in
our setting as appropriate assumptions on the (computable) asymp-
totic dynamics. Moreover, as mentioned below, our method applies to
heteroclinic networks with degenerate saddles, in a setting which, as
far as we know, is not covered by existing results.

The method presented here was first announced (without proofs)
by the second author in [7]. In the following paragraphs, we give an
overview of the method.

The Poincaré map defined along a heteroclinic or homoclinic orbit is
a composition of two types of maps, the global and the local Poincaré
maps. The global ones, Pγ, are defined in tubular neighborhoods of
the flowing edges γ, see Figure 1. They map points between two cross
sections Σ−γ and Σ+

γ transversal to the flow along γ. The local ones,
Pv, are defined in neighborhoods of vertex singularities v. For any pair
of flowing edges γ, γ′ such that v is both the endpoint of γ′ and the
start-point of γ, the local map Pv takes points from Σ+

γ′ to Σ−γ .

The nonlinearities of the global Poincaré maps Pγ fade away asymp-
totically, as one approaches the heteroclinic orbit, becoming identity
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Figure 1. The local, Pv, and global, Pγ, Poincaré maps
along a heteroclinic orbit.

maps in the limit. Local data is extracted from the underlying vector
field X at the vertexes, which will be referred to as the skeleton charac-
ter of X. The asymptotic behavior of the flow is completely determined
by this skeleton character and in particular the local Poincaré maps Pv
can be asymptotically linearized (in the sense that near the vertexes,
trajectories become lines after a change of variables) in terms of this
data.

In the generic case, the skeleton character of X at a vertex v consists
of the eigenvalues of X along the (eigen) directions of edges through
v. The signs of these eigenvalues were used to form the characteristic
matrix discussed in [12, Chapter 17]. The skeleton characters consid-
ered here are a bit more general. The skeleton character of a corner
(a vertex v and an edge containing it) may be non-zero even if the
associated eigenvalue is zero. This makes the method applicable in
certain degenerate situations with many zero eigenvalues. One such
example is the compatification of a Hamiltonion Lokta-Voltra system,
where all eigenvalues along directions transversal to the facet at infinity
vanish [7].

To stage the asymptotic piecewise linear dynamics we introduce a
geometric space referred to as the dual cone of a polytope. This space
is a subset of RF , where F is the set of the polytope’s facets. The dual
cone will be a union of sectors1, one for each vertex of the polytope,
see Figure 2. Given a vector field X on a d dimensional polytope
Γd ⊂ Rd, we describe a rescaling change of coordinates ΨX

ε , depending
on a blow-up parameter ε, see Figure 7. This change of coordinates
maps tubular neighborhoods of edges and vertexes to the dual cone of
Γd. For instance, the tubular neighborhood Nv of a vertex v is defined
by

Nv := {p ∈ Γd : 0 ≤ xj(p) ≤ 1 for 1 ≤ j ≤ d}

1 We call sector to any closed convex cone bounded by d transversal facets, where
d is the sector’s dimension.
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where (x1, . . . , xd) is a system of affine coordinates around v which
assigns coordinates (0, . . . , 0) to v and such that the hyperplanes xj = 0
are precisely the facets of the polytope through v. The sets {xj =
0} ∩Nv are referred to as outer facets of Nv. The remaining facets of
Nv, defined by equations like xi = 1, are called the inner facets of Nv.
The previous cross sections Σ±γ are chosen to match these inner facets
of the neighborhoods Nv.

Figure 2. Dual cone of a triangle in RF

Nv3

Nv1Nv2

Nγ12

Nγ23 Nγ31

Figure 3. Tubular neighborhoods along the edges in a
two dimensional polytope (dashed lines are the dges)

The rescaling change of coordinates ΨX
ε takes points in Nv to points in

the sector Πv of all y = (yσ)σ∈F ∈ RF with yσ ≥ 0 and where yσ = 0
whenever the facet σ does not contain v. In the generic case, assum-
ing we have enumerated F so that the facets through v are precisely
σ1, . . . , σd, the map ΨX

ε is defined on the neighborhood Nv by

ΨX
ε (q) := (−ε2 log x1(q), . . . ,−ε2 log xd(q), 0, . . . , 0)

where (x1, . . . , xd) stand for the system of affine coordinates introduced
above. Similarly, given an edge γ, the map ΨX

ε takes points in the
tubular neighborhood Nγ of γ to points in the sector Πγ of all (yσ)σ∈F ∈
RF with yσ ≥ 0 and where yσ = 0 whenever the facet σ does not contain
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γ. The map ΨX
ε sends interior facets of Nv and Nγ, respectively, to

boundary facets of Πv and Πγ while it takes outer facets of Nv and Nγ

to infinity. Figure 3 represents the tubular neighborhoods of vertexes
and edges of a triangle, where dashed lines stand for the outer boundary
facets of these neighborhoods. Figure 4 depicts the range of the map
ΨX
ε where the dashed lines stand for infinity.

Πv3

Πv1Πv2

Πγ31

Πγ12

Πγ23

Figure 4. Range of the rescaling change of coordinates
in the dual cone

As the rescaling parameter ε tends to 0, the rescaled push-forward
ε−2 (ΨX

ε )∗X of the vector field X converges to a constant vector field
χv on each sector Πv. This means that asymptotically, as ε → 0,
trajectories become lines in the coordinates (yσ)σ∈F = ΨX

ε . Given
a flowing edge γ between vertexes v and v′, the map ΨX

ε over Nγ

depends only on the coordinates transversal to γ. Moreover, as ε →
0 the global Poincaré map Pγ converges to the identity map in the
coordinates (yσ)σ∈F = ΨX

ε . Hence the sector Πγ is naturally identified
as the common facet between the sectors Πv and Πv′ , see Figure 4. In
fact, from the above definitions one gets that Πγ = Πv ∩ Πv′ . Hence
the asymptotic dynamics along the vertex-edge heteroclinic network is
completely determined by the vector field’s geometry near the vertex
singularities and can be described by a piecewise constant vector field χ
on the dual cone, whose components are precisely those of the skeleton
character of X. We refer to this piecewise constant vector field as
the skeleton vector field of X. This vector field χ induces a piecewise
linear flow on the dual cone whose dynamics can be computationally
explored.
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The flows associated with these piecewise constant vector fields are in
general open dynamical systems. Some of them may have no recurrence
at all. For instance attracting or repelling vertex singularities, or the
existence of attracting or repelling singularities interior to non flowing
edges, may divert trajectories and prevent the existence of cycles in the
vertex-edge heteroclinic network.

We use Poincaré maps to analyze the asymptotic dynamics of the
flow of X. For that we consider a subset S of flowing edges such that
every vertex-edge heteroclinic cycle goes through at least one edge in
S. We call structural set to any such set S, see Definition 5.8. Then the
flow of X induces a Poincaré map PS on the system of cross sections
ΣS := ∪γ∈SΣ−γ . Each branch of the Poincaré map PS is associated
with a vertex-edge heteroclinic path starting with an edge in S and
ending at its first return to another edge in S. These heteroclinic paths
are referred to as branches of S. Similarly, the flow of the skeleton
vector field χ induces a first return map πS : DS ⊂ ΠS → ΠS on the
system of cross section ΠS := ∪γ∈SΠγ of the dual cone. This map
πS, referred to as the skeleton flow map, is piecewise linear and its
domain is a finite union of open convex cones, one for each branch
of S. Proposition 5.10 provides a simple sufficient condition for the
domain DS of πS to have full Lebesgue measure in ΠS. In this sense πS
becomes a closed dynamical system. We emphasize that the hypothesis
of this proposition is not a requisite for the applicability of our method.
Violation of the hypothesis simply allows the existence of open convex
cones in ΠS \DS corresponding to orbits which never return to ΠS.

The main result of this manuscript asserts that the Poincaré map PS
in the rescaled coordinates ΨX

ε converges in the C∞ topology to the
skeleton flow map πS. More precisely, the following limit holds

lim
ε→0

ΨX
ε ◦ PS ◦ (ΨX

ε )−1 = πS

with uniform convergence of the map and its derivatives over any com-
pact set contained in the (open) domain DS ⊂ ΠS, see Theorem 6.9.

Consider now, for each facet σ of the polytope, an affine function
Rd 3 q 7→ xσ(q) ∈ R which vanishes on σ and is strictly positive on
the rest of the polytope. With this family of affine functions we can
present the polytope as Γd = ∩σ∈F{xσ ≥ 0}. In the generic case any
function h : int(Γd)→ R of the form

h(q) =
∑
σ∈F

cσ log xσ(q) (cσ ∈ R)

rescales to the following piecewise linear function on the dual cone

η(y) :=
∑
σ∈F

cσ yσ

in the sense that η = limε→0 ε
−2 (h ◦ (ΨX

ε )−1). When all coefficients cσ
have the same sign then η is a proper function on the dual cone. This
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means in particular that all levels of η are compact sets. Finally, if the
function h is invariant under the flow of X, i.e., h ◦ PS = h then the
piecewise linear function η is also invariant under th skeleton flow, i.e.,
η ◦ πS = η. Thus integrals of motion of conservative systems, which
have the previous form, carry over as piecewise linear integrals of the
skeleton flow.

As a general principle, any robust structure invariant under the skele-
ton flow map persists as an invariant structure for the Poincaré map
of the original flow. Since the former can be detected through linear
algebra tools (e.g. algorithms for computing eigenvalues and eigen-
vectors of the skeleton flow map’s branches) this approach provides a
method to analyze the dynamics of the original flow along the vertex-
edge heteroclinic network, a method which can be equally well applied
to higher dimensional cases. For Hamiltonian systems, to be discussed
in a sequel paper, their conservative nature (in the context of Poisson
geometry) is inherited by the skeleton flow map. In these cases the
analysis of the dynamics reduces to the dimension of the symplectic
leaves. We provide here a couple of Hamiltonian examples where this
method proves the co-existence of chaotic behavior with elliptic islands.

Embedding the dual cone in the Euclidean space RF is formally and
computationally convenient. Poincaré maps of the skeleton vector field
along paths of the heteroclinic network are represented by F × F flow
matrices on convex cone domains which can be explicitly determined.
Both these flow matrices and their convex cone domains are expressed
in terms of the vector field’s skeleton character.

Next we provide an alternative and more geometric realization of
the dual cone as the normal fan of a polytope [22, Chapter 7]. A
(complete) fan is roughly a family of polyhedral convex closed cones2
in some Euclidean space Rd with disjoint interiors and such that their
union is the whole space. The normal cone of a polytope Γd ⊂ Rd at a
vertex v is the closed convex cone

Πv := {u ∈ Rd : u · (q − v) ≤ 0,∀ q ∈ Γd}.

The family of all normal cones of a polytope’s vertexes (with all their
faces) is always a complete fan, referred to as its normal fan. Figure 5
shows the normal fan of a triangle in R2. Given a vertex v of Γd let
(x1, . . . , xd) be the previously mentioned system of affine coordinates
around v. Let ~ni ∈ Rd be the unit outward normal to the facet of
Γd represented by the equation xi = 0. Then the restriction of the
rescaling map ΨX

ε to the neighborhood Nv with values in the normal

2 The precise definition of fan requires that the intersection of any two family
members is either empty of else a common face and that faces of family members
are also in the family.
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cone Πv is defined in the generic case by

ΨX
ε (q) := −ε2

d∑
j=1

log xi(q)~nj.

In this construction, the skeleton vector field of X is a piecewise con-
stant vector field on Rd, i.e., one which is constant on each normal cone
Πv for a vertex v of Γd.

Figure 5. Normal fan of a triangle in R2.

Figure 6 illustrates a Hamiltonian vector field X (a polymatrix replica-
tor system) on the standard 3-dimensional cube, with a proper Hamil-
tonian function h. The left of Figure 6 depicts the cube with a few
orbits of X on some level set of h. As mentioned above, the function
h rescales to a piecewise linear proper function η on the normal fan of
the cube. All level sets of η are octahedra (the cube’s dual). On the
right of Figure 6, a few orbits of the skeleton flow on some level of the
invariant function η are shown.

Figure 6. Asymptotic linearization on the normal fan
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Figure 7. Asymptotic linearization on the dual cone

All graphics of this manuscript were produced with Mathematica
and Geogebra software. We provide the Mathematica code [8] used to
analyze the examples and to make the graphics. This code can be used
to numerically analyze specific examples, providing hints for analytic
results.

This paper is organized as follows. In Section 2 we define polytopes
and all their associated notations, terminology and concepts. In Sec-
tion 3 we introduce the class of vector fields on polytopes, the skeleton
character of a vector field and other related concepts. In Section 4, we
define the family of rescaling coordinates Ψε and the dual cone of a
polytope. In Section 5 we introduce the class of skeleton vector fields
(piecewise constant vector fields) on the dual cone, whose dynamics en-
capsulate the asymptotic behavior of the original non-linear flow. We
also define the concept of structural set and characterize those vector
fields whose skeleton flow map is a closed dynamical system. In Sec-
tion 6 we define the Poincaré return maps of a vector field, and then
state and prove the main thorem, Theorem 6.9. In Section 7 we intro-
duce a probe space of integrals of motion, describing their asymptotics
on the dual cone of the polytope. We also describe a sufficient condi-
tion on the skeleton flow map for the existence of horse-shes regarding
the dynamics of the original vector field, see Theorem 7.8. In Section 8
we summarize a procedure to detect chaotic behavior by checking the
assumptions of Theorem 7.8. In Section 9 we describe a couple of repli-
cator Hamiltonian examples in the five dimensional simplex, where the
previous procedure is applied. Finally, in Section 10 we discuss a few
possible developments of this work.

2. Polytopes

In this section we provide preliminary definitions and notations about
polytopes.
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Given a convex subset K ⊆ RN , we call affine support of K to the
the affine subspace spanned by K. The dimension of K is by definition
the dimension of its affine support.

Definition 2.1. A simple d-dimensional polytope is a compact convex
subset Γd ⊂ RN of dimension d and affine support Ed ⊂ RN for which
there exist a family of affine functions {fi : Ed → R}i∈I , referred to as
a defining family of Γd, such that

(a) Γd = ∩i∈If−1
i ([0,+∞[).

(b) Γd ∩ f−1
i (0) 6= ∅ ∀i ∈ I.

(c) Given J ⊆ I such that Γd∩(∩j∈Jf−1
j (0)) 6= ∅, the linear 1-forms

(dfj)p are linearly independent at every point p ∈ ∩j∈Jf−1
j (0).

Given J ⊂ I, because of item (c), if non-empty, the intersection
Γd∩(∩j∈Jf−1

j (0)) is a (d−|J |)-dimensional face of the polytope. In par-
ticular for each i ∈ I, the set σi := Γd ∩ f−1

i (0) is a (d− 1)-dimensional
face, i.e., a facet of the polytope. We denote the sets of vertexes, edges
and facets, respectively, by V , E and F . Since F = {σi : i ∈ I} ' I,
we will assume from now on that the defining family of Γd is indexed
in F in a way that σ = Γd ∩ f−1

σ (0), for all σ ∈ F .
Given a vertex v, the sets Fv and Ev are defined to be the set of

all facets, respectively edges, which contain v. Since Γd is a simple
polytope, both these sets have d elements.

Remark 2.2. By (c) of Definition 2.1 at any given vertex v, the co-
vectors (dfi)v are linearly independent. So in a small enough neighbor-
hood of v the functions {fσ}σ∈Fv can be used as a system of coordinates.

Remark 2.3. We have adopted here the standard terminology where
a polyhedron is any convex set bounded by finitely many hyperplanes
and a polytope is a compact polyhedron, see for instance [22]. We note
that in [7] the term ‘polyhedron’ was used to mean compact polyhedron.

The elements of the set
C := { (v, γ, σ) ∈ V × E × F : γ ∩ σ = {v} }

are referred to as corners, see Figure 8.

Remark 2.4. Any pair of the elements in a corner uniquely determines
the third one. Therefore, we will sometimes refer to the corner (v, γ, σ)
shortly as (v, γ) or (v, σ). An edge γ with endpoints v, v′ determines
two corners (v, γ, σ) and (v, γ, σ′), referred to as the end corners of γ.
The facets σ, σ′ will be referred to as the opposite facets of γ.

Example 2.5. The d-dimensional simplex is the polytope defined by

∆d :=

{
(x0, x1, . . . , xd) : xj ≥ 0,

d∑
j=0

xj = 1

}
.
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Figure 8. A corner (v, γ, σ) in a three dimensional polytope.

The affine support of ∆d is the hyperplane

Ed :=

{
(x0, x1, . . . , xd) ∈ Rd+1 :

d∑
j=0

xj = 1

}
.

The defining family of ∆d are the coordinate functions fi : Ed → R,
fi(x0, x1, . . . , xd) = xi. The simplex ∆d has d+ 1 vertexes v0, v1, . . . , vd
and d+1 facets σ0, σ1, . . . , σd, where vj = (0, . . . , 1, . . . , 0) is the vertex
opposed to the facet σj = ∆d ∩ {xj = 0} for each j = 0, 1, . . . , d.

3. Vector Fields on Polytopes

In this section we introduce the general class of vector fields on poly-
topes to which our theory applies.

Let Γd be a simple d-dimensional polytope. A function f : Γd → R is
said to be analytic if it can be analytically extended to a neighborhood
of Γd. We denote by Cω(Γd) the space of all analytic functions on Γd.
Similarly, we denote by Xω(Γd) the space of all analytic vector fields
X : Γd → RN such that for every face ρ ⊂ Γd and all x ∈ ρ, the vector
X(x) is tangent to ρ. This tangency requirement on the vector fields
X ∈ Xω(Γd) implies that for every facet σ ∈ F , dfσ(X) = 0 along σ.
By compactness the flow ϕtX of any vector field X ∈ Xω(Γd) is complete
on Γd with singularities at the vertexes of the polytope.

Given a vertex v, consider the coordinate system introduced in Re-
mark 2.2, (x1, . . . , xd) = (fσ1(q), . . . , fσd(q)) where Fv = {σ1, . . . , σd}.
In these coordinates the analytic function dfσl(X) vanishes along the
hyperplane xl = 0. By Weierstrass division theorem either there exist
a positive integer νl = ν(X, σl), and the function Hσl ∈ Cω(Γd) which
is non-identically zero along the face σl and such that

dfσl(X) = (fσ)νlHσl , i.e. ẋl = xνll Hσl , (3.1)
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or else dfσl(X) is identically zero. In the later case, we set νl =∞. We
say that X has tangency contact of order ν(X, σ) with σ and will refer
to it as the order of X at the facet σ. The map

ν : Xω(Γd)× F → {1, 2, 3, . . . ,∞}
is called order function of X.

Remark 3.1. We have assumed analyticity for the sake of simplicity,
also because the EGT models we have in mind are analytic (and even
algebraic) vector fields. The results obtained in this work extend easily
to smooth flows and vector fields. The main difference is that for a
smooth vector field X the concept of order must first be defined locally.3

For every corner (v, σ, γ) there exists a unique vector e(v,σ) tangent
to γ at v such that (dfσ)v(e(v,σ)) = 1 and for any other facet σ′ ∈ Fv,
σ′ 6= σ, (dfσ′)v(e(v,σ)) = 0. Hence, {e(v,σ)}σ∈Fv is the dual basis of the
1-form basis {(dfσ)v}σ∈Fv . The vectors e(v,σ) are eigenvectors of the
derivative DXv. If ν(X, σ) = 1 then Hσ(v) is the eigenvalue of the
derivative DXv associated to e(v,σ). In the case ν = ν(X, σ) ≥ 2, the
eigenvalue associated to e(v,σ) is zero but we have

Hσ(v) =
1

ν!
(dfσ)v (DνX)v(e(v,σ), . . . , e(v,σ)︸ ︷︷ ︸

ν times

) .

To see this consider the coordinate system introduced in Remark 2.2,
(x1, . . . , xd) = (fσ1(q), . . . , fσd(q)), where Fv = {σ1, . . . , σd}. Then the
lth component of the vector field X is Xl(x) = xνl Hσl(x) and we have

Hσl(v) =
1

ν!

∂νXl

∂xνl
(0) =

1

ν!
(dfσl)v (DνX)v(e(v,σl), . . . , e(v,σl)).

Definition 3.2. The skeleton character of X ∈ Xω(Γd) is defined to
be the matrix χ := (χvσ)(v,σ)∈V×F where

χvσ :=

{
−Hσ(v) σ ∈ Fv

0 otherwise .

We set χvσ = 0 when ν(X, σ) = ∞. For a fixed vertex v, the vector
χv := (χvσ)σ∈F is referred to as the skeleton character at v.

Remark 3.3. For a given corner (v, γ, σ) if χvσ < 0 then v is the α-
limit of an orbit in γ, and if χvσ > 0 then v is the ω-limit of an orbit in
γ. Assuming that X does not have singularities in the interior of an
edge γ, if γ connects the corners (v, σ) and (v′, σ′), then it consists of
a single a heteroclinic orbit with α-limit v and ω-limit v′ if and only if
χvσ < 0 and χv′σ′ > 0.

3 For a smooth vector field X, the order ν(X, v, σ) at a corner (v, σ) is the
minimum integer k ≥ 1 such that (dfσ)v(DkX)v 6= 0. The order of σ is defined as

ν(X,σ) := min{ν(X, v, σ) : σ ∈ Fv } .
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The replicator equation provides a class of analytic vector fields in
the space Xω(∆d). In the rest of this section we recall this equation
and describe its skeleton character and order function.

Given a payoff matrix A ∈ Matd+1(R) the system of differential
equations

dxi
dt

= xi

(
(Ax)i −

d∑
k=0

xk (Ax)k

)
, 0 ≤ i ≤ d (3.2)

is called the replicator equation. The associated vector fieldXA is called
the replicator vector field of A and lies in our class, XA ∈ Xω(∆d). For
a brief interpretation of this equation consider a population whose indi-
viduals interact with each other according to the set of pure strategies
{0, . . . , d}. A point x = (x0, . . . , xd) ∈ ∆d represents a state of the
population where xi measures the frequency of usage of strategy i.
Each entry aij of A represents the payoff of strategy i against j and
this model governs the time evolution of the frequency distribution of
each pure strategy. The equation says that the growth rate of each
frequency xi is the difference between its payoff (Ax)i =

∑d
j=0 aijxj

and the average population’s payoff
∑d

k=0 xk (Ax)k.
The next proposition characterizes the skeleton character of XA.

Proposition 3.4. Given A ∈ Matd+1(R), every facet σi of ∆d has
order 1, 2 or ∞. More precisely

(1) ν(XA, σi) = 1 iff aij 6= ajj for some j or else (akj − ajj)k,j 6=i is
not skew-symmetric. In this case χvjσi = ajj − aij for all j.

(2) ν(XA, σi) = 2 iff aij = ajj for all j and (akj − ajj)k,j 6=i is skew-
symmetric, but (akj−ajj)k,j is not skew-symmetric. In this case
χ
vj
σi = aji − aii for all j.

(3) ν(XA, σi) =∞ iff aij = ajj for all j and (akj − ajj)k,j is skew-
symmetric. In this case χvjσi = 0 for all j.

Proof. Consider the conditions
(C1) aij 6= ajj for some j or else (akj−ajj)k,j 6=i is not skew-symmetric.
(C2) aij = ajj for all j and (akj − ajj)k,j 6=i is skew-symmetric, but

(akj − ajj)k,j is not skew-symmetric.
(C3) aij = ajj for all j and (akj − ajj)k,j is skew-symmetric.
It is clear that (C1), (C2) and (C3) are exhaustive and mutually ex-

clusive conditions. Hence it is enough to prove that (C1)⇒ ν(XA, σi) =
1, (C2) ⇒ ν(XA, σi) = 2 and (C3) ⇒ ν(XA, σi) =∞.

Let Hi : ∆d → R be the function

Hi(x) := (Ax)i −
d∑

k=0

xk (Ax)k.

A simple computation shows that
Hi(vj) = aij − ajj
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where the vj are the vertexes of ∆d. Thus, if for some j, aij 6= ajj then
ν(XA, σi) = 1 and χvjσi = ajj−aij for all j. Assume now that (C1) holds
and let Ã = (akj − ajj)k,j. Then Hi(x) = (Ãx)i −

∑d
k=0 xk (Ãx)k. If

aij = ajj for all j then (Ãx)i = 0 for all x ∈ ∆d. Also, if aij = ajj for all
j then the matrix (ãkj)k,j 6=i is not skew-symmetric. This implies that
the closed cone Ci defined by the conditions xi = 0 and xT Ãx = 0 has
zero Lebesgue measure in the hyperplane {xi = 0} ⊂ Rd+1. Therefore
Ci ∩ σi has zero Lebesgue measure in the facet σi, which implies that
Hi(x) = −xT Ãx is not identically zero on σi. Hence ν(XA, σi) = 1 and
χ
vj
σi = −Hi(vj) = ajj − aij = 0 for all j.
Assuming (C2) holds we have (Ãx)i = 0 and

Hi(x) = −xT Ãx = −xi
d∑
j=0

(aji − aii)xj.

Because (akj − ajj)k,j is not skew-symmetric we have aji 6= aii for some
j. Thus ν(XA, σi) = 2 and χvjσi = aji − aii in this case.

Finally, if (C3) holds then Hi ≡ 0, which implies ν(XA, σi) =∞. �

4. Rescaling Coordinates

In this section we define the dual cone of a polytope and introduce
the family of rescaling coordinates ΨX

ε described in the introduction.
Consider a polytope Γd and its defining family {fσ}σ∈F , see Defini-

tion 2.1. By Remark 2.2, the co-vectors {(dfσ)v : σ ∈ Fv} are linearly
independent at every vertex v. Multiplying each affine function of this
family by some large positive number we may assume that the neigh-
borhoods

Nv := {q ∈ Γd : fσ(q) ≤ 1, ∀σ ∈ Fv},
with v ∈ V , are pairwise disjoint, and that the functions {fσ : σ ∈ Fv}
define a coordinate system for Γd on Nv. For any edge γ connecting two
vertexes v, v′ ∈ V we can define a tubular neighborhood connecting Nv

to Nv′ by

Nγ := {q ∈ Γd\(Nv ∪Nv′) : fσ(q) ≤ 1 for all γ ⊂ σ}.

As before, we may assume that these neighborhoods are pairwise dis-
joint between themselves. Furthermore, fixing a smooth submersion
t : Nγ → [0, 1] such that t−1(0) ⊂ ∂Nv and t−1(1) ⊂ ∂Nv′ , whose re-
striction induces a diffeomorphism between γ \ int(Nv ∪Nv′) and [0, 1],
the family of functions {t, {fσ}γ⊂σ} defines a coordinate system for the
polytope on Nγ. The edge skeleton’s tubular neighborhood

NΓd := (∪v∈VNv) ∪ (∪γ∈ENγ) (4.1)

will be the domain of our rescaling maps ΨX
ε , see Figure 3.



ASYMPTOTIC POINCARE MAPS 15

Remark 4.1. We can turn the previous local coordinate systems over
the neighborhoods Nv and Nγ into a global system of coordinates over
NΓd with values in RF as follows:

Each point q ∈ Nv has coordinates x = (xσ)σ ∈ RF , where xσ = fσ(q)
if v ∈ σ and xσ = 0 otherwise.

Similarly, a point q ∈ Nγ has coordinates x = (xσ)σ ∈ RF , where
xσ = fσ(q) if γ ⊂ σ and xσ = 0 otherwise. Note that we have dropped
the coordinate t = t(q) and hence this ‘coordinate system’ fails to be
injective. The missing coordinate will not really matter because, as ex-
plained in the introduction, global Poincaré maps become identity maps
asymptotically.

We use the following family of functions to define the rescaling co-
ordinates. For every n = 1, 2, . . ., let hn : (0, 1]→ R be the function

h1(x) = − log x and hn(x) = − 1

n− 1

(
1− 1

xn−1

)
n ≥ 2. (4.2)

Remark 4.2. This family is characterized by the properties:
h′n(x) = −x−n, hn(0) = +∞ and hn(1) = 0, which imply that the
function hn : (0, 1] → [0,+∞) is a diffeomorphism. A straightforward
computation yields

(h1)−1(y) = e−y and (hn)−1(y) = (1 + (n− 1)y)−
1

n−1 if n ≥ 2.

Definition 4.3. Given X ∈ Xω(Γd) we define the ε-rescaling coordi-
nate system ΨX

ε : NΓd \∂Γd → RF which maps q ∈ NΓd to y := (yσ)σ∈F
where

• if q ∈ Nv for some vertex v:

yσ =

{
ε2hν(X,σ)(fσ(q)) if σ ∈ Fv

0 if σ /∈ Fv
• if q ∈ Nγ for some edge γ:

yσ =

{
ε2hν(X,σ)(fσ(q)) if γ ⊂ σ

0 if γ 6⊂ σ

For a given vertex v ∈ V we define
Πv := { (yσ)σ∈F ∈ RF

+ : yσ = 0 ∀σ /∈ Fv } . (4.3)

Since {fσ : σ ∈ Fv} is a coordinate system for Γd in Nv and the
functions hn : (0, 1] → [0,+∞) are diffeomorphisms, the restriction of
ΨX
ε to Nv \ ∂Γd is a diffeomorphism onto Πv.
Next consider an edge γ connecting two corners (v, σ) and (v′, σ′).

Note that Fv ∩ Fv′ = {σ ∈ F : γ ⊂ σ}, which means that the image

ΨX
ε (Nγ \ ∂Γd) = { (yσ)σ∈F ∈ RF

+ : yσ = 0 when γ 6⊂ σ } .
is equal to Πv ∩Πv′ . We denote this image by Πγ. Notice that Nγ has
dimension d, while Πγ has dimension d− 1. In particular the map ΨX

ε

is not injective over Nγ.
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Let us explain the use of the term ‘coordinate system’ here. As men-
tioned above, the family of functions {t, {fσ}γ⊂σ} defines a coordinate
system for Γd onNγ. For any t0 ∈ (0, 1), let Σt0 := {q ∈ Nγ : t(q) = t0}.
This set is a transversal cross-section to γ at the point q = γ ∩ t−1(t0).
Between the boundary transversal cross-sections Σ0,Σ1, we have

ΨX
ε (Σt) = ΨX

ε (Nγ) ∀t ∈ [0, 1].

Figure 9. An edge connecting two corners

As mentioned in the introduction, asymptotically the global Poincaré
maps are identity maps, see Lemma (6.2). Thus the asymptotic flow
identifies all cross-sections Σt, t ∈ [0, 1]. This makes the map ΨX

ε a
suitable ‘coordinate system’ for our purposes.

Definition 4.4. The dual cone of Γd is defined to be

C∗(Γd) :=
⋃
v∈V

Πv ,

where Πv is the sector defined at (4.3). Points of the dual cone will
always be denoted by y = (yσ)σ∈F .

By construction, the dual cone is the range of the ε-rescaling co-
ordinate system, i.e., ΨX

ε (NΓd \ ∂Γd) = C∗(Γd). In particular these
coordinates determine a family of maps ΨX

ε : NΓd \ ∂Γd → C∗(Γd). We
will write ΨX

v,ε instead of ΨX
ε to emphasize that we are dealing with

the restriction of the ε-rescaling coordinates to the neighborhood Nv,
which is a diffeomorphism ΨX

v,ε : Nv \ ∂Γd → Πv.
To explain the term ‘dual’ notice first that Πγ = Πv ∩Πv′ , whenever

γ is an edge connecting the vertexes v and v′. Similar relations hold
for higher dimensional faces. In fact for any face ρ ⊂ Γd, we can define

Πρ := { (yσ)σ∈F ∈ RF
+ : yσ = 0 when ρ 6⊂ σ }.
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The dual cone C∗(Γd) has a simplicial structure where Πρ is a face of
C∗(Γd) for every face ρ of Γd. Moreover, for any faces ρ, ρ′ of Γd,

ρ ⊂ ρ′ ⇔ Πρ′ ⊂ Πρ.

The dual cone of a polytope can be identified with the polytope’s nor-
mal fan, which in turn coincides with the face fan of its dual polytope,
see [22, Chapter 7]. This gives a short explanation for the inherent
duality between a polytope and its dual cone.

The following technical lemma will be used to control the asymptotic
behavior of ΨX

ε .

Lemma 4.5. For any n ≥ 1 and k ≥ 1, there exists 0 < r(k, n) ≤ 1
such that the diffeomorphisms hn : (0, 1]→ [0,+∞) satisfy

(1) lim
ε→0+

max
0≤i≤k

sup
y≥εr

∣∣∣∣ didyih−1
n

( y
ε2

)∣∣∣∣ = 0,

(2) lim
ε→0+

max
0≤i≤k

sup
y≥εr

∣∣∣∣ didyi [ ε2 (hl ◦ (hn)−1
) ( y

ε2

)]∣∣∣∣ = 0 for 1 ≤ l < n.

Moreover r(k, 1) = 1 for all k ≥ 1.

Proof. For n = 1 take r = 1 regardless of k. The kth derivative of e−y/ε2

is bounded, over y ≥ ε, by ε−2k e−1/ε, which tends to 0 as ε → 0+. In
this case the conclusion (2) is empty.

For n > 1 and y ≥ εr the kth derivative of h−1
n (y/ε2) is bounded by

(n− 1)k

ε2k

k−1∏
j=0

(
− 1

n− 1
− j
) (

1 +
εr

ε2

)− 1
n−1
−k

� ε(2−r)(
1

n−1
+k)−2k

= ε
2

n−1
−r( 1

n−1
+k)

which tends to 0 as ε→ 0+, provided we choose

0 < r <
2

n−1
1

n−1
+ k

=
2

1 + (n− 1)k
≤ 1.

The last inequality holds for any n ≥ 2. This proves item (1).
Consider now the family of functions gl(ε, y) := ε2(hl ◦ h−1

n )(y/ε2)
with 1 ≤ l < n. For l = 1 we have

g1(ε, y) =
ε2

n− 1
log
(

1 + (n− 1)
y

ε2

)
and over the interval y ≥ εr, g1(ε, y) = O(ε) as ε → 0. The higher
order derivatives of g1(ε, y) are

dkg1

dyk
(ε, y) = ±(k − 1)!

(
n− 1

ε

)k−1 (
1 + (n− 1)

y

ε2

)−k
.

Hence over the interval y ≥ εr

dkg1

dyk
(ε, y) = O(ε2−rk) as ε→ 0
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and this tends to 0 provided r < 2
k
.

For 2 ≤ l < n set θl = l−1
n−1

and notice that θl < n−2
n−1

< 1. A simple
calculation gives

gl(ε, y) = − ε2

l − 1
+

ε2

l − 1

(
1 + (n− 1)

y

ε2

)θl
and over the interval y ≥ εr one has gl(ε, y) = O(ε

2
n−1 ) as ε → 0. For

k ≥ 1, the higher order derivatives of gl(ε, y) are

dkgl
dyk

(ε, y) = ±n− 1

l − 1

[
k−1∏
j=0

(θl − j)

](
n− 1

ε2

)k−1 (
1 + (n− 1)

y

ε2

)θl−k
.

Hence over the interval y ≥ εr

dkgl
dyk

(ε, y) = O(ε−r(k−
n−2
n−1

)+ 2
n−1 ) as ε→ 0

which tends to 0 provided r < 2
k(n−1)−(n−2)

. This proves item (2). �

To shorten statements about convergence in the forthcoming lemmas
and theorems we introduce some terminology.

Definition 4.6. Suppose we are given a family of functions Fε with
varying domains Dε. Let F be another function with domain D . As-
sume that all these functions have the same target and source spaces,
which are assumed to be linear spaces. We will say that limε→0+ Fε = F
in the Ck topology, to mean that:

(1) domain convergence: for every compact subset K ⊆ D , we have
K ⊆ Dε for every small enough ε > 0, and

(2) uniform convergence on compact sets:

lim
ε→0+

max
0≤i≤k

sup
u∈K

∣∣Di [Fε(u)− F (u)]
∣∣ = 0 .

Convergence in the C∞ topology means convergence in the Ck topology
for all k ≥ 1. If in a statement Fε is a composition of two or more
mappings then its domain should be understood as the composition
domain.

Next lemma relates the asymptotic push-forward of X by ΨX
ε near a

vertex v with the skeleton character χv of X at v, see Definition 3.2. It
says that the vector field (ΨX

ε )∗X rescaled by the factor ε−2 converges
to the constant vector field χv on the sector Πv. In particular the
trajectories of the push-forward vector field (ΨX

ε )∗X are asymptotically
linearized to the lines of the flow of the constant vector field χv. We
will denote by ΨX

v,ε the restriction of ΨX
ε to Nv. Define also

Πv(ε) := { y ∈ Πv : yσ ≥ ε for all σ ∈ Fv } (4.4)
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Lemma 4.7. Consider the functions Hσ defined in (3.1). Then

(ΨX
v,ε)∗X = ε2

(
X̃ε
v,σ

)
σ∈F

,

where

X̃ε
v,σ(y) :=

{
−Hσ

(
(ΨX

v,ε)
−1(y)

)
if σ ∈ Fv

0 if σ /∈ Fv
.

Moreover, given k ≥ 1 there exists r = r(k,X) > 0 such that the
following limit holds in the Ck topology

lim
ε→0

(X̃ε
v)|Πv(εr)

= χv .

Proof. Let Fv = {σ1, . . . , σd} and (x1, . . . , xd) = (fσ1(q), . . . , fσd(q))
be the coordinate system introduced in Remark 2.2. Denote by νl the
order of the facet σl. Let Hl(x) be the function Hσl(q) expressed in this
coordinate system. Then by (3.1), the equation dq

dt
= X(q) is equivalent

to the system of differential equations

dxl
dt

= xνll Hl(x), 1 ≤ l ≤ d .

In these coordinates

ΨX
v,ε(x1, . . . , xd) = ε2 (hν1(x1), . . . , hνd(xd), 0, . . . , 0) .

Therefore, since the Jacobian of ΨX
v,ε can be identified with the diagonal

matrix
D(ΨX

v,ε)x = −ε2diag(x−ν1
1 , . . . , x−νdd )

the first claim follows.
Fix k ∈ N and take r = min1≤j≤d r(k, νj)„ where r(k, n) is tha func-

tion in Lemma 4.5. Given y ∈ Πv(ε
r),

Hσl

(
(ΨX

v,ε)
−1(y)

)
= Hl

(
h−1(

y

ε2
)
)
,

where h−1( y
ε2

) :=
(
h−1
ν1

(ε−2 yσ1), . . . , h−1
νd

(ε−2 yσd)
)
. Thus, by item (1) of

Lemma 4.5 combined with Definition 3.2, the convergence follows. �

5. Skeleton Vector Fields

In this section we define the skeleton of a vector field X ∈ Xω(Γd)
and its corresponding skeleton flow map, explaining how it is computed
and its dynamics is analyzed.

Definition 5.1. Given X ∈ Xω(Γd), the skeleton of X is the piecewise
constant vector field χ on dual cone C∗(Γd) which is constant and equal
to χv on each sector Πv, where χv = (χvσ)σ∈F is the skeleton character
at v introduced in Definition 3.2. Notice that for every vertex v, the
vector χv is tangent to Πv.
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Our goal is to study the piecewise linear flow generated by the skele-
ton vector field χ. Remark 3.3 justifies that we call χ-repelling a vertex
v such that χvσ < 0, ∀σ ∈ Fv, and χ-attractive if χv > 0, ∀σ ∈ Fv. A
vertex v is said to be of saddle type if for some pair of facets σ1, σ2 ∈ F
one has χvσ1

χvσ2
< 0. The edges of Γd are also classified as follows.

Definition 5.2. Let γ ∈ E be an edge with end corners (v, σ) and
(v′, σ′). We say that γ is a defined type edge if either χvσχv

′

σ′ 6= 0 or else
χvσ = χv

′

σ′ = 0. A defined type edge γ is called
(1) a flowing-edge if χvσχv

′

σ′ < 0,
(2) a neutral edge if χvσ = χv

′

σ′ = 0,
(3) an attracting edge if χvσ < 0 and χv′σ′ < 0,
(4) a repelling edge if χvσ > 0 and χv′σ′ > 0,
For a flowing-edge γ with opposite corners (v, σ) and (v′, σ′), we

write (v, σ)
γ−→ (v′, σ′), whenever χvσ < 0 and χv′σ′ > 0. The vertexes v

and v′ are respectively called the source of γ, denoted by s(γ), and the
target of γ, denoted by t(γ).

We call orbit of χ to any continuous piecewise affine function c : I →
C∗(Γd), defined on some interval I ⊂ R, such that

(1) c′(t) = χv whenever c(t) is interior to some Πv, with v ∈ V ,
(2) there is at most a countable set of times t ∈ I such that c(t) is

not interior to any sector Πv, with v ∈ V .
Writing I = [t0, tn], a sequence of vertexes (v1, v2, . . . , vm) such that

for some times t0 < t1 < . . . < tn−1 < tn one has c(t) ∈ int(Πvj) for
all tj−1 < t < tj, is called the itinerary of the orbit segment c. This
implies that c(tj) ∈ Πvj−1

∩ Πvj = Πγ, where vj−1
γ−→ vj is a flowing

edge, for every j = 1, . . . , n − 1. If there are flowing edges γ0 and γn
such that the endpoints satisfy c(t0) ∈ Πγ0 and c(tn) ∈ Πγn then the
sequence of edges (γ0, γ1, . . . , γn) is also referred to as the itinerary of
the orbit segment c.

Definition 5.3. We say that a vector field X ∈ Xω(Γd) is regular when
all its edges have defined type and

(1) X has no singularities in int(γ) for every flowing edge γ,
(2) X vanishes along every neutral edge γ.

From now on, we will only consider regular vector fields. Figure 10
depicts the relation between the orientation of the flow of X along γ
and the orientation of the flow of χ around Πγ.

Given vertex v of saddle type together with an incoming flowing-edge
v∗

γ−→ v and an outgoing flowing-edge v γ′−→ v′, denoting by σ∗ the
facet opposed to γ′ at v we define the sector Πγ,γ′ = Πχ

γ,γ′

Πγ,γ′ :=

{
y ∈ int(Πγ) : yσ −

χvσ
χvσ∗

yσ∗ > 0, ∀σ ∈ Fv, σ 6= σ∗

}
(5.1)
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Figure 10. A flowing edge

and the linear map Lγ,γ′ = Lχγ,γ′ : Πγ,γ′ → Πγ′

Lγ,γ′(y) :=

(
yσ −

χvσ
χvσ∗

yσ∗

)
σ∈F

. (5.2)

Notice that Πγ′ = {y ∈ Πv : yσ∗ = 0}

Proposition 5.4. Given a vertex v of saddle type together with in-
coming and outgoing (flowing) edges γ, γ′ as above, the sector Πγ,γ′ is
the set of points y ∈ int(Πγ) which are connected by the orbit segment
{ c(t) = y + tχv : t ≥ 0, c(t) ∈ Πv} to Lγ,γ′(y) ∈ int(Πγ′).

Proof. Straightforward. �

The map Lγ,γ′ is a Poincaré for the flow of χ, which is represented
by the following F × F matrix

Mγ,γ′ =

(
δσσ′ −

χvσ
χvσ∗

δσ∗σ′

)
σ,σ′∈F

, (5.3)

where δ stands for the Kronecker delta symbol. This matrix gives a
global representation of the flow of χ which is suitable for computa-
tional purposes. The image of the map Lγ,γ′ is the convex cone Π−χγ′,γ
associated with the vector field −χ and the pair γ′, γ of reversed flowing
edges. Clearly L−χγ′,γ = (Lχγ,γ′)

−1.

Remark 5.5. If v is a saddle type vertex then any line parallel to χv
through a point in int(Πv) must intersect at least two boundary facets
of Πv.

Conversely, if an orbit segment c(t) = p + t χv through a point p ∈
int(Πv) crosses the boundary of Πv at two points, q = p + t0 χ

v, with
t0 < 0, and q′ = p+ t1 χ

v, with t1 > 0, and if σ′, σ∗ ∈ Fv are the facets
of Πv such that qσ′ = 0 and q′σ∗ = 0 then χvσ′ > 0 and χvσ∗ < 0. This
implies that v is of saddle type.

In this setting, if γ, γ′ are the edges through v, respectively in the
corners (v, σ′) and (v, σ∗), then q ∈ Πγ = {y ∈ Πv : yσ′ = 0} and
q′ ∈ Πγ′ = {y ∈ Πv : yσ∗ = 0}. Moreover, if both γ and γ′ are flowing
edges then q ∈ Πγ,γ′ and q′ = Lγ,γ′(q).
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If the vertex v is attractive or repelling (instead of saddle type), i.e.,
if all the characters χvσ, with σ ∈ Fv, have the same sign, then Πγ,γ′ = ∅.
In these cases, it is not possible to connect any point in Πγ to a point
of Πγ′ through a line parallel to the constant vector χv, see Figure 11.

Remark 5.6. Points in the boundary of Πγ are in the intersection of
three or more sectors Πv with v ∈ V . Hence, if an orbit ends up in one
of these points it is not possible to continue it in a unique way. In the
sequel we disregard these types of orbits.

Figure 11. Vertex types: (i) attractive, (ii) repelling
and (iii) saddle type

We now define skeleton flow maps along chains of saddle type ver-
texes. Let

v0
γ0−→ v1

γ1−→ v2 −→ . . . −→ vm
γm−→ vm+1 (5.4)

be a chain of flowing-edges. The sequence ξ = (γ0, γ1, . . . , γm) will be
called a heteroclinic path, a heteroclinic cycle when γm = γ0.

Definition 5.7. Given a heteroclinic path ξ = (γ0, γ1, . . . , γm), we
define the skeleton flow map (of χ) along ξ to be the composition
mapping πξ : Πξ → Πγm

πξ := Lγm−1,γm ◦ . . . ◦ Lγ0,γ1 ,

with domain

Πξ := int(Πγ0) ∩
m⋂
j=1

(Lγ∗,γj ◦ . . . ◦ Lγ0,γ1)−1int(Πγj) .

For every y ∈ Πξ, y ∈ int(Πγ0), πξ(y) ∈ int(Πγm) and moreover there
exists an orbit segment from y to πξ(y) with itinerary ξ.

We also define the matrix

Mξ := Mγm−1,γm · · ·Mγ1,γ2 Mγ0,γ1 (5.5)

where the factor matrices Mγj−1,γj were defined in (5.3). This matrix
Mξ induces a linear endomorphism on RF whose restriction to the
sector Πξ matches the skeleton flow map πξ.

In order to analyze the dynamics of the flow of the skeleton vector
field χ it is convenient to introduce the concept of structural set and
its associated skeleton flow map.
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Definition 5.8. A non-empty set of flowing edges S is said to be a
structural set for χ if every heteroclinic cycle contains an edge in S.

Notice that the structural set S is in general not unique. The con-
cept of structural set can be defined for general directed graphs. It
corresponds to the homonym notion introduced by L. Bunimovich and
B. Webb [4], but here applied to the line graph4.

We say that a heteroclinic path ξ = (γ0, . . . , γm) is a branch of S, or
shortly an S-branch, if

(1) γ0, γm ∈ S,
(2) γj /∈ S for all j = 1, . . . ,m− 1.

We denote by BS(χ) the set of all S-branches.

Definition 5.9. The skeleton flow map πS : DS → ΠS is defined by

πS(y) := πξ(y) for all y ∈ Πξ,

where
ΠS := ∪γ∈SΠγ and DS := ∪ξ∈BS(χ)Πξ.

We now provide a sufficient condition for the skeleton flow map πS
to be a closed dynamical system.

Proposition 5.10. Given a skeleton vector field χ on C∗(Γd) and a
structural set S, assume

(1) every edge of the polytope is either neutral or a flowing edge.
(2) all vertexes are of saddle type,

Then DS has full Lebesgue measure in ΠS.

Proof. The inclusion DS ⊆ ΠS is obvious.
For each flowing edge γ with v = t(γ), let Dγ := ∪s(γ′)=vΠγ,γ′ , with

the union taken over the set of flowing edges γ′ such that s(γ′) = v.
Clearly Dγ ⊂ Πγ. We claim that

Πγ \Dγ ⊆ ∂Πγ ∪
⋃

γ′ : s(γ′)=t(γ)

L−1
γ,γ′(∂Πγ′)

which in particular implies that this set has codimension one in the
sector Πγ. Let us now prove the claim. By (2) the vertex v is of saddle
type. Since v = t(γ), the corner (v, γ) has positive character. Hence,
given q ∈ int(Πγ) the orbit segment c(t) := q + tχv enters int(Πv) for t
positive and small. By Remark 5.5, this orbit segment will eventually
hit another boundary point q′ ∈ Πγ′ ⊂ ∂Πv for some edge γ′ through v.
The same remark shows that χ has opposite signs at the corners (v, γ)

4 The line graph of a directed graph G, denoted by L(G), is the graph whose
vertices are the edges of G, and where (γ, γ′) ∈ E × E is an edge of L(G) if the
end-point of γ coincides with the start-point of γ′.
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and (v, γ′). Thus, by item (1) γ′ is also a flowing edge and q′ = Lγ,γ′(q).
Therefore, if q /∈ Dγ then

q ∈
⋃

γ′ : s(γ′)=v

L−1
γ,γ′(∂Πγ′)

which proves the claim.
Let D = ∪γDγ and Π = ∪γΠγ with the unions taken over all flowing

edges. Define then a skeleton flow map π : D → Π setting π(y) =
Lγ,γ′(y) whenever γ, γ′ are flowing edges such that t(γ) = s(γ′) and
y ∈ Πγ,γ′ . The previous claim implies that D has ful Lebesgue measure
in Π. In fact it shows that Π \D has codimension one in Π. The set
D∞ = ∩n≥0π

−n(D) has also full measure because π : D → Π is locally
a linear isomorphism and Π \ D∞ = ∪n≥0π

−n(Π \ D) is a countable
union of sets with zero Lebesgue measure.

Consider now y ∈ ΠS, assume that y ∈ D∞ and consider the itinerary
(γ0, γ1, . . . ) of the corresponding (forward) infinite orbit. Then γ0 ∈ S.
Assumptions (1)-(2) imply that the flowing edge graph has no terminal
points. If we had γj /∈ S for all j ≥ 1, there would be heteroclinic cycles
disjoint from S, which contradicts the fact that S is a structural set.
Hence some initial segment ξ = (γ0, . . . , γm) of this itinerary is an S-
branch, and y ∈ Πξ ⊆ DS. This proves that ΠS \ DS ⊂ Π \ D∞ has
zero Lebesgue measure. �

Remark 5.11. The proof of Proposition 5.10 shows that the maximal
invariant set

D̂S :=
⋂
n∈Z

(πS)−n(DS)

has full Lebesgue measure in ΠS. Hence the skeleton flow map induces
a homeomorphism πS : D̂S → D̂S on the Baire space D̂S.

6. Asymptotic Poincaré Maps

In this section, we state and prove our main result. Given a structural
set S consider the system of cross sections ΣS = ∪γ∈SΣ−γ transversal to
the flowing edges in S. Then the Poincaré map induced by the flow of
a regular vector field X ∈ Xω(Γd) on ΣS is “asymptotically conjugate”
to the skeleton flow map πS of χ.

For any flowing edge γ through a vertex v define

Σv,γ := (ΨX
v,ε)
−1(int(Πγ)).

This cross section is transversal to the flow of X and is an inner facet
of the tubular neighborhood Nv. We will write Σ−γ or Σ+

γ , instead of
Σv,γ, according to the sign of the character χ at the corner (v, γ).

Let Dγ be the set of points x ∈ Σ−γ such that the forward orbit of x
has a transversal intersection with Σ+

γ .
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Definition 6.1. The global Poincaré map along γ, see Figure 1,

Pγ : Dγ ⊂ Σ−γ → Σ+
γ

is defined by Pγ(x) := ϕ
τ(x)
X (x), where ϕtX stands for the flow of X and

τ(x) = min{ t > 0 : ϕtX(x) ∈ Σv′,γ } .
Both functions τ and Pγ are analytic.

Let
Πγ(ε) := { y ∈ Πγ : yσ ≥ ε whenever γ ⊂ σ}. (6.1)

Notice that limε→0 Πγ(ε) = int(Πγ). Given k ∈ N take r = r(k,X)
according to Lemma 4.7.

Lemma 6.2. Given a flowing-edge

(v, σ0)
γ−→ (v′, σ′),

let D ε
γ ⊂ Πγ(ε

r) be the domain of the map

F ε
γ := ΨX

v′,ε ◦ Pγ ◦ (ΨX
v,ε)
−1.

Then

lim
ε→0+

F ε
γ|Dεγ

= idΠγ

in the Ck topology, in the sense of Definition 4.6.

Proof. If Fv = {σ0, σ1, σ2, . . . , σd−1} then Fv′ = {σ1, . . . , σd−1, σ
′} and

{σ ∈ F : γ ⊂ σ} = {σ1, . . . , σd−1}. Since inside Πγ we have yσ = 0
whenever γ 6⊂ σ, we can express points in Πγ as lists (y1, . . . , yd−1)
where each yj abbreviates yσj .

To simplify notations, let’s use xl and νl, respectively, for the coor-
dinate and order associated to σl, where l = 1, ..., d − 1. Consider the
flow box (V, (t, x1, . . . , xd−1)) with V = Nγ and the coordinate system
introduced in the beginning of Section 4. In this flow box the vector
field’s equation reads as:{

ṫ = 1
ẋl = xνll Hl(t, x), l = 1, . . . , d− 1,

(6.2)

where Hl(t, x) is defined in (3.1). Integrating
d

dt
hνl(xl) = −ẋl x−νll = −Hl(t, x) l = 1, . . . , d− 1,

yields

hνl(xl(t)) = hνl(xl(0))−
∫ t

0

Hl(ϕ
s(0, x(0))) ds l = 1, . . . , d− 1,

where ϕt stands for the flow of the vector field (6.2). Therefore

Pγ(x) =

{
h−1
νl

(
hνl(xl)−

∫ τ(x)

0

Hl(ϕ
s(0, x)) ds

)}
l=1,...,d−1

(6.3)
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where τ(x) is the time that the orbit starting at x ∈ Σ−γ takes to hit
the cross-section Σ+

γ .
Expressing (ΨX

v,ε)
−1 in the coordinate system (x0, x1, . . . , xd−1) on

the neighborhood Nv, for every point (y1, . . . , yd−1) ∈ Πγ,

(ΨX
v,ε)
−1(y) =

(
1, h−1

ν1
(
y1

ε2
), . . . , h−1

νd−1
(
yd−1

ε2
)
)
.

By (6.3) we have

Pγ
(
Ψ−1
v,ε(y)

)
=

(
h−1
νl

[
hνl(h

−1
νl

(
yl
ε2

))−
∫ τ(Ψ−1

v,ε(y))

0

Hl ds

])
1≤l≤d−1

.

Hence F ε
γ(y1, . . . , yd−1) = (y′1(ε), . . . , y′d−1(ε)), where by Definition 4.3

y′l(ε) = ε2hνl

(
h−1
νl

[
hνl(h

−1
νl

(
yl
ε2

))−
∫ τ(Ψ−1

v,ε(y))

0

Hl ds

])

= yl − ε2
∫ τ((Ψv,ε)−1(y))

0

Hl(ϕ
s(Ψ−1

v,ε(y))) ds.

Notice that τ is analytic, and together with its derivatives is locally
bounded in a neighborhood of γ ∩ Σ−γ . Moreover, every derivative
(Dkϕt)x is a solution of a system of linear equations with coefficients
depending on ϕt(x) and on the lower order derivatives (Drϕt)x with r <
k. Arguing recursively, we can prove that for any k ≥ 0 the k-th order
derivatives of Hl(t, ϕ

t(x)) are uniformly bounded in a neighborhood of
γ ∩Σ−γ , for 0 ≤ t ≤ τ(x). Hence, it follows from item (1) of Lemma 4.5
that Fε converges to the identity map in the Ck topology. �

Remark 6.3. By Lemma 6.2, for any flowing edge v γ−→ v′, we can
identify the two sections Σ−γ and Σ+

γ . We will refer to the identified
section simply as Σγ.

Let γ, γ′ be flowing edges such that t(γ) = s(γ′) = v. We denote by
Dγ,γ′ the set of points x ∈ Σv,γ such that the forward orbit of x has a
transversal intersection with Σv,γ′ .

Definition 6.4. The local Poincaré map

Pγ,γ′ : Dγ,γ′ ⊂ Σv,γ → Σv,γ′

is defined by Pγ,γ′(x) := ϕ
τ(x)
X (x), see Figure 1, where

τ(x) = min{ t > 0 : ϕtX(x) ∈ Σv,γ′ } .

Given k ∈ N take r = r(k,X) according to Lemma 4.7.

Lemma 6.5. Given flowing edges γ, γ′ such that t(γ) = s(γ′) = v, let
D ε
γ,γ′ ⊂ Πγ(ε

r) be the domain of the map

F ε
γ,γ′ := ΨX

v,ε ◦ Pγ,γ′ ◦ (ΨX
v,ε)
−1.
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Then

lim
ε→0+

(
F ε
γ,γ′

)
|Dε
γ,γ′

= Lγ,γ′

in the Ck topology, in the sense of Definition 4.6.

Proof. Setting Fv = {σ0, σ1, . . . , σd−1} consider the system of coordi-
nates (y0, y1, . . . , yd−1) on Πv where each yj abbreviates yσj . Assume
the facets in Fv were ordered in a way that

Πγ = {y ∈ Πv : y0 = 0} and Πγ′ = {y ∈ Πv : yd−1 = 0}.

Let

∂γΠv(ε
r) := {y ∈ Πv(ε

r) : y0 = εr}
∂γ′Πv(ε

r) := {y ∈ Πv(ε
r) : yd−1 = εr}

be the boundary facets of the sector Πv(ε
r) defined in (4.4), respectively,

parallel to Πγ and Πγ′ . By Lemma 4.7, the Poincaré map of the vector
field (ΨX

v,ε)∗X = ε2X̃ε
v from ∂γΠv(ε

r) to ∂γ′Πv(ε
r) converges in the Ck

topology to (Lγ,γ′)|Πγ,γ′
. We are left to prove that, see Figure 12, the

Poincaré maps of this vector field from

Πγ(ε
r) = {y ∈ Πv : y0 = 0 and y1, . . . , yd−1 ≤ εr}

to ∂γΠv(ε
r), and from ∂γ′Πv(ε

r) to

Πγ′(ε
r) = {y ∈ Πv : yd−1 = 0 and y0, . . . , yd−2 ≤ εr}

converge to the identity maps in the Ck topology as ε→ 0+.

Figure 12. The local map Lγ,γ′ factors as a composition
of three projections.
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The two convergences are analogous and we only prove the first one.
The argument is similar to that of Lemma 6.2, but instead of (6.2) we
consider the equations of X

ẋl = xνll Hl(x) 0 ≤ l ≤ d− 1 (6.4)

represented in the system of coordinates (x0, x1, . . . , xd−1) on Nv.
Notice that (ΨX

v,ε)
−1Πγ(ε

r) ⊂ Σv,γ is defined by the conditions

x0 = 1 and 0 < xl < h−1
νl

(
1

ε2−r

)
, 1 ≤ l ≤ d− 1.

Likewise, Σε
v,γ := (ΨX

v,ε)
−1∂γΠv(ε

r) is defined by x0 = h−1
ν0

( 1
ε2−r

) and
the same conditions above in the remaining coordinates. Let τ ε(x)
denote the time that the orbit starting at x ∈ Σv,γ takes to hit the
cross-section Σε

v,γ. Integrating the first component of (6.4), we have

hν0

(
h−1
ν0

(
1

ε2−r

))
− hν0(1) = −

∫ τε(x)

0

H0(ϕs(x))ds. (6.5)

Since −H0(v) = χvσ0
> 0 there exists a neighborhood Uv of v where

−H0 takes positive values. We can take a constant C > 0 and shrink
Uv so that −H0 ≥ 1

C
and ‖DrH0‖ ≤ C for all 1 ≤ r ≤ k on Uv.

Without loss of generality we may assume that Σv,γ is contained in Uv.
From (6.5) we have ∫ τε(x)

0

−H0(ϕs(x)) ds =
1

ε2−r
, (6.6)

which implies

τ ε(x) ≤ C

ε2−r
.

Differentiating both sides of (6.6) with respect to xl, for 1 ≤ l ≤ d− 1,
we obtain

H0(ϕτ
ε(x)(x))

∂τ ε(x)

∂xl
+

∫ τε(x)

0

∇H0(ϕs(x)) · ∂ϕ
s(x)

∂xl
ds = 0. (6.7)

Similar formulas can be driven for higher order derivatives of τ ε.
Arguing as in Lemma 6.2, we can bound the derivatives of the flow

ϕs(x). Since the derivatives ofH0 are also bounded, we infer from (6.7),
and its higher order analogues, that the function τ ε has bounded deriva-
tives up to order k. Finally, repeating the argument in the proof of
Lemma 6.2, we conclude that the Poincaré map from Πγ(ε

r) to ∂γΠv(ε
r)

converges to identity in the Ck topology as ε→ 0+. �

Definition 6.6. Given a heteroclinic path ξ = (γ0, γ1, . . . , γm), the
composition

Pξ := (Pγm ◦ Pγm−1,γm) ◦ . . . ◦ (Pγ1 ◦ Pγ0,γ1)

is referred to as the Poincaré map of the vector field X along ξ. The
domain of this composition is denoted by Dξ.
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Lemmas 6.2 and Lemma 6.5 imply that given a heteroclinic path ξ,
the asymptotic behavior of the Poincaré map Pξ along ξ is given by
the corresponding Poincaré map πξ of the skeleton vector field χ. More
precisely, given k ∈ N and taking r = r(k,X) according to Lemma 4.7
we have

Proposition 6.7. Given a heteroclinic path ξ = (γ0, . . . , γm) with v0 =
s(γ0) and vm = s(γm), let D ε

ξ be the domain of the composite map
F ε
ξ := ΨX

vm,ε ◦ Pξ ◦ (ΨX
v0,ε

)−1 from Πγ0(εr) into Πγm(εr). Then

lim
ε→0+

(
F ε
ξ

)
|Dε
ξ

= πξ

in the Ck topology, in the sense of Definition 4.6.

Proof. Follows immediately from Lemmas 6.2 and 6.5. �

As mentioned in the introduction, we are interested in studying the
flow of X along heteroclinic cycles on the polytope’s vertex-edge net-
work. To encode the semi-global dynamics of the flow ϕtX along the
cycles, we use Poincaré return maps to a system of cross-sections Σγ, see
Remark 6.3, placed at the edges of a structural set, see Definition 5.8.
Any orbit of the flow ϕtX that shadows some heteroclinic cycle must
intersect these cross-sections in a recurrent way.

Definition 6.8. Let X ∈ Xω(Γd) be a vector field with a structural
set S ⊂ E. We define the S-Poincaré map PS : DS ⊂ ΣS → ΣS setting
ΣS := ∪γ∈SΣγ, DS := ∪ξ∈BS(χ)Dξ and PS(p) := Pξ(p) for all p ∈ Dξ.
Note that the domains Dξ and Dξ′ are disjoint for ξ 6= ξ′ in BS(χ).

By construction the suspension of the S-Poincaré map PS : DS ⊂
ΣS → ΣS embeds (up to a time re-parametrization) in the flow of the
vector field X. In this sense the dynamics of the map PS encapsulates
the qualitative behavior of the flow ϕtX of X along the edges of Γd.

Theorem 6.9. Let X ∈ Xω(Γd) be a regular vector field with skeleton
vector field χ and a structural set S ⊂ Eχ. Then

lim
ε→0+

Ψε ◦ PS ◦ (Ψε)
−1 = πS

in the C∞ topology, in the sense of Definition 4.6.

Proof. Follows from Proposition 6.7. �

7. Asymptotic integrals of motion

In this section we introduce a probe space H(Γd) for integrals of
motion of the vector fields in Xω(Γd). This space consists of analytic
functions in int(Γd) with poles at the polytope’s facets. We show that a
function h ∈ H(Γd) rescales to a piecewise linear function η : C∗(Γd)→
R on the dual cone. Moreover, if h ∈ H(Γd) is an integral of motion of
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a vector field X ∈ Xω(Γd) then η is also an integral of motion for the
piecewise linear flow of the skeleton vector field χ of X.

Recalling that {fσ}σ∈F is a defining family of the polytope Γd, let
F = {hn ◦ fσ, : n ≥ 1, σ ∈ F } where hn was introduced in (4.2), and
define H(Γd) to be the linear span of Cω(Γd) ∪ F . Since functions in
the set F are linearly independent and H(Γd) = Cω(Γd) ⊕ 〈F〉, each
h ∈ H can be uniquely decomposed as

h = g +
∞∑
n=1

∑
σ∈F

µnσ (hn ◦ fσ) , (7.1)

with g ∈ Cω(Γd), where only a finite number of coefficients µnσ are
nonzero. Note that the differential dh is given by the expression:

dh = dg −
∞∑
n=1

∑
σ∈F

µnσ
dfσ

(fσ)n
. (7.2)

We define the order of h at σ to be the number

νh(σ) = max{n ∈ N : µnσ 6= 0},

with νh(σ) = 0 if all µnσ = 0. The map νh : F → N is referred to as
the order function of h.

Definition 7.1. The character of h at σ is the coefficient ηh(σ) = µnσ
corresponding to the term with largest order n = νh(σ). The character
is undefined if νh(σ) = 0. We say that the function

ηh : C∗(Γd)→ R , ηh(y) :=
∑
σ∈F

ηh(σ) yσ

is the skeleton of h.

Proposition 7.2. Given a regular vector field X ∈ Xω(Γd) and a func-
tion h ∈ H(Γd) with the same order function ν : F → N, let χ be the
skeleton of X and η : C∗(Γd)→ R be the skeleton of h. Then

(1) η = lim
ε→0+

ε2h ◦ (ΨX
v,ε)
−1 over int(Πv) for any vertex v, with con-

vergence in the C∞ topology.
(2) dη = lim

ε→0+
ε2
[
(ΨX

v,ε)
−1
]∗

(dh) over int(Πv) for any vertex v, with
convergence in the C∞ topology.

(3) If h is invariant under the flow of X, i.e., dh(X) ≡ 0, then η
is invariant under the skeleton flow of χ, i.e., dη(χ) ≡ 0.

Remark 7.3. Since ν is the order function of X, ν(σ) ≥ 1 for every
facet σ ∈ F . Hence, because ν is also the order function of h the
skeleton character η(σ) = ηh(σ) is well defined for all facets σ ∈ F .

Proof. Consider the system of local coordinates x = (xσ)σ∈Fv = (fσ(q))σ∈Fv
on the neighborhood Nv. According to decomposition (7.1) we can
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write

h(x) = g(x) +
∑
σ∈Fv

ν(σ)∑
n=1

µnσ hn(xσ) ,

where g(x) is analytic in Nv. Therefore, by item (2) of Lemma 4.5,

ε2 h◦ (ΨX
ε )−1(y) = ε2 g ◦ (ΨX

ε )−1(y) + ε2
∑
σ∈Fv

ν(σ)∑
n=1

µnσ

(
hn ◦ h−1

ν(σ)

)(yσ
ε2

)
converges in the C∞ topology to

∑
σ∈Fv µν(σ)σ yσ = η(y) over the sector

int(Πv). This proves (1) and also implies (2).
For item (3) we use the following abstract result. Given a smooth

function h and a smooth vector field X on a manifold M , and given a
diffeomorphism Ψ : M → N ,

dh(X) ◦Ψ−1 = d(h ◦Ψ−1)[Ψ∗X)].

Since we are assuming that dh(X) ≡ 0, by item (2) and Lemma 4.7

0 = dh(X) ◦ΨX
v,ε = d(h ◦ (ΨX

v,ε)
−1)[(ΨX

v,ε)∗X]

= d(ε2h ◦ (ΨX
v,ε)
−1)[ε−2(ΨX

v,ε)∗X]

= d(ε2h ◦ (ΨX
v,ε)
−1)[ X̃ε

v ] −→ dη(χv)

as ε→ 0. This proves that the piecewise linear function η is invariant
under the flow of the skeleton vector field χ. �

A continuous function h : M → R is said to be proper if for all real
numbers a < b the pre-image f−1[a, b] ⊂M is compact.

Proposition 7.4. If h ∈ H(Γd) is proper in int(Γd) with order function
ν ≥ 1 then its skeleton η : C∗(Γd)→ R is also a proper function.

Proof. Fix a vertex v and let Fv = {σ1, . . . , σd}. Take the usual system
of affine coordinates (x1, . . . , xd) on the neighborhood Nv where xj =
fσj . In these coordinates h can be written as

h(x) = g(x) +
d∑
j=1

pj(x)

xνj

where g(x) is analytic in Nv, νj is the order of h at σj and each pj(x)
is a polynomial function such that µj = pj(0) 6= 0 is the character of h
at σj. On the sector Πv the skeleton η of h is given by η(y1, . . . , yd) =∑d

j=1 µjyj. Since h is proper, the level set h−1(0) is compact, which
implies that h does not change sign in a small neighborhood of v. Hence
we can assume that h > 0 on Nv. Because h(x) is equal to

∑d
j=1

µj
xνj

pus higher order terms as x → v, all coefficients µj must be positive.
Therefore

η−1([a, b]) ∩ Πv ⊂ {(y1, . . . , yd) : yj ≥ 0,
d∑
j=1

µjyj ≤ b}
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is a compact set. Because v is arbitrary, η−1([a, b]) is also compact. �

Remark 7.5. Polymatrix replicator systems form a large class of mod-
els in EGT, that includes replicator and bimatrix replicator systems,
falling within the scope of this work. The phase space of polymatrix
replicators are prisms (products of simplexes), basic examples of sim-
ple polytopes. In [1] the first two authors have characterized the class
of Hamiltonian polymatrix replicator systems w.r.t. a class of alge-
braic Poisson structures. All these models illustrate the conclusions of
propositions 7.2 and 7.4.

Remark 7.6. If X is a Hamiltonian polymatrix replicator vector field
w.r.t. some algebraic Poisson structure in the interior of a prism Γd,
which has a proper Hamiltonian function h, then its skeleton flow map
is volume preserving on each level set of the skeleton of h. This fact
will not be proved here, see more in Section 10.

Throughout the rest of this section we assume:
(1) X ∈ Xω(Γd) is a regular vector field, with skeleton χ, such that

all vertexes are of saddle type and every edge is either neutral
or a flowing edge;

(2) X has integrals of motion h1, . . . , hk ∈ H(Γd), all with the same
order function as X;

(3) η1, . . . , ηk : C∗(Γd)→ R are respectively the skeletons of h1, . . . , hk
and the forms dη1, . . . , dηk are linearly independent on every
sector Πv.

Consider the function η : C∗(Γd)→ Rk defined by

η(y) := (η1(y), . . . , ηk(y)) .

Given a structural set S of χ and c ∈ Rk we define

∆S,c := ΠS ∩ η−1(c). (7.3)

Given an edge γ or a branch ξ ∈ BS(χ) we also define

∆γ,c := Πγ ∩ η−1(c) , ∆ξ,c := Πξ ∩ η−1(c) . (7.4)

Notice that
∆S,c =

⋃
ξ∈BS(χ)

∆ξ,c . (7.5)

Theorem 7.7. Under assumptions (1)-(3), given a structural set S of
χ, the skeleton flow map πS : DS → ΠS induces a closed dynamical
system on every level set ∆S,c with c = (c1, . . . , ck) ∈ Rk.

Proof. Follows from propositions 5.10 and 7.2. �

Theorem 7.8. Under assumptions (1)-(3), given a structural set S
of χ, if p ∈ ∆S,c is a hyperbolic periodic point of πS |∆S,c

, and q is
an associated transversal homoclinic point whose orbit has a compact
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closure contained in ∆S,c, then there exists a (compact) hyperbolic basic
set contained in ∆S,c for the map πS |∆S,c

. Moreover each level set

Lε := Γd ∩
k⋂
j=1

{
hj =

cj
ε2

}
,

with ε sufficiently small, contains a hyperbolic basic set for the S-
Poincaré map PS |Lε∩DS , conjugated to the previous one.

Proof. Given p ∈ ∆S,c and its associated transversal homoclinic point
q consider an open neighborhood U of the πS-orbits of p and q whose
closure satisfies

U ⊂ DS =
⋃

ξ∈BS(χ)

Πξ.

Because Λ0 := {πjS(p) : j ∈ Z} ∪ {πjS(q) : j ∈ Z} ⊂ U is a hyperbolic
set, reducing the size of U , the maximal invariant set Λ = ∩j∈Zπ−jS (U)
is a hyperbolic basic set for πS |∆S,c

.
Consider now the system of cross-sections ΣS := ∪γ∈SΣ−γ transversal

to the flow of X and let PS denote the induced Poincaré map on ΣS.
By Theorem 6.9, the conjugated Poincaré map P̃ ε

S := Ψε ◦ PS ◦ (Ψε)
−1

on the (invariant) level set

ΠS ∩ΨX
ε (Lε) = ΠS ∩

k⋂
j=1

{
ε2 hj ◦ (ΨX

ε )−1 = cj
}

can be seen as a small perturbation of the skeleton flow map πS |∆S,c
.

Notice that, according to Proposition 7.2 the level set ΠS ∩ ΨX
ε (Lε)

converges to ∆S,c as ε → 0. Thus, because hyperbolic basic sets are
structurally stable, see[19, Theorem 8.3], there exists a hyperbolic basic
set Λ̃ε for the conjugated Poincaré map P̃ ε

S on ΠS ∩ ΨX
ε (Lε). Finally

by conjugacy Λε := (ΨX
ε )−1(Λ̃ε) ⊂ Lε is a hyperbolic basic set for the

Poincaré map PS |ΣS∩Lε of the flow of X. �

8. Procedure to analyze the dynamics

In this section we briefly describe the computational steps that through
Theorem 7.8 lead to the detection of hyperbolic basic sets.

Input data: The polytope Γd and the vector field X ∈ Xω(Γd).

Step 1. Compute the character χ of X and draw its flowing-edge graph.
This step involves computing some derivatives at the vertex singulari-
ties. It can be done through a computer algebra system algorithm.

Step 2. Find a structural set S for χ. The search can be done by
inspection if the flowing-edge graph is simple, or else using an algorithm
for that purpose.
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Step 3. Determine all S-branches of χ. Once the structural set is
known, a simple algorithm determines its branches.

Step 4. Find the integrals of motion of X in H(Γd) and determine their
skeletons. For instance if X is Hamiltonian with respect to some Pois-
son structure, join to the Hamiltonian function of X all the Casimirs
of its Poisson structure.

Step 5. Make explicit the skeleton flow map πS : ΠS → ΠS. Use
an algorithm to compute for each branch ξ ∈ B(χ) the matrix Mξ

as well as the inequalities defining the domain Πξ. Then represent
(computationally) the flow map πS as a function defined by cases.

Step 6. Compute some random orbits of πS and determine their iti-
neraries, using the previous step representation of the flow map πS.

Step 7. Pick a few heteroclinic cycles ξ from the previous itineraries
and compute the eigenvalues and eigenvectors of Mξ. Use an algorithm
to compute a matrix’s eigenvalues and eigenvectors. Every matrix Mξ

is a projection of RF onto a (d − 1)-dimensional subspace and hence
has exactly |F | − d + 1 zero eigenvalues. If k integrals of motion were
found in Step 4, the eigenspace of Mξ associated with eigenvalue 1,
Ker(Mξ − I), must have at least dimension k.

Step 8. Among the positive eigenvectors associated with eigenvalue 1
of Mξ look for saddle type periodic points p = πnS(p). Any eigenvector
y ∈ Ker(Mξ − I) with non-negative entries belongs to the dual cone
and is a prospective periodic point of πS, but one still needs to verify
that y ∈ Πξ.

Step 9. Fix the level c such that p ∈ ∆S,c.

Step 10. Compute the local stable and unstable manifolds of p inside
the component ∆ξ,c ⊆ ∆S,c that contains p.

Step 11. Iterate the local stable manifold backward and the local un-
stable manifold forward, looking for transversal intersections.

9. Examples

We will now present two examples, both replicators, illustrating the
procedure detailed in the previous section. The second example belongs
to a class of systems studied by Wang et al. [21].

By Theorem 7.8 the dynamics of these two systems are chaotic, i.e.,
their flows contain horse-shoes, in sufficiently large levels.
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9.1. Example 1. Consider the replicator system defined by matrix

A =


0 −2 2 0 0 3
2 0 −2 0 0 0
−2 2 0 −2 2 0

0 0 2 0 −2 0
0 0 −2 2 0 −3
−3 0 0 0 3 0

 .

We denote by XA the vector field associated to this replicator defined
on the simplex ∆5 . The point

q =

(
72

245
,

33

280
,

72

245
,

33

280
,

72

245
,− 23

196

)
∈ R6

satisfies
(1) (Aq)1 = (Aq)2 = (Aq)3 = (Aq)4 = (Aq)5 = 0;
(2) q1 + q2 + q3 + q4 + q5 = 1 ,

and hence is an equilibrium of XA, see [2, Definition 4.1]. Since matrix
A is skew-symmetric, the associated replicator is conservative, i.e., XA

is Hamiltonian with respect to some stratified Poisson structure on ∆5,
see [2, Definition 4.3, Proposition 12].

The polytope ∆5 has five faces labeled by an index j ranging from 1
to 6, and designated by σ1, . . . , σ6. The vertexes of the phase space ∆5

are also labeled by i ∈ {1, . . . , 6}, where the label i stands for the point
ei ∈ ∆5. To simplify the notation we designate the simplex’s vertexes
by v1, . . . , v6. The skeleton character χA of XA is displayed in Table 1.

χvσ σ1 σ2 σ3 σ4 σ5 σ6

v1 0 −2 2 0 0 3
v2 2 0 −2 0 0 0
v3 −2 2 0 −2 2 0
v4 0 0 2 0 −2 0
v5 0 0 −2 2 0 −3
v6 −3 0 0 0 3 0

Table 1. The skeleton character χA of XA.

The edges of ∆5 are designated by γ1, . . . , γ15, according to Ta-
ble 2, where we write γ = (i j) to mean that γ is an edge connect-
ing the vertexes vi and vj. This model has 15 edges: 7 neutral edges,
γ3, γ4, γ7, γ8, γ9, γ12, γ14, and 8 flowing-edges, γ1, γ2, γ5γ6, γ10, γ11, γ13, γ15.
The flowing-edge directed graph of χA is depicted in Figure 13.

From this graph we can see that

S = { γ6 = (2 3), γ10 = (3 4) }
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γ1 = (1 2) γ2 = (1 3) γ3 = (1 4) γ4 = (1 5) γ5 = (1 6)
γ6 = (2 3) γ7 = (2 4) γ8 = (2 5) γ9 = (2 6) γ10 = (3 4)
γ11 = (3 5) γ12 = (3 6) γ13 = (4 5) γ14 = (4 6) γ15 = (5 6)

Table 2. Edge labels.

is a structural set for χA, see Definition 5.8, whose S-branches denoted
by ξ1, . . . , ξ5 are displayed in Table 3, where we write ξi = (j k l . . . ) to
mean that ξi is a path from vertex vj passing along vertices vk, vl, . . . .

Figure 13. The oriented graph of χA.

From\To γ6 = (2 3) γ10 = (3 4)

γ6 = (2 3) ξ1 = (2 3 1 2 3) ξ2 = (2 3 4)

γ10 = (3 4)
ξ3 = (3 4 5 3 1 2 3) ξ5 = (3 4 5 3 4)
ξ4 = (3 4 5 6 1 2 3)

Table 3. S-branches of χA.

Consider now the subspaces of R6

H = {x ∈ R6 :
6∑
i=1

xi = 1} and H0 = {x ∈ R6 :
6∑
i=1

xi = 0} .

For the given matrix A, its null space Ker(A) has dimension 2. Take
a non-zero vector w ∈ Ker(A)∩H0. The set of equilibria of the natural
extension of XA to the affine hyperplane H is

Eq(XA) = Ker(A) ∩H = {q + tw : t ∈ R} .
The Hamiltonian of XA is the function hq : ∆5 → R

hq(x) :=
6∑
i=1

qi log xi ,
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where qi is the i-th component of the equilibrium point q. Another
integral of motion of XA is the function hw : ∆5 → R

hw(x) :=
6∑
i=1

wi log xi ,

where wi is the i-th component of w, which is a Casimir of the under-
lying Poisson structure.

The skeletons of hq and hw are respectively ηq, ηw : C∗(∆5)→ R,

ηq(y) :=
6∑
i=1

qiyi and ηw(y) :=
6∑
i=1

wiyi ,

which we use to define η : C∗(∆5)→ R2, η(y) := (ηq(y), ηw(y)).
Consider the skeleton flow map πS : ΠS → ΠS of χA, see Defini-

tion 5.9. Notice that ΠS = Πγ6 ∪ Πγ10 , where by Proposition 5.10
Πγ6 = Πξ1 ∪ Πξ2 (mod 0) and Πγ10 = Πξ3 ∪ Πξ4 ∪ Πξ5 (mod 0). By
Proposition 7.2, the function η is invariant under πS. For all i =
1, . . . , 5, the polyhedral cone Πξi has dimension 4. Hence, each poly-
tope ∆ξi,c := Πξi ∩ η−1(c) is a 2-dimensional polygon.

By invariance of η, the set ∆S,c is also invariant under πS. Consider
now the restriction πS |∆S,c

of πS to ∆S,c. This is a piecewise affine area
preserving map, see Remark 7.6. Figure 14 shows the domain ∆S,c and
10 000 iterates by πS of a point in ∆S,c. Following the itinerary of a
random point we have picked the following heteroclinic cycle consisting
of 11 S-branches

ξ := (ξ1, ξ2, ξ4, ξ2, ξ4, ξ2, ξ4, ξ2, ξ4, ξ2, ξ4) .

The map πξ is represented by the matrix, see definitions (5.3) and (5.5),

Mξ =


−10 −5 0 6 1 −10

3
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 2

3
10 5 1 −5 0 8

3
−3

2
0 0 3

2
0 0

 .

The eigenvalues of Mξ, besides 0 and 1 (both with geometric multi-
plicity 2), are (approximately)

λu = −11.9161, and λs = −0.0839202 .

The corresponding eigenvectors are

wu = (−0.734728, 0., 0., 0.067307, 0.667421,−0.10096) ,

ws = (0.328842, 0., 0., 0.358966,−0.687808,−0.538449) .

An eigenvector associated to the eigenvalue 1 is

p0 = (0.20512, 0, 0, 0.325586, 0.905134, 0.180699) .
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Figure 14. Homoclinic intersections for the periodic
orbit of p0 under the area preserving map πS |∆S,c

.

Notice that this p0 is not unique because dim(Ker(Mξ − I)) = 2. We
have chosen c := (c1, c2) = (0.343447,−0.242852) so that η(p0) = c,
i.e., p0 ∈ ∆S,c. In fact we have p0 ∈ ∆ξ1,c ⊂ ∆γ6,c. Hence p0 is a
periodic point of the skeleton flow map πS with period 11.

Figure 14 also depicts the polygons ∆ξ1,c,∆ξ2,c contained in ∆γ6 , and
∆ξ4,c,∆ξ5,c contained in ∆γ10 . The set ∆ξ3,c is empty for this choice of
c. The orbit of p0 is represented by the white dots in Figure 14.

Let `u0 and `s0 be line segments through p0, contained in ∆ξ1,c, re-
spectively aligned with the eigen-directions ws and wu. We denote by
`un the n-th forward πS-iterate of `u0 and by `s−m the m-th backward
πS-iterate of `s0, i.e.,

`un := πnS(`u0) and `s−m := π−mS (`s0) .

Let pk = πkS(p0) and notice that p10 = π10
S (p0) = π−1

S (p0) = p−1.
Figure 14 also shows that in a few iterates transversal intersections
occur between the “local stable” and the “local unstable” manifolds of
different points of the periodic orbit of p0. Namely, `s−6 ∩ `u9 6= ∅ and
`s−5 ∩ `u10 6= ∅.

By Theorem 7.8 this implies the existence of chaotic behavior for
the flow of XA in some level set h−1

q (c1/ε)∩h−1
w (c2/ε), with c = (c1, c2)

chosen above and for all small enough ε > 0.

9.2. Example 2. Consider the replicator system defined by matrix

B =


0 1 −2 0 2 −1
−1 0 1 −2 0 2
2 −1 0 1 −2 0
0 2 −1 0 1 −2
−2 0 2 −1 0 1
1 −2 0 2 −1 0

 .
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We denote byXB the vector field associated to this replicator defined
on the simplex ∆5 . The point

q =

(
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

)
∈ R6

is an equilibrium of the replicatorXB. Since matrixB is skew-symmetric,
the associated replicator is conservative, i.e., XB is Hamiltonian with
respect to some stratified Poisson structure on ∆5.

Using the notation of the previous example, the skeleton character
χB of XB is displayed in Table 4. This model has 15 edges: 3 neutral
edges, γ3, γ8, γ12, and 12 flowing-edges, γ1, γ2, γ4, γ5, γ6, γ7, γ9, γ10,
γ11, γ13, γ14, γ15. The flowing-edge directed graph of χ is represented
in Figure 15.

χvσ σ1 σ2 σ3 σ4 σ5 σ6

v1 0 1 −2 0 2 −1
v2 −1 0 1 −2 0 2
v3 2 −1 0 1 −2 0
v4 0 2 −1 0 1 −2
v5 −2 0 2 −1 0 1
v6 1 −2 0 2 −1 0

Table 4. The skeleton character of XB .

From this graph we can see that

S = { γ1 = (1 2), γ4 = (1 5), γ7 = (2 4), γ10 = (5 4) }

is a structural set for χB, whose S-branches denoted by ξ1, . . . , ξ32 are
displayed in Table 5.

Figure 15. The oriented graph of χ.
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From\To γ1 = (2 1) γ4 = (5 1) γ7 = (2 4) γ10 = (5 4)

γ1 = (2 1)
ξ1 = (2 1 3 2 1) ξ3 = (2 1 3 5 1) ξ5 = (2 1 3 2 4) ξ7 = (2 1 3 5 4)
ξ2 = (2 1 6 2 1) ξ4 = (2 1 6 5 1) ξ6 = (2 1 6 2 4) ξ8 = (2 1 6 5 4)

γ4 = (5 1)
ξ9 = (5 1 3 2 1) ξ11 = (5 1 3 5 1) ξ13 = (5 1 3 2 4) ξ15 = (5 1 3 5 4)
ξ10 = (5 1 6 2 1) ξ12 = (5 1 6 5 1) ξ14 = (5 1 6 2 4) ξ16 = (5 1 6 5 4)

γ7 = (2 4)
ξ17 = (2 4 3 2 1) ξ19 = (2 4 3 5 1) ξ21 = (2 4 3 2 4) ξ23 = (2 4 3 5 4)
ξ18 = (2 4 6 2 1) ξ20 = (2 4 6 5 1) ξ22 = (2 4 6 2 4) ξ24 = (2 4 6 5 4)

γ10 = (5 4)
ξ25 = (5 4 3 2 1) ξ27 = (5 4 3 5 1) ξ29 = (5 4 3 2 4) ξ31 = (5 4 3 5 4)
ξ26 = (5 4 6 2 1) ξ28 = (5 4 6 5 1) ξ30 = (5 4 6 2 4) ξ32 = (5 4 6 5 4)

Table 5. S-branches of χ.

Consider the affine subspaces H,H0 ⊂ R6 of the previous example.
For the given matrix B, its null space Ker(B) has dimension 2. Take
a non-zero vector w ∈ Ker(B) ∩H0. As before, {q + tw : t ∈ R} is the
set of equilibria of XB on the affine hyperplane H. The same functions
hq and hw are respectively the Hamiltonian and an integral of motion.
The skeletons of these functions are respectively ηq and ηw, which we
take as the components of a piecewise linear function η : C∗(∆5)→ R2.
By Proposition 7.2, η is invariant under πS. The map πS acts on
ΠS = Πγ1 ∪ Πγ4 ∪ Πγ7 ∪ Πγ10 , where

• Πγ1 = Πξ1 ∪ Πξ2 ∪ · · · ∪ Πξ8 (mod 0),
• Πγ4 = Πξ9 ∪ Πξ10 ∪ · · · ∪ Πξ16 (mod 0),
• Πγ7 = Πξ17 ∪ Πξ18 ∪ · · · ∪ Πξ24 (mod 0),
• Πγ10 = Πξ25 ∪ Πξ26 ∪ · · · ∪ Πξ32 (mod 0).

For all i = 1, . . . , 32, the polyhedral cone Πξi has dimension 4 while
∆ξi,c is a 2-dimensional polygon. The 2-dimensional level set ∆S,c is
invariant under πS and we denote by πS |∆S,c

the restriction of πS to
∆S,c. Figure 16 shows the domain ∆S,c and 25 000 iterates by πS of a
point in ∆S,c with random like distribution. Following the itinerary of
a random point we have picked a heteroclinic cycle ξ consisting of 13
S-branches

ξ := (ξ31, ξ32, ξ32, ξ28, ξ12, ξ10, ξ2, ξ1, ξ5, ξ21, ξ21, ξ23, ξ31) .

The skeleton flow map πξ is represented by the matrix

Mξ =


1 3

2
51
8
−35

4
−33

8
−15

4
0 −1

2
−21

8
21
4

23
8

9
4

0 −3
2
−43

8
35
4

41
8

15
4

0 0 0 0 0 0
0 0 0 0 0 0
0 3

2
21
8
−17

4
−23

8
−5

4

 .

The eigenvalues of Mξ, besides 0 and 1 (both with geometric multi-
plicity 2), are

λu = −8, and λs = −1

8
.
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The corresponding eigenvectors are

wu = (2,−1,−2, 0, 0, 1) ,

ws = (−1,−1, 1, 0, 0, 1) .

An eigenvector associated to the eigenvalue 1 is

p0 = (0.62, 0.304, 0.152, 0, 0, 0.38) .

Notice that this p0 is not unique because dim(Ker(Mξ − I)) = 2. We
have chosen c := (c1, c2) = (0.242667,−0.088) so that η(p0) = c, i.e.,
p0 ∈ ∆S,c. In fact we have p0 ∈ ∆ξ31,c ⊂ ∆γ10,c. Hence p0 is a periodic
point of the skeleton flow map πS with period 13.

Figure 16 also depicts the polygons ∆ξ1,c,∆ξ2,c,∆ξ5,c contained in
∆γ1 , ∆ξ10,c,∆ξ11,c,∆ξ12,c contained in ∆γ4 , ∆ξ21,c,∆ξ22,c,∆ξ23,c contained
in ∆γ7 and ∆ξ28,c,∆ξ31,c,∆ξ32,c contained in ∆γ10 . The remaining sets
∆ξi,c are empty for this choice of c. The orbit of p0 is represented by
the white dots in Figure 16.

Let `un and `s−m denote the stable and unstable local manifolds along
the orbit of p0, the notation introduced in the previous example. Write
pk = πkS(p0) and notice that p12 = π12

S (p0) = π−1
S (p0) = p−1.

Figure 16 also shows that in the first forward and backward iterate
(by the skeleton flow map) transversal intersections occur between the
“local stable” and the “local unstable” manifolds of different points of
the periodic orbit of p0. Namely, `u1 ∩ `s0 6= ∅, `s−1 ∩ `u0 6= ∅ and
`u1 ∩ `s−1 6= ∅.

By Theorem 7.8 this implies the existence of chaotic behavior for the
flow of the replicator XB.

10. Conclusions and furtherwork

For the Hamiltonian polymatrix replicator systems, alluded in Re-
mark 7.5 and studied in [1] by the first two authors, their invariant al-
gebraic Poisson structures induce stratified piecewise constant Poisson
structures on the dual cone, preserved by the corresponding skeleton
flow. In other words, the skeleton flow inherits the conservative Hamil-
tonian nature of the original polymatrix replicator vector field. This
subject will be addressed by the authors in a future work. Remark 7.6
follows from this theory.

In the Hamiltonian examples discussed in Section 9, chaotic (hyper-
bolic) and regular (elliptic) behavior co-exist. In both of them, the
skeleton flow maps are piecewise linear area preserving maps. Exam-
ple 2 exhibits a few elliptic periodic points surrounded by invariant
curves that we will refer to as elliptic domains5, see Figure 16. Notice
how the invariant curves break up as they touch the boundary of the
associated domain ∆ξ,c. Outside these elliptic domains, a chaotic sea

5 These are not KAM islands because the piecewise linearity of πS does not allow
any twist.
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Figure 16. Homoclinic intersections for the periodic or-
bit of p0 under the area preserving map πS |∆S,c

.

(‘random’ orbits with positive Lyapunov exponents) seems to prevail.
In Figure 16 we can also see a couple of triangular components, ∆ξ11,c,
∆ξ22,c, consisting of πS-fixed points and 10 cyclically permuted small is-
lands each being a continuum of periodic points. These examples solicit
the development of an ergodic theory for the class of piecewise linear
area preserving maps, and more generally for the class of piecewise lin-
ear symplectic maps. We mention a few natural questions about the
generic behavior of these systems: Can the number of elliptic domains
be infinite? Is the complement of the elliptic domains non-uniformly
hyperbolic with respect to Lebesgue measure? Is this complement typi-
cally ergodic? Can it have infinitely many ergodic components? In the
context of smooth area preserving maps these are very hard open prob-
lems, but due to their dynamical rigidity these sort of problems might
be much more feasible for piecewise linear area preserving maps. Such
a theory would provide a good insight on the asymptotic dynamics
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(along the vertex-edge network) for the classes of Hamiltonian systems
on polytopes mentioned above.

General vector fields X ∈ Xω(Γd) typically do not have any inte-
gral of motion and the analysis of their dynamics must be different
from the conservative case. The skeleton flow map πS : ΠS → ΠS can
be projectivized as follows. Take η : C∗(Γd) → R to be the piece-
wise linear function η(y) :=

∑
σ∈F yσ and define ∆γ := Πγ ∩ η−1(1),

∆ξ := Πξ∩η−1(1) as before. The simplex ∆γ can be viewed as the pro-
jectivization of the sector Πγ because every half-line through the origin
in Πγ intersects ∆γ at a single point. Likewise ∆ξ is the projectivization
of Πξ. If ξ is a heteroclinic path ending at some flowing edge γ then
the linear map πξ : Πξ → Πγ induces a projective map π̂S : ∆ξ → ∆γ

defined by π̂ξ(y) := η(πξ(y))−1πξ(y). These are the branches of the
projective skeleton map π̂S : ∆S → ∆S defined on ∆S := ∪ξ∈B(χ)∆ξ

by π̂S(y) := π̂ξ(y) if y ∈ ∆ξ for some S-branch ξ. The suspension of
the projective map π̂S on ∆S can be viewed as a blowup of the flow
ϕtX along the polytope’s boundary, i.e., π̂S extends the dynamics of
ϕtX to the blown-up polytope’s boundary. In the conservative case, if
h ∈ H(Γd) is a proper X-invariant function with skeleton η and the
same order function as X, the projective skeleton map π̂S rules the
common dynamics on all level sets of η.

The map πS factors through π̂S acting linearly on the fibers. Hence
πS may be regarded as a 1-dimensional linear cocycle over π̂S, where
the sign of its Lyapunov exponent gives the repelling vs attracting na-
ture of the asymptotic boundary dynamics. Given a heteroclinic cycle
ξ, if v ∈ ∆ξ is an eigenvector of Mξ with a positive eigenvalue then
v is a periodic point of π̂S whose nature can be read from the spec-
trum of Mξ. This spectrum also determines whether the heteroclinic
cycle ξ is attracting or repelling. If a compact π̂S-invariant set is par-
tially hyperbolic (with a central direction of co-dimension 1) regarded
as an invariant subset of the blown-up boundary of the flow ϕtX then
it determines a local strong stable/unstable foliation in the polytope’s
interior. The special case where this compact invariant set is a single
periodic orbit provides an invariant (local stable/unstable) manifold of
the heteroclinic cycle associated with the periodic orbit. These dynam-
ical foliations and invariant manifolds are useful tools to analyze the
dynamics in the polytope’s interior, part of a theory being developed
in a work under preparation. This theory could for instance help to
provide sufficient conditions for permanence, an important concept in
EGT. In this spirit, a theorem of Jansen [13] with a game flavored
sufficient criteria for permanence, in the framework of replicator dy-
namics, was recently extended by the third author to the broader class
of polymatrix replicators [15].

Although the piecewise linear maps πS are in general discontinuous,
because orbits in adjacent domains eventually diverge, in some cases
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πS is continuous throughout several neighboring domains. This im-
plies that the rescaling along the vertex-edge polytope’ skeleton can be
augmented to include some higher dimensional faces of the polytope.
An extreme example is the 3-dimensional Hamiltonian depicted in Fig-
ure 6, which has a globally continuous skeleton flow. In this model
the rescaling can be augmented to include the whole cube’s boundary.
This will the subject of another future work.

This theory can be applied to most ODE models in EGT. For sys-
tems depending on many parameters, an algorithmic analysis of the
skeleton (asymptotic) dynamics can split the space of parameters into
regions where the dynamics of the skeleton flow maps are qualitatively
similar. This would help to understand the bifurcations taking place in
the polytope’s interior as the parameters cross the boundary between
adjacent regions. For example, higher dimensional cases of the sys-
tems studied at [21] could be investigated. In each parametric region,
the mentioned tools can be used to detect and characterize some of
its invariant dynamical structures such as heteroclinic cycles, periodic
points, hyperbolic invariant sets, invariant manifolds and invariant fo-
liations, which are essential to understand the model’s dynamics in the
polytope’s interior. In some future work the authors plan to illustrate
this approach with the analysis of some concrete EGT model.
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