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THESIS TITLE: Involvement of hormones, cytokines and angiogenic factors on mare oviduct 

physiological function and fibrosis 

Abstract  

The oviduct is a very important organ of the female reproductive system, as it plays a crucial 

role in providing the ideal conditions for the final preparation of the gametes for fertilization 

and to support the early embryo development. This work contributed to: (i) clarify the role of 

ovarian steroid hormones, oxytocin (OXT) and TNFα on the modulation of oviduct 

prostaglandin secretion; (ii) relate the expression of angiogenic growth factors during 

angiogenesis, with oviductal function; (iii) evaluate the expression of OVGP1 throughout the 

estrous cycle in the mare; (iv) and to investigate the expression of collagen in equine oviduct 

and its correlation with endometrial fibrosis and possible pathways involved. Post-mortem 

tissues were used for experimental works, such as histological stains, immunohistochemistry 

(IHQ), western blot analysis, qPCR evaluation, enzyme immunoassay, oviduct epithelial cells 

and tissue explants in vitro culture. In equine oviduct, ESR1, ESR2, PGR, OXTR, PTGES and 

AKR1C3 mRNA and protein expression was estrous cycle dependent and varied with oviduct 

portions. Ovarian steroid hormones, OXT and TNFα stimulation of PGF2α and/or PGE2 

production also depended on estrous cycle dependent and changed in the different portions of 

oviduct. In addition, protein and mRNA expression of FGF, VEGF and their receptors differed 

throughout the estrous cycle and between oviduct portions and agreed with changes in 

microvascular density and/or oviductal secretory function. Oviduct glycoprotein 1 (OVGP1) 

transcription presented differences throughout the oviduct portions, and in different phases of 

estrous cycle. A higher expression was observed in isthmus and during follicular phase (P < 

0.05). Also in the follicular phase, OXT and TNFα upregulated OVGP1 transcription; in the 

early luteal phase, estradiol (E2), while in mid luteal phase, it was progesterone (P4) that 

stimulated its transcription.  However, OVGP1 in vitro production was not dependent of E2, P4, 

OXT or TNF treatments in any oviduct portion. Furthermore, sperm cells also up-regulated 

OVGP1 production, in isthmus, in early luteal phase (P < 0.05). COL1 and COL3 transcription 

in isthmus was correlated with the correspondent transcription in the endometrium. Particularly 

in isthmus, AKR1C3 was implicated with collagen transcription (P < 0.05). Collagen 

transcription in isthmus was correlated with MMPs transcription in endometrium (P < 0.05). 

Thus, in the mare, endometrium fibrosis appears to reflect collagen deposition in the oviduct. 

Key words: Mare, oviduct, hormonal regulation, angiogenesis, oviductin, fibrosis  
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TÍTULO DA DISSERTAÇÃO: Envolvimento hormonal, de citoquinas e fatores 

angiogénicos na função fisiológica e na fibrose do oviducto. 

RESUMO 

O oviduto é um órgão muito importante uma vez que proporciona as condições adquadas à 

preparação final dos gâmetas, fertilização e desenvolvimento embrionário no início da gestação. 

Os principais objetivos deste trabalho consistiram em: (i) clarificar a função das hormonas 

esteroides ováricas, ocitocina e do TNFα na regulação do funcionamento do oviduto; (ii) 

relacionar a densidade vascular com a expressão de fatores angiogénicos; (iii) avaliar a 

expressão da OVGP1 ao longo do ciclo éstrico da égua; e (iv) investigar a expressão do 

colagénio no oviduto equino relacionando-a com a fibrose peri-glandular do endométrio e 

possíveis vias envolvidas. Os tecidos obtidos pós-morte foram utilizados em diferentes 

procedimentos tais como preparações histológicas, imunohistoquímicos, WB e PCR semi-

quantitativo. ensaios imunoenzimáticos e culturas in vitro de células epiteliais do oviduto e de 

explantes. A expressão proteica e de mRNA de ESR1, ESR2, PGR, OXTR, PTGES e AKR1C3 

mRNA foram influenciadas pela fase do ciclo éstrico e pela porção do oviducto. A estimulação 

da produção de PGF2α e de PGE2 pelas hormonas esteroides ováricas, ocitocina e pelo TNFα 

foi também dependente da fase do ciclo éstrico e da porção do oviducto. A expressão proteica 

e génica do FGF, VEGF e dos seus recetores no oviducto da égua, variou ao longo do ciclo 

éstrico, entre as porções de oviduto e coincidiu com as alterações verificadas na densidade 

microvascular e/ou com a função secretora do oviduto. A OVGP1 apresentou diferenças na 

transcrição entre as porções do oviducto e ao longo do ciclo éstrico e uma expressão proteica 

superior no istmo e durante a fase folicular (P < 0.05). Os espermatozoides estimularam a 

produção de OVGP1 no istmo durante a fase lútea inicial (P < 0.05). A transcrição de COL1 e 

COL3 mostrou uma correlação com a sua transcrição no endométrio, bem como a expressão 

proteica apresentou o mesmo padrão no endométrio de éguas classificado na categoria III de 

Kenney. Particularmente no istmo, a AKR1C3, o ALK5 e o TGFβII, parecem estar implicados 

com a transcrição de colagénio (P < 0.05). Além disso, a transcrição de COL1 e COL3 no istmo 

foi correlacionada com a transcrição de MMPs do endométrio (P < 0.05). Assim sendo, a fibrose 

no endométrio da égua parece estar relacionada com a deposição de colagénio no oviduto. 

 

 

Palavras-chave: Égua, oviducto, regulação hormonal, angiogénese, oviducto fibrose  
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TÍTULO DA DISSERTAÇÃO: Envolvimento hormonal, de citoquinas e fatores 

angiogénicos na função fisiológica e na fibrose do oviducto. 

Resumo alargado  

A criação de cavalos de aptidão desportiva é hoje em dia de grande importância dada a procura 

que o desporto equestre exige. A Europa é provavelmente o continente com uma maior 

produção de cavalos, sendo acompanhada de muito perto por alguns países da América 

nomeadamente Brasil, EUA e a Argentina. Além disto, a criação de cavalos assume particular 

importância em zonas rurais, dado a relevância que representa na sustentabilidade das 

populações. 

O sucesso da atividade reprodutiva é fundamental para a criação de cavalos de desporto e disso 

é bom exemplo a grande importância que é prestada a este tema pelos maiores criadores de 

cavalos de desporto, os quais habitualmente possuem laboratórios clínicos muito bem 

equipados.  

Bem como as qualidades seminais, o estado reprodutivo da égua é de grande importância. Além 

de ovários e útero, o oviduto é um órgão que também apresenta funções de grande importância 

no sucesso reprodutivo, pois ambos os gâmetas terão que percorrer e permanecer algum tempo 

neste órgão, visto ser neste local onde irá ocorrer a fertilização e ainda o desenvolvimento inicial 

do embrião.  O oviduto é um órgão que fazendo a ligação anatómica entre o ovário e o útero, 

está sob a ação das hormonas esteróides ováricas (estradiol - E2, progesterona – P4), 

prostaglandinas (PGs) e oxitocina (OXT). Além da regulação hormonal, outros agentes também 

têm um papel no controlo da sua função tais como os fatores angiogénicos. No fluido do oviduto 

existem componentes semelhantes aos que se encontram no plasma sanguíneo, enquanto outros 

são produtos de secreção específicos deste órgão, tais como glicoproteínas específicas do 

oviduto (OVGP1). 

O presente trabalho engloba quatro capítulos distintos, tais como: 

i. Estudo da ação das hormonas esteroides ováricas, OXT e TNFα na função do oviduto 

equino; 

ii. Estudo das alterações da expressão proteica e génicas dos fatores angiogénicos FGFs, 

VEGF e respetivos recetores, relacionando-as com as diferenças na densidade 

microvascular do oviduto; 

iii. Estudo das alterações da expressão proteica e génica da glicoproteína 1 específica do 

oviducto (OVGP1) ao longo do ciclo éstrico da égua e possíveis fatores envolvidos na 

sua secreção; 
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iv. Estudo da possível existência da deposição de colagénio no oviducto da égua, sua 

possível correlação com a fibrose no endométrio e possíveis vias envolvidas na 

acumulação do colagénio. 

Assim, foram recolhidos pós-mortem, aparelhos reprodutivos de éguas. As estruturas ováricas 

e as concentrações plasmáticas de P4 foram usadas na determinação da fase do ciclo éstrico de 

cada uma das éguas em estudo. O endométrio foi classificado histologicamente segundo a 

escala de Kenney (1978). Por microscopia de luz polarizada foi determinada a proporção de 

colagénio do tipo I e do tipo III em endométrios e respetivos ovidutos corados com picrosirius 

red (PSR). Os ovidutos recolhidos foram sujeitos a vários procedimentos, tais como a avaliação 

de transcrição de mRNA de vários genes por PCR em tempo real (qPCR); a determinação da 

expressão proteica por western blot (WB) e imunohistoquímica (IHQ); a observação da 

ultraestrutura por microscopia eletrónica de transmissão (SEM); e a realização de ensaios in 

vitro de células do oviduto epiteliais (OEC) e de explantes.  

Num primeiro estudo foi avaliada a expressão génica, por qPCR, e proteica por WB, do recetor 

da progesterona (PGR), dos recetores do estradiol (ESR), do recetor da oxitocina (OXTR), da 

síntase da PGE2 (PTGES) e da PGF2α (AKR1C3). A estrutura das células epiteliais foi avaliada 

por microscopia de varrimento (SEM). Foram estudados os efeitos de tratamentos de estradiol 

(E2), progesterona (P4), OXT e fator de necrose tumoral (TNF) na produção de PGE2 e PGF2α. 

Num segundo estudo foi determinada a expressão génica do fator de crescimento de fibroblastos 

(FGF) 1 e 2, dos seus recetores 1 e 2 (FGFR1 e FGFR2), do fator de crescimento do endotélio 

vascular (VEGF) e do seu recetor 2 (KDR); foi também determinada a expressão proteica do 

FGFR1, FGFR2 e do KDR; bem como as alterações da densidade microvascular do oviduto 

equino. Foram avaliados os efeitos do tratamento de E2, P4, OXT e TNF na transcrição do 

FGFR1, FGFR2, KDR e do recetor 1 do VEGF (FLT1). No terceiro estudo foram estudados a 

expressão génica e proteica da OVGP1 e os efeitos do tratamento de E2, P4, OXT e TNF na 

transcrição da OVGP1 e na secreção de OVGP1. A influencia da presença de espermatozoides 

em co-cultura com explantes de oviduto na secreção de OVGP1 foi investigada. No quarto 

trabalho foi estudada a transcrição de colagénio tipo I (COL1) e tipo III (COL3) no oviduto 

equino, bem como a expressão proteica do COL1. Foi também considerada a proporção de áreas 

ocupadas por COL1 e COL3 visualizadas por microscopia de luz polarizada tanto no 

endométrio como no oviduto das mesmas éguas, previamente agrupadas de acordo com a sua 

classificação endometrial de Kenney (1978). Foram também consideradas a correlação da 

transcrição de COL1 e COL3 entre o oviducto e o endométrio; a correlação da transcrição de 

COL1 e COL3, no oviducto, com diversos agentes potencialmente indutores de fibrose; bem 

como a correlação entre a transcrição de COL1 e COL3 no oviduto e no endométrio de diversos 
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agentes com influência no desenvolvimento de fibrose. O efeito dos tratamentos de E2, P4, OXT 

e TNF na transcrição e na expressão proteica de colagénio tipo I foi igualmente determinado. 

Enquanto a transcrição de ESR1, ESR2, PGR, OXTR, e PTGES foi superior na ampola, no caso 

da AKR1C3, foi superior no infundíbulo. Nenhum dos recetores do E2 apresentou diferenças na 

sua transcrição ao longo do ciclo éstrico, enquanto o PGR apresentou maior transcrição na fase 

folicular e o OXTR, a PTGES e a AKR1C3 na fase lútea inicial. A expressão proteica foi 

superior na fase folicular no caso do PGR, ESR1, ESR2 e OXTR, enquanto a PTGES e a 

AKR1C3 não apresentaram diferenças. Por imunohistoquímica observou-se a expressão de 

OXTR no estroma da submucosa das pregas do oviduto, enquanto as restantes proteínas 

apresentaram expressão nas células epiteliais da mucosa. A SEM evidenciou uma maior 

abundância de células não secretoras, enquanto a densidade de cílios e das células ciliadas foi 

maior na ampola na fase folicular, do que no infundíbulo. A produção de PGE2 e de PGF2α por 

parte de células epiteliais e de explantes, sob a influência de E2, P4, OXT e TNF variou 

consoante a fase do ciclo éstrico e/ou a porção do oviduto.  

O oviduto apresentou uma maior densidade microvascular no istmo, durante a fase folicular. A 

transcrição de FGF1, FGF2, VEGF, FGFR2 e KDR foi superior no istmo, enquanto no FGFR1, 

não apresentou diferenças. O FGFR1 revelou uma maior expressão proteica no istmo, enquanto 

ao longo do ciclo éstrico, no infundíbulo a expressão foi superior nas fases folicular e lútea 

inicial e na ampola foi superior na fase lútea inicial. O FGFR2 não apresentou diferenças entre 

as porções. Contudo, ao longo do ciclo éstrico, a sua expressão foi superior na fase lútea média, 

no infundíbulo, e na fase folicular na ampola e istmo. O KDR também apresentou maior 

expressão no istmo e enquanto o infundíbulo apresentou maior expressão na fase lútea inicial, 

na ampola a maior expressão verificou-se na fase folicular. Em explantes da ampola o E2 

estimulou a transcrição de FGFR1, FGFR2, FLT1 e KDR na fase lútea inicial, enquanto a P4 e 

a OXT também estimularam a transcrição de FGFR1 na fase lútea inicial enquanto a P4 

estimulou a transcrição de FLT1 na fase lútea média. A expressão de ligando e recetores do 

grupo dos FGFs e do VEGF, coincidem ora com a maior densidade microvascular do istmo ora 

com os principais fenómenos que ocorrem no oviducto durante a fase folicular e lútea inicial. 

Enquanto a transcrição de OVGP1 foi superior na fase lútea inicial e na ampola, 

comparativamente com o infundíbulo, apenas na ampola se voltaram a verificar diferenças, com 

maior transcrição também na fase lútea inicial. A expressão proteica foi superior no istmo e em 

todas as regiões, durante a fase folicular. Os espermatozoides estimularam a produção de 

OVGP1 pelos explantes na fase lútea inicial. O COL1 e o COL3 apresentaram uma maior 

transcrição no istmo. As éguas com uma maior fibrose peri-glandular no endométrio, 
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apresentaram um padrão muito semelhante entre as áreas ocupadas pelo COL1 e pelo COL3 

entre o istmo e o endométrio. Existe uma correlação significativa entre a transcrição de COL1 

e COL3, entre o istmo e o endométrio. Também se verifica uma correlação significativa entre 

a transcrição de COL1 e COL3 com alguns genes conhecidos pela sua ação pro-fibrótica, 

nomeadamente AKR1C3, ALK5, TGFβRII, MMP2 e MMP9. A transcrição de COL1 e COL3 

no istmo também apresentou uma correlação significativa com a transcrição de genes pro-

fibróticos no endométrio, nomeadamente TNF, MMP2 e MMP9. Em conclusão, o oviducto da 

égua é uma estrutura complexa com a capacidade de produção de proteínas específicas, tal 

como OVGP1 e de expressar fatores angiogénicos sob a ação endócrina ovárica, com 

especificidades entre as diferentes porções do oviduto. Além disso, a fibrose no endométrio 

equino parece estar relacionada com a deposição de colagénio no oviduto, em especial no istmo. 
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CHAPTER I – INTRODUCTION AND OBJECTIVES 





Chapter I – Introduction and objectives 

3 

1.1. Introduction 

Equine reproduction has held an important place from immemorial times as horses were used 

as means of transport and as war machines, however, gaining greater significance in the world 

of equine sport especially after the Second World War, when Central Europe assumed a 

leadership role in breeding a high percentage of horses to compete in the main equestrian 

disciplines.  The equine breeding industry is not only important for the equine sports but it also 

has a tremendous effect on the economy of some countries and rural regions where agriculture 

and animal breeding are important and core supports for sustainability of local populations. 

Apart from Europe, equine breeding is also very important in the western hemisphere, where 

especially countries like USA, Brazil and Argentina have produced excellent examples of 

equine athletes. 

Mare reproductive function is vital for success in equine breeding programs. Besides the 

unquestionable importance of the semen quality, mare’s reproductive status not only at the time 

of the insemination, but also during the gestational length, can compromise the success of 

reproductive activity. 

Besides the uterus and the ovaries, the oviduct is another organ which can have a vital role in 

the reproductive function. Already in the past, several situations were detected in which mares 

failed to conceive in the absence of any identifiable reproductive tract malfunction (Allen, 

Wilsher, Crowhurst, Hillyer & Neal, 2006). In particular, the embryo transfer procedure, has 

provided evidences for the importance of oviductal role, since the uterine flushing is performed 

at a time, where it is very unlikely that the uterus could have a deleterious effect on the embryo 

recovery. Historically, the oviduct was seldom ascribed to any significant importance in fertility 

rates, primarily because of the inability to carry out oviduct clinical evaluation.  

In the mare, there are some post-mortem reports of pathological changes, such as oviductal 

cysts (Blue, 1984) and histopathological features, consistent with salpingitis (Saltiel, Paramo, 

Murcia & Tolosa, 1986).  

The equine oviduct is about 20 cm long, and is divided into three main portions: infundibulum, 

ampulla and isthmus (Yaniz, Lopez-Gatius & Hunter, 2006). Within the oviduct, several events 

occur, which are ascribed as being of fundamental importance for the reproductive success. 

Among those events, occur the gamete transport, fertilization and early embryo development. 

The mare, presents a particular characteristic that is the possibility of the oviduct to retain the 

unfertilized oocytes and allow only the embryo to reach the uterus, which is attributed to the 

prostaglandin E2 released by the blastocyst. For proper oviductal function, hormonal regulation 

is necessary, as occurs in all female reproductive organs. In cow, oviductal contraction and 
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secretory activity, may be regulated by ovarian steroids and oxytocin (OXT) 

(Wijayagunawardane et al., 1998). Also, nitric oxide (NO) and cytokines can modulate 

oviductal functions in cow (Szóstek et al., 2011). Prostaglandins (PGs) may also modulate 

oviductal function through different mechanisms (Wanggren, Stravreus-Evers, Olsson, 

Andersson & Gemzell-Denielsson, 2008).  

Angiogenic growth factors have been associated to several female reproductive functions. 

Fibroblast growth factors (FGFs) are involved in folliculogenesis, particularly during the final 

growth of the preovulatory follicle, due to stimulation of angiogenesis and granulosa cell 

survival and proliferation (Berisha, Sinowatz, & Schams, 2004). Also in gilts, a member of 

FGF’s family was identified in the endometrial epithelium, stroma and myometrium during the 

estrous cycle and early pregnancy (Katsahambas & Hearu, 1996). In human oviduct, vascular 

endothelial growth factor (VEGF) mRNA expression was related to the ovulatory period (Lam 

et al., 2003).   

The oviductal fluid contains different components. Some of them are also present in serum, 

while others are characteristic of the oviduct. The oviductal components can vary between 

proteins, aminoacids, lipids, energy substrates, ions, minerals, steroid hormones, prostaglandins 

and growth factors (Aguilar & Reyley, 2005). One type of protein, seems to be specific of the 

oviduct, and has been identified in several animals. It is known as the oviduct specific 

glycoprotein (OVGP1), but we can find other synonymous such as estrogen dependent oviduct 

protein, mucin-9, oviductal glycoprotein or oviductin. Since in different species, this 

glycoprotein has been associated to the sperm cells, the oocyte and the early embryo, some of 

its hypothetical functions are related to capacitation, fertilization, and early embryo 

development (Aguilar & Reyley, 2005).  

Fibrosis can be considered a normal step of the healing process. Nevertheless, a precise 

modulation of this process is necessary, otherwise it can result in substantial remodeling of the 

extra-cellular matrix, leading to scar tissue formation, which in fact consists of an excessive 

collagen deposition (Wynn, 2007). In many organs, like lung, kidney, liver and heart, fibrosis 

can result in organ failure. In the mare endometrium, peri-glandular fibrosis is associated to 

endometrial glands structure disruption and function, leading to infertility (Ferreira-Dias, 

Nequi, & King, 1994).  

The experimental work presented in this thesis is divided into four studies: in the first one, the 

focus will be on the role of ovarian steroids, OXT and tumor necrosis factor α (TNF) in equine 

oviduct secretory function modulation (i); in the second study, changes in microvascular density 

in the equine oviduct will be evaluated and how VEGF, FGF and some of their receptors are 

expressed in equine oviduct throughout its length and during the estrous cycle (ii); in the third 
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study, it will be presented how OVGP1 protein and mRNA are expressed in equine oviduct and 

how it can be related with events that occur in oviduct (iii); in the fourth study, expression of 

collagen type I (COL1) and type III (COL3) protein and mRNA will be evaluated in equine 

oviduct as well as COL1 transcription in the endometrium of the same mares. Also, transcription 

of some possible players involved in collagen expression will be evaluated, to demonstrate if 

fibrosis is present in equine oviduct and which pathways could be involved on it (iv).    

1.2. Objectives 

The major objectives of this work were: 

 

1) To investigate the role of ovarian steroids hormones, oxytocin, and tumor necrosis factor on 

the modulation of equine oviduct function.  

The developed work was published: Pinto-Bravo P., Galvão A., Rebordão M.R., Amaral A., 

Ramilo D., Silva E., Szóstek-Mioduchowska A., Alexandre-Pires G., Roberto da Costa R., 

Skarzynski, D.J. & Ferreira-Dias G. (2017). Ovarian steroids, oxytocin and tumor necrosis 

factor modulate equine oviducto functions. Domestic Animal Endocrinology; 61: 84-99 

2) To examine the expression of FGFs and VEGF and their receptors in equine oviduct and 

relate it with changes in microvascular density and with main oviductal function. In addition, 

the influence of ovarian steroid hormones, OXT and TNF on VEGF, FGFs and receptors 

transcription will be addressed.  

3) To study how OVGP1 mRNA and protein are expressed in the mare oviduct and possible 

factors that can modulate OVGP1 production.  

4) To investigate collagen expression in equine oviduct, its relationship with collagen 

expression in endometrium, possible pathways involved in it, and the effect of ovarian steroids, 

OXT and TNF on COL1 expression.  
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2.1. Equine oviduct 

2.1.1. Anatomy of Oviduct 

Anatomically the oviduct is a tubular structure that is present between the ovary and the uterus, 

and is not in complete contact with the ovary but is in continuation with the latter.  In the mare, 

the oviduct varies in length between 20-30 cm, and is suspended by the mesosalpinx (Hafez & 

Hafez, 2000a) 

In mammal’s species, the oviduct is divided into three regions: the infundibulum, the ampulla 

and the isthmus. Connecting these regions, are described the uterotubal junction (UTJ), and the 

ampullary-isthmic junction (AIJ), as well as a proximal section connected to the ovarian 

fimbriae, in the abdominal opening, the ostium (Yaniz, Lopez-Gatius, F. & Hunter, 2006). In 

the isthmus, the luminal area does not exceed 0.5 mm2, with no differences shown between 

phases of the estrous cycle. In the ampulla, multiple epithelial folds are present, frequently 

quaternary folds. Compared with the isthmus, it presents a larger intraluminal diameter 

(Mouguelar et al., 2015). Ampulla is the middle portion of the oviduct, and represents about 

half of its length, and it is where oocyte fertilization occurs (Hafez & Hafez, 2000a). The 

infundibulum is funnel-shaped, with irregular fimbriae present along its margin. Some of them 

are attached to the cranial pole of the ovary, allowing the rest of the infundibulum to spread 

over the ventral aspect, covering the ovulation fossa (Kainer, 1993).  

2.1.2.  Histology of oviduct 

Histologically the oviduct presents three concentric layers. According to Muglia & Motta 

(2001), the serosa is composed of mesothelial and non-striated muscular cells, derived from the 

uterine broad ligament. The middle layer is a muscular layer (myosalpinx), which is organized 

in a particular arrangement in different species. The internal layer, is the mucosa, which 

presents a dense lymphatic and blood vascular network, and folds that are projected internally. 

The height, width and branching of the mucosa folds are more pronounced in the ampulla and 

infundibulum. The mucosa presents a simple columnar or pseudostratified epithelium, 

containing ciliated and secretory cells (Mouguelar et al., 2015). Ciliated cells are mainly 

involved in gamete and embryo transport (Kolle et al., 2009), while secretory cells are involved 

in the synthesis and release of different molecules dissolved in the oviductal fluid, plus a 

selective transudate of serum (Killian, 2011). 
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Epithelial cell remodeling, which is regulated by differentiation and/or proliferation of 

secretory cells, provides the optimal environment for gamete transport, fertilization and early 

embryonic development (Ito, Kobayashi, Yamamoto, Kimura & Okuda, 2016). Ciliated cells 

have a slender motile cilium that extends into the lumen. The beat rate of cilia is affected by the 

levels of ovarian hormones, and is maximal at ovulation and shortly after, when the stroke of 

the cilia in the infundibulum is closely synchronized and directed toward the ostium. The ciliary 

beats in the direction of the uterus coupled with oviductal contractions plays an important role 

keeping oocytes in constant rotation.  This is essential to bring oocytes and sperm cells together, 

and prevent oviductal embryo implantation (Hafez & Hafez, 2000a). In goat oviduct, the 

epithelium of the infundibulum, ampulla, and AIJ in the follicular phase is extensively ciliated 

and most cilia extend above the apical processes of the non-ciliated cells. In contrast, in the 

luteal phase, many ciliated cells are hidden by the bulbous processes of the non-ciliated cells. 

In the isthmus, and at the utero-tubal junction, the apical surface of the non-ciliated cells are 

flat or gently rounded at both phases of the estrous cycle (Abe, Onodera, & Sugawara, 1993). 

Secretory (non-ciliated) cells contain secretory granules, whose size and number could vary 

with animal species and estrous cycle phases. The apical surface of these cells is covered with 

numerous microvilli, and probably secretory granules accumulated in epithelial cells during the 

follicular phase are released into the lumen after ovulation, causing a reduction in epithelial 

height (Hafez & Hafez, 2000a). According to Abe (1996), they will be needed for the interaction 

of oocyte and sperm cells. Several studies have been performed in different species to study the 

percentage of ciliated and secretory cells. In the cow ampulla, the percentage of FOXJ1-positive 

cells (a ciliated cell marker) was the highest at the day of ovulation (Day 0) and decreased about 

50% by Days 8-12, while in the isthmus it did not change during the estrous cycle (Ito et al., 

2016). The mitosis rate was the highest at around the time of ovulation in secretory cells (PAX8-

positive), in both the ampulla and isthmus (Ito et al., 2016). In an early study in cow oviduct, a 

decrease in ciliated cells and an increase in secretory cells occurred in the infundibulum, during 

luteal phase (Abe, 1996). The same situation was observed in primates, such as the rhesus 

monkey (Brenner, 1969). Nevertheless, in other species, such as the golden hamster and the rat, 

the number of ciliated and secretory cells does not alter during the estrous cycle (Abe, 1994). 

Apparently, species with a long estrous cycle time span present differences in the percentage 

of ciliated and secretory cells during the estrous cycle, while the species with short estrous cycle 

length, do not (Abe, 1996). 

Besides changes in the number of the two types of epithelial cells, differences also occur in 

their appearance during the estrous cycle. In fact, in some species (cows, goats and Chinese 

Meishan pigs), the height of the ciliated cells in the infundibulum and ampulla falls during the 
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luteal phase, while in the secretory cells it becomes more prominent.  In the isthmus both 

ciliated and secretory cells remain almost constant throughout the estrous cycle (Abe, 1996).   

Eriksen and co-authors (1994) demonstrated in the cow, that number and location of secretory 

granules in the secretory cells of the oviductal epithelium, show both cyclic and segmental 

variations. The regional differences in the ultrastructure and in the number of secretory granules 

in the cells might reflect the fact that the nature of the secretion from oviductal epithelial cells, 

and their secretory activities differ among the various segments of the oviduct (Abe, 1996).  

In bitch, E2 cause oviduct epithelium cell hypertrophy and differentiation, whereas P4 induces 

cell gradual regression, revealing visible morphological changes in the tubal epithelium in the 

estrous cycle. However, these changes are variable, depending on the oviduct portion 

(Steinhauer, Boos, & Gunzel-Apel, 2004).  

Oviductal fluid from secretory cells, presents differences in its biochemical characteristics 

throughout the regions. Proteins secreted might have specific roles in the support of embryo as 

it crosses the oviduct. In cycling pigs, oviduct explants from ampulla and isthmus produce 

different glycoproteins, soon after fertilization (Buhi, Alvarez, Sudhipong & Dones-Smith, 

1990). In sheep, E2 alone or in addition with P4, stimulates the production of a glycoprotein by 

the ampulla, but not by the isthmus (Murray, 1992). Also in the mare, it was reported a higher 

oviductal secretory activity in ampulla than in isthmus (McDowell, Adams & Williams, 1993). 

Some of the oviductal fluid functions may include sperm capacitation, sperm hyperactivation, 

fertilization and early preimplantation development. The oviductal fluid is composed of a 

selective transudate of serum and secretory products from the secretory cells. Several protein 

components are common between oviductal fluid and serum. However, some of them are 

present in different proportions, others exist in serum but not in oviductal fluid, while others 

are absent in serum, but exist in oviductal fluid (Hafez & Hafez, 2000a). Some oviductal 

secretions appear responsive to endocrine estrous cycle influence, while others may be 

produced at a constant rate (Abe, 1996). 

The musculature is mainly formed by a smooth inner circular layer and a thinner external 

longitudinal layer, continuous with the mesosalpinx (Kainer, 1993, Sisson, 1982). The inner 

circular muscle increases toward the isthmus, reaching a maximal size in the papilla. Also in 

the mare, the tunica muscularis is almost absent in the infundibulum but become gradually 

thicker towards the UTJ (Eriksen, Terkelsen, Grondahl, and Bruck, 1994).  

Oviductal contractions help to denude the oocyte, promote fertilizations and regulate the 

transport of the embryo. Unlike intestinal peristalsis, oviductal motility tends to delay slightly 

the progression of the embryo. The oviduct can present several types of complex contractions 

such as localized peristalsis-like contractions, segmental contractions and worm-like twisting 
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of the entire oviduct. Generally, the ampulla is less active than the isthmus. The frequency and 

amplitude of spontaneous contractions vary with the phase of the estrous cycle. Before 

ovulation, contractions are gentle in the rate and pattern of contractility. At ovulations, 

contractions become more vigorous, and the finger-like folds’ contract rhythmically and 

“massage” the ovarian surface (Hafez & Hafez, 2000a).  

2.1.3.  Biological events that occur in the oviduct 

The oviduct is an organ with a vital importance for the reproductive activity, since it is where 

some important physiological events will occur. 

2.1.3.1. Ova Pickup 

Based on data from 16 equine oocytes collected from pre-ovulatory follicles, it was concluded 

that in the horse, as in most other mammals, the ovulating oocyte is normally in metaphase II 

(King, Bezard, Bousquet, Palmer & Betteridge, 1987). 

The viscid mass of cumulus oophorus that contains the oocyte and corona radiata cells, adheres 

to the stigma and remains attached unless it is removed by the action of the cilia in the 

infundibulum (Hafez & Hafez, 2000b). Studies in hamsters revealed the importance of the 

cumulus cells and the extracellular matrix of the cumulus-oocyte complex (COC), on the 

picking up process, and initial adhesion to the infundibulum cilia. Cilia that cover the epithelial 

cells in infundibulum, beat in the direction of the ostium, and induce a current in the oviductal 

fluid, that arrests the COC into the oviduct (Talbot, Shur & Myles, 2003).   

In humans and mice, the role in P4 in oocyte transport was suggested. In fact, the presence of 

P4 receptors (PGRs) was demonstrated in the lower half of the motile cilia of oviduct epithelial 

and stromal cells (Teilmann, Clement, Thorup, Byskov, & Christensen, 2006).  

2.1.3.2. Sperm at fertilization site  

Sperm transport to the oviduct may be completed at 4 h after insemination. Thus, it is worth 

noting that conception rates are significantly impaired when mare’s uterine lavage is performed 

0.5 h or 2 h after insemination, but no adverse effect was observed on fertility, if done at 4 h 

after insemination (Brinsko, Varner and Blanchard, 1991).  

A small sub-population of spermatozoa is rapidly transported by myometrial contractions 

towards the UTJ, colonizing the tubal sperm reservoir (SR). This event is known by the rapid 

phase of semen transport in the female internal genital tract (Rodriguez-Martinez et al., 2001). 
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Nevertheless, a critical phase of the transport in the uterus is the migration through the UTJ, 

and a very low percentage of sperm cells can reach it compared to the original population 

contained in the artificial insemination (AI) dose or ejaculate (Tokuhiro, Ikawa, Benham, & 

Okabe, 2012).  

In cow, most spermatozoa present in the SR in the pre-ovulatory period, remain viable and 

potentially fertile until they ascend to the upper tubal segments, either shortly before ovulation 

(Hunter, 1996), or as a continuous stream during the peri-ovulatory period (Larson & Larson, 

1985).  

In the golden hamster, a change in the sperm surface occurs, which causes the release of 

spermatozoa, that were attached to the isthmic mucosa, enabling sperm cell migration to the 

ampulla to fertilize the oocytes (Smith & Yanagimachi, 1991). Pollard and colleagues (1991), 

have demonstrated that bovine spermatozoa attach to cultured epithelial cells of the oviduct and 

that spermatozoa were bound by the rostral portion of the intact acrosome to the apical surface 

of polarized epithelial cells. Moreover, they have shown that the fertilizing capacity was 

maintained when spermatozoa were incubated with oviductal epithelial cells. Also in the pig, 

similar interactions between the spermatozoa and the oviductal epithelial cells have been 

observed (Suarez, Redfern, Raynor, Martin, & Phillips, 1991). As well, boar spermatozoa 

bound to isthmus explants rather than to oviduct ampulla explants. Also, it was observed that 

in vitro binding of sperm cells was greater in the presence of estrus levels of steroids than in 

culture medium without steroids. These data indicate the importance of the region and the 

hormonal status on the SR function, prior to fertilization (Raychoudhury & Suarez, 1991). 

These studies strongly suggest that the binding of spermatozoa to the oviductal epithelium is 

influenced by both the region of the oviduct and the hormonal status (Abe, 1996). 

When sperm is released from SR, sperm cells need to be guided to reach the fertilization place. 

Some substances have been identified as potential chemoattractant, such as P4, present in 

follicular fluid produced by cumulus cells (Chang & Suarez, 2010). Natriuretic peptide 

precursor has also been identified as a chemoattractant, which modified the sperm motility 

pattern and enhance Ca++ levels (Bian et al., 2012). Temperature can also influence levels of 

Ca++, and so affect the flagellar bending (Bahat & Eisenbach, 2010). Although not demonstrated 

in vivo, other factors could influence the sperm transport and guidance toward the fertilization 

site, such as the movement of oviductal fluid, oviductal contractions, oviductal epithelium and 

even the internal structure of the oviduct (Burkitt, Walker, Romano & Fazeli 2012). 



Chapter II – State of the art 

14 

2.1.3.3. Changes in the spermatozoa 

2.1.3.1.1. Capacitation 

Capacitation includes a delicate reorientation and modification of molecules within the plasma 

membrane, which enables the sperm cell to bind to the extracellular matrix of the egg (zona 

pellucida; ZP) and the zona then primes the sperm to initiate the acrosome reaction, an 

exocytotic event required for the sperm to penetrate the zona (Gadella, Rathi, Brouwers, Stout, 

& Colenbrander, 2001). Hunter and Rodrigues-Martinez (2004) introduced three concepts on 

the control of capacitation to emphasize the importance of in vivo integration: (i) completion of 

capacitation is a peri-ovulatory event; (ii) suppression of completion of capacitation is an 

essential storage strategy during a long pre-ovulatory interval; (iii) the process of capacitation 

comes under the influence of local and systemic ovarian control mechanisms, especially the 

secretion of P4 from pre-ovulatory follicles. In several mammal species, the oviduct seems to 

retard, rather than promote sperm capacitation, and by this way, sustaining their fertilizing 

capacity (Smith & Nothnick, 1997). Also in humans, proteins secreted from human oviductal 

tissue are able to inhibit events associated with sperm capacitation (Zumoffen, Caille, Munuce, 

Cabada, & Ghersevich, 2010). Boar spermatozoa from the isthmus SR, at the period prior and 

shortly after ovulation do not undergo in vitro capacitation, unless they are exposed to the 

effector bicarbonate (Tienthai, Johannisson & Rodríguez-Martínez, 2004). Besides, co-

incubation of boar sperm with SR fluid or its component hyaluronan can also stimulate in vitro 

capacitation. Fluid collected from the ampullary segment, which is rich in bicarbonate, is also 

able to induce boar sperm capacitation in vitro (Rodríguez-Martínez et al., 2005). Bicarbonate 

has a primary early role in carrying about the significant changes in membrane lipid 

architecture. Early responses to bicarbonate involve protein kinase-A activation, membrane 

fluidity, and membrane lipid scrambling. These responses only take place in the sperm cell 

population that has matured appropriately (Gadella & Gestel, 2004). 

It has been proposed that a progressive and continuous release of spermatozoa from the SR in 

the oviducts, occurs before ovulation and that it may be related to the gradual induction of 

capacitation following exposure to the fluid of the upper tubal segments (Rodriguez-Martinez, 

2007). In the presence of elevated pH and extracellular Ca++, a heat-resistant, hydrophilic, <30 

kDa component of follicular fluid, can trigger protein tyrosine phosphorylation, to elevate 

cytoplasmic Ca++ and stimulate motility in stallion sperm cells (Leemans et al., 2015). A 

combination of albumin and HCO3
- markedly induced sperm head-to-head agglutination, which 

physically prevented stallion sperm to bind to oviduct epithelium (Leemans et al., 2016).  
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2.1.3.1.2.  Hypermotility  

The condition “hyperactivated motility” was first defined by Yanagimachi (1970), who 

observed that hamster spermatozoa, after detaching from oviduct epithelial cells, acquire a 

vigorous motility pattern, with high amplitude and asymmetrical flagellar beating. Later, this 

term was redefined as the swimming pattern shown by most sperm cells retrieved from the 

ampulla, at the time of fertilization (Suarez & Ho, 2003). Probably, the increase in intracellular 

Ca++ will trigger this event (Publicover et al, 2008), which could be related with the secretion 

of P4 (Hunter, 2012). Calcium will enter the sperm cell, through channels in its plasma 

membrane, known as CATSPER proteins, located in the plasma membrane of the principal 

piece of the flagellum (Qi et al, 2007). 

An increase in pH, associated with an increase in HCO3
- in the oviduct fluid, in combination 

with an increase of P4, will activate the CATSPER protein, resulting in an increase of Ca++ intra 

spermatozoa, inducing the hypermotility (Suarez, 2008). In bovine, only sperm incubated with 

oviduct cells, developed hyperactivated motility (Pollard et al., 1991).  

In vitro fertilization has remained inexpressible in the horse, presenting very low rates. 

McPartlin and colleagues (2009) suggested that capacitation and hyperactivation are 

fundamental for successful IVF in the equine. 

2.1.3.4. Fertilization  

Fertilization in mammals requires three critical events: (a) sperm migration between cumulus 

cells (if present); (b) sperm attachment and migration through the zona pellucida (ZP); (c) 

fusion of sperm and ovum plasma membranes. Attachment of the sperm head to the ZP is 

regulated by specific receptors on the zona surface. One of those specific receptors is the 

glycoprotein ZP3, to which only sperm with an intact acrosome can bind (Hafez & Hafez, 

2000b). The presence of glycosyl transferase, proteinases and glycosidases on plasma 

membrane covering the sperm head could result in binding to ZP3 through a lock/key 

mechanism such as that for an enzyme and its substrate (Wassarman, 1990). 

Penetration of the ZP by sperm occurs within 5-15 minutes after sperm attachment. Eventually, 

the acrosome reaction may occur before or after attachment of the sperm head to the 

glycoprotein receptors on the ZP. Binding of the sperm head to ZP3 allows interactions with 

several enzymes present in/or attached to the acrosomal membranes, which suggest that a 

combination of enzymes acts synergistically during penetration. Simultaneously sperm tail 

propels sperm into the vitelline space (Hafez & Hafez, 2000b).  
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The fusion between ova and spermatozoa plasma membranes cannot undergo with non-

acrosomal activated sperm even though attachment to the membrane surface occurs. 

Attachment of sperm occurs initially at the equatorial segment of the sperm head and fusion 

does not involve the plasma membrane over the equatorial segment. Subsequently, the surface 

of the equatorial region is incorporated into the plasma membrane of the ovum and can be 

identified in the egg membrane as late as the eight-cell stage (Hafez & Hafez, 2000b). 

After penetration of the perivitelline membrane by the spermatozoa, the activated ovum 

completes meiosis and expels the polar body into the perivitelline space. The remaining 

maternal haploid chromosomes are then enclosed by a pronucleus, and both pronuclei migrate 

to the ovum center, for rearrangements in the cytoskeletal framework of the ovum after 

activation (Hafez & Hafez, 2000b).  

Equine oviductal secretions improve IVF rates, probably due to specific secretions of this organ, 

which is a particular aspect in this mammal, with very low rates for this reproductive technic 

(Mugnier et al., 2009). 

2.1.3.5. Embryo development in oviduct 

After reaching the two-cell stage about 24h after ovulation, division of the blastomeres 

continues in a regular manner so that there are 4-6 cells at 24h, and 8-10 cells at 72h. During 

early cleavage, normal equine embryos have quite large amounts of cellular debris in the 

perivitelline space and they are normal ellipsoid in shape (Bezard et al., 1989). Although the 

evidence presented leaves little doubt that oviduct secretions have the ability to affect gamete 

and embryo physiology, the mechanisms by which these effects are implemented are largely 

undefined (Killian, 2004). In bovine, the use of oviduct epithelial cells (OEC) co-culture 

systems has improved the in vitro development of embryos (Abe & Hoshi, 1997; Ellington, 

Carney, Farrell, Simkin, & Foote, 1990). Also, equine embryo co-culture with OEC can support 

the development of four to eight-cell embryos in vitro, and those co-cultured embryos can 

continue normal development after transfer to recipient mares (Ball & Miller, 1992). 

One of the major proteins involved in oviduct embryo development is oviduct specific 

glycoprotein, which will be further addressed. In 1986, Brown and Cheng identified two major 

glycoproteins (with 250 and 90 kDa, respectively), which were absent from oocytes collected 

in the follicular phase, present in the oviductal fluid from estrus, but not from luteal phase. The 

glycoproteins remained on the zona pellucida of 2-to 4-cell embryos. According to these 

authors, shortly after ovulation, despite the presence around the egg of cumulus oophorus and 

corona radiata cells, significant amounts of oviductal glycoproteins can bind firmly to the zona 
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pellucida. In bovine, oviductal epithelium synthesizes and secretes a class of oviduct-specific 

glycoproteins (OVGP) that is present in the luminal fluid at the time of fertilization (Boice, 

Geisert, Blair, & Verhage, 1990). Some glycoproteins secreted by the ampulla and isthmus in 

explants cultures of oviducts from cycling pigs and from pigs soon after fertilization were 

identified (Buhi et al., 1990). These same authors have shown differences in the production of 

estrus-associated glycoproteins between the ampulla and isthmus in the pig oviduct (Buhi et 

al., 1992). In sheep, an estrus-associated glycoprotein (90-92kDa) was produced by explants 

from the ampulla of oviducts of ewes previously treated with E2 alone, or with E2 plus P4, but 

not from the isthmus (Murray, 1993). In cow, Sendai and co-authors (1994) isolated the amino 

acid sequence of a portion of an oviductal specific glycoprotein, which was highly homologous 

(71% identity) to that of a baboon oviduct-specific glycoprotein. They suggested that synthesis 

and secretion of this glycoprotein can be modulated by ovarian steroids, as previously shown 

in other species. A year later, Sendai et al. (1995) analyzed the amino acid sequence of oviductal 

glycoproteins (OVGPs) from different species (mouse, cow, baboon and human) and concluded 

that they presented a high degree of homology between them.  O'Day-Bowman et al. (1996) 

conducted an experiment with human oocytes, human OVGP, baboon OVGP and spermatozoa. 

Their results revealed that in vivo, human OVGP bind to fertilized oocytes and probably the 

association of OVGP with the ZP may play a role in fertilization, possibly through enhancing 

the binding of sperm to the ZP within the oviduct (O’Day-Bowman et al., 1996). Also, this 

group suggested that a homologous system (i.e. gametes and oviductal glycoprotein from the 

same species) is necessary for the study of oviductal glycoproteins function, since human 

hemizona assays conducted in the presence of baboon OVGP resulted in a significant decrease 

(P < 0.05) in the number of sperm bound per zona compared with that in culture medium alone 

despite high homology between human and baboon OVGP. 

Exposure of pigs oocytes to OVGP before and during fertilization, reduces the incidence of 

polyspermy and the number of bound sperm, and increases post cleavage development of 

blastocyst (Kouba, Abeydeera, Alvarez, Day, & Buhi, 2000). Later, in a very interesting review 

article (Buhi, 2002) the extensive family of glycoproteins was acknowledged in several animal 

species, by different authors, such as the oviduct secretory glycoprotein, estrus-associated 

glycoprotein, oviduct-specific estrus-associated glycoproteins, oviduct glycoprotein, oviductin, 

MUC-9, glycoprotein GP 125 and oviduct specific glycoprotein, as oviduct-specific oestrogen-

dependent glycoproteins (OGPs).  

In woman, mRNA of OVGP1 was detected throughout the menstrual cycle, and the highest 

level was found in the periovulatory period. It continued to be expressed in early pregnancy, 

but it was absent in the postpartum period and after menopause (Lok, Briton-Jones, Yuen, & 
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Haines, 2002). This protein was suggested to be related with a supportive role in fertilization 

and early embryo development. In another study, the role of different hormones was evaluated 

on human OVGP1 transcription and E2 and luteinizing hormone (LH) presented a positive 

correlation with it, while P4 exerted a negative effect (Briton-Jones et al., 2001). Nevertheless, 

E2 failed to maintain oviductin transcription on human oviductal cell culture, while human 

chorionic gonadotropin (hCG) addition, increased mRNA expression of this glycoprotein 

(Briton-Jones et al., 2003). 

In a study with swine it was possible to verify that the oviductal secretory response to 

spermatozoa was different from its response to oocytes. In fact, the presence of spermatozoa or 

oocytes in the oviduct altered the secretion of specific proteins. Most of these proteins are 

known to have an influence on gamete maturation, viability, and function, and these proteins 

may prepare the oviductal environment for the arrival of the zygote. These authors suggested 

the presence of a gamete recognition system within the oviduct capable of distinguishing 

between spermatozoa and oocytes (Georgiou et al., 2005) 

Osteopontin is another glycoprotein found in many tissues and known to be involved in cell 

adhesion and cell signaling by binding to integrins. Osteopontin is synthesized by the oviduct 

epithelium and present in oviduct fluid (Gabler, Chapman & Killian, 2003). Rates of sperm 

binding, fertilization and embryo development were significantly greater when ova were pre-

incubated with oviduct fluid prior to in vitro fertilization than if the oviduct fluid used in the 

pre-incubation contained antibody against osteopontin (Gonçalves, Way & Killian, 2001). It is 

well known that several unfertilized oocytes, in various stages of degeneration can be found in 

the mare’s oviducts (Onuma & Ohnami, 1975). A group of researchers reported a temporal 

association between embryonic PGE2 secretion and  the oviductal transport period, which could 

indicate that embryonic PGE2 may initiate and be responsible for a selective oviductal transport 

in the mare (Weber, Vanderwall, Freeman & Woods, 1991a; Freeman, Woods, Vanderwall, & 

Weber, 1992b). 

2.2. THE ROLE OF OVARIAN STEROIDS, OXYTOCIN AND TUMOR 

NECROSIS FACTOR IN OVIDUCT 

The regulation of oviduct muscular and secretory activity for optimal gametes and embryo 

transport is influenced by ovarian steroids (Wijayagunawardane et al., 1998; Wanggren et 

al., 2008; Nelis et al., 2015a; Nelis et al, 2015b), adrenergic nerves (Killian, 2011; Helm, 

Owman, Sjoberg, & Walles, 1982), nitric oxide (NO) (Ekerhovd, Brannstrom, Alexandersson 
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& Norstrom, 1997; Ekerhovd, Brannstrom, Weijdegard & Norstrom,1999; Gawronska, Bodek, 

& Ziecik, 2000; Szóstek et al., 2011), oxytocin (OXT) (Wijayagunawardane et al., 1998; 

Wanggren, Stavreus-Evers, Olsson, Andersson, & Gemzell-Danielsson, 2008; Jankovic, 

Varjacic, & Protic, 2001) prostaglandins (PGs) (Wijayagunawardane et al., 1998; Wanggren et 

al., 2008; Lindblom, Wilhelmsson, Wikland, Hamberger, & Wiqvist, 1983) and cytokine TNFα 

(TNF) (Szóstek et al., 2011), among others. Ovarian steroids also conduct a series of changes 

through proteomic and non-genomic pathways in the oviduct epithelium, affecting gene 

expression, proteome and secretion of oviduct fluid (Pérez Martínez et al., 2006).  In rat oviduct, 

E2 induces the expression of some genes, in a different way, before and after mating, and this 

difference is probably mediated by an E2 non-genomic signaling pathway operating on gene 

expression only in unmated rats (Parada-Bustamante et al., 2010). Based on hormonal tissues 

concentration, it was proposed that estradiol (E2), progesterone (P4), oxytocin (OXT), 

prostaglandin E2 (PGE2), prostaglandin F2α (PGF2α) and endotelin-2, could synergistically 

control oviductal contraction for optimal embryo transport during the periovulatory period 

(Wijayagunawardane et al., 1998). In woman oviduct, muscular contractions are regulated by 

prostaglandins (PGs) and P4, and probably, PG receptors expression is regulated by P4   

(Wånggren, Stavreus-Evers, Olsson, Andersson, & Gemzell-Danielsson, 2008). In the rat 

oviduct, E2 increases inositol-1,4,5-trisphosphate (IP3) by a nongenomic action operated by E2 

receptor I (ESR1) that it involves the activation of calcium–calmodulin protein kinase II 

(CaMKII) in the smooth muscle cells of rat oviduct (Reuquén et al., 2015). This E2 effect 

suggests the involvement of IP3 and CaMKII in the contractile activity, necessary to hasten 

oviductal egg transport. Recent studies have shown that the equine oviduct is an organ highly 

responsive to local changes in P4 and E2 concentrations affecting oviduct steroidogenic 

capacities and P4 receptor expression (Nelis et al., 2015a; Nelis et al., 2015b). Both E2 and P4 

exert their actions on the oviduct through their specific receptors. As master regulators of 

oviduct functions, estradiol receptors (ESRs) and P4 receptors (PGRs) rule the expression of 

downstream target genes (Shao et al., 2006). In fact, these authors defended a tissue-specific 

and hormonal regulation of PGR isoform expression in mouse fallopian tube and uterus, where 

they are potentially involved in regulation of mitochondrial-mediated apoptosis depending on 

the cellular compartment and a possible interaction between functional PGR protein and growth 

factor signaling which could present a coordinated role for regulating apoptotic process in both 

tissues in vivo. In mouse fallopian tube and uterus there is a tissue-specific and hormonal 

regulation of PGR isoform expression, which is potentially involved in mitochondrial-mediated 

apoptosis depending on the cellular compartment (Shao et al., 2006). Also in mouse, ESR1 may 

suppress the oviductal protease activity, which is paramount to allow normal fertilization and 
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preimplantation embryo development, since it will control degradation of ZP, avoiding embryo 

lysis (Winuthayanon et al., 2015). 

In addition, a possible interaction between functional PGR protein and growth factor signaling 

could represent a coordinated role for regulating the apoptotic process in both tissues in vivo. 

In cow, gene expression of ESR2, PGR, OXTR could be dependent on reproductive tract 

location, even though it was not influenced by distinct peri-ovulatory steroid environments 

(Araújo et al., 2015). Also in the cow, to investigate the causes of the short estrous cycles that 

occur frequently in dairy cows after estrus synchronization using PGF2α and gonadotrophin 

releasing hormone (GnRH), an experiment was designed to evaluate the expression of 

OXTR, PGR, ESR, cyclo-oxygenase II (COX2) and 20α-hydroxysteroid dehydrogenase. The 

expression of these proteins was similar between the normal and short-cycle groups.  Therefore, 

the authors concluded that despite evidence from previous studies that short estrous cycles are 

induced by premature PG release, differences in these receptors or in enzyme expression do not 

explain the eicosanoids release (Rantala, Mutikainen, Schuler, Katila, & Taponen, 2014).  As 

tubal motility is decreased by the P4-induced reduction in both beat frequency of cilia and 

frequency of contractions, this steroid hormone may have an inhibitory action on human tubal 

activity (Wanggren, Stavreus-Evers, Olsson, Andersson, & Gemzell-Danielsson, 2008; 

Mahmood, Saridogan, Smutna, Habib, & Djahanbakhch, 1998; Lindblom, Hamberger, & 

Ljung, 1980). Also, P4 regulates the expression of endothelin1 and endothelin receptor A in the 

mouse fallopian tube and by this way, it may control the muscular contraction and eventually 

gamete transport in the fallopian tube (Bylander, Gunnarsson, Shao, Billig, & Larsson, 2015). 

It has been shown that in vivo P4 concentrations can be very high in mare oviductal tissue and 

fluid ipsilateral to the ovulation side (Nelis et al., 2015b). Besides, P4 and E2 can modulate mare 

oviduct ciliary activity, cell ultrastructure, transcription of embryotropic genes, as well as 

oviduct fluid composition, shown by changes in glucose consumption and lactate production 

(Nelis et al., 2015a).  

Ovarian steroids themselves could also be involved in PGF2 and PGE2 production in the rat 

oviduct (Pérez Martínez et al., 2006). Estradiol has been shown to upregulate the expression 

and activity of prostaglandin synthase 2, an enzyme involved in PGs synthesis. This stimulatory 

effect may be receptor-mediated (Pérez Martínez et al., 2006). In the mare, oviduct treatment 

with PGE2 hastens the transport of equine embryos throughout this organ, which suggests a role 

for embryonic PGE2 in the initiation of selective oviduct transport (Weber, Freeman, 

Vandewall, & Woods, 1991; Robinson, Neal, & Allen, 2000). In the presence of sperm cells, 

bovine oviduct epithelial cells produce PGF2α that might stimulate spermatozoa transport 

(Kodithuwakku, Miyamoto, & Wijayagunawardane, 2007). The importance of PGE2 and PGF2 
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in oviduct, either present in seminal plasma or produced by oviduct cells themselves, may 

contribute for gametes and embryo transport and for signaling between the embryo and the 

oviduct, which might be crucial for embryo development (Kodithuwakku, Miyamoto, & 

Wijayagunawardane, 2007; Kaczmarek et al., 2010). 

Oxytocin, whose action is mediated by specific OXT receptors (OXTR), also plays a role in 

oviduct contraction or relaxation, in cyclic and/or pregnant females and in PG synthesis in 

several species such as cow, woman or bitch (Wanggren, Stavreus-Evers, Olsson, Andersson, 

& Gemzell-Danielsson, 2008; Kotwica et al., 2003; Wijayagunawardane, Gabler, Killian, & 

Miyamoto, 2003; Derussi et al., 2012). In the equine endometrium, OXT increased the secretion 

of PGE2 and PGF2α during follicular and mid-luteal phases, while E2 alone or added with P4 

stimulated PGF2α secretion (Galvão et al., 2012). Comparable results were observed in cat 

endometrium. It was demonstrated that OXT is produced by the early developing corpus luteum 

(CL), and that OXT may regulate PGs secretion especially at the early and mid-luteal phase 

(Siemieniuch, Mlynarczuk, Skarzynski, & Okuda, 2011). Also in swine, it was proved that LH 

stimulates PGF2α, release and COX2 expression by endometrium stromal cells, while E2 plus 

P4, presented a positive effect on PGE2 production (Waclawik, Jabbour, Blitek & Ziecik, 2009).  

In addition, a study on mare endometrium indicated that TNF production is closely related to 

ovarian steroid actions and the interaction between TNF and PG regulates endometrium 

physiologic processes (Szóstek, Adamowski, Galvão, Ferreira-Dias, & Skarzynski, 2014). 

More recently, it has also been confirmed, that E2, P4, OXT, among others, may influence the 

expression of aquaporins (AQP), either in swine uterus (Skowronski, 2010), or even in swine 

oviduct (Skowronski, Skowronska, & Nielsen, 2011). Later, this team has also investigated the 

expression of AQP1 and AQP5 either by the endometrium or by the myometrium. Their results 

indicate that P4 upregulated the expression of AQP1/AQP5 mRNAs and proteins in the 

endometrium and myometrium, E2 also stimulated the expression of both AQPs, but only in the 

endometrium, while OXT increased the expression of AQP1/AQP5 mRNAs and proteins in the 

myometrium (Skowronska, Mlotkowska, Nielsen, & Skowronski, 2015). 

2.3. Angiogenic modulation of equine oviduct function 

2.3.1. Blood flow supply 

The ovarian and the uterine arteries are responsible for the blood supply to the oviduct, but 

considerable variation exists in the relative contribution of both arteries among species, 

individuals and hormonal influences. Generally, numerous arterial anastomosis between a 



Chapter II – State of the art 

22 

branch of the uterine artery and the uterine branch of the ovarian artery supply the tube (García-

Pascual, Labadía, Triguero, & Costa, 1996). In rabbit, the isthmus has a randomly 

interconnecting subserosal venous plexus that surrounds the myosalpinx and a mucosa that is 

well supplied by arterioles. The ampulla has parallel branching of subserosal arteries and veins 

and a mucosa poorly supplied by arterioles, that will drain into large veins (Verco, Gannon & 

Jones, 1983). Although in rats, hamsters, guinea-pigs and monkeys there is a predominant 

contribution of the uterine artery to the oviductal supply, in cows, sheep and rabbits the ovarian 

artery appears to contribute to most of the vascular architecture of the oviduct (García-Pascual, 

Labadía, Triguero, & Costa, 1996).  

It has been demonstrated that higher levels of some steroid hormones exist in the arterial blood 

supplying the uterus and oviduct, than in the systemic blood, because of the transfer of steroids 

and peptides from ovarian venous and lymphatic effluent to the arterial ovarian blood.  This 

could be ascribed to the close apposition between venous and arterial vessels of the oviduct 

with extensive areas of contact that allow a countercurrent transfer mechanism (Stefanczyk-

Krzymowska, Skipor, Grzegorzewski, Wasowska, & Krzymowski, 1994). Nevertheless, in the 

mare this countercurrent transfer mechanism was shown to be absent.  This was concluded after 

resection of the oviductal vein that resulted in uterine P4 concentrations no longer higher in the 

ipsilateral side, than those on the contralateral side (Weems, Weems, Lee, & Vincent, 1989). 

However, in the mare, blood is also provided by an accessory ovarian branch from the uterine 

vein (ramus uterinus), which is heavily encircled by a coiled ovarian branch of the ovarian 

artery that supplies the ovary and also a large part of the oviduct through its cranial branch 

(Nelis et al., 2015a). The uterine branch of the ovarian artery and the middle and caudal tubal 

branches supply blood to the remainder of the oviduct (Nelis et al., 2015a). Besides blood 

vessels, as described for sheep, there is also an extensive network of lymphatic vessels in the 

mesovarium that could be involved in transport or diffusion of hormones (Staples et al., 1982, 

Nelis et al., 2015a). 

The amount of fluid present in the oviduct shows cyclic variations that are parallel to both 

changes in proliferation rate and secretory activity of epithelial cells, as well as to changes in 

blood flow to the tube, being maximum at the preovulatory time (Kamwanja & Hansen, 1993). 

Therefore, the luminal milieu of the oviduct is created and maintained by the transport and 

permeability properties of the blood-oviductal lumen barrier, together with the secretory 

activity of the epithelium, both being under ovarian steroid control (Stefanczyk-Krzymowska 

et al., 1994). 



Chapter II – State of the art 

23 

2.3.2. Angiogenesis  

Angiogenesis is the growth of blood vessels from the existing vasculature. It occurs throughout 

life in both health and disease, beginning in utero and continuing through old age. Capillaries 

are needed in all tissues for diffusion exchange of nutrients and metabolites. Changes in 

metabolic activity leads to proportional changes in angiogenesis and, hence, proportional 

changes in capillarity and oxygen play a pivotal role in this regulation (Adair & Montani, 

2010a). Angiogenesis should not be confused with vasculogenesis, which is defined as the 

differentiation of endothelial precursor cells, also known as angioblasts, into endothelial cells 

(ECs) in combination with the formation of a primitive vascular network (Schmidt, Brixius, & 

Bloch, 2007). Nowadays, it is accepted that both processes are observed during embryonic and 

adult growth processes (Risau, 1997). 

Angiogenesis can occur by two different ways: (i) sprouting, and (ii) intussusception. Sprouting 

angiogenesis is initiated in poorly perfused tissues when oxygen sensing mechanisms detect a 

level of hypoxia that demands the formation of new blood vessels to satisfy the metabolic 

requirements of parenchymal cells. The basic steps of sprouting angiogenesis include 

enzymatic degradation of capillary basement membrane, EC proliferation, directed migration 

of ECs, tubulogenesis (EC tube formation), vessel fusion, vessel pruning, and pericyte 

stabilization (Adair & Montani, 2010a). Intussusceptive angiogenesis is also called “splitting 

angiogenesis” because the vessel wall extends into the lumen causing a single vessel to split in 

two. This type of angiogenesis is thought to be fast and efficient compared with sprouting 

angiogenesis. Intussusceptive angiogenesis mainly causes new capillaries to develop where 

capillaries already exist (Kurz, Burri & Djonov, 2003). 

Many different metabolic fuels are required for cellular metabolism, but oxygen is especially 

critical because cells have limited stores compared with metabolic substrates such as glucose, 

fatty acids, and amino acids. This relative inability of tissues to store oxygen can explain why 

oxygen is a master signal in growth regulation (Adair & Montani, 2010b). Many proangiogenic 

factors and their receptors can be modulated either directly or indirectly by hypoxia or ischemia 

in poorly perfused tissues. These include, but are not limited, to the following: vascular 

endothelial growth factor (VEGF) and its receptors, 1 and 2 (VEGFR1 and VEGFR2), placental 

growth factor; angiopoietin 1, angiopoietin-2 and their Tie2 receptor; fibroblast growth factor 

2 (FGF2), and transforming growth factor-beta (TGFβ) (Adair & Montani, 2010b). 

Generally, a low level of O2 in the tissues causes the release of VEGF, which in turn stimulates 

angiogenesis. The development of new capillaries increases the supply of O2 to the tissues, 

causing VEGF to return to nearly normal levels, thus closing the negative feedback loop (Hang, 
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Kong, Gu & Adair, 1995). Adenosine is a nucleoside produced in all cells of the body by 

dephosphorylation of ATP, and is assumed to have a long-term role in maintaining tissue 

oxygenation by stimulating angiogenesis (Adair, 2005).  

Growth factors have been demonstrated to be implicated in several reproductive functions. 

Among the abundant angiogenic growth factors known, FGF and VEGF will be discussed, due 

to their relevant role in angiogenesis. 

2.3.3. Fibroblast Growth Factor (FGF) 

A protein activity identified as fibroblast growth factor (FGF), was identified for the first time 

in 1973 (Armelin, 1973). The activity of this protein would be studied and referred as basic 

FGF (or FGF2), due to the overall basic composition of aminoacids and a high isoelectric point 

(Ornitz & Itoh, 2015). Later, another factor with similar mitogenic activity was identified from 

the bovine brain. This factor presented a low isoelectric point and was referred as acid FGF, or 

FGF1 (Thomas, Rios-Candelore & Fitz-Patrick, 1984). 

FGF1 and FGF2 belong to the FGF subfamily 1. These FGFs are released from cells by direct 

translocation across the cell membrane (Prudovsky, Kumar, Sterling & Neivandt, 2013). 

Extracellular FGF subfamily 1 can pass through the plasma membrane of the target cells, moves 

through the cytosol, and enters the nucleus (Olsnes, Klingenberg & Wiedlocha, 2003). Potential 

functions of nuclear FGF subfamily 1 include regulation of the cell cycle, cell differentiation, 

survival, and apoptosis and it is the only one that can activate all FGF receptors (Bouleau et al., 

2005).  

FGFRs share a high percentage of sequence homology, and consist of three important domains: 

extracellular ligand-binding domain, single transmembrane domain, and intracellular tyrosine 

kinase domain (Johnson & Williams, 1993). Despite the general characteristics shared among 

the family members, an arrangement of isoforms is specific within each family. Structural 

diversity observed across the isoforms of FGFRs is ascribed to the alternative merging of 

mRNA sequence (Johnson, Lee, Lu & Williams, 1990). FGFRs signaling is primarily triggered 

by the binding of the receptors to FGF ligands and the subsequent formation of various 

complexes to initiate downstream signal transduction (Turner et al., 2010). 

FGF and its receptors are essential for organogenesis, tissue maturation, homeostasis, response 

to injury, and cancer development. Some biochemical studies have identified mechanisms that 

regulate the expression of FGFs, their bioavailability, and their ability to activate cellular 

responses through interaction with cell surface receptors. Within the cell, signal transduction 

mechanisms have been identified that reveal interactions with multiple cellular signaling 
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pathways, complex feedback mechanisms, and regulatory molecules that control FGF 

signaling, both extracellularly and intracellularly (Ornitz & Itoh, 2015). 

Different members of FGF family, mostly FGF1 and FGF2, can induce, under in vitro 

conditions, a complex pro-angiogenic phenotype, including proliferation, migration, protease 

production, integrin and cadherin receptor expression and intercellular gap-junction 

communication (Javerzat, Auguste & Bikfalvi, 2002). Besides that, activation of FGFR1 or 

FGFR2 by FGF1, FGF2 or FGF4, leads to endothelial cell proliferation. FGFR involves the 

activation of several parallel signaling pathways, because of receptor autophosphorylation 

(Cross & Claesson-Welsh, 2001). Developmental studies have uncovered redundant functions 

of FGFs and FGFRs, and interactions with most of the other major signaling pathways, 

including BMP, WNT, Notch and Hedgehog. The discovery of endocrine FGFs has uncovered 

new mechanisms that regulate metabolism, lipid, and mineral homeostasis (Ornitz & Itoh, 

2015). 

FGF family members are present in ovarian follicles of the cow (Berisha, Sinowatz, & Schams, 

2004).  They may be involved in folliculogenesis and especially during final growth of the 

preovulatory follicle by stimulation of angiogenesis and granulosa cell survival and 

proliferation (Berisha et al., 2004).  

2.3.4. Vascular Endothelial Growth Factor (VEGF) 

Expression and transcription of Vascular Endothelial Growth Factor (VEGF) have been 

evaluated in human oviduct. VEGF is expressed on epithelial cell, smooth muscle fibers and 

blood vessels. Its transcription was higher during the peri-ovulatory period and in infundibulum 

and ampulla regions. Also, it presented a positive correlation with  FSH and LH serum 

concentrations (Lam et al., 2003).  VEGFR signaling is initiated upon binding of a covalently 

linked ligand dimer to the extracellular receptor domain. This interaction promotes receptor 

homo- and heterodimerization followed by phosphorylation of specific tyrosine residues 

located in the intracellular juxta-membrane domain, the kinase insert domain, and the 

carboxyterminal tail of the receptor. Subsequently, a variety of signaling molecules are 

recruited to VEGFR dimers giving rise to the assembly of large molecular complexes, so-called 

signal transduction particles or signalosomes that activate distinct cellular pathways (Stuttfeld 

& Ballmer-Hofer, 2009). 

In swine, several growth factors and their receptors systems were identified in endometrium 

and oviduct. Epidermal growth factor, VEGF and FGF, as well as their receptors, were detected 

in porcine oviductal and endometrial tissue during the estrous cycle and at the time of 
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implantation. Estrous cycle dependent variations in the expression of growth factor systems 

were associated with specific cell types of the endometrial tissue. These growth factor systems 

seem to be involved in a supposed paracrine network to successfully establish and maintain 

pregnancy in pigs (Wollenhaupt, Welter, Einspanier, Manabe, & Brüssow, 2004). 

Still in bovine, also VEGF was implicated in oviduct motility and embryo transport 

(Wijayagunawardane, Kodithuwakku, Yamamoto, & Miyamoto, 2005). These authors 

suggested that the pre-ovulatory LH-surge, together with increasing E2 production from the pre-

ovulatory follicle associated with basal P4 levels from the regressing luteal structure, 

upregulates the oviductal VEGF system (Wijayagunawardane, Kodithuwakku, Yamamoto, & 

Miyamoto, 2005). Then, VEGF induces the maximum oviductal production of contraction–

relaxation-related substances for oviduct contraction and rapid transport of gametes to the 

fertilization site. In addition, oviductal VEGF elevation caused by the LH-surge, appears to 

down-regulate the oviductal VEGF system immediately after ovulation, and thereby may 

contribute to suppress oviductal contraction to ensure embryo slow transport to the uterus at the 

optimal time. 

The relationship between VEGF expression and microvessel density was also evaluated in 

woman with endometriosis. There appears to be a dysregulation of angiogenic activity in the 

eutopic endometrium of women with endometriosis and endometriotic lesions with high 

proliferative activity were accompanied by higher local angiogenic activity and higher levels 

of VEGF in serum and peritoneal fluid (Bourlev et al., 2006). 

In swine oviduct, insemination alone as well as ovarian stimulation, affect the mRNA and 

protein profiles of the VEGF system. Disrupted VEGF system expression may be crucial to 

many events occurring during the periovulatory period and consequently could lead to 

deprivation of VEGF-dependent factors that are necessary for proper fertilization, gamete 

transport, and embryo development (Małysz-Cymborska & Andronowska, 2014). 

Establishment and maintenance of CL is a complex event, where cytokines and angiogenic 

factors could be simultaneously implicated. Galvão and co-authors (2012), suggested a novel 

auto/paracrine action of cytokines, specifically TNF, on the up-regulation of VEGF for 

angiogenesis stimulation in equine early CL, while at luteolysis, cytokines down-regulated 

angiogenesis. Additionally, VEGF stimulated P4 and PGE2 production, which may be crucial 

for CL establishment (Galvao et al., 2012). 

In human medicine, VEGF family in nowadays under intensive research.  The expression of 

VEGF and VEGFR-2 (i.e. KDR) mRNAs and protein in gestational diabetes mellitus (GDM)-

placental tissues, was reduced, suggesting that maternal GDM affects the angiogenic function 

of placenta (Meng et al., 2016). It is also known that cancer cells secrete VEGF to activate 
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VEGFR-2 pathway in endothelial cells in the vicinity, as part of cancer-related angiogenesis 

events. Interestingly, activation of KDR signaling is found in breast cancer cells, but its role 

and regulation are not clear. Ongoing preclinical and clinical studies might prove that 

pharmaceutically targeting KDR could be an effective therapeutic strategy in treating one of 

most aggressive type of cancer: the triple-negative breast cancer (Zhu & Zhou, 2015). 

Interestingly, an intimate cross-talk may exist among FGF2 and several members of the VEGF 

family during angiogenesis. Several scientific works indicate that FGF2 can induce 

neovascularization indirectly by activating the VEGF/VEGFR system (Presta et al., 2005).  

2.4. Fibrosis in equine oviduct  

2.4.1. Fibrosis – the process 

Fibrosis is often defined as a wound-healing response that has gone out of control. Repair of 

damaged tissues is an essential biological process that allows the ordered replacement of dead 

or damaged cells after injury, a mechanism that is critically important for survival. Damage to 

tissues can result from various acute or chronic stimuli, including infections, autoimmune 

reactions, and mechanical injury. Although initially beneficial, the healing process becomes 

pathogenic if it perpetuates, resulting in substantial remodeling of the extra-cellular matrix 

(ECM) and formation of permanent scar tissue (Wynn, 2007). When injuries occur, damaged 

epithelial and/or endothelial cells release inflammatory mediators that initiate an 

antifibrinolytic coagulation cascade, which triggers formation of both blood clots and a 

provisional ECM (Kumar, Abbas & Fausto, 2005). Platelets exposure to ECM components is 

essential for triggering aggregation, clot formation and hemostasis (Esmon, 2005). 

Consequently, platelet degranulation promotes vasodilation and increased blood vessel 

permeability, while stimulated myofibroblasts, epithelial and/or endothelial cells produce 

matrix metalloproteinases (MMPs). Activated platelets also release growth factors such as 

platelet-derived growth factor (PDGF), a potent chemoattractant for inflammatory cells and 

transforming growth factor-β1 (TGF-β1), which stimulates ECM synthesis by local fibroblasts 

(Barrientos, Stojadinovic, Golinko, Brem & Tomic-Canic, 2008). These mechanisms are 

implicated in the initiation of the fibrotic process (Wynn & Ramalingam, 2012). According to 

these authors, platelets and damaged epithelial and endothelial cells release a variety of 

chemotactic factors that recruit inflammatory monocytes and neutrophils to the site of tissue 

damage. These inflammatory cells in spite of playing an important role removing tissue debris 

and the killing of invading bacteria, also secrete a variety of toxic mediators, including reactive 



Chapter II – State of the art 

28 

oxygen and nitrogen species that are harmful to the surrounding tissues. Consequently, they can 

further exacerbate the tissue-damaging inflammatory response, leading to scar tissue 

developing (Wynn & Ramalingam, 2012).  

2.4.2. Tumor necrosis factor α 

The inflammatory cells will themselves produce several growth factors and cytokines, such as 

TNF and interleukin 1β (IL1β). Several studies have demonstrated the influence of either TNF 

or IL1β on lung and liver fibrosis (Miyazaki et al., 1995; Kolb, Margetts, Anthony, Pitossi & 

Gauldie, 2001; Tomita et al., 2006).  Nevertheless, their effect is not clear and could depend on 

several factors. TNF is a primary immune and inflammatory regulator which stimulates 

fibroblast chemotaxis (Postlethwaite & Seyer, 1990), while proliferation is probably mediated 

by autocrine PDGF (Battegay, Raines, Colbert, & Ross, 1995).  

Concerning the collagen production, the effect of TNF is controversial. Previous studies 

indicated that it inhibits the synthesis of type I collagen in cultured dermal fibroblasts on the 

transcriptional level, resulting in a dose-dependent reduction of the production of type I 

collagen. In the same work, a reduction of type III collagen was also reported (Mauviel et al., 

1988). Furthermore, higher concentrations of TNF reduced the expression of tissue inhibitor of 

metalloproteinases 1 (TIMP1), thereby promoting the degradation of ECM proteins (Ito, Sato, 

Iga & Mori, 1990). The effects of TNF on collagen synthesis and on the production of MMPs 

and TIMPs are not restricted to fibroblasts and are also found in other cell types (Armendariz-

Borunda, Katayama & Seyer 1992). In contrast to the results discussed above, a recent study 

suggested that TNF might promote a profibrotic phenotype in murine intestinal myofibroblasts 

in vitro, where TNF stimulated collagen synthesis, increased expression of TIMP1, and 

decreased activity of MMP2 (Theiss, Simmons, Jobin & Lund, 2005). Investigators in another 

in vitro study also proposed a profibrotic effect of TNF, indirectly via induction of TGFβ. 

However, it remains unclear whether the induction of TGFβ is sufficient to overcome the 

inhibitory effects of TNF on collagen production, since the expression of collagen was not 

analyzed (Sullivan, Ferris, Pociask & Brody, 2005). The induction of TGFβ upon stimulation 

with TNF might therefore represent a counterregulatory mechanism to compensate for the 

inhibitory effects of TNF (Distler, Schett, Gay, & Distler, 2008). As previously referred, the 

effect of TNF on fibrosis is unclear. Most of in vitro studies show antifibrotic effects of TNF, 

in that it suppresses the production of collagen, reduces the expression of TIMPs, and stimulates 

the release of MMPs, thereby preventing the accumulation of ECM, while in vivo studies 

demonstrated that inhibition of TNFα impairs the fibrosis process. These differences in the 
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results between in vitro and in vivo studies might be explained by the inflammatory component 

in animal models of experimental fibrosis, which does not exist on in vitro experiments. Since 

TNF exerts a potent inflammatory effect, its direct antifibrotic effects on fibroblasts might be 

outweighed in experimental models of fibrosis by its important role in driving inflammation 

(Distler et al., 2008).  

2.4.3. Transforming Growth Factor β 

TGFβ is believed to be the most potent profibrotic cytokines. It is produced by several cells, 

such as macrophages, lymphocytes, endothelial cells, platelets, and fibroblasts themselves. It is 

a powerful activator of production of collagen and other extracellular matrix components, often 

in an autocrine fashion. In addition to its role as a profibrotic cytokine, it can directly induce 

the differentiation of fibroblasts into collagen-secreting myofibroblasts (Atamas, 2002). TGFβ1 

is now widely described as a multifunctional cytokine with broad modulatory activities that 

affect numerous important biological pathways. These include pathways involved in the 

regulation of embryogenesis, immunity, carcinogenesis, cell proliferation and migration, 

wound healing, inflammation and fibrosis, among others (Verrecchia & Mauviel, 2007). The 

cellular source of TGFβ dictates its activity, with TGFβ derived from macrophages generally 

showing wound-healing and profibrotic activity and TGFβ secreted from CD4+ T regulatory 

cells (Treg cells) functioning as an anti-inflammatory and antifibrotic mediator (Kitani et al., 

2003). TGFβ is functionally implicated with others growth factors. It probably upregulates 

connective tissue growth factor, which is an autocrine factor associated with collagen and 

fibronectin production in fibroblasts (Igarashi, Okochi, Bradham, & Grotendorst, 1993; Frazier, 

Williams, Kothapalli, Klapper & Grotendorst, 1996; Shi-wen et al., 2000).).  

Fibroblasts are non-hematopoietic, non-epithelial, non-endothelial cells that are widely 

distributed throughout the mesenchyme where they synthesize ECM proteins which form a 

structural framework to support tissue architecture and function in steady-state conditions 

(Ueha, Shand, & Matsushima, 2012). They also play a significant role in tissue repair following 

multi-factorial tissue damage by forming a provisional ECM, a process preceding re-

epithelialization in successful repair. Unfortunately, dysregulated activation, proliferation, and 

survival of fibroblasts often results in the excessive deposition of ECM proteins and inhibition 

of re-epithelialization, leading to tissue fibrosis (Gabbiani, 2003). Fibroblasts are 

immunophenotypically identified as cells negative for hematopoietic, epithelial, and endothelial 

makers. The lack of specific markers for fibroblasts or possible subpopulations, including 
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myofibroblasts, complicates the cellular and molecular understanding of these cells (Ueha et 

al., 2012). 

To repair, regenerate and restore homeostasis after injury, tissue-resident fibroblasts are 

activated and transformed into myofibroblasts, as previously referred. Myofibroblasts are 

contractile cells expressing α-smooth muscle (αSMA) actin and myosin bands, and still secrete 

copious amounts of ECM. They are very important in wound granulation tissue, aiding its 

contracture and closure towards healing process (Wynn & Ramalingam, 2012). Myofibroblasts 

could also arise from regenerating epithelial or endothelial cells, or from epithelial stem cells 

progenitor (via chronic inflammation-induced epithelial–mesenchymal transition), or 

endothelial-mesenchymal transient cells. Also CD34+ bone marrow-derived progenitor cells, 

can be recruited, contributing to the myofibroblast pool at the site of wound repair and fibrosis 

(Wynn & Ramalingam, 2012). The last ones are recognized as fibrocytes. Fibroblasts and 

myofibroblasts are responsible for the excessive accumulation of COL1, which is responsible 

for the excessive deposition of ECM during fibrotic process (Ueha et al., 2012). 

2.4.4. Matrix Metalloproteinases 

Other important players in the development of fibrosis, are now considered the matrix 

metalloproteinases (MMPs). Although MMPs have long been considered to be primarily 

responsible for turnover and degradation of ECM substrates, they are now recognized as being 

responsible for mediating crucial functions in a variety of processes, particularly related to 

immunity and repair, such as cell migration, leukocyte activation, antimicrobial defense and 

chemokine processing (Gill & Parks, 2008). Common aspects of the MMP family include: 1) 

the presence of zinc in the active site of the catalytic domain; 2) synthesis of the MMPs as 

proenzymes that are secreted in an inactive form; 3) activation of the latent zymogen in the 

extracellular space; 4) recognition and cleavage of the ECM by the catalytic domain of the 

enzyme; and 5) inhibition of enzyme action by both serum-borne and tissue-derived 

metalloproteinase inhibitors in the extracellular environment. Currently, the MMP family 

includes at least 25 related proteolytic enzymes that includes four broad classes: the 

collagenases, gelatinases, stromelysins, and membrane type enzymes (Curry & Osteen, 2003). 

Most of these enzymes is secreted by inactive pro-enzymes and will be activated in the 

extracellular space by numerous factors including MMPs, plasmin, interleukin 1β, TNF and 

others (Visse & Nagase, 2003).  Although some MMPs can degrade matrix, being expected to 

be under expressed in fibrosis, to resolve the excess of matrix, having indeed an anti-fibrotic 

action, others can have pro-fibrotic functions (Giannandrea & Parks, 2014). MMPs can 
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contribute to the degree of initial injury and repair, to the onset and resolution of inflammation, 

to the activation and de-activation of myofibroblasts, and to the deposition and breakdown of 

ECM. In other words, MMPs are involved in both augmenting and attenuating many processes 

that impact fibrosis (Giannandrea & Parks, 2014).  

The activity of MMPs depends on its biosynthesis, which could be either over or down-

regulated. This indicates that the effectors controlling gene expression may undergo changes, 

since MMPs might be controlled at the level of transcription; also from the four tissue inhibitors 

of metalloproteinases (TIMP) – TIMP1, TIMP2, TIMP3 and TIMP4 – which can control MMPs 

activity (Ra & Parks, 2007). 

Researchers concern with the relevance of MMPs in fibrotic conditions, has brought up the use 

of circulating levels of specific MMPs or possible MMP degradation products as reliable 

biomarkers of active fibrosis (Leeming et al., 2011). 

MMP2 mainly influences the degree of collagen deposition during activation of liver 

hematopoietic stem cells. It is unclear how MMP2 mediates this effect, but a likely mechanism 

would be proteolysis of a surface protein that results in altered outside-in signaling (Radbill et 

al., 2011). Also in the kidney, Takamiya and co-authors (2013) demonstrated increased 

collagen deposition and fibroblast activation in diabetic knockout mice for MMP2 gene 

(Mmp2–/–), supporting the view that MMP2 has an anti-fibrotic role.  

In human pulmonary fibrosis MMP9 expression resulted in less fibrosis in one study (Cabrera 

et al., 2007), whereas in another it was pro-fibrotic (Lee et al., 2001), while others concluded 

it had no role (Kaviratne et al., 2004). A significant decrease in αSMA levels in Mmp9–/– mice 

was observed, suggesting a role for MMP9 in myofibroblast activation or survival (Wang et al., 

2010). 

TIMP1 may promote liver fibrosis by inhibiting the activity of MMPs, such as MMP13 and 

MMP14, increasing fibrosis in Timp1–/– mice (Wang et al., 2011). Nevertheless, in pulmonary 

fibrosis in mice, it was elevated and persisted in bleomycin-injured Timp3–/– lungs (Gill et al., 

2010), suggesting a protective role on this condition. Kidney fibrosis was enhanced in Timp3–

/– mice subjected to unilateral ureteral obstruction for 2 weeks (Kassiri et al., 2009). According 

to this article, the protective effect of TIMP-3 is due to the suppression of TNFα, which 

mediates renal fibrosis and regulates expression of several MMPs.  

In the mare, ovarian stromal cells also produce important components of the ECM remodeling 

machinery and therefore, may play a role in the ECM remodeling during follicular growth 

(Song, Porter, & Coomber, 1999). Also in equine, it was suggested that MMP2 and tissue 

transglutaminase may play a major role in changes that occur in ECM homeostasis in the case 

of endometrosis (Walter, Handler, Miller, & Aurich, 2005). By histochemistry techniques the 
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presence of MMP2, MMP9 and TIMP1 was visualized in equine endometrium, even though 

with no apparent difference between normal and endometrosis cases (Porto, 2006).  Another 

study verified that the secretion of MMP2 and MMP9 into the uterine lumen is minimal during 

the normal equine estrous cycle, although increased inhibitory activity was seen by TIMP2 

during diestrus. The secretion of MMP2 and MMP9 into the uterine lumen was dramatically 

increased during endometritis while TIMP2 activity was decreased at the same time. The 

activity of MMP9 was demonstrated to reside in cytoplasmic granules of endometrial 

eosinophils, and gelatinase activity was not demonstrated in other cell types using in situ 

zymography (Oddsdóttir, 2007).  

2.4.5. Prostaglandins 

The receptors for PGE2 are present on multiple cell types (Hata & Breyer, 2004) reflecting the 

ubiquitous functions of PGE2, which range from nociception and other aspects of neuronal 

signaling, to hematopoiesis, regulation of blood flow, renal filtration and blood pressure, 

regulation of mucosal integrity, vascular permeability, and smooth muscle function (Durand & 

Zon, 2010). The heterogeneous effects of PGE2 are reflected by the existence of four different 

PGE2 receptors, designated EP1, EP2, EP3 and EP4, with an additional level of functional 

diversity resulting from multiple splice variants of EP3 that exists in at least eight forms in 

humans and three forms in mice. PGE2 can be produced by all cell types of the body, with 

epithelia, fibroblasts, and infiltrating inflammatory cells representing the major sources of PGE2 

during an immune response (Kalinski, 2012). 

Studies carried out in vitro have suggested that PGE2 has potentially important 

bronchoprotective and anti-inflammatory properties, and may elicit bronchodilation when 

introduced into asthmatic airways in vivo (Pavord & Tattersfiel). This eicosanoid also 

recognized as “epithelium-derived relaxing factor,” may play a key role in regulating airway 

tone. Airway epithelium removal prevented PGE2 production and thus increased the contractile 

response of smooth muscles induced by acetylcholine, histamine, and PGF2α (Aizawa, 

Miyazaki, Shigematsu & Tomooka, 1988). It was also observed that fibroblast in Idiopathic 

Pulmonary Fibrosis (F-IPF) have a striking defect in their capacity to synthesize the anti-

inflammatory and anti-fibrogenic molecule PGE2. This reduction in the endogenous capacity 

of F-IPF to down-regulate their function via PGE2 may contribute to the inflammatory and 

fibrogenic response in cases of IPF (Wilborn et al., 1995) More recently, Wei and co-authors 

(2014) confirmed that PGE2 exerts an essential effect against pulmonary fibrogenesis via EP2-

mediated signaling transduction (Wei et al., 2014). Also in kidney it was suggested that PGE2 
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has an important role in the progression in disease via the EP1/EP3 receptor, whereas EP2 and 

EP4 receptors are equally important in preserving the progression of chronic kidney failure (Xi, 

Xu, Chen, Fan, & Wu, 2016). 

While PGE2 has an anti-fibrotic effect, PGF2α is considered to have a pro-fibrotic action. Loss 

of prostaglandin F receptor (FP) selectively attenuates pulmonary fibrosis while maintaining 

similar levels of alveolar inflammation and TGFβ stimulation. Deficiency in FP and inhibition 

of TGFβ signaling additively decrease fibrosis. Furthermore, PGF2α is abundant in 

bronchoalveolar lavage fluid of subjects with IPF and stimulates proliferation and collagen 

production of lung fibroblasts via FP, independently of TGF-β (Oga et al., 2009). In patients 

with IPF, the metabolite of PGF2α, the 15-keto-dihydro PGF2α, was very high and correlated 

with disease severity and prognosis, which supports a potential pathogenic role for PGF2α in 

human IPF (Aihara et al., 2013). In the mare, endometrial explants exposure to NETs 

constituents (elastase, myeloperoxidase and cathepsin G), decreased PTGES and increased 

COL1 transcription (Rebordão et al., 2014; Rebordão et al., 2018). Besides, long time exposure 

of luteal phase environment of endometrial explants to some NETs components, resulted in an 

increase in PGF2α transcription (Rebordão et al., 2013).  

Also in cardiac tissue, it was proven that PGF2α, increased the mRNA and protein levels of 

collagen I and III, time- and concentration-dependently (Ding et al., 2012). In this work, it was 

also shown that PGF2α induces high FP receptor expression in cardiac fibroblast, and 

independently of TGFβ. Silencing of FP-receptor gene may exert a protective effect on diabetes 

cardiomyopathy (DCM) by improving myocardial fibrosis, which could suggest a new 

therapeutic approach for human DCM (Ding et al., 2014). 

In a mouse model of bleomycin-induced systemic sclerosis (SSc), plasmin–α2-antiplasmin 

(α2AP) binding to adipose triglyceride lipase promoted PGF2α synthesis through calcium-

independent phospholipase A2 in fibroblasts, and PGF2α synthesis that was promoted by α2AP, 

induced TGFβ production (Kanno et al., 2013). Also in patients with knee osteoarthritis, the 

infrapatellar fat pad, induced an increase in collagen production, via PGF2α stimulation, with 

no involvement of TGFβ (Bastiaansen-Jenniskens et al., 2013).  
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In the present section, the different methodologies will be first described. After that, the 

experimental designs of the various studies performed, will be addressed. 

3.1. METHODOLOGIES 

3.1.1. Collection of mare internal genitalia and estrous cycle evaluation 

From 2010 until 2015, during the period from early April to late September the internal genitalia 

and blood samples were obtained post mortem at the abattoir, as by-products, from randomly 

designated cyclic mares according to the different planned laboratory work. After stunning, 

mares were euthanized, conformed to the Portuguese legislation (DL 98/96, Art. 1º) and 

European mandates concerning welfare aspects of animal stunning and euthanasia methods 

(EFSA, AHAW/04-027). 

The biological material used was from healthy mares, as determined by ante-mortem and post-

mortem veterinarian examination, and therefore considered appropriate for human 

consumption.  Because the reproductive status of the mares was unknown, the various stages 

of the estrous cycle (follicular, early and mid-luteal stages) were identified based on follicle 

size and morphological appearance of the luteal structures (corpus hemorragicum - CH, corpus 

luteum - CL, or corpus albicans - CA), as described (Roberto da Costa et al., 2007; Roberto da 

Costa et al., 2008). Estrous cycle phase was further confirmed by plasma P4 concentrations in 

blood samples obtained at the time of exsanguination into heparinized tubes (Monovettes; Ref. 

02.265, Sarstedt, Numbrecht, Germany), Briefly, in the follicular phase (FP), the mare ovary 

had a preovulatory follicle of 35-40 mm in diameter, visible edema of endometrium, plasma P4 

< 1ng/mL and no CL. In the early luteal phase (ELP) a corpus hemorragicum (CH) had replaced 

the ovulatory follicle, large follicles were absent and plasma P4 > 1ng/mL. Later on, in mid-

luteal phase (MLP) a mature CL, was associated with follicles 15 to 20 mm in diameter and 

plasma P4 > 6ng/mL, while in the late-luteal phase; the regressing CL was simultaneous with 

follicles 30–35 mm in diameter and plasma P4 ranged from 1–2.5 ng/mL (Roberto da Costa et 

al., 2007; Roberto da Costa et al., 2008). 

Oviducts and uteri from mares with apparent reproductive problems, such as endometritis, were 

discarded from the study. Thus, oviducts and endometria from the ipsilateral side to the 

predominant ovarian structure (i.e. CH, CL, follicle) from healthy mares were used in this study 

and based on the criteria above described and grouped, as follows: follicular phase, early-luteal 

phase, or mid-luteal phase. Endometrial and oviduct segments (infundibulum, ampulla, and 

isthmus) samples were collected in: (i) RNA later (AM7020, Ambion, Applied Biosystems, 
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CA, USA) for gene and protein expression quantification; (ii) buffered formaldehyde for 

histological (hematoxylin-eosin stain; picrosirius red stain) and immunohistochemistry (IHC) 

studies; or in (iii) 2.5% glutaraldehyde (AppliChem, Germany) in 0.1-M sodium cacodylate 

buffer for scanning electronic microscopy (SEM). The three segments of the oviduct used for 

tissue explant culture were immersed in sterile transport medium Hank’s balanced salt solution 

(HBSS; 55021C; Sigma) with 0.1% bovine serum albumin (BSA), 20 µg/mL gentamicin 

(G1397; Sigma), and 250 g/mL amphotericin (A2942; Sigma).  Oviducts for OEC studies were 

ligated on both edges with surgical clamps and immersed in sterile transport medium.  Samples 

were transported on ice to the laboratory under 2 h. 

3.1.2. Histochemical studies 

3.1.2.1.Endometrium classification 

In a group of randomly assigned mares (n=18), formaldehyde-fixed endometrium histologic 

sections (4µm) were stained with hematoxylin-eosin, and classified into 3 categories according 

Kenney (1978). This classification system is based on histopathologic alterations, mainly 

inflammation, endometrial glands alteration, lymphatic vessels appearance, and fibrosis. Thus, 

in a healthy endometrium (category I) uterine glands are normal and little to no inflammatory 

cells are present. Endometria with inflammation and mild to moderate fibrosis are graded as 

category II. When endometrosis worsens, dilated endometrium glands are surrounded by layers 

of collagen fibers, which assigns this endometrium to category III that is the most severe score 

of Kenney classification system (Kenney, 1978). From the same mares, endometria kept in 

RNAlater were also used for gene expression determination (qPCR). Mare’s endometria 

histopathology according to Kenney’s grading system was related to gene expression, estrous 

cycle phase, and corresponding oviduct gene expression.   

3.1.2.2. Picrosirius Red staining 

Endometrial and corresponding oviduct 4m histological sections were stained with Picrosirius 

Red Stain Kit (connective tissue stain; ref. ab150681), a specific stain for collagen I and III 

fibers, under polarized light microscopy. A 1% Picrosirius Red solution was prepared with a 

saturated aqueous solution of picric acid. After de-waxing and hydration of the paraffin 

sections, cells nuclei were stained with Weigert´s hematoxylin for 8 min, followed by a 10 min. 

wash in running tap water. The slides were stained in Picrosirius red for 1h, and then were 
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washed in acidified water (0.5% acetic acid aqueous solution). The excess of water was 

removed by vigorous shaking of the slides. The slides were dehydrated in three changes of 

100% ethanol, cleared in xylene and mounted with mounting medium (Entellan Merck 

Millipore; ref. 107960). 

The sections were observed under polarized light microscopy (Leica Leitz DMRD), 

photographed (Mag=100x). Collagen type I fibers appeared colored in red, while Collagen type 

III, stained green. The areas of COL1 and COL3 were measured using a digital image 

processing system (Leic Qwin V3), and data further subjected to statistical analysis. 

3.1.3. Immunohistochemistry 

The protein expression of ovarian steroid hormones receptors (ESR1, ESR2, PGR), OXT 

receptor (OXTR), prostaglandin synthases (AKR1C3, PTGES), and their intensity in specific 

cells of the infundibulum, ampulla and isthmus, in FP, ELP, and MLP were determined by 

immunohistochemistry, as described (Ferreira-Dias et al., 2007; Rebordão et al., 2017). 

Consecutive 4 µm histological sections were used for identification of each protein under study. 

Sections were incubated with primary antibody against PGR (mouse monoclonal diluted 1:500, 

0.002 mg/mL; MA1-12626, Thermo Scientific), ESR1 (rabbit polyclonal diluted 1:100, 

0.01mg/mL, ab16363, Abcam), ESR2 (rabbit polyclonal diluted 1:500, 0.002 mg/mL; ab3577, 

Abcam), OXTR (rabbit polyclonal diluted 1:500, 0.0004 mg/mL, sc33209, SCBT), AKR1C3 

(rabbit polyclonal diluted 1:250, 0.004 mg/mL, ab137546, Abcam), PTGES (rabbit polyclonal 

diluted 1:250, 0.004 mg/mL¸ PA5-28476, Thermo Scientific). The most adequate primary 

antibody concentrations were optimized by us. Conditions of incubation with primary 

antibodies, are summarized in table 1. Immunohistochemistry staining was assessed as the 

presence of a characteristic brown staining, with a light microscope (Olympus BX51, Tokyo, 

Japan) equipped with a DP21 Olympus camera (Tokyo, Japan). Negative controls were 

performed by replacing the primary antibody by mouse IgG (used at the same concentration as 

primary antibodies, 550878, BD Bioscience) or rabbit polyclonal IgG (used at the same 

concentration as primary antibodies; ab27478, Abcam) or by 0.1M PBS (pH 7.4). Positive 

controls were performed with endometrial tissues (Rebordão et al., 2017). Oviduct staining area 

and intensity were assessed on 10 random fields by 3 evaluators blinded to treatment groups. 

As described by Rebordão and co-authors (2017), intensity of immunolabeling in the oviduct 

was quantified by a subjective score (1. no staining; 2. weak staining; 3. moderate staining; 4. 

intense staining). Scores from all evaluators were averaged for each oviduct slide. 
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3.1.4. Microvascular density assessment 

To evaluate microvascular density in equine oviduct throughout the estrous cycle, 4 µm 

histological sections were incubated with CD31 Monoclonal Antibody (M0823, Clone JC70A, 

DAKO-Agilent, Santa Clara, USA), in the dilution of 1: 50. Negative controls were performed 

by replacing the primary antibody by mouse IgG (used at the same concentration as primary 

antibody, 550878, BD Bioscience), and by 0.1M PBS (pH 7.4).  

For each oviduct portion, number of vessels and microvascular areas were determined on 

histologic sections, on 10 randomly chosen microscope fields, using a light microscope at a 

total magnification of 400X, connected to a computerized cell analysis system (CAS, Becton & 

Dickinson, Erembodegem, Belgium). All blood vessels were evaluated equally without 

distinguishing their nature (arterioles, venules and capillaries). Vascular area was calculated as 

the percentage of the area occupied by blood vessels with respect to the total area in each 

microscopic field on all 10 histologic sections evaluated per each mare. Vessel numbers were 

also counted on the same histologic sections used for microvascular area determination. Total 

vascular area and blood vessels number were determined as the mean values for all 10 

microscopic fields of the oviduct tissue evaluated for each mare. 

3.1.5. Western blot 

Protein expression of PGR, ESR1, ESR2, OXTR, AKR1C3 and PTGES, on equine oviduct 

tissue was assessed by Western Blot (WB), exclusively in the ampulla, in all phases of the 

estrous cycle studied. Protein expression of FGFR1, FGFR2, KDR, OVGP1 and COL1 was 

assessed by WB in all portions of the oviduct and in all phases of the estrous cycle. Tissue 

samples were minced and placed in ice-cold RIPA buffer (50 mM Tris-HCl, pH 7.4, 50 mM 

Table 1 - Primary antibodies dilution, incubation time and temperature used in immunohistochemistry 

of equine oviduct. 

Primary 

Antibody 
Reference Dilution Incubation time 

Incubation 

Temperature 

ESR1 Ab16363 1/100 ON 4ºC 

ESR2 Ab 3577 1/500 ON 4ºC 

PGR MA1-12626 1/500 ON 4ºC 

OXTR Sc33209 1/500 1 h RT 

PTGES PA5-28476 1/250 ON 4ºC 

AKR1C3 Ab137546 1/250 ON 4ºC 

ESR1: estrogen receptor 1; ESR2: estrogen receptor 2; PGR: progesterone receptor; OXTR: oxytocin 

receptor; AKR1C3: aldo-keto reductase family 1, member 3; PTGES: microsomal prostaglandin E2 

synthase 1; ON: overnight; RT: room temperature. 
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EDTA, 150 mM NaCl and 1% Triton X-100) with protease inhibitor (Complete Mini Protease 

Inhibitor Cocktail Tablets, 1 tablet per 10 mL of buffer; Roche) and homogenized on ice. After 

protein extraction, its concentration was determined by Bradford reagent (500-0006; Bio-Rad, 

Hercules, CA, USA), as referred (Ferreira-Dias et al., 2007). To perform the WB analysis of 

PGR, ESR1, ESR2, OXTR, AKR1C3 and PTGES, 100 g of protein was separated by SDS-

PAGE (12% acrylamide gel, ref. 161-0155; Bio-Rad, Hercules, CA, USA), while for analysis 

of FGFR1, FGFR2, KDR, OVGP1 and COL1, 40 µg of protein were used, in an 8% acrylamide 

gel. Proteins were transferred to nitrocellulose membranes (ref: 1620116; Bio-Rad) (Galvão et 

al., 2013). The concentration of each primary antibody was determined according to the 

minimal dilution at which the specific protein was still expressed in the tissue, and that could 

guarantee it was not in the saturation range.  

3.1.5.1. Evaluation of ESR1, ESR2, PGR, OXTR, PGES, AKR1C3 protein expression 

Expression of these proteins was evaluated with the same antibodies used for 

immunohistochemistry, but diluted at 1:500 for PGR, 1:500 for ESR1, 1:1,000 for ESR2, 1:750 

for OXTR, 1:500 for AKR1C3, 1:500 for PTGES, 1:500. Five mares in each estrous cycle phase 

were used. To normalize the loaded protein, a mouse monoclonal antibody against ß actin 

(A5441, Sigma, USA) was used at the dilution 1:10,000. The membranes were incubated with 

the primary antibody overnight at 4ºC, except for OXTR and β actin, which were incubated at 

room temperature for 1h and 1.5h, respectively. For  actin and PGR, the secondary antibody 

used was horseradish peroxidase (HRP)-conjugated goat anti-mouse (A2554, Sigma, USA) at 

1:10,000. For ESR1, ESR2, OXTR, AKR1C3, conjugated anti-rabbit (P0448, Dakocytomation, 

Carpinteria, CA, USA), at 1:10,000, was used. Conditions of incubation with primary 

antibodies, are summarized in table 2. Chemiluminescent detection was obtained by incubation 

of the membrane with SuperSignal® West Pico (34077, ThermoScientific, Waltham, MA, 

USA) and by its exposure to a photographic film (Kodac BioMax LighFilm; Kodac-Industrie, 

Chalon-sur-Saone, France). Target proteins expression was normalized dividing the units of 

arbitrary densitometry by β actin density for each band. After, Image J 

(http://rsb.info.nih.gov/ij/index.html) was used to evaluate densitometry signals (Miller, 2010). 
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3.1.5.2.Evaluation of FGFR1, FGFR2, KDR, OVGP1, COL1 protein expression 

Protein expression of FGFR1, FGFR2, KDR, OVGP1, and COL1 was carried out using specific 

primary antibodies against FGFR1 (Orb 156864, Biorbyt, Cambridge, UK, dilution 1/250), 

FGFR2 (SC 6930, Santa Cruz Biotechnology, Dallas, USA, dilution 1/250), KDR (Orb 99143, 

Biorbyt, Cambridge, UK, dilution 1/250), OVGP1 (SC377267, Santa Cruz Biotechnology, 

Dallas, USA, dilution 1/250), COL1 (20121; Novotec, Lyon, France, dilution 1/1,000). 

Conditions of incubation with primary antibodies, are summarized in table 3. Five mares in 

each estrous cycle phase were used, and evaluation was performed on the three portions of 

oviduct. Explants from ampulla submitted to different treatments, (E2, P4, OXT and TNF, as 

further explained), were also analyzed by WB for COL1 protein expression. Once again, to 

normalize the loaded protein, a mouse monoclonal antibody against β actin (A5441, Sigma, 

USA) was used at the dilution 1: 10,000. All the membranes were incubated with the primary 

antibody overnight at 4ºC, except against β actin, which was incubated for 1.5 h, at room 

temperature. Membranes first incubated against FGFR2, OVGP1, were further incubated for 

1.5 h at room temperature with horseradish peroxidase (HRP)-conjugated goat anti-mouse 

Table 2 - Primary antibodies dilution, incubation time and temperature used in western blot analysis of 

equine oviduct. 

Primary 

Antibody 
Reference Dilution Incubation time Incubation Temperature 

ESR1 Ab16363 1/500 ON 4ºC 

ESR2 Ab 3577 1/500 ON 4ºC 

PGR MA1-12626 1/1,000 ON 4ºC 

OXTR Sc33209 1/500 1 h RT 

PTGES PA5-28476 1/500 ON 4ºC 

AKR1C3 Ab137546 1/500 ON 4ºC 

ESR1: estrogen receptor 1; ESR2: estrogen receptor 2; PGR: progesterone receptor; OXTR: oxytocin 

receptor; AKR1C3: aldo-keto reductase family 1, member 3; PTGES: microsomal prostaglandin E2 

synthase 1; ON: overnight; RT: room temperature. 

Table 3 - Primary antibodies dilution, incubation time and temperature used in western blot analysis of 

equine oviduct. 

Primary 

Antibody 
Reference Dilution Incubation time Incubation Temperature 

FGFR1 Orb156864 1/500 ON 4ºC 

FGFR2 Sc6930 1/500 ON 4ºC 

KDR Orb99143 1/250 ON 4ºC 

OVGP1 Sc377267 1/1,000 ON 4ºC 

COL1 20121 1/1,000 ON 4ºC 

FGFR1: fibroblast growth factor receptor 1; FGFR2: fibroblast growth factor receptor 2; KDR: kinase 

insert domain receptor (vascular endothelial growth factor receptor 2); OVGP1: oviduct-specific 

glycoprotein; COL1: collagen type I.  
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(A2554, Sigma, USA) at 1:10,000. Membranes incubated against FGFR1, KDR and COL1, 

were after incubated conjugated anti-rabbit (P0448, Dakocytomation, Carpinteria, CA, USA), 

at 1:10,000, for 1.5 h, at room temperature. Membranes incubated against βactin, were after 

incubated for 1h, at room temperature, with (HRP)-conjugated goat anti-mouse (A2554, Sigma, 

USA) at 1:5,000. Protein expression was visualized using luminol enhanced 

chemiluminescence (Super Signal West Pico, 34077; Thermo Scientific, Waltham, USA). 

Chemiluminescence detection and image acquisition was performed by ChemiDoc XRS+ 

system (Bio-Rad Laboratories, Inc.). Densitometry signal evaluation was assessed using Image 

LabTM software. Dividing the units of arbitrary densitometry by standard sample density for 

each band normalized target protein expression, and values were expressed in terms of Relative 

Density. Sample Relative Density of each lane was further divided by β-actin loading-control 

Relative Density for that same lane.  

3.1.6. Quantitative Real Time Polymerase Chain Reaction (qPCR) analysis 

From mare infundibulum, ampulla and isthmus obtained in the follicular phase, early luteal 

phase and mid-luteal phase, mRNA was extracted. In addition, from equine endometrium, 

mRNA was extracted from a group of 18 mares to analyze the expression of some genes, also 

analyzed in oviduct. mRNA Extraction and Purification Kit (28704; Qiagen, Hilden, Germany), 

including a DNA-digestion step with an RNase-free DNase Set (50979254; Qiagen), were used 

according to the manufacturer’s instructions. Quantification of RNA was performed using the 

Nanodrop system (ND 200C; Fisher Scientific, Hamton, PA, USA) and its quality assessed by 

visualization of 28S and 18S rRNA bands after electrophoresis through a 1.5% agarose gel and 

red staining (41003; Biotium, Hayward, CA, USA). Reverse transcription was carried out with 

Reverse Transcriptase Superscript III enzyme (18080093; Invitrogen, GIBCO BRL, Carlsbad, 

CA, USA) from 400g total RNA in a 20 L reaction volume using oligo(dT) primer (27-7858-

01; GE Healthcare, Buckinghamshire, UK). Specific primers for progesterone receptor (PGR), 

estradiol receptor 1 (ESR1), estradiol receptor 2 (ESR2), oxytocin receptor (OXTR), 

prostaglandin E2 synthase (PTGES), prostaglandin F2α synthase (AKR1C3), fibroblast growth 

factor 1 (FGF1), fibroblast growth factor 2 (FGF2), fibroblast growth factor receptor 1 

(FGFR1), fibroblast growth factor (FGFR2), vascular endothelial growth factor (VEGF), 

vascular endothelial growth factor receptor 1 (FLT1), vascular endothelial growth factor 

receptor 2 (KDR), oviduct glycoprotein 1 (OVGP1), collagen type 1 (COL1), collagen type 3 

(COL3), matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), tissue 

inhibitor of metalloproteinase 1 (TIMP1), tumor necrosis factor α (TNF), tumor necrosis factor 
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receptor 1 (TNFRSF1A), tumor necrosis factor receptor II (TNFRSF1B), prostaglandin E 

synthase (PTGES), prostaglandin F2α synthase (AKR1C3), prostaglandin E receptor 2 (EP2) or 

prostaglandin F2α receptor (FP), as well as reference gene were designed using Primer3 

Software and confirmed with Primer Express® (Applied Biosystems, Foster City, CA, USA). 

To choose the most stable internal control gene under our experimental conditions, four 

potential reference genes β2-microglobulin (2M), glyceraldehyde 3-phosphate 

dehydrogenase, succinate dehydrogenase A (GAPDH), mitochondrial ribosomal protein L32 

(MRPL32) and 40β-actin were tested. During the validation process, samples from oviduct 

(infundibulum, ampulla and isthmus) and endometrium (n=4), from distinct stages of the 

estrous cycle (FP, ELP and MLP), were run in parallel for the tested genes. The mRNA 

transcription of 2M, for oviduct tissues, and MRPL32 for the endometrium, were the most 

stable reference genes and were unaffected by the experimental conditions, with less than a 

twofold change between stages (Dheda et al., 2004). Primers concentrations were optimized to 

the minimum concentration: lowest cycle threshold ratio. This technique was used in four 

different experiments: 

3.1.6.1. Evaluation of PGR, ESR1, ESR2, OXTR, PTGES, AKR1C3 gene transcription in 

equine oviduct 

Evaluation of the transcription of PGR, ESR1, ESR2, OXTR, PTGES, AKR1C3 (Table 4) genes 

throughout the estrous cycle and between infundibulum and ampulla was carried out. This assay 

was performed in a 7300 Real-Time PCR System (Applied Biosystems, Warrington, UK) using 

the default thermocycler program for all genes: a 10-min pre-incubation period at 95ºC was 

followed by 40 cycles of 15s at 95ºC and 1 min at 60ºC, followed by a dissociation step (15 s 

at 95ºC, 30 s at 60ºC and 15 s at 95ºC). Both the target genes and reference gene were run 

simultaneously and all reactions were done in duplicate wells on a 96-well optical reaction plate 

(4306737; Applied Biosystems) in 25 L reaction volume containing 6.5 l water, 2 L forward 

primer, 2L reverse primer, 12.5 L Power SYBER Green Master Mix (4367659; Applied 

Biosystems) and 2 L cDNA. All polymerase chain reaction products were run on a 2.5% 

agarose gel (BIO-41025; Bioline, Luckenwalde, Germany) to confirm specificity. Relative 

mRNA quantification data were then analyzed with the real-time PCR miner algorithm (Zhao 

& Fernald, 2005). According to the instructions supplied for the miners algorithm after 

determination of average cyclic threshold (Ct) and primer efficiency level (E) using the 

equation [1/(1+E)Ct]. Thereafter, the expression of the target genes was normalized against that 
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of the reference gene and the mRNA expression compared between infundibulum and ampulla 

at different phases of the estrous cycle. 

 

3.1.6.2. Evaluation of FGF1, FGF2, FGFR1, FGFR2, VEGF, FLT1, KDR gene 

transcription in equine oviduct 

Evaluation of the gene transcription of FGF1, FGF2, FGFR1, FGFR2, VEGF, FLT1, KDR 

(Table 5), was performed in the infundibulum, ampulla and isthmus, obtained at different 

phases of the estrous cycle. Real time PCR was also done on FGFR1, FGFR2, FLT1 and KDR 

in oviduct explants, previously submitted to different treatments (E2, P4, OXT or TNFα).  

Previous techniques including mRNA extraction and reverse transcription, were performed as 

described in section 3.1.6. qPCR was carried out by using StepOnePlusTM System (Applied 

Biosystems, Warrington, UK). Thermocycler program was run for all genes as follows: initial 

denaturation step (10 min at 95ºC), followed by 40 cycles of denaturation (15 s at 95ºC), and 

annealing (1 min at 60ºC), followed by a dissociation step (15 s at 95º, 30 s at 60ºC and 15 s at 

95º). Also target genes and reference gene were run simultaneously and all reactions were and 

in duplicate wells on a 96-well optical reaction plate (4306737; Applied Biosystems) in 13 L 

reaction volume containing 3.5 l water, 1 L forward primer, 1 L reverse primer, 6.5 L 

Power SYBER Green Master Mix (4367659; Applied Biosystems) and 1 L cDNA.  An 

Table 4 - Primer sequence used for ovarian steroids and oxytocin receptors, and prostaglandin synthases 

in real time PCR analysis of mare oviductal tissues. 

Gene 

(Acession number) 
Sequence 5´- 3 

Amplicon 

(base pairs) 

ESR1 

(GeneID: 791249) 

Forward: ACGATGCCACCAGACCATTT 160 

Reverse:  AGCCAGGCACATTCCAGAAG 

ESR2 

(GeneID: 100033964) 

Forward: CCCTTCACCGAGTCCTCCAT 232 

Reverse:  TCCCTGTCCAGAACGAGGTC 

PGR 

(GeneID: 100033883) 

Forward: CCCAGCATGTCGCCTTAGAA 150 

Reverse: AGGGGTTGGCTTTCATTTGG 

OXTR 

(XM_001491665.2) 

Forward: TGGACGCCATTCTTCTTCGT 141 

Reverse: GCCCGTGAACAGCATGTAGA 

AKR1C3 

XM_001500921.1 

Forward: TGGGTCACTTTCCTTCAACCA 200 

 Reverse: CTTCTCCATTGCCTCCCATGT 

PTGES 

(NM_001081935.1) 

Forward: CACGCTGCTGGTCATCAAGA 127 

Reverse: GGTCGTCCCGGTGAAACTG 

2M 

(X69083) 

Forward: CGGGCTACTCTCCCTGACTG 92 

Reverse: TTGGCTTTCCATTCTCTGCTG 

ESR1: estrogen receptor 1; ESR2: estrogen receptor 2; PGR: progesterone receptor; OXTR: oxytocin 

receptor; AKR1C3: aldo-keto reductase family 1, member 3; PTGES: microsomal prostaglandin E2 

synthase 1; β2M: beta2 microglobulin. 



Chapter III – Materials and methods 

45 

electrophoresis on 2.5% agarose gel (BIO-41025; Bioline, Luckenwalde, Germany) was run to 

confirm the specificity of the product. Quantification of relative mRNA data was done by real-

time PCR algorithm (Zao & Fernald, 2005), according to the instructions supplied for the 

miner’s algorithm after determination of average cyclic threshold (Ct) and primer efficiency 

level (E) using the equation [1/(1+E)Ct]. The assay concerning the transcripts of FGFR1, 

FGFR2, FLT1 and KDR in explants was performed in a 7900 HT Fast Real-Time PCR System 

(ThermoFisher Scientific, Waltham, USA), in the Laboratory of Prof. Dariusz Skarzynski, 

Department of Reproductive Immunology Institute of Animal Reproduction and Food 

Research, Polish Academy of Sciences, Olsztyn, Poland, using the default thermocycler 

program for all genes: a 10-min pre-incubation period at 95ºC was followed by 40 cycles of 15s 

at 95ºC and 1 min at 60ºC, followed by a dissociation step (15 s at 95ºC, 15 s at 60ºC and 15 s 

at 95ºC). Also, the specificity of products was confirmed by an electrophoresis run on 2.5% 

agarose gel. 

Table 5 - Primer sequence used for fibroblast growth factors, vascular endothelial growth factor, and 

respective receptors, real time PCR analysis of mare oviductal tissues. 

Gene 

(Acession number) 
Sequence 5´- 3 

Amplicon 

(base pairs) 

FGF1 

(XM_005599133) 

Forward: GTGGATGGGACAAGGGACAG 187 

Reverse:  GGTTTTCCTCCAGCCTTTCC 

FGF2 

(NM_001195221) 

Forward: GGAGAAGAGCGACCCTCACA 234 

Reverse:  ATACTGCCCCGTTCGTTTCA 

FGFR1 

(XM_014736560) 

Forward: ACCCAACCGTGTGACCAAAG 260 

Reverse: GGTTGTGGCTGGGGTTGTAA 

FGFR2 

(XM_014732956) 

Forward: CCAGCTCCTCCATGAACTCC 237 

Reverse: TGACTGCTTCCTTGGGCTTC 

VEGF 

(NM_001081821) 

Forward: ATGCGGATCAAACCTCACCA   117 

Reverse: AGGCCCACAGGGATTTTCTT 

FLT1 

(NM_001309471) 

Forward: AGGCAACGAATTGACCAACG  

Reverse: GCACCTGCTGTTTTCGGTGT 

KDR 

(XM_014738773) 

Forward: CTTCCAGTGGGCTGATGACC 100 

Reverse: AGCTTCCACCGAAGATTCCA 

2M Forward: CGGGCTACTCTCCCTGACTG 92 

(X69083) Reverse: TTGGCTTTCCATTCTCTGCTG  

FGF1: fibroblast growth factor 1; FGF2: fibroblast growth factor 2; FGFR1: fibroblast growth factor 

receptor 1; FGFR2: fibroblast growth factor receptor 2; VEGF: vascular endothelial growth factor; 

FLT1: related tyrosine kinase 1 (vascular endothelial growth factor receptor 1); KDR: kinase insert 

domain receptor (vascular endothelial growth factor receptor 2); β2M: beta2 microglobulin. 
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3.1.6.3. Evaluation of OVGP1 gene transcription in equine oviduct 

Evaluation of mRNA expression of OVGP1 (table 6), throughout the estrous cycle, between the 

different portions of the oviduct, and also in explants previously submitted to different 

treatments (E2, P4, OXT or TNF) was carried out. This assay was performed using a 

StepOnePlusTM System (Applied Biosystems, Warrington, UK), on the same conditions 

mentioned above. The assay concerning the transcripts of OVGP1 from explants was performed 

in a 7900 HT Fast Real-Time PCR System (ThermoFisher Scientific, Waltham, USA), in the 

Laboratory of Prof. Dariusz Skarzynski, Department of Reproductive Immunology Institute of 

Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland, using 

the default thermocycler program for all genes: a 10-min pre-incubation period at 95ºC was 

followed by 40 cycles of 15 s at 95ºC and 1 min at 60ºC, followed by a dissociation step (15 s 

at 95ºC, 15 s at 60ºC and 15 s at 95ºC). Also, the specificity of products was confirmed by an 

electrophoresis run on 2.5% agarose gel. 

 

3.1.6.4. Transcription of collagen type I and type III, and collagen putative modulating 

genes in equine oviduct and endometrium 

Evaluation of mRNA expression of COL1, COL3, MMP2, MMP9, TIMP1, TNF, TNFRSF1A, 

TNFRSF1B, PTGES, AKR1C3, EP2, and FP (Table 7), in the three portions of oviduct and 

endometrium, of the same group of mares was carried out. This assay was also performed in a 

StepOnePlusTM PCR System (Applied Biosystems, Warrington, UK) using the same default 

thermocycler program for all genes, as well as all the same procedures were equally run. 

Thereafter, the expression of the target genes was normalized against that of the reference gene 

and the mRNA expression compared at different phases of the cycle regarding COL1 and 

COL3. The levels of these transcripts were correlated to those in the endometrium. Even though 

estrous cycle phase was not considered, the transcription of MMP2, MMP9, TIMP1, TNF, 

TNFRSF1A, TNFRSF1B, PTGES, AKR1C3, EP2, and FP was correlated between oviduct and 

endometrium.  

Table 6 - Primer sequence used for oviduct-specific glycoprotein real time PCR analysis of mare 

oviductal tissues. 

Gene 

(Acession number) 
Sequence 5´- 3 

Amplicon 

(base pairs) 

OVGP1 

(XM_014740011) 

Forward: GCCCTTTCCGCCTTGTCTAT 141 

Reverse:  GCCATAGCCTCTTCCCTTGG 

2M Forward: CGGGCTACTCTCCCTGACTG 92 

(X69083) Reverse: TTGGCTTTCCATTCTCTGCTG  

OVGP1: oviduct-specific glycoprotein; β2M: beta2 microglobulin. 
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Table 7 - Primer sequence used for collagen and putative modulating genes, real time PCR analysis of 

mare oviductal and endometrial tissues. 

Gene 

(Acession number) 
Sequence 5´- 3 

Amplicon 

(base pairs) 

COL1A2 

(XM_001492939.3) 

Forward: CAAGGGCATTAGGGGACACA 196 

Reverse:  ACCCACACTTCCATCGCTTC 

COL3A1 

(AF117954.1) 

Forward: CAAAGGAGAGCCAGGAGCAC 98 

Reverse:  CTCCAGGCGAACCATCTTTG 

MMP2 

(XM_001493281.2) 

Forward: TCCCACTTTGATGACGACGA 115 

Reverse: TTGCCGTTGAAGAGGAAAGG 

MMP9 

(NM_001111302.1) 

Forward: GCGGTAAGGTGCTGCTGTTC 177 

Reverse: GAAGCGGTCCTGGGAGAAGT 

TIMP 

(NM_001082515.1) 

Forward: CAAGTTCGTGGGGACCTCAG 141 

Reverse: CTCTCCATAGCGGGGGTGTA 

PTGES 

(NM_001081935.1) 

Forward: CACGCTGCTGGTCATCAAGA 127 

Reverse: GGTCGTCCCGGTGAAACTG 

AKR1C3 

(XM_001500286) 

Forward: TGGGTTCCGCCATATTGATT 151 

Reverse: CAACTCGGGTCGAAGGAAAG 

EP2 Forward: TGACCATCACCTTCGCCG 179 

(NM_001127352.1) Reverse: GACCGCAGCACTCTTAGCACA  

FP Forward: GTGCAATGCCATCACAGGAA 225 

(NC_009148.2) Reverse: GCCATTCGGAGAGCAAACAG  

TNF Forward: ACCGAATGCCTTCCAGTCAA 143 

(AB035735) Reverse: CATTTGCACGCCCACTCA  

TNFRSF1A Forward: TCAACGGCACAGTGCATCT 98 

GU166822.1 Reverse: CAGGACATGCTCTCTT  

TNFRSF1B Forward: TGCATACTTCCAAGGCAGGAG 108 

(XM_014737672.1) Reverse: GCACACCACGTTTGATGTCG  

ALK5 Forward: CACCATCGAGTGCCAAATGA 210 

(XM_014735928.1) Reverse: CTCCTCTCCACTTCCCTCGC  

TGFBR2 Forward: TGCTGCCTGTGTGACTTTGG 107 

(NM_001301147.1) Reverse: TCTGGGGCCATGTATCTTGC  

β2M Forward: CGGGCTACTCTCCCTGACTG 92 

(X69083) Reverse: TTGGCTTTCCATTCTCTGCTG  

MRPL32 Forward: AGCCATCTACTCGGCGTCA 144 

(XM_001492042) Reverse: GTCAATGCCTCTGGGTTTCC  

 . 
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3.1.7. Enzyme Immunoassays 

3.1.7.1. Hormone determinations  

Concentrations of PGE2 and PGF2 in oviductal conditioned media and P4 in plasma were 

determined by direct enzyme immunoassay (EIA) as described (Galvão et al., 2010). The 

standard curve for P4 ranged from 0.39 to 100 ng/mL. Concentration of P4 at 50% binding 

(ED50) was 4.2 ng/mL. The intra-assay coefficient of variation (CV) was 5.5%. The PGE2 

standard curve ranged from 0.38 ng/mL to 100 ng/mL and the concentration at 50% binding 

(ED50) was 6.24 ng/mL. The intra- assay CV was 1.5%. The PGF2α standard curve ranged from 

0.07 to 20 ng/mL, and the ID50 was 1.84 ng/mL. The intra-assay CV was 7.3%. Hormones 

concentration in culture media was normalized for the number of live cells (OEC) after cell 

viability assessment or for explants weight (base line corresponded to control level).  

3.1.7.2.OVGP1 determination 

Concentrations of OVGP1 oviductal conditioned media was determined by direct enzyme 

immunoassay (EIA) (#LS-F 12237-1, LifeSpan BioSciences, Inc, Seattle, USA). The OVGP1 

standard curve ranged from 78 pg/mL to 5,000 pg/mL and the intra- assay CV was <10%. 

OVGP1 concentration in culture media was normalized for explants weight (base line 

corresponded to control level). 

3.1.8. In vitro studies  

3.1.8.1. Oviduct epithelial cells (OEC) isolation 

At the laboratory, oviducts previously ligated on both edges with surgical clamps, were first 

dissected from the surrounding tissue, rinsed in an ethanol solution (70%) and further immersed 

in culture medium Dulbecco’s modified eagle’s medium (DMEM) and F-12 Ham medium (D/F 

medium; 1:1 [v/v], D-8900; Sigma) with 20 µg/mL gentamicin and 0.1% bovine serum albumin 

(BSA; 735078; Roche Diagnostics GmbH Mannheim, Germany) added. For OEC preparation, 

only the ampulla was used. It was cut open longitudinally and the mucosa layer gently scraped 

with a scalpel blade. Cells were filtered through a metal wire mesh (100 m) with a cell 

dissociation Sieve – Tissue Grinder Kit (cd1-1kt, Sigma), to remove the undissociated tissue 

fragments. The filtrate was washed twice by centrifugation (120 g/10 min) with D/F with 0.1% 
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BSA and 20 g/mL gentamicin added. Supernatant was discarded and erythrocyte lysis was 

accomplished after treating the pellet with Red blood lyses buffer (R7757, Sigma). Another 

washing step was performed. Cells were resuspended in DMEM and F-12 Ham medium (D/F 

medium; 1:1 [v/v], D-8900; Sigma) containing 10% fetal bovine serum (FBS; 26140-079, 

Gibco, USA), 20 g/mL gentamicin and amphotericin [250 µg/mL]. Cell viability, was higher 

than 88% as determined by trypan blue dye (T8154, Sigma).   

3.1.8.2. Oviduct cell assessment 

In order to identify the epithelial (ciliated or secretory) nature of oviduct isolated cells, 100µL 

of oviduct cell suspension at a concentration of 5x105 cell/mL were submitted to a cytospin 

(Cytospin 2, Shandon) for 8 min at 370 g. Oviductal cells present in the pellet were then fixed 

with 4% paraformaldehyde (30 min at 4ºC), washed in PBS (10 min), Triton 0.25% (10 min), 

and PBS (10 min). Blocking [PBS with 2.5% w/v bovine serum albumin and (A7906; Sigma-

Aldrich, Inc.) tween (0.05%; Sigma-Aldrich)] was performed at room temperature, for 1 h. For 

double-staining, primary antibodies (mouse anti-cytokeratin, 1:100, MSK019, Zytomed; goat 

anti-RAB 27B, 1:50, 0.004 mg/mL, SC 22993, Santa Cruz) were diluted in blocking solution 

and incubated overnight at 4°C. After washing (4 times with PBS), slides were incubated with 

the secondary antibodies (donkey anti-mouse Alexa 488, 1:300, Invitrogen; chicken anti-goat 

Alexa 594, 1:300, Invitrogen), for 30 min at room temperature. Slides were then washed in PBS 

(10 min) and stained with Hoeschst 33258 (Sigma, 20 µL stock solution/mL PBS) for 15 min. 

After, slides were washed twice with PBS for 10 min, and coverslips mounting was performed 

with Mowiol (Sigma). All these procedures were carried out at room temperature. Cells were 

observed under the fluorescence microscope and representative images were acquired (x400 or 

x1,000 magnification) (Figure 1). Cell count and identification was performed on 300 cells, at 

random (Mag 400x). Hoescht stained blue all cells nuclei, regardless of cell types, while 

cytokeratin stained green the cytoplasm of epithelial cells (ciliated and secretory cells), and 

RAB 27B marked secretory granules in red, in epithelial secretory cells.  
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3.1.8.3.Oviductal explants preparation  

As referred for OEC preparation, once in the laboratory, the oviducts were carefully dissected 

from the surrounding tissue, rinsed in an ethanol solution (70%) and further immersed in culture 

medium D/F medium; 1:1 [v/v], D-8900; Sigma) with 20 µg/mL gentamicin and 0.1% BSA. 

Afterwards, each of its three regions - infundibulum, ampulla and isthmus - was fragmented 

into small pieces (2-4 mm) and placed in a petri dish. Three washing steps were performed with 

D/F with 20 µg/mL gentamicin and 0.1% BSA.  Oviduct explants (about 25 mg/mL) were 

cultured in D/F medium (1:1 [v/v]) containing 0.1% BSA, 20g/mL gentamicin and 250 g/mL 

amphotericin, in 24-well culture plates (142475, Nunc, Kamestrupvej, Denmark), at 37ºC in a 

humidified atmosphere (5% CO2, 95% air) in an incubator chamber (Heraus, Hera Cell 150). 

3.1.8.4.Ovarian steroid hormones, OXT and TNF effect on in vitro prostaglandins and 

OVGP1 secretion 

3.1.8.4.1. Oviductal epithelial cells  

After cell viability assessment, OEC collected from the ampulla in the follicular or mid-luteal 

phases (n=5 mares/stage) were incubated in a 24-well culture plate (#142475, Nunc, 

Kamestrupvej, Denmark), at a concentration of 5x105 cell/mL for 24 h with: (i) no exogenous 

treatment (Control); (ii) P4 (10-7M; P0130, Sigma); (iii) E2 (10-9M; E8875, Sigma); (iv) OXT 

(10-7M; O3252, Sigma) or (v) TNF (10 ng/mL; T6674, Sigma). Conditioned media from 

negative control and treatment groups were stored with 5µL EDTA and 1% acetylsalicylic acid 

Figure 1 - Oviductal epithelial cells obtained after a 24 h incubation and submitted to cytospin.  

 

Nuclei were stained in blue by Hoeschst 33258 and cytoplasm of epithelial cells stained bright green 

with anti-cytokeratin antibody (thick arrows). Secretory cells depict red granules of secretion stained 

by RAB27 (thin arrows). In non-epithelial cells cytoplasm was not visible and only nuclei stained blue 

(dashed arrows). Left photo: Mag = 400X; Right photo: Mag = 1,000X. 
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(v/v) (Sigma Aldrich, #A2093) (Szóstek, Galvão, Ferreira-Dias & Skarynski, 2014), and stored 

at -80°C until PGE2 and PGF2 concentration assessment by direct enzyme immunoassay (EIA), 

as described below (Cf 3.1.7.1).  

3.1.8.4.2. Oviduct explants 

Oviduct explants from follicular phase, early-luteal phase and mid-luteal phase (n=5/stage) 

were incubated for 24 h as described above for OEC culture. After, conditioned media with 

acetylsalicylic acid and EDTA added (as referred above) were kept at -80°C until PGE2 and 

PGF2 concentration assessment, or without any supplement, and also stored at -80ºC until 

OVGP1 contraction assessment, as previously referred (Cf 3.1.7.1). Oviduct explants collected 

after incubation, were kept in RNAlater, at -80ºC, until RNA extraction was carried out, and 

qPCR was completed, in order to evaluate the transcription of FGFR1, FGFR2, FLT1, KDR, 

(Cf 3.1.6.2), transcription of OVGP1 (Cf 3.1.6.3), and transcription of COL1 (Cf 3.1.6.4), as 

well as COL1 protein expression by WB (Cf 3.1.5.2).  

3.1.8.5. Sperm cells effect on in vitro OVGP1 secretion 

Stallion semen was collected with an artificial vagina (Model Hannover). After it was diluted 

in Equipro®, and placed inside a syringe, in anaerobic conditions, at the final concentration of 

200 x 106 SPZ/mL.  Before use, semen was centrifuged at 400g, for 10 min, and resuspended 

in culture medium at a final concentration of 100 x 106 SPZ/mL. Oviduct explants from 

follicular (n=3 mares) and early-luteal phases (n=3 mares), were cultured in triplicate in a 6 

well-plate (Nunclon, #140675, NUNC, Roskilde, Danmark) in 3mL of culture medium alone 

(DMEF/F12, # 11039, Gibco) - (i) Control; or with (ii) medium + SPZ, separated from explants 

by an insert (Transwell, #3414, Corning, NY, USA); or (iii) medium + SPZ + explants in direct 

contact. After incubation, conditioned medium was maintained at -80ºC, until OVGP1 

determination by EIA (Cf. 3.1.7.2). 

3.1.9. Statistical analysis 

Data concerning the various studies were submitted to different statistical analysis, as follows: 

1. One-way analysis of variance by Bonferroni Compare all Pairs of Columns Test (ANOVA; 

GraphPAD PRISM, Version 5.00, GraphPad Software, San Diego, CA, USA). 

Significance was defined as P < 0.05: 
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• Relative quantification of gene transcription by real-time polymerase chain reaction 

in equine oviduct of ESR1, ESR2, PGR, OXTR, PTGES, AKR1C3, FGF1, FGF2, 

FGFR1, FGFR2, VEGF, VEGFR-1, KDR, OVGP1, COL1, COL3, between portions, 

throughout the estrous cycle, and between different mares ages in the case of COL1, 

COL3. 

• Relative quantification of ESR1, ESR2, PGR, OXTR, PTGES, AKR1C3 protein 

expression by WB analysis in the ampulla of equine oviduct, throughout the estrous 

cycle. 

• Comparison of vascular areas and number of vascular structures in equine oviduct 

between portions throughout the estrous cycle. 

• Relative quantification of FGFR1, FGFR2, VEGFR2, OVGP1 protein expression 

by WB analysis between portions and throughout the estrous cycle.  

• Relative quantification of COL1 protein expression by WB analysis between 

portions and throughout the estrous cycle. 

 

2. T-test (GraphPAD PRISM, Version 5.00, GraphPad Software, San Diego, CA, USA). 

Significance was defined as P < 0.05: 

• Analysis of differences between the transcription of ovarian steroid hormones, 

OXTR and PG synthases between infundibulum and ampulla. 

• Analysis of differences in the transcription of COL1 and COL3 between mares with 

different degree of endometrial fibrosis. 

• Area of fibrosis, referred as area of COL1 and COL3 deposition in endometrium 

and oviduct, evaluated by PSR. 

 

3. Correlation test and whenever Pearson coefficient was significant at P < 0.05), Bi-variable 

Linear Correlation was performed in order to investigate the existence of a dependent and 

independent variables (IBM SPSS Statistic Analysis Version 24, IBM SPSS Software, 

Armonk, NY, USA). Significance level was P < 0.05: 

• Between oviduct COL1 and endometrium COL1; 

• Between oviduct COL3 and endometrium COL3; 

• Between oviduct COL1 and MMP2, MMP9, TIMP1, TNF, TNFRSF1A, TNFRSF1B, 

PTGES, AKR1C3, EP2, FP, ALK5 and TGFβRII, in oviduct 

• Between COL3 oviduct and MMP2, MMP9, TIMP1, TNF, TNFRSF1A, TNFRSF1B, 

PTGES, AKR1C3, EP2, FP, ALK5 and TGFβRII, in oviduct 
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• Between oviduct COL1 and MMP2, MMP9, TIMP1, TNF, TNFRSF1A, TNFRSF1B, 

PTGES, AKR1C3, EP2, FP, ALK5 and TGFβRII in endometrium 

• Between oviduct COL3 and MMP2, MMP9, TIMP1, TNF, TNFRSF1A, TNFRSF1B, 

PTGES, AKR1C3, EP2, FP, ALK5 and TGFβRII in endometrium 

 

4. One-way analysis of variance by Dunnett’s Multiple Comparison Test (ANOVA; 

GraphPAD PRISM, Version 5.00, GraphPad Software, San Diego, CA, USA). 

Significance was defined as P < 0.05.  

• For the analysis of differences between (i) the transcription of infundibulum and 

ampulla; and (ii) ovarian steroid hormones and OXTR and PG synthases, data were 

analyzed using t-test (T-test; GraphPAD PRISM, Version 5.00, GraphPad Software, 

San Diego, CA, USA).   

3.2. EXPERIMENTAL DESIGN 

Study I - The role of ovarian steroids, oxytocin and tumor necrosis factor in the 

modulation of equine oviduct function 

Experiment I: Ovarian steroid hormones, oxytocin receptors and PG synthases mRNA 

transcription and protein expression in oviduct 

Transcription of ovarian steroid hormones and oxytocin receptors, and PGs synthases was 

analyzed by qPCR in infundibulum and ampulla of mare oviduct in follicular (n=5), early (n=5) 

and mid-luteal (n=5) phases. Protein expression was assessed by western blotting only in the 

ampulla and by immunohistochemistry in all regions of the oviduct in the follicular, early and 

mid-luteal phases, as described in (Cf. 3.1.3, 3.1.5.1 and 3.1.6.1).  

 

Experiment II: Ovarian steroid hormones, OXT and TNF effect on in vitro 

prostaglandins secretion 

a) Oviduct epithelial cells (OEC) - PGE2 and PGF2 production 

After cell viability assessment (Cf. 3.1.8.2), OEC collected from the ampulla in the follicular 

or mid-luteal phases (n=5 mares/stage) were incubated in a 24-well culture plate (#142475, 

Nunc, Kamestrupvej, Denmark), at a concentration of 5x105 cell/mL for 24 h with: (i) no 



Chapter III – Materials and methods 

54 

exogenous treatment (Control); (ii) P4 (10-7M; P0130, Sigma); (iii) E2 (10-9M; E8875, Sigma); 

(iv) OXT (10-7M; O3252, Sigma) or (v) TNF (10 ng/mL; T6674, Sigma) (Cf. 3.1.8.4). 

Conditioned media from negative control and treatment groups were stored with 5µL EDTA 

and 1% acetylsalicylic acid (v/v) (Sigma Aldrich, #A2093) (Szóstek et al., 2014), and stored at 

-80°C until PGE2 and PGF2 concentration assessment by direct enzyme immunoassay (EIA), 

as described above (Cf. 3.1.7.1).  

 

b) Oviduct explants - PGE2 and PGF2  production 

Oviduct explants from the ampulla, from follicular phase, early-luteal phase and mid-luteal 

phase (n=5/stage) were incubated (Cf. 3.1.8.3) for 24 h as described above for OEC culture. 

After, conditioned media with acetylsalicylic acid and EDTA added (as referred above) were 

kept at -80°C until PGE2 and PGF2 concentration assessment (Cf. 3.1.7.1).  

Experiment III: Ultrastructure of OEC and oviduct 

Additional OEC were placed in separate wells, under the same culture conditions of temperature 

and atmosphere for 72 h, on a round gelatinized coverslip for scanning electron microscopy 

(SEM) evaluation. Coverslips for OEC assessment by SEM were fixed in 2.5% glutaraldehyde 

(AppliChem, Germany) in 0.1 M sodium cacodylate buffer for 24 h. The OEC samples were 

subsequently dehydrated in a graded ethanol series. Oviduct tissue was also fixed as OEC, for 

further SEM processing. Samples were dried using the critical point drying method and sputter 

coated with gold palladium, mounted on stubs, observed under a SEM (JEOL5200-LV) and 

photographed. 

Study II – Microvascular density and the expression of FGFs, VEGF, and receptors 

in equine oviduct 

Experiment I: Vascular structures of oviduct were observed and analyzed using CD31 

marker and the area compared among diverse groups 

Formaldehyde-fixed oviduct histologic sections (4 µm) of infundibulum, ampulla and isthmus 

were obtained from mares in follicular (n=6), early luteal phase (n=6) and mid luteal phase 

(n=6), and CD31 immunohistostaining blood vessels were marked. Vascular areas and number 

vascular structures presents in oviduct were as described previously (Cf. 3.1.4), and compared 

among groups.   
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Experiment II: Angiogenic growth factors transcription in equine oviduct 

Transcription of angiogenic growth factors FGF1, FGF2 and VEGF, and their receptors 

FGFR1, FGFR2, and KDR transcription were analyzed by qPCR in infundibulum, ampulla and 

isthmus of oviducts from mares in distinct phases of estrous cycle (n=5 mares/each phase) as 

previously referred. Also, transcription of FGFR1, FGFR2 and KDR was evaluated from 

explants submitted to culture for 24 h, as mentioned above (Cf. 3.1.6.2).  

Experiment III: Angiogenic growth factors receptors protein expression in equine 

oviduct 

Protein expression of FGFR1, FGFR2 and KDR was analyzed by WB. Data between the various 

segments of the oviduct were compared, also considering the distinct phases of the estrous 

cycle. The oviducts used in this experiment were the same ones used for qPCR (Cf. 3.1.5.2).  

Experiment IV: Ovarian steroid hormones, OXT and TNF effect on gene transcription 

of FGFR1, FGFR2, FLT1 and KDR in equine explants 

Ampulla oviduct explants from follicular phase, early luteal phase and mid-luteal phase 

(n=5/stage) were incubated for 24 h as described above. Explants were submitted to qPCR, to 

evaluate the effect of E2, P4, OXT and TNF on FGFR1, FGFR2, FLT1 and KDR transcription 

(Cf. 3.1.6.2). 

Study III – Oviduct specific glycoprotein expression in equine oviduct 

Experiment I: OVGP1 transcription in equine oviduct 

 OVGP1 transcription was analyzed by qPCR in infundibulum, ampulla and isthmus of oviduct 

from mares in distinct phases of estrous cycle (n=5 mares/each phase) as previously referred 

(Cf. 3.1.6.3). 

Experiment II: OVGP1 protein expression in equine oviduct 

Protein expression of OVGP1 was also evaluated by WB. Data between groups of mares in 

distinct phases of estrous cycle, and also between portions of oviduct were compared (Cf. 

3.1.5.2). The oviducts used in this experiment were the same ones used in experiment I. 
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Experiment III: Ovarian steroid hormones, OXT and TNF effect on in vitro mRNA 

expression of OVGP1 in equine explants and on OVGP1 secretion 

Ampulla oviduct explants from follicular phase, early-luteal phase and mid-luteal phase 

(n=5/stage) were incubated for 24 h as described above. After, tissues were kept in RNAlater, 

at -80ºC, until RNA extraction was done and qPCR was completed, in order to evaluate the 

transcription of OVGP1 ((Cf 3.1.6.3). Media was also kept at -80°C until OVGP1 concentration 

assessment, by EIA (Cf 3.1.7.2).  

Experiment IV: Spermatozoa effect on in vitro OVGP1 secretion 

The effect of sperm cells (spz) on equine OVGP1 production by equine oviduct portions in 

follicular phase explants (infundibulum, ampulla, isthmus) was investigated. Media collected 

after explants tissues culture (Cf 3.1.8.4), were used for OVGP1 concentration assessment, as 

described before (Cf 3.1.7.2). 

Study IV - Collagen in equine oviduct: possible relationship with endometrial fibrosis 

and pathways involved 

This study was designed to assess collagen presence in mare oviduct (infundibulum, ampulla, 

isthmus), with respect to endometrium and putative factors involved on its deposition. 

Endometria and oviducts were collected post-mortem from cyclic mares (n=18) in follicular, 

early and mid-luteal phases, aged from 4 to 20 years old, and endometria with different 

Kenney´s classifications.  

Experiment I: COL1 and COL3 transcription in equine oviduct 

A quantitative evaluation of COL1 and COL3 gene transcription in oviduct was performed. 

Data were analyzed according to (i) the oviduct portion, (ii) the age of the mares, and (iii) the 

phase of the estrous cycle (n=18) (Cf 3.1.6.4). 

Experiment II: COL1 protein expression in equine oviduct 

The same mares used in the previous experiment, were also used to evaluate the protein 

expression of COL1. Again, data were analyzed with respect to (i) the oviduct portion, (ii) the 

age of the mares, and (iii) the phase of the estrous cycle (n=18) (Cf 3.1.5.2). 
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Experiment III: COL1 vs COL3 protein in equine oviduct and endometrium  

This experiment was carried out to determine the relationship between COL1 and COL3 protein 

in oviduct and endometrium collected from the same mares (n=18), and of known endometrium 

Kenney´s classification (Cf. 3.1.2.1). 

Endometrium and the three portions of oviduct, of each mare, were stained by PSR and slides 

were observed and evaluated as referred (Cf 3.1.2.2). 

Experiment IV: Possible association between COL1 and COL3 transcripts in oviduct 

and endometrium 

In the same group of mares (n=18), oviduct collagen type I and III transcripts were evaluated, 

as so in the corresponding endometria. The purpose of this evaluation, was to investigate the 

possible relation in COL1 and COL3 transcription between endometrium and oviduct (Cf 

3.1.6.4). 

Experiment V: Putative pathways involved in collagen transcription in equine oviduct 

To assess the putative pathways involved in collagen deposition in the mare oviduct MMP2, 

MMP9, TIMP, PTGES, AKR1C3, EP2, FP, TNF, TNFSFR1A, TNFSFR1B, ALK5 and TGFBR2, 

gene transcription was carried out by qPCR, from the same group of mares (n=18) as previously 

mentioned (Cf 3.1.6.4). Gene transcription was performed in all portions of equine oviduct and 

correlated with COL1 and COL3 transcription. In cases of a significant correlation coefficient, 

linear regression was performed, between COL1 or COL3 (dependent variable), and the putative 

gene (independent variable).  

Experiment VI: Possible link between endometrial collagen pathways and oviduct 

collagen transcription 

Since oviduct and endometrium are functionally and physically related, some pathways 

involved in endometrium collagen deposition were analyzed in order to understand if they could 

be related with oviduct fibrosis (n=18). 

Endometrial transcription of MMP2, MMP9, TIMP, PTGES, AKR1C3, EP2, FP, TNF, 

TNFSFR1A, TNFSFR1B, ALK5 and TGFBR2, genes was evaluated (Cf 3.1.6.4). Data were 

analyzed by correlation method between COL1 and COL3, and the gene implicated in 

endometrial fibrosis. If results were significant, a linear regression test was also performed.  
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Experiment VII: Ovarian steroid hormones, OXT and TNF effect on in vitro gene 

transcription of COL1 in oviduct explants 

Ampulla explants from follicular phase, early-luteal phase and mid-luteal phase (n=5/stage) 

were incubated for 24 h as described above (Cf. 3.1.8.3). Explants were subjected to qPCR, to 

evaluate the effect of E2, P4, OXT and TNF on COL1 transcription (Cf 3.1.6.4). 

Experiment VIII: Ovarian steroid hormones, OXT and TNF effect on in vitro protein 

expression of COL1 in oviduct explants 

Ampulla oviduct explants from follicular phase, early-luteal phase and mid-luteal phase 

(n=5/stage) were incubated for 24 h as described above (Cf. 3.1.8.3). Explants were processed 

for WB, to evaluate the effect of E2, P4, OXT and TNF on COL1 expression (Cf 3.1.5.2). 
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4.1. The role of ovarian steroids, oxytocin and tumor necrosis factor in the 

modulation of equine oviduct function 

4.1.1. Ovarian steroid hormones and oxytocin receptors and PG synthases mRNA 

transcription and protein expression in oviduct 

Transcription of ovarian steroid hormones and oxytocin receptors, and PGs synthases was 

analyzed by qPCR in infundibulum and ampulla of mare oviduct in follicular, early and mid-

luteal phases. Protein expression was assessed by western blotting only in the ampulla and by 

immunohistochemistry in all regions of the oviduct in the follicular, early and mid-luteal 

phases.  

Estradiol receptors ESR1 and ESR2 transcription in mare´s oviduct did not change throughout 

the estrous cycle (Fig. 2a, 2b). In contrast, PGR mRNA levels were increased in the follicular 

phase (P < 0.05; Fig. 2c). When the portion of the oviduct was taken into consideration, the 

highest transcription of ESR1 and ESR2 was present in the ampulla (P < 0.05; Fig. 2g, 2h).  

However, no difference in PGR transcription was noted between those regions of the oviduct 

(Fig. 2i). Unlike E2 receptors, AKR1C3 transcription in mare´s oviduct was up-regulated in ELP 

(P < 0.05; Fig. 2f). In the follicular phase, OXTR and PTGES mRNA levels were decreased (P 

< 0.05; Fig. 2d, 2e). Even though the highest transcription of OXTR was present in the ampulla 

(P < 0.05; Fig. 2j), no difference in PTGES or AKR1C3 mRNA levels was noted between 

infundibulum and ampulla (Fig. 2k, 2l).  

Since for almost all genes, transcription was the highest in the ampulla, protein expression 

analysis by western blot was performed solely on that portion of mare oviduct. Protein 

expression of ESR1 was the largest in follicular phase when compared to early and mid-luteal 

phases (P < 0.05; Fig. 3a; Fig. 4a); ESR2 was the highest in follicular phase when compared to 

mid-luteal phase (P < 0.05; Fig. 3b; Fig. 4b); and PGR increased in follicular and early-luteal 

phases when related to mid-luteal phase (P < 0.05; Fig. 3c; Fig. 4c). Also, OXTR protein 

expression was the strongest in follicular phase oviducts when compared to early and mid-luteal 

phases (P < 0.05; Fig. 3d; Fig. 4d). Nevertheless, the enzymes involved in the synthesis of 

PGE2 (PTGES) or PGF2 (AKR1C3) did not show any differences in protein expression 

between the phases of the estrous cycle studied (P > 0.05; Fig. 3e, 3f; Fig. 4e, 4f). 

Immunohistochemistry study demonstrated the presence of ESR1, ESR2, PGR, AKR1C3, and 

PTGES protein in mare oviduct epithelial cells (Fig. 5a-e), while OXTR was only expressed in 
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the stroma of the mucosa folds (Fig. 5f), without any significant changes between oviduct 

portions or estrous cycle phases (P > 0.05). While for PGR, ESR1, AKR1C3 and PTGES 

oviduct cell nuclei stained deep brown and cytoplasm stained in a lighter brown, ESR2 staining 

was mainly present in the cytoplasm of epithelial cells while the nucleus appeared blue (Fig. 

5b).  

Figure 2 - Relative quantification of gene transcription by real-time polymerase chain reaction in 

equine oviduct of ESR1, ESR2, PGR, OXTR, PTGES and AKR1C3. 

 

n=5 samples for each estrous cycle phase; n=5 for each portion of oviduct analyzed of ESR1 (a) and 

(g), ESR2 (b) and (h), PGR (c) and (i), OXTR (d) and (j), PTGES (e) and (k), AKR1C3 (f) and (l). 

Transcription of target genes was normalized against that of the reference gene (2M).  Bars represent 

mean ± SEM. AU: arbitrary units.  Different letters indicate significant differences (P < 0.05). 
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Figure 3 - Relative quantification of ESR1, ESR2, PGR, OXTR, PTGES and AKR1C3 protein 

expression by western blot analysis in the ampulla of equine oviduct. 

 

Relative quantification of ESR1, ESR2, PGR, OXTR, PTGES and AKR1C3 protein expression by 

western blot analysis in the ampulla of equine oviduct (n=3 for each phase). Bars represent mean ± 

SEM. AU: arbitrary units. Different letters indicate significant differences (P < 0.05). 

Figure 4: Panels representative of protein expression in equine ampulla, evaluated by WB, of ESR1, 

ESR2, PGR, OXTR, PTGES and AKR1C3 

 

(a) ESR1; (b) ESR2; (c) PGR; (d) OXTR; (e) PTGES; (F) ARK1C3. Data were normalized against -

actin density values 
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4.1.2. Ovarian steroid hormones, oxytocin and TNF effect on prostaglandins 

secretion 

4.1.2.1. Oviduct epithelial cells (OEC) - PGE2 and PGF2 production 

Among all oviduct isolated cells, 90.2% were epithelial cells and 65% of them were secretory 

in nature. The secretory capacity of mare OEC in culture was shown by the production of 

prostanoids (PGE2 and PGF2). Even though P4, E2 or OXT decreased PGE2 production by OEC 

collected from mares in the follicular phase, when compared both to control and TNF groups 

(P < 0.05; Fig. 6a), none of the treatments tested affected PGE2 production in mid- luteal phase 

(Fig. 6b). A down-regulation of oviduct PGF2 production in the follicular phase was also 

caused by all treatments (P4, E2, OXT, TNF) used (P < 0.05; Fig. 6c). In contrast, mid-luteal 

phase OEC were stimulated for the production of this eicosanoid (P < 0.05; Fig. 6d).  

Figure 5 - Representative images of equine oviduct immunostained for the presence of ESR1, ESR2, 

PGR, OXTR, PTGES and AKR1C3. 

  

(a) ESR1 in the follicular phase (FP); (b) ESR2 in early luteal phase (ELP); (c) PGR in the mid-luteal 

phase (MLP) depicting tunica muscularis where staining was less evident than in OEC; (d) AKR1C3 in 

the FP; (e) PTGES in ELP; (f) OXTR in the MLP depicting tunica muscularis where staining was less 

evident than in connective tissue of mucosa folds. Negative controls: (g) primary antibody replaced by 

rabbit IgG; (h) primary antibody receptor replaced by mouse IgG. Positive staining is shown in brown. 

Because all hormone receptors and/or synthases stained equally throughout the estrous cycle, random 

images are show from each phase. Immunostaining was performed in 4-µm oviduct histologic sections. 
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4.1.2.2.Oviduct explants - PGE2 and PGF2  production 

When the results were analyzed regarding the phase of estrous cycle, oviduct explants from 

follicular phase mares showed an increase in PGE2 production, when treated with OXT (P < 

0.05; Fig. 7a). In the early luteal phase, this hormone production was up-regulated when tissues 

were treated with OXT or TNF (P < 0.05; Fig. 7a), whereas in the mid-luteal phase a 

stimulatory effect was noted after a 24 h treatment with P4, OXT or TNF (P < 0.05; Fig. 7a). 

Only for explants from the infundibulum, PGE2 production was stimulated by TNF in early 

luteal phase (P < 0.05; Fig. 7b), and by OXT in mid-luteal phase (P < 0.05; Fig. 7b). However, 

no effect was observed for any treatment in the follicular phase. In explants from the ampulla, 

an increase in PGE2 in conditioned culture medium was detected only in tissues from mares in 

the follicular phase treated with E2 or TNF (P < 0.05; Fig. 7c). No effect of the treatments was 

noted during early and mid-luteal phases. Also, PGE2 production from isthmus explants was 

stimulated by OXT in the follicular phase (P < 0.05; Fig. 7d), by OXT or TNF in the early 

luteal phase (P < 0.05), and by P4, OXT or TNF in the mid-luteal phase (P < 0.05; Fig. 7d). 

Figure 6 - Effects of E2, P4, OXT and TNF on PGE2 and PGF2α production by equine ampulla oviductal 

epithelial cells.  

 

Effects of E2, P4, OXT and TNF on PGE2 (a, b) and PGF2α production (c, d) by equine oviductal 

epithelial cells (OEC) from follicular (a, c) or mid-luteal (b, d) phases. Data show the mean ± SEM 

percentage changes compared with basal (control: C) output. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Whenever the oviduct explants were considered as a whole, taken into consideration the estrous 

cycle phase alone, an increase in PGF2α production was observed for tissues treated with TNF 

in follicular phase (P < 0.05), or with OXT or TNF in early and mid-luteal phases (P < 0.05; 

Fig. 8a). However, when the different portions of the oviduct were considered separately, 

different results were found. Infundibulum explants exposed to OXT showed an up-regulation 

in PGF2 production in early and mid-luteal phases (P < 0.05; Fig. 8b). Nevertheless, in ampulla 

explants, TNF was capable of stimulating PGF2α production in early and mid-luteal phases (P 

< 0.05). In addition, treatment of the ampulla with OXT in mid-luteal phase up-regulated PGF2α 

production (P < 0.05; Fig. 8c). In the follicular phase, isthmus tissue treated with TNF was the 

only one to show an increase in PGF2α production compared to other treatments (P < 0.05; Fig. 

8d).  

Figure 7 - Effects of E2, P4, OXT and TNF on PGE2 production by equine oviduct explants.  

 

Effects of E2, P4, OXT and TNF on PGE2 production by equine oviduct explants from follicular phase, 

early-luteal phase and mid-luteal phase. Analysis was performed considering explants from all portions of 

oviduct (a), and from each portion of oviduct: infundibulum (b), ampulla (c) and isthmus (d). Data show 

the mean ± SEM percentage changes compared with basal (control: C) output. * P < 0.05, *, P < 0.01, *** 

P < 0.001. 
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4.1.3. Ultrastructure of OEC and oviduct 

Oviduct cell assessment by SEM showed cells with a ciliated like appearance, as well as 

secretory cells, even after a 72 h culture, compatible with a viable cell culture (Fig. 9A-C). 

Portions of equine oviduct depicted ciliated cells, as well as secretory cells covered by 

microvilli (Fig. 9). Ultrastructure images of OEC showed a mix pattern of prismatic ciliated 

cells and a greater amount of non-ciliated cells that present a rounded surface with microvilli. 

The height of the cilia and ciliated cells density vary and are more evident in the ampulla during 

the follicular phase (Fig. 9D, E), concealing to some extent the borders of secretory cells (non-

ciliated aspect).  This contrasts with the presence of shorter cilia and less density of ciliated 

cells in the infundibulum at the same reproductive phase (Fig. 9F). 

Secretory activity with the appearance of protruding buds of secretion can be observed in OEC 

secretory cells of the endometrium mainly in the ampulla, in the luteal phase (Fig. 9G, H).  

Figure 8 - Effects of E2, P4, OXT and TNF on PGF2α production by equine oviduct explants 

 

Effects of E2, P4, OXT and TNF on PGF2α production by equine oviduct explants from follicular 

phase, early-luteal phase and mid-luteal phase. Analysis was performed considering explants from 

all portions of oviduct (a), and to each portion of oviduct: infundibulum (b), ampulla (c) and isthmus 

(d). Data show the mean ± SEM percentage changes compared with basal (control: C) output. * P < 

0.05, ** P < 0.01, *** P < 0.001. 

a c

db
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4.2. Microvascular density and the expression of FGFs, VEGF, and 

receptors in equine oviduct  

4.2.1. Microvascular density in equine oviduct 

Microvascular structures of oviduct were assessed on histologic sections immunostained with 

an antibody against CD31 (Fig. 10 a-c) and vascular areas compared among groups. When all 

Figure 9 - Scanning electronic microscope images of oviductal epithelial cells and oviduct explants 

 

Mare oviductal epithelial cells (OEC) observed in culture (a, b and c) and intact oviduct tissue (d, e, f, g 

and h). OEC culture presents a ciliated cell (A) and a non ciliated cell, or a cell starting to lose its cilia 

prior to adherence (B). Bar = 1 µm. C – Cluster of OEC depicting prismatic ciliated and secretory cells. 

Many debris of secretion are present. Bar = 5µm. D and E - secretory (*) and ciliated cells (arrows) of 

the ampulla during the follicular phase. Note that the cilia (arrows) are quite high and the densely ciliated 

epithelium conceals to some extent the borders of the secretory cells (*). This contrasts to shorter cilia 

and less density of ciliated cells (arrow) in the infundibulum area presented in f. F -Secretory cells present 

a rounded surface with microvilli. D – Bar = 10µm, e and f= Bar= 5µm. g and h - Protruding buds of 

secretion (small arrows) from secretory cells in the ampulla in the luteal phase. G= 10 µm and H= 5 µm. 



Chapter IV – Results 

69 

the mares were taken together, and compared between different regions of the oviduct 

(infundibulum, ampulla and isthmus) were compared, no statistical difference was found in 

vascular areas (P > 0.05; Fig. 11a), while the number of vascular structures was higher in the 

isthmus, compared with the ampulla (P < 0.05; Fig 12a).  

 

 

Figure 10 - Representative images of immunostaining with CD31.  

 

Images of immunostaining with CD31, allowing to visualize vascular structures in equine oviduct. a: 

infundibulum; b: ampulla; c: isthmus. 

a b c

Figure 11 - Vascular areas present in the oviduct. 

 

Total area of microvascular structures present in 10 randomly microscopic field. Analysis was 

performed considering samples from all estrous phase (a), and from each estrous cycle phase: follicular 

(b), early (c) and mid luteal phases (d). Bars represent mean ± SEM. Different letters indicate significant 

differences (P < 0.05). 
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When mares were separated according to their estrous cycle phase (follicular phase, early luteal 

phase and mid luteal phase), it was noted that in the follicular phase, the isthmus presented the 

largest vascular area and the highest number of vascular structures (P < 0.05; Fig 11b and Fig 

12b), which was not noted in either early or in the mid luteal phase (Fig 11c and 11d; Fig 12c 

and 12d). These results show that the oviduct, particularly the isthmus, undergo vascular 

changes during the estrous cycle, mainly increasing its vascular bed in the follicular phase.  

  

4.2.2. Angiogenic growth factors transcription in equine oviduct 

Some angiogenic growth factors (FGF1, FGF2 and VEGF) and receptors (FGFR1, FGFR2, 

and KDR) transcription was analyzed by qPCR in infundibulum, ampulla and isthmus of 

oviduct from mares in distinct phases of estrous cycle. 

FGF1 only presented differences when results were analyzed without distinction between the 

estrous cycle phases, when both the ampulla and the isthmus showed the highest transcription 

(P < 0.05; Fig. 13b). Nevertheless, when the results were evaluated throughout the estrous 

cycle, and of each oviduct segment throughout the estrous cycle, there was no difference (P > 

0.05; Fig. 13a, c-e). 

Figure 12 – Number of vascular structures present in the oviduct 

 

Total structures present in 10 randomly microscopic field. Analysis was performed considering samples 

from all estrous phase (a), and from each estrous phase: follicular (b), early (c) and mid luteal phase (d). 

Bars represent mean ± SEM. Different letters indicate significant differences (P < 0.05). 
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FGF2 presented a similar pattern of transcription to FGF1, except that the ampulla did not 

present such higher transcription as the isthmus (P < 0.05; Fig. 14b).  

Regarding VEGF no difference occurred on its transcription throughout the estrous cycle either 

between the portions of oviduct, or even when each individual portion was considered 

separately throughout the estrous cycle (Fig. 15a-e). 

FGFR1 transcripts did not differ along the estrous cycle (Fig. 16a), while the isthmus presented 

a higher transcription when compared with the infundibulum (P < 0.05) (Fig. 16b). When the 

three portions were considered separately throughout the estrous cycle, only the infundibulum 

presented differences between the follicular phase and the mid luteal phase (P < 0.05) (Fig. 

16c). Neither the ampulla nor the isthmus presented any difference during the estrous cycle 

(Fig. 16d, e). With respect to FGFR2 no difference on its transcription was detected either 

during the estrous cycle, among oviduct portions, or when its portions were considered 

individually throughout the estrous cycle (Fig. 17a-e).  

 

Figure 13 - Relative quantification by mRNA transcription of FGF1 

 

Relative quantification of mRNA transcription by qPCR in equine oviduct (n=5 samples for each estrous 

cycle phase; n=5 for each portion of oviduct analyzed) of FGF1. Transcription of target gene was 

normalized against that of the reference gene (2M).  Bars represent mean ± SEM. AU: arbitrary units.  

Different letters indicate significant differences (P < 0.05). 
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Figure 14 - Relative quantification by mRNA transcription of FGF2 

 

Relative quantification of mRNA transcription by qPCR in equine oviduct (n=5 samples for each 

estrous cycle phase; n=5 for each portion of oviduct analyzed) of FGF2. Transcription of target gene 

was normalized against that of the reference gene (2M).  Bars represent mean ± SEM. AU: arbitrary 

units.  Different letters indicate significant differences (P < 0.05). 

Figure 15: Relative quantification by mRNA transcription of VEGF 

 

Relative quantification of mRNA transcription by qPCR in equine oviduct (n=5 samples for each estrous 

cycle phase; n=5 for each portion of oviduct analyzed) of VEGF. Transcription of target gene was 

normalized against that of the reference gene (2M).  Bars represent mean ± SEM. AU: arbitrary units.  

Different letters indicate significant differences (P < 0.05). 
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Figure 16 - Relative quantification by mRNA transcription of FGFR1 

 

Relative quantification of gene transcription by qPCR in equine oviduct (n=5 samples for each estrous 

cycle phase; n=5 for each portion of oviduct analyzed) of FGFR1. Transcription of target gene was 

normalized against that of the reference gene (2M).  Bars represent mean ± SEM. AU: arbitrary units.  

Different letters indicate significant differences (P < 0.05). 

Figure 17 - Relative quantification by mRNA transcription of FGFR2 

 

Relative quantification of gene transcription by qPCR in equine oviduct (n=5 samples for each estrous 

cycle phase; n=5 for each portion of oviduct analyzed) of FGFR2. Transcription of target gene was 

normalized against that of the reference gene (2M).  Bars represent mean ± SEM. AU: arbitrary units.  

Different letters indicate significant differences (P < 0.05). 
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When the estrous cycle influence was disregarded, VEGFR-2 (KDR) presented the highest 

transcription in the isthmus, when compared with the infundibulum and the ampulla (P < 0.05; 

Fig. 18b). Also, it did not present any difference in its mRNA levels either throughout the 

estrous cycle, or in separated portions of the oviduct along the estrous cycle (Fig. 18a, c-e). 

 

4.2.3. Angiogenic growth factors receptors expression in equine oviduct 

The protein expression of FGFR1, FGFR2 and VEGFR2 (KDR) was assessed by WB analysis, 

and data between groups of mares in distinct phases of estrous cycle, and between portions of 

oviduct were compared. 

FGFR1 presented a higher protein expression on isthmus, than in infundibulum or ampulla (P 

< 0.05, Fig. 19a, 20a). When the expression of each oviduct portion was evaluated, in 

infundibulum, protein expression was the highest in follicular and early luteal phases (P < 0.05; 

Fig. 19b, 20b). Also in ampulla, expression was increased in early-luteal phase (P < 0.05; Fig. 

19c, 20c), while in isthmus there was no difference throughout the estrous cycle (P > 0.05, Fig. 

19d, 20d).  

Figure 18 - Relative quantification by mRNA transcription of KDR 

 

Relative quantification of gene transcription by qPCR in equine oviduct (n=5 samples for each estrous 

cycle phase; n=5 for each portion of oviduct analyzed) of KDR. Transcription of target gene was 

normalized against that of the reference gene (2M).  Bars represent mean ± SEM. AU: arbitrary units.  

Different letters indicate significant differences (P < 0.05). 
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The protein expression of FGFR2 between the three portions of the oviduct was similar (Fig. 

21a, 22a). Nevertheless, in the infundibulum itself, an increase in protein expression occurred 

in the mid luteal phase, with respect to the early-luteal phase (P < 0.05; Fig. 21b, 22b). In the 

ampulla, the highest expression was observed in the follicular phase, compared with the early-

luteal phase (P < 0.05; Fig. 21c, 22c). In the isthmus, the expression was also greater in 

follicular phase, and the lowest in mid-luteal phase (P < 0.05; Fig. 21d, 22d).  

Figure 19 - Quantification of FGFR1 protein expression by WB.  

 

Quantification of FGFR1 protein expression by WB in the equine oviduct (n=3 for each phase or 

portion). Bars represent mean ± SEM. AU: arbitrary units. Different letters indicate significant 

differences (P < 0.05). 

Figure 20 - Panels representative of protein expression of FGFR1, evaluated by WB. 

 

Panels representative of protein expression of FGFR1, evaluated by WB, in equine oviduct. a: 

Differences between oviduct portion; b: Differences in infundibulum throughout the estrous cycle; c: 

Differences in ampulla throughout the estrous cycle; d: Differences in isthmus throughout the estrous 

cycle. Data were normalized against -actin density values. 
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KDR protein expression in the isthmus was greater than in infundibulum or ampulla (P < 0.05; 

Fig. 23a, 24a). When the three portions were compared during the estrous cycle, the 

infundibulum presented the highest expression on the early-luteal phase (P < 0.05; Fig. 23b, 

24b). 

In the ampulla, KDR protein expression presented its highest expression in the follicular phase 

(P < 0.05; Fig. 23c, 24c), while in the isthmus the estrous cycle did not influence its expression 

(Fig. 23d, 24d).  

Figure 21 - Quantification of FGFR2 protein expression by WB. 

 

Quantification of FGFR2 protein expression by WB in the equine oviduct (n=3 for each phase or 

portion). Bars represent mean ± SEM. AU: arbitrary units. Different letters indicate significant 

differences (P < 0.05). 

Figure 22 - Panels representative of protein expression of FGFR2, evaluated by WB. 

 

Panels representative of protein expression of FGFR2, evaluated by WB, in equine oviduct. a: 

Differences between oviduct portion; b: Differences in infundibulum throughout the estrous cycle; c: 

Differences in ampulla throughout the estrous cycle; d: Differences in isthmus throughout the estrous 

cycle. Data were normalized against -actin density values. 
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4.2.4. Ovarian steroid hormones, oxytocin and TNF effect in transcription of FGFR1, 

FGFR2, FLT1 and KDR in equine explants 

Transcription of FGFR1, FGFR2, VEGFR-1 and KDR was carried out on equine oviductal 

explants treated with E2, P4, OXT and TNF. Results were compared with the control group 

(explant in culture medium alone). 

Figure 23 - Quantification of KDR protein expression by WB. 

 

Quantification of KDR protein expression by WB in the equine oviduct (n=3 for each phase or portion). 

Bars represent mean ± SEM. AU: arbitrary units. Different letters indicate significant differences (P < 

0.05). 

Figure 24 - Panels representative of protein expression of KDR, evaluated by WB. 

 

Panels representative of protein expression of KDR, evaluated by WB, in equine oviduct. a: Differences 

between oviduct portion; b: Differences in infundibulum throughout the estrous cycle; c: Differences in 

ampulla throughout the estrous cycle; d: Differences in isthmus throughout the estrous cycle. Data were 

normalized against -actin density values. 
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Regarding FGFR1, in early-luteal phase, the ovarian hormones E2, P4 and OXT upregulated its 

transcription (P < 0.05, Fig. 25b), while neither the follicular nor the mid-luteal phases altered 

it (Fig.25a, c).  

With respect to FGFR2, only E2 upregulated its transcription in early-luteal phase (P < 0.05; 

Fig. 26b), and no difference in follicular and mid-luteal phases was observed (Fig. 26a, c).  

  

 

 

While in early-luteal phase E2 up-regulated FLT1 transcription (P < 0.05; Fig. 27b), while in 

mid-luteal phase P4 had a positive effect on its transcription (P < 0.05; Fig. 27c). Also in early-

Figure 26 - Effects of E2, P4, OXT and TNF on FGFR1 transcription in equine ampulla oviduct explants 

 

Effects of E2, P4, OXT and TNF on FGFR1 transcription in mare ampulla explants from follicular phase, 

early-luteal phase and mid-luteal phase analyzed by qPCR. Transcription of target gene was normalized 

against that of the reference gene (2M).  Data show the mean ± SEM percentage changes compared 

with basal (control: C) output. * P < 0.05, ** P < 0.01, *** P < 0.001. 

Figure 25 - Effects of E2, P4, OXT and TNF on FGFR2 transcription by equine ampulla oviduct explants 

 

Effects of E2, P4, OXT and TNF on FGFR2 transcription by equine oviduct ampulla explants from 

follicular phase, early-luteal phase and mid-luteal phase analyzed by qPCR. Transcription of target gene 

was normalized against that of the reference gene (2M).  Data show the mean ± SEM percentage 

changes compared with basal (control: C) output. * P < 0.05, ** P < 0.01, *** P < 0.001. 
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luteal phase, E2 also upregulated KDR (P < 0.05; Fig. 28b) but no difference in follicular and 

mid-luteal phases was noted (Fig. 28a-c). 

 

 

4.3. Oviduct specific glycoprotein expression in equine oviduct 

4.3.1. Oviduct specific glycoprotein transcription in equine oviduct 

Oviduct specific glycoprotein (OVGP1) gene was analyzed in mares’ oviduct in distinct phases 

of the estrous cycle, and in its three portions, by qPCR. When all samples were evaluated 

together, OVGP1 presented the highest transcription in mid luteal phase, compared with 

follicular phase, but like early-luteal phase (P < 0.05; Fig. 29a). Also, it was in the ampulla and 

Figure 27 – Effects of E2, P4, OXT and TNF on FLT1 transcription by equine ampulla oviduct explants 

 

Effects of E2, P4, OXT and TNF on FLT1 transcription in equine oviduct ampulla explants from 

follicular phase, early-luteal phase and mid-luteal phase analyzed by qPCR. Transcription of target gene 

was normalized against that of the reference gene (2M). Data show the mean ± SEM percentage 

changes compared with basal (control: C) output. * P < 0.05. 
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Figure 28 - Effects of E2, P4, OXT and TNF on KDR transcription by equine ampulla oviduct 

explants 

 

Effects of E2, P4, OXT and TNF on KDR transcription in equine ampulla explants from follicular 

phase, early-luteal phase and mid-luteal phase analyzed by qPCR. Transcription of target gene was 

normalized against that of the reference gene (2M). Data show the mean ± SEM percentage changes 

compared with basal (control: C) output. * P < 0.05. 
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the isthmus where OVGP1 presented a largest mRNA levels (P < 0.05; Fig. 29b). When the 

three oviduct portions were considered separately, it was in the ampulla where there was an 

increase in transcription in early and mid-luteal phases, compared with follicular phase (P < 

0.05; Fig. 29d). Neither the infundibulum nor the isthmus presented any differences on OVGP1 

mRNA levels (Fig. 29c, e).  

 

4.3.2. OVGP1 expression in equine oviduct 

OVGP1 expression was also evaluated by WB analysis in all portions of the oviduct and in each 

individual segment, throughout the estrous cycle. Comparison between portions of oviduct, 

regardless of the phase of the estrous cycle, demonstrated a higher OVGP1 protein expression 

in isthmus, compared with infundibulum or ampulla (P < 0.05; Fig. 30a, 31a). 

When the expression of each oviduct portion throughout the estrous cycle was considered, in 

all portions, a higher OVGP1 expression was observed in the follicular phase (P < 0.05) (Fig. 

30b-d, Fig. 31b-d).  

Figure 29 - Relative quantification by mRNA transcription of OVGP1 

 

Relative quantification of gene transcription by qPCR in equine oviduct (n=5 samples for each estrous 

cycle phase; n=5 for each portion of oviduct analyzed) of OVGP1. Transcription of target gene was 

normalized against that of the reference gene (2M).  Bars represent mean ± SEM. AU: arbitrary units.  

Different letters indicate significant differences (P < 0.05). 
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Figure 30 - Quantification of OVGP1 protein expression by WB. 

 

Quantification of OVGP1 protein expression by WB in the equine oviduct (n=3 for each phase or 

portion). Bars represent mean ± SEM. AU: arbitrary units. Different letters indicate significant 

differences (P < 0.05). 

Figure 31 - Panels representative of protein expression of OVGP1, evaluated by WB 

 

Panels representative of protein expression of OVGP1, evaluated by WB, in equine oviduct. a: 

Differences between oviduct portion; b: Differences in infundibulum throughout the estrous cycle; c: 

Differences in ampulla throughout the estrous cycle; d: Differences in isthmus throughout the estrous 

cycle. Data were normalized against -actin density values. 
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4.3.3. Ovarian steroid hormones, oxytocin and TNF in vitro effect on in vitro 

transcription of OVGP1 in oviduct explants, and on OVGP1 secretion  

4.3.3.1.Transcription of OVGP1 in oviduct explants 

Transcription of OVGP1 was assessed on oviduct explants treated in vitro with E2, P4, OXT 

and TNF. Results were compared with the control group, which consisted of oviduct explants 

incubated in culture medium alone. 

In the follicular phase, OXT and TNF up-regulated OVGP1 transcription (P < 0.05; Fig. 32a); 

in the early luteal phase, E2 had a stimulatory effect (P < 0.05; Fig. 32b), but in mid-luteal 

phase, it was P4 that stimulated transcription (P < 0.05; Fig. 32c).  

 

4.3.3.2.OVGP1 production by explants  

OVGP1 was measured by EIA in the culture medium conditioned by oviduct explants that had 

been submitted to E2, P4, OXT and TNF treatments, and under direct or indirect contact with 

spermatozoa, only for tissues from ampulla and isthmus from early-luteal phase. All results 

were compared with a control group, which was not subjected to any specific treatment. 

No portion of the oviduct presented any difference on OVGP1 production under E2, P4, OXT 

or TNF treatment (Fig. 33 a-c). Explants from ampulla did not show any difference under direct 

or indirect contact with spermatozoa (Fig. 33 d), but in the isthmus the secretion of OVGP1 

was upregulated under either direct or indirect contact with spermatozoa (P < 0.05; Fig. 33 e).  

Figure 32 - Effects of in vitro E2, P4, OXT and TNF on OVGP1 transcription by equine ampulla oviduct 

explants 

 

Effects of E2, P4, OXT and TNF on OVGP1 transcription by equine oviduct ampulla explants from 

follicular phase, early-luteal phase and mid-luteal phase analyzed by qPCR. Transcription of target gene 

was normalized against that of the reference gene (2M). Data show the mean ± SEM percentage 

changes compared with basal (control: C) output. * P < 0.05. 
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4.4. Collagen in equine oviduct: possible relationship with endometrial 

fibrosis and pathways involved  

4.4.1. Collagen type I (COL1) and collagen type III (COL3) mRNA transcription in 

equine oviduct 

COL1 and COL3 genes were determined in mares’ oviducts in distinct phases of the estrous 

cycle, and on its three portions, by qPCR. The analysis performed, besides considering the 

portion of the oviduct, the phase of estrous cycle, and age of mares, also considered 

Kenney’s endometrial classification, with special emphasis on the presence of fibrosis. 

Neither the estrous cycle phase, nor the age of mares had any effect on COL1 mRNA levels 

(Fig. 34 a-f). However, when the various portions of the oviduct were considered, the 

isthmus presented the highest COL1 transcription level (P < 0.05; Fig. 35a).  

Figure 33 - Effects of E2, P4, OXT, TNF and spermatozoa, on OVGP1 production 

 

Effects of E2, P4, OXT and TNF on OVGP1 production by equine oviduct explants. Analysis was 

performed from each portion of oviduct: infundibulum (a), ampulla (b) and isthmus (c), and after direct 

contact (d) and indirect contact (e) with spermatozoa. Data show the mean ± SEM percentage changes 

compared with basal (control: C) output. * P < 0.05. 
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Likewise, COL3 also present the highest RNA transcription in the isthmus (P < 0.05, Fig 35b). 

When mares’ age was considered, the youngest mares (4-6 years old) presented the highest 

transcription of COL3 in the isthmus but also in the infundibulum (P < 0.05; Fig. 36a, c). This 

Figure 34 - Relative quantification by mRNA transcription of COL1 in oviduct throughout estrous cycle 

and between different mares’ ages. 

 
Relative quantification of gene transcription by real-time polymerase chain reaction in equine oviduct 

throughout the estrous cycle and between different mares’ ages (n=6 samples for each estrous cycle 

phase; n=6 for each group of ages) of COL1. Transcription of target gene was normalized against that 

of the reference gene (2M).  Bars represent mean ± SEM. AU: arbitrary units.  Different letters indicate 

significant differences (P < 0.05). 
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Figure 35 - Relative quantification by mRNA transcription of COL1 and COL3 through the oviduct  

 

Relative quantification of gene transcription by qPCR in equine oviduct through portions (n=18 samples 

for each portion) of COL1 (a) and COL3 (b). Transcription of target gene was normalized against that 

of the reference gene (2M).  Bars represent mean ± SEM. AU: arbitrary units.  Different letters indicate 

significant differences (P < 0.05). INF- infundibulum; AMP- ampulla; IST- isthmus. 
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increase in transcription in those specific anatomic portions of the oviduct was observed in the 

follicular phase (P < 0.05; Fig. 36d, f) In the ampulla, neither the estrous cycle phase, nor the 

age of the mares had any effect on COL3 mRNA levels (Fig. 36b, e).  

Interestingly, COL1 transcription was higher in mares classified in category III (Kenney, 1978), 

than in mares classified in category II, in ampulla and isthmus (P < 0.05; Fig. 37b, c), but not 

in infundibulum (Fig. 37a). Nevertheless, COL3 did not present the same differences, since 

transcription did not presented differences between these two groups of mares, in neither 

portion (Fig.38a-c).  

 

Figure 36 - Relative quantification by mRNA transcription of COL3 in oviduct throughout estrous cycle 

and between different ages 

 

Relative quantification of gene transcription by real-time polymerase chain reaction in equine oviduct 

throughout the estrous cycle and between different mares’ ages (n=6 samples for each estrous cycle 

phase; n=6 for each group of ages) of COL3. Transcription of target gene was normalized against that 

of the reference gene (2M).  Bars represent mean ± SEM. AU: arbitrary units.  Different letters indicate 

significant differences (P < 0.05). 
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4.4.2. COL1 protein expression in equine oviduct  

Expression of COL1 protein was evaluated by western blot analysis in the same oviduct samples 

used for transcription analysis. COL1 presented a higher protein expression in the ampulla, than 

the infundibulum (P < 0.05; Fig. 39, 40).  

Figure 37 - Relative quantification by mRNA transcription of COL1 in oviducts of mares with 

different Kenney’s endometrial classification  
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Relative quantification of COL1 gene transcription by real-time polymerase chain reaction in equine 

oviduct between mares with different degrees of endometrial fibrosis (n=9 samples for each 

endometrial classification). Transcription of target gene was normalized against that of the reference 

gene (2M).  Bars represent mean ± SEM. AU: arbitrary units.  Different letters indicate significant 

differences (P < 0.05). 

Figure 38 - Relative quantification by mRNA transcription of COL3 in oviducts of mares with different 

Kenney’s endometrial classification 
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Relative quantification of COL3 gene transcription by real-time polymerase chain reaction in equine 

oviduct between mares with different degrees of endometrial fibrosis (n=9 samples for each endometrial 

classification). Transcription of target gene was normalized against that of the reference gene (2M).  

Bars represent mean ± SEM. AU: arbitrary units.  Different letters indicate significant differences (P < 

0.05). 
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The age of mares (4-8 years old; 10-12 years old; >17 years old) from whom the oviducts were 

retrieved was also considered for COL1 gene expression analysis. In the infundibulum, a higher 

COL1 protein expression was present in the oldest mares (>17 years old) (P < 0.05; Fig. 41a, 

42a); while in the ampulla, age had no effect (Fig. 41b, 42b). The isthmus of mares from 10 to 

12 years old, showed a higher protein expression, than older mares (P < 0.05; Fig. 41c, 42c).  

Figure 39 - Quantification of COL1 protein expression by WB, through the oviduct  
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Quantification of oviduct COL1 protein expression by WB in the equine oviduct (n=6 for each phase; 

n=6 for each portion). Bars represent mean ± SEM. AU: arbitrary units. Different letters indicate 

significant differences (P < 0.05). INF- infundibulum; AMP- ampulla; IST- isthmus. 

Figure 40 - Panel representative of protein expression of COL1 in mare oviduct, evaluated by WB 

 

Panels representative of protein expression of COL1, evaluated by WB, in equine oviduct through 

different portions. Data were normalized against β-actin density values. 
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The phase of the estrous cycle did not affect COL1 protein expression either in the 

infundibulum, or in the isthmus (Fig. 41d, f; 42d, f), while in the ampulla, its expression fell in 

mid luteal phase (P < 0.05; Fig. 41e, 42e).  

 

Figure 41 - Quantification of oviduct COL1 protein expression by WB throughout estrous cycle and 

between different ages 

 

Quantification of oviduct COL1 protein expression by WB analysis in the equine oviduct (n=6 for each 

phase; n=6 for each group of ages). Bars represent mean ± SEM. AU: arbitrary units. Different letters 

indicate significant differences (P < 0.05). 

Infundibulum

C
o

l1
 P

r
o

te
in

 (
A

r
b

iy
ta

r
y
 U

n
it

s
)

4-8 10-12 >17
0.0

0.5

1.0

1.5

a
ab

b

Ampulla

C
o

l1
 P

r
o

te
in

 (
A

r
b

iy
ta

r
y
 U

n
it

s
)

4-8 10-12 >17
0.0

0.5

1.0

1.5

2.0

Isthmus

C
o

l1
 P

r
o

te
in

 (
A

r
b

iy
ta

r
y
 U

n
it

s
)

4-8 10-12 >17
0.0

0.5

1.0

1.5

ab

a

b

Infundibulum

C
o

l1
 P

r
o

te
in

 (
A

r
b

iy
ta

r
y
 U

n
it

s
)

Follicular P Early LP Mid LP
0.0

0.2

0.4

0.6

0.8

1.0

Ampulla

C
o

l1
 P

r
o

te
in

 (
A

r
b

iy
ta

r
y
 U

n
it

s
)

Follicular P Early LP Mid LP
0.0

0.5

1.0

1.5

2.0

a

b

Isthmus

C
o

l1
 P

r
o

te
in

 (
A

r
b

iy
ta

r
y
 U

n
it

s
)

Follicular P Early LP Mid LP
0.0

0.5

1.0

1.5

a b c

fed

Infundibulum

C
o

l1
 P

r
o

te
in

 (
A

r
b

iy
ta

r
y
 U

n
it

s
)

4-8 10-12 >17
0.0

0.5

1.0

1.5

a
ab

b

Ampulla

C
o

l1
 P

r
o

te
in

 (
A

r
b

iy
ta

r
y
 U

n
it

s
)

4-8 10-12 >17
0.0

0.5

1.0

1.5

2.0

Isthmus

C
o

l1
 P

r
o

te
in

 (
A

r
b

iy
ta

r
y
 U

n
it

s
)

4-8 10-12 >17
0.0

0.5

1.0

1.5

ab

a

b

Infundibulum

C
o

l1
 P

r
o

te
in

 (
A

r
b

iy
ta

r
y
 U

n
it

s
)

Follicular P Early LP Mid LP
0.0

0.2

0.4

0.6

0.8

1.0

Ampulla

C
o

l1
 P

r
o

te
in

 (
A

r
b

iy
ta

r
y
 U

n
it

s
)

Follicular P Early LP Mid LP
0.0

0.5

1.0

1.5

2.0

a

b

Isthmus

C
o

l1
 P

r
o

te
in

 (
A

r
b

iy
ta

r
y
 U

n
it

s
)

Follicular P Early LP Mid LP
0.0

0.5

1.0

1.5

a b c

fed

Figure 42 - Panels representative of protein expression of COL1, evaluated by WB 

 

Panels representative of protein expression of COL1, evaluated by WB, in equine oviduct, throughout 

the estrous cycle and between different mares’ ages. a and d: infundibulum; b and e: ampulla; c and f: 

isthmus. Data were normalized against β-actin density values. 
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4.4.3. Quantification of COL1 vs COL3 protein expression in oviduct and 

endometrium 

COL1 and COL3 protein expression were analyzed by the histochemical stain Picrosirius Red 

(PSR), which under a polarized light microscope, allows to distinguish between COL1 and 

COL3. COL1 will stain red, while COL3 will stain green (Fig. 43). 

In all mares, endometrium was analyzed, as well as each portion of oviduct: infundibulum, 

ampulla and isthmus. Mares were assigned to different groups according their endometrium 

Kenney’s histopathological category: I, II or III. Only the percentage of each collagen type 

present in the whole photographed area was considered, and it was related to the other collagen 

type. This way, all the other cellular components were deducted, so the real proportion of 

collagen deposition and the relationship between both types of collagen was determined.  

For the mares in the category I, an increase in the area with COL3 fibers with respect to COL1 

was depicted in endometrium (P < 0.05; Fig. 44a;). In all the portions of the oviduct, there was 

no difference between their expression (P > 0.05; Fig. 44b, c, d;). 

In the case of mares in category II, there was no difference in collagen type I or type III fibers 

distribution, in the endometrium (Fig. 45a). Nevertheless, all oviduct portions, showed a higher 

transcription of COL1 than COL3 (P < 0.05; Fig. 45b-d).  

Interestingly, in the case of mares classified in Kenney III, while no difference was noted in 

infundibulum and ampulla (Fig. 46b, c;), endometrium and isthmus presented a higher 

percentage of fibers of COL1 vs COL3 (P < 0.05; Fig.46 a, d).  

Figure 43 - Mare endometrium stained with PSR 

 

Mare endometrium stained with PSR, observed and photographed under polarized light microscopy 

(Leica Leitz DMRD; Mag=100X). On the left panel is depicted a healthy endometrium with mostly 

COL3 fibers (stained in green), while on the right panel most collagen fibers are COL1 (stained in red) 

in severe endometrosis. 
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Figure 44 - Relative proportion of COL1 and COL3 in mares’ oviduct and Kenney I endometria 

 

Relative proportion of COL1 and COL3 in equine oviduct and endometrium, from mares with 

endometrium previously classified as Kenney I. Histologic sections were stained with picrosirius red, 

photographed under polarized light microscopy and measured using a digital image processing system 

(Leic Qwin V3). Bars represent mean ± SEM. AU: arbitrary units. Different letters indicate significant 

differences (P < 0.05). 
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Figure 45 - Relative proportion of COL1 and COL3 in mares’ oviduct and Kenney II endometria 

 

Relative proportion of COL1 and COL3 in equine oviduct and endometrium, from mares with 

endometrium previously classified as Kenney II. Histologic sections were stained with picrosirius red, 

photographed under polarized light microscopy and measured using a digital image processing system 

(Leic Qwin V3). Bars represent mean ± SEM. AU: arbitrary units. Different letters indicate significant 

differences (P < 0.05). 
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4.4.4. Possible linkage between fibrosis in endometrium and oviduct  

Transcription of COL1 and COL3 in endometrium and oviduct of the same mares was analyzed 

by linear regression, to investigate if the transcription in endometrium could influence the 

transcription in oviduct. COL1 in infundibulum and in ampulla, presented a lower correlation 

coefficient (R) (0.443 and 0.129, respectively), but COL1 in isthmus showed a significant 

correlation and determination coefficient (R2) values (R: 0.927; R2: 0.859; P < 0.05). The linear 

regression in this case was given by the following equation: COL1 isthmus = - 0.037 + 0.306 

COL1 endometrium (Fig 47a). 

In infundibulum and ampulla, COL3 also presented a low correlation coefficient value (R= 

0.282 and R= 0.041 respectively), but again COL3 in isthmus showed a significant correlation 

and determination coefficient values (R: 0.839; R2: 0.704; P < 0.05) and the linear regression 

between the two variables was given by the following equation: COL3 isthmus = 0.045 + 0.069 

COL3 endometrium (P < 0.05; Fig. 47b).  

Figure 46 - Relative proportion of COL1 and COL3 in mares’ oviduct and Kenney III endometria 

 

 

Relative proportion of COL1 and COL3 in equine oviduct and endometrium, from mares previously 

classified as Kenney III. Histologic sections were stained with picrosirius red, photographed under 

polarized light microscopy and measured using a digital image processing system (Leic Qwin V3). Bars 

represent mean ± SEM. AU: arbitrary units. Different letters indicate significant differences (P < 0.05). 
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4.4.5. Putative mechanisms involved in COL1 and COL3 transcription in oviduct 

In order to investigate the putative mechanism that could be involved in COL1 transcription, 

on each oviduct portion, the correlation between COL1 (infundibulum, ampulla and isthmus) 

and MMP2, MMP9, TIMP, PTGES, EP2, AKR1C3, FP, TNF, TNFRFS1A, TNFRSF21B, ALK5 

and TGFβRII transcripts was evaluated  

 Infundibulum 

Correlation coefficient between COL1 and TIMP in infundibulum, was 0.734 (P < 0.01).  

The linear regression between these two variables was represented by the following equation: 

COL1 infundibulum = -0.004 + 1.01 TIMP infundibulum (P < 0.05; Fig. 48). The determination 

coefficient was 0.539 (P < 0.05). With respect to COL3 in the infundibulum, none of the genes 

evaluated presented a significant correlation with it. 

Figure 47 - COL1 (a) and COL3 (b) linear regression between isthmus and endometrium 

 

Linear regression between COL1 (a) and COL3 (b) gene transcription in isthmus and COL1 and COL3 

transcription in endometrium. R2 represents the determination coeficient (P < 0.05). 
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Ampulla 

In the ampulla, none of the genes studied presented a significant correlation with COLI 

transcription. The transcription of COL3 showed a significant correlation (P < 0.05) with: 

MMP2 (R=0.939), MMP9 (R=0.586), TIMP (R=0.628), PTGES (R=0.893), FP (R=0565), 

TNFRSF1A (R=0.691) and TNFRSF1B (R=0.877) (P < 0.05). Linear regression was significant 

for MMP2, MMP9, PTGES, AKR1C3 and TNFRSF1A (R2=0.950; Fig. 33) and the respective 

equation was COL3 ampulla = -0.02 + 0.583 MMP2 + 112.24 MMP9 – 15.718 PTGES + 27.303 

ARK1C3 – 1.515 TNFRSF1A. 

Isthmus  

In isthmus, COL1 presented a significative correlation value (P < 0.05) with AKR1C3, ALK5 

and TGFβRII (R= 0.802, R= 0.844 and R= 0.666, respectively). The linear regression equation 

was COL1 isthmus = -0.186 + 13.302AKR1C3 – 0.465TGFβRII + 120.030ALK5, with a 

significative determination coefficient (R2: 0.847; P < 0.05). 

Also, COL3 presented a significative correlation value with AKR1C3, ALK5 and TGFβRII (R= 

0.749, 0.785 and 0.578, respectively) and the liner regression equation was COL3 isthmus = -

0.113 + 9.866AKR1C3 – 0.268TGFβRII + 43.880ALK5, with a significant determination 

coefficient (R2: 0.741; P < 0.05). 

Figure 48 – Linear regression between COL1 and TIMP1 in mare infundibulum 

 

Linear regression between COL1 and TIMP1 gene transcription in infundibulum in oviduct. R2 

represents the determination coeficient (P < 0.05). 
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4.4.6. Possible linkage between endometrial collagen pathways and oviduct collagen 

transcription 

Since collagen transcription in oviduct was correlated with collagen transcription in 

endometrium, in this section possible linkage between oviduct collagen transcription and 

endometrial collagen pathways was investigated, and presented the following results. 

 Infundibulum 

In infundibulum, correlation coefficient was statistically significant either for COL1 and COL3, 

with respect to MMP2 (R= 0.735 and R= 0.72, respectively). The corresponding determination 

coefficient was R2= 0.54 and R2= 0.519 (Fig. 49a, b). 

 

Ampulla 

In ampulla, only COL3 presented a significant correlation value with TNF mRNA in 

endometrium: R= 0.654; R2= 0.427 (Fig. 50).  

Figure 49 - Linear regression between collagen transcription in infundibulum and MMP2 in endometrium  

 

Linear regression between oviduct collagen (I and III)  transcription in oviduct and MMP2 transcription 

in endometrium. R2 represents the determination coeficient (P < 0.05). 
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Isthmus 

In isthmus, COL1 showed a significant correlation with MMP2 and MMP9 (R=0.525, 0.569, 

respectively). Linear regression between COL1 (dependent variable) and MMP2 + MMP9 

(independent variables) was given by the following equation COL1 = - 0.176 + 0.289MMP2 + 

8.553MMP9 (R2: 0.416, P < 0.05). COL3 also present significant correlations values with 

MMP2 and MMP9 (R= 0.497, 0.540, respectively). Linear regression equation was the 

following: COL3 = - 0.089 + 0.153MMP2 + 4.561MMP9 (R2= 0.375, P < 0.05).  

4.4.7. Ovarian steroid hormones, OXT and TNF on in vitro transcription of COL1 in 

oviduct explants 

Transcription of COL1 was analyzed in ampulla oviduct explants treated with E2, P4, OXT and 

TNF, and results were compared with a control group, which was subjected to culture medium 

alone. 

In follicular phase, TNF up-regulated COL1 transcription (P < 0.05; Fig. 51a), while in early-

luteal phase, no treatment had any effect on COL1 transcription (P > 0.05; Fig. 51b). In mid 

luteal phase, either E2 and P4, stimulated COL1 transcription (P < 0.05; Fig. 51c).  

Figure 50 - Linear regression between transcription of COL3 in ampulla and of TNF  in endometrium 

 

Linear regression between COL3 (ampulla) transcription and TNF (endometrium). R2 represents the 

determination coeficient (P < 0.05). 
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4.4.8. Ovarian steroid hormones, OXT and TNF on in vitro protein expression of 

COL1 by oviduct explants 

Expression of COL1 was analyzed on the same ampulla oviduct explants treated with E2, P4, 

OXT and TNF, previously used for mRNA levels assessment, and results were compared with 

a control group (explants incubated in culture medium alone). 

In contrast to mRNA transcription, COL1 protein did not show any significant difference, with 

any treatment in explants from the ampulla region obtained in the follicular phase (P > 0.005; 

Fig 52a). In early-luteal phase, also no treatment induced any difference in COL1 protein 

expression (P > 0.005; Fig 52b). Nevertheless, in mid-luteal phase P4 and OXT, up-regulated 

COL1 expression (P < 0.05; Fig. 52c).  

Figure 51 - Effects of E2, P4, OXT and TNF on COL1 transcription in equine ampulla oviduct explants 

 

Effects of E2, P4, OXT and TNF on COL1 transcription in equine oviduct ampulla explants from 

follicular phase, early-luteal phase and mid-luteal phase analyzed by qPCR. Transcription of target gene 

was normalized against that of the reference gene (2M). Data show the mean ± SEM percentage 

changes compared with basal (control: C) output. * P < 0.05. 
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Figure 52 - Effects of E2, P4, OXT and TNF on COL1 expression in equine ampulla oviduct explants 

 

 

Effects of E2, P4, OXT and TNF on COL1 expression in equine ampulla oviduct explants from follicular 

phase, early-luteal phase and mid-luteal phase analyzed by WB; n=6 for each phase.  Data show the 

mean ± SEM percentage changes compared with basal (control: C) output. * P < 0.05, **P < 0.01, ***P 

< 0.001. 
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5.1. The role of ovarian steroids, oxytocin and tumor necrosis factor in the 

modulation of equine oviduct function 

Ultrastructure images of the OEC obtained from the infundibulum ipsilateral to the dominant 

ovarian structure showed a mixed pattern of prismatic ciliated cells and a greater amount of 

non-ciliated cells that present a rounded surface with microvilli assuring an intimate cell-to-cell 

contact determinant in endometrium health and movement of the ovum towards the uterus 

(Henry-Suchet, 2000; Urzua, Stambaugh, Flickinger & Mastroianni 1970). Several of the 

observed aspects and patterns of ciliated and secretory cells have been reported in different 

portions of cow, pig, mare and goat oviduct, as well as in mare endometrium (Stalheim, 

Gallagher & Deyoe, 1975; Ferreira-Dias, Nequin & King, 1994; Gandolfi, Brevini, & Moor, 

1994). Protruding buds of secretion found in the ampulla in the luteal phase might suggest the 

importance of this area in the production of nutrients for the first stages of embryonic 

development (Gandolfi, Brevini, & Moor, 1994).  

In the present study, in the follicular phase, under the physiological action of E2, PGR mRNA 

levels increased in mare oviduct. These findings regarding PGR expression agree with previous 

reports on steroid hormones and receptors (Graham & Clarke, 1997; Rottmayer et al, 2006). 

Also in the cow, either exogenous E2 treatment of oviductal cells (Rottmayer et al, 2006), or 

endogenous physiologic E2 action in the follicular phase increased PGR mRNA expression in 

the ampulla (Kenngott, Vermehren, Sauer, Ebach & Sinowatz, 2011). In contrast, P4 stimulation 

resulted in a reduction of PGR transcripts or protein expression in cow, sheep and rabbit 

oviducts (Hyde, Blaustein, & Black, 1989; Ulbrich, Kettler & Einspanier, 2003; Garcia-

Palencia et al, 2007). Classically, gene expression of PGR in target tissues is up-regulated by 

E2, but downregulated by P4 (Graham JD & Clarke, 1997). With declining peripheral P4 

concentrations during luteolysis, this inhibition diminishes causing a strong upregulation of 

PGR expression (Kenngott et al, 2011), while E2 stimulates PGR in the oviduct (Hai, Logeat, 

Warembourg & Milgrom, 1977). This agrees with our results, where PGR gene transcription 

and protein expression in mare ampulla were the highest in the follicular phase and depicted in 

epithelial cells. These findings may suggest that circulating estrogens in the follicular phase 

could have a stimulatory effect on both PGR transcription and translation processes. In another 

study on mare oviduct, immune-localization of PGR was stronger in the ampulla than in the 

isthmus, present in epithelial nuclei, but in contrast with our findings, it was also depicted in 

the smooth muscle cell nuclei of the lamina muscularis propria (Nelis et al, 2015b). Also in 

cow oviduct, PGR were immuno-localized in epithelial cells nuclei, stroma and muscle layer, 

even though muscle layer only stained for PGR in the early luteal phase and not in others 
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(Ulbrich et al, 2003; Saint-Dizier, Sandra, Ployart, Chebrout & Constant, 2012). Nevertheless, 

another work showed intense staining for PGR in secretory epithelium cells and muscle cells 

in the bovine ampulla in the follicular phase, while ciliated cells only showed a week nuclear 

staining (Kenngott et al, 2011). These discrepancies between our results and the aforementioned 

studies in mare and cow oviduct regarding PGR protein localization may be ascribed to species 

difference between cow and mare, different days of oviduct sample collection, or different 

techniques and antibodies used. As in other species, the physiologic role of P4 mediated by 

genomic PGR in mare oviduct may be responsible for decreasing cilia activity and oviduct 

contractility in the luteal phase (Saint-Dizier et al, 2012). Besides, cellular events leading to 

cell survival or apoptosis are also mediated by PGR expression modulation in different cell 

types in the mouse oviduct, and may be determined by a putative interdependence between this 

steroid receptors and growth factors (Shao et al, 2007).   

Even though transcription of ESR1 and ESR2 did not change in mare oviduct throughout the 

estrous cycle, protein expression of both receptors was higher in the follicular phase, as for 

PGR. This lack of agreement between mRNA transcription of ESR1 and ESR2 and protein 

expression in mare oviduct may be explained by the fact that gene expression is regulated at 

multiple levels (e.g., transcriptional and post-transcriptional) to maintain oviduct function under 

physiologic conditions (Vogel & Marcotte, 2013; Dahan, Gingold & Pilpel, 2011). Protein 

abundance reflects a dynamic balance among the processes of spanning the transcription, 

processing and damage of mRNAs, translation, localization, modification and destruction of 

the resulting proteins (Vogel & Marcotte, 2013). These processes are often extensively linked 

and may recurrently regulate each other through feedback loops, as revised by Dahan et al 

(2011). Estrogen dominance in the follicular phase might have a positive effect on the 

translation of these genes, resulting on a higher level of protein, which will be necessary to 

prepare the oviduct for the fertilization process. 

 When infundibulum and ampulla of the mare oviduct were considered, there was an ESR1 and 

ESR2 mRNA up-regulation in the ampulla, in contrast to PGR. The expression of ESR1 mRNA 

by laser-assisted microdissection (LAM) and in situ hybridization in cow oviduct epithelium 

was higher in the follicular phase than in the mid-luteal phase (Kenngott et al., 2011). Also, a 

distinct upregulation of Esr1 mRNA in the stromal cells of bovine ampulla was seen in the 

follicular phase (Kenngott et al., 2011). In cow oviduct, ESR1 mRNA, in situ hybridization 

revealed transcripts in epithelial cells and in stromal cells mainly in the follicular phase, while 

hybridization signals appeared weaker in the mid-luteal phase (Kenngott et al., 2011). Murine 

oviduct epithelium has also a tissue-specific set of target genes for ESR that respond to E2 

stimulation by regulating a tissue specific selective E2 receptor modulators response (Moyle-
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Heyrman, Schipma, Dean, Davis, & Burdette, 2016). In mare oviduct, the ampulla, which has 

the largest luminal perimeter, appears to be the most active secretory region, providing a large 

contact surface and nutrients to support biological events, such as early embryo cleavage 

(Mougelar et al., 2015). Thus, assessment of protein expression of the genes under study was 

only performed in the ampulla. These differences in steroid receptors gene expression are 

probably related with the process of gamete preparation, fertilization and for an adequate early 

embryo development (Mougelar et al., 2015; López-Úbeda et al., 2015). In fact, suppression of 

oviductal protease activity mediated by E2-epithelial ESR1 signaling is required for 

fertilization, preimplantation and embryo development (Winuthayanon et al., 2015).  

In the follicular phase, even though OXTR mRNA was down-regulated in mare oviduct, with 

respect to early and mid-luteal phases, its protein expression was up-regulated under 

endogenous estrogen influence. and mostly expressed in the ampulla. This could be explained 

by a translational delay, also observed in the cow oviduct in respect to ESR1 (Ulbrich et al, 

2003). The presence of OXTR on cow oviduct and OXT stimulatory effect on oviduct motility 

were also evident in the follicular-phase (Kotwica et al., 2003). In sheep oviduct, OXTR were 

up-regulated at estrus when compared to the luteal phase (Ayad, Guldenaar & Wathes, 1991). 

In both the ampullary and isthmic regions of the sheep oviduct OXTR binding sites were 

confined to smooth muscle (Ayad et al., 1991). Regarding OXT action on cow oviduct function, 

OXT completely blocked in vitro oviductal contraction in the follicular phase 

(Wijayagunawardane et al., 2008). In addition, in woman Fallopian tube, OXT administration 

first resulted in a short contractile response followed by a pronounced inhibition of muscular 

activity or relaxation through a specific effect on OXTR (Wanggren et al., 2008; Jankovic et 

al., 2001). In disagreement with those findings, in vivo oviductal musculature of the ewe 

reached a peak in sensitivity to physiological concentrations of OXT at estrus, in the ampulla 

and utero-tubal junction, increasing oviduct contractility (Shao et al., 2007). As reported in 

humans, OXT may contribute for a fast transport of sperm to the oviduct under E2 influence 

(Kunz, Beil, Huppert, & Leyendecker 2007). Once in this work, OXTR mRNA was the highest 

in the ampulla and its OXTR protein was expressed in the connective tissue of mare oviduct 

mucosa folds, we may suggest it is possibly related to contractility/motility and/or relaxation. 

Nevertheless, since the precise mechanism of mare oviduct cyclic contractility mediated by 

OXT is unknown, one is unable to present a definite role on contractility vs. relaxation events.  

It is long known that prostaglandins (PGs) are involved in reproductive functions, such as 

ovulation, fertilization, implantation and parturition. As previously referred for the gilt and cow 

(Kaczmarek et al., 2010; Wijayagunawardane et al., 2003; Siemieniuch, Woclawek-Potocka, 

Deptula, Okuda & Skarzynski, 2009), we have shown the mare oviduct is capable of producing 
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PGE2 and PGF2 in vitro. Production of PG in mare oviduct depended on estrous cycle stage, 

oviduct regions, and cell types. These are highly coordinated mechanisms regarding 

interactions of autocrine/ paracrine factors. They may be necessary for oviduct contractility, for 

sperm cells and oocyte transport, and early embryo development and transport (Kodithuwakku 

et al., 2007; Kaczmarek et al., 2010). Oviduct contractions have been reported to be modulated 

by PGs, through effects of PGE2 on relaxation of smooth muscle, and PGF2 on contraction 

(Kunz et al., 2007; Spilman & Harper, 1975). In our study, PTGES and AKR1C3 transcription 

in mare´s oviduct was down-regulated in the follicular phase, but with no change in gene 

expression. While PTGES mRNA levels were up-regulated in the ampulla, AKR1C3 

transcription was increased in the infundibulum. Also in the cow, PTGES was mostly expressed 

in the ampulla and to a lesser extent in the infundibulum and isthmus of the oviduct (Marey et 

al., 2014).  In the rat oviduct, the stimulatory effect of E2 on the enzyme prostaglandin-

endoperoxide synthase 2 (PTGS-2; COX-2) expression and activity may be receptor-mediated 

(Pérez-Martínez et al., 2006).   

While ovarian steroids treatment down-regulated PGE2 and PGF2α production by equine OEC 

in the follicular phase, PGF2α release increased in mid-luteal phase, in disagreement with cow 

OEC (Szóstek et al., 2011). In contrast, in the present study, when oviduct explants were 

cultured, PGE2 production was up-regulated by E2 in the ampulla in the follicular phase, by P4 

in the isthmus explants in mid-luteal phase, but no effects of ovarian steroids on PGE2 were 

recorded in the infundibulum. Treatment of equine oviduct explants with OXT resulted in 

increased production of PGE2 by the isthmus (follicular, early and mid-luteal phases) and by 

infundibulum (mid-luteal phase); and release of PGF2 by the infundibulum (early and mid-

luteal phases) and by the ampulla (mid-luteal phase). When TNF was tested in vitro, PGE2 was 

increased in the infundibulum in the early-luteal phase; in the ampulla in the follicular phase; 

and in the isthmus in the early and mid-luteal phases. Regarding in vitro TNF effect on mare 

oviduct, PGF2 was increased in the isthmus in the follicular phase and in the ampulla in early 

and mid-luteal phases. In an in vitro microdialysis study, infusion of LH alone or in combination 

with P4 or E2 stimulated a pronounced release of PGE2 and PGF2 in the oviducts from cows in 

the follicular and postovulatory phases (Wijayagunawardane et al., 2001).  It is worth noting 

that PGE2 rich microenvironment in the oviduct might have an anti-inflammatory action and 

might prevent sperm cells phagocytosis by neutrophils, as in the cow (Marey et al., 2014). This 

suppression of immune-response has been ascribed to the action of E2 that binds to ESR1, and 

plays a vital role in down-regulating some of the immune responses in the oviduct to provide a 

supportive environment for fertilization and embryo development (Wijayagunawardane & 

Miyamoto, 2004). We might speculate a concerted action of PGF2 and PGE2 on oviduct 
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contraction and relaxation, respectively, as in the cow oviduct (Siemieniuch et al., 2009). These 

differences on prostanoids production could be ascribed to different types of cells involved, 

such as OEC from the ampulla or different cell types included in the oviduct explants from the 

3 different anatomical regions of the oviduct. This explant culture system allows cell-to-cell 

integrity and cell-to-cell communication to be maintained. As in the cow, TNF and OXT 

stimulated oviduct PGE2 and PGF2 production (Siemieniuch et al., 2009; Wijayagunawardane 

& Miyamoto, 2004). In the cow oviduct, this stimulation by TNF occurred in the follicular 

phase, when the oviduct was considered as a whole, or by both the ampulla and the isthmus 

(Wijayagunawardane et al., 2003; Siemieniuch et al., 2009). In contrast, in the luteal phase, no 

stimulatory effect on eicosanoids production was seen in the entire oviduct, but only in the cow 

ampulla (Wijayagunawardane et al., 2003; Siemieniuch et al., 2009). In early-luteal phase, TNF 

did not influence the contractility in either fragment of cow oviduct (Siemieniuch et al., 2009). 

When taken together, TNF seems to play some role as a modulator of PGF2 and PGE2 

production and for transferring the embryo from the oviduct to the uterus (Siemieniuch et al., 

2009). Both PGF2 and OXT are involved in ovum capture in rabbit by the oviduct ampulla by 

stimulating contractility, thus altering intraductal pressures (Wijayagunawardane & Miyamoto, 

2004). TNF system may optimize the release of contraction-related substances and modulate 

local contraction to regulate the oviductal transport of the gametes and embryo 

(Wijayagunawardane et al., 2003). As it was suggested for the cow (Wijayagunawardane et al., 

2001), also in the mare, the increasing E2 concentration from the Graafian follicle, simultaneous 

with a basal P4 plasma level from the regressing corpus luteum, stimulates oviductal production 

of PG resulting in oviductal contraction for a rapid transport of gametes.  

In conclusion, this work has shown that ESR1, ESR2, OXTR, PTGES and AKR1C3 gene 

transcription and/or translation is estrous cycle dependent and varies with oviduct portion 

(infundibulum vs ampulla) and cell type. Ovarian steroids, OXT and TNF stimulation of PGF2α 

and/or PGE2 production is also estrous cycle dependent and changes in the different portions of 

mare oviduct. It has been shown that steady-state transcript abundance only partially predicts 

protein abundances (Dahan et al., 2011). Differential transcription level and protein localization 

in various portions of the oviduct throughout the estrous cycle, as well as PG production, 

suggest coordinated physiologic actions and mechanisms of ovarian steroid hormones, OXT 

and TNF in the equine oviduct. They may synergistically control oviductal contraction for 

optimal embryo transport during the periovulatory period, and provide further evidence for the 

local delivery of ovarian steroids to the adjacent reproductive tract (Wijayagunawardane et al., 

1998).  
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5.2. Microvascular density and the expression of FGFs, VEGF, and 

receptors in equine oviduct  

In mare internal genitalia, the reproductive organs, such as the ovary and endometrium, do not 

present the same microvascular changes throughout the estrous cycle. Specifically, the 

endometrium has not shown any differences in microvascular density (Roberto da Costa et al., 

2007).  In contrast, the corpus luteum (CL) has shown differences on its microvascular density, 

according to P4 production (Ferreira-Dias et al., 2005).  In the present work, in the oviduct, the 

highest microvascular density and number of blood vessels per area were depicted in the 

isthmus, during the follicular phase, under estrogens influence. Also in the rabbit, by the time 

that the oocyte is at AIJ, it was observed a dilatation of the isthmic subserosal venous plexus 

(Verco, Gannon & Jones, 1984b). Still in the rabbit, during pregnancy, an increase in 

microvasculature was observed, probably due to increased levels of circulating placental 

hormones (Verco, Gannon e Jones, 1984a) Thus, as an attempt to understand the observed 

changes in microvascular density in equine oviduct, and due to the importance of angiogenesis 

in reproductive organs, the expression of the most important angiogenic factors were evaluated 

in mare oviduct. Transcription of VEGF in equine oviduct did not change between portions and 

throughout the estrous cycle, in agreement with what was observed in the cow (Gabler, 

Einspanier, Schams & Einspanier, 1999), but in opposition to women, who presented a higher 

transcription in infundibulum and ampulla and a higher transcription during the peri-ovulatory 

period (Lam et al., 2003). In swine oviduct, different results from ours were recently observed 

by Albors and co-authors (2017), since VEGF showed a higher transcription in ampulla, with 

respect to isthmus. In the present work, the transcription of VEGF receptor (KDR) increased in 

the isthmus, when the estrous cycle phase was not considered.  Nevertheless, in spite of no 

estrous cycle effect in KDR mRNA transcription in the mare oviduct, in the sow oviduct, the 

transcription of KDR, either in ampulla or isthmus, raised in early and late-luteal phases (Albors 

et al., 2017). Nevertheless, besides the highest KDR protein expression in mare isthmus, when 

the three portions were analyzed as separate entities, we got a higher expression in the 

infundibulum in early-luteal phase, while in the ampulla, the highest expression occurred in 

follicular phase. In swine oviduct, transcription of KDR, either in ampulla and isthmus, 

increased in early and late luteal phases (Albors et al., 2017). In general, KDR is a protein 

associated with vasculogenesis, angiogenesis, cell proliferation and vascular permeability 

(Ferrara & Davis-Smyth, 1997). In mare oviduct, as previously referred, KDR (either as protein 

or mRNA) was mostly expressed in the isthmus, which agreed with the highest microvascular 

density in the oviduct. In agreement with our results, several experimental works confirm the 
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relationship between VEGF with angiogenesis, in different organs and species. For instance, in 

spinal cord damage of the rat, VEGF was associated with vascular changes following different 

types of injury in the central nervous system (Bartholdi, Rubin & Schwab, 1997). In tracheal 

capillaries of mouse, after VEGF signaling was blocked with a VEGF-receptor tyrosine kinase 

inhibitor, a decrease in capillaries around 30% was observed 21 days after (Baffert et al., 2006). 

In equine CL, Galvão and co-authors (2012), suggested a positive effect of TNF on the 

regulation of VEGF for angiogenesis stimulation during the early luteal phase, while at 

luteolysis, it is down-regulated. Also in human cancer, neutralizing monoclonal antibodies 

against VEGF and small molecule tyrosine kinase inhibitors targeting VEGFRs have been 

shown to block its angiogenic activity, resulting in tumor vascular regression, anti-tumor 

effects and improvements in patient survival (Sia, Alsinet, Newell & Villanueva, 2014).  

In the cow endometrium, VEGF presented a higher transcription during early and mid-luteal 

phases, while the protein presented a higher expression only during early luteal phase.  Both 

receptors (FLT1 and KDR), presented a higher transcription during early and mid-luteal phases, 

but also some differences concerning the protein expression were shown (Tasaki et al., 2010). 

This group also demonstrated that VEGF could stimulate PGF2α production. In equine oviduct, 

E2 up-regulated FLT1 and KDR transcription in ampulla explants, during early luteal phase, 

which is agreement with what was referred in the cow (Wijayagunawardane et al., 2005). 

Nevertheless, in equine oviduct we did not observe the positive effect of TNF in KDR 

transcription, as it was noted in equine CL (Galvão et al, 2012). These findings might suggest 

that VEGF system regulation in oviduct is mediated by different pathways. 

It seems that VEGF system presents differences in the oviduct among species, on its 

transcription and expression, between portions and estrous cycle phases. These differences 

suggest various roles on oviduct function, either related with angiogenesis, or related with 

secretion of oviductal fluid or even related with oviduct contractibility, as it has been suggested 

for swine oviduct (Albors et al., 2017). 

Like other angiogenic/growth factors FGF’s family is involved in several processes including 

cell growth, proliferation, differentiation and cell survival (Thisse & Thisse, 2005). In bovine 

ovarian follicle, FGF’s family members are involved in folliculogenesis, especially during the 

final stage of the follicular phase by stimulation of angiogenesis and granulosa cell survival and 

proliferation (Berisha et al., 2004). In gilts, FGF2 has also been identified in endometrial 

epithelium, stroma and myometrium during the estrous cycle and early pregnancy, but without 

any differences on its expression (Katsahambas & Hearn, 1996). Nevertheless, another research 

group, using immunolocalization techniques in swine, reported an increase in FGF2 in 

endometrium luminal epithelium and stroma on days 12 and 14 of gestation (Gupta, Bazer & 
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Jaeger, 1997). In equine oviduct, there were also no differences in mRNA FGF2 and FGF1 

levels throughout the estrous cycle, but a different transcription on its portions was noticed. 

While FGF1 presented a higher transcription in isthmus and ampulla, FGF2 mRNA levels were 

more expressed in isthmus. In addition, FGFR1 and FGFR2 transcription was not influenced 

by the estrous cycle, and only FGFR1 showed a higher transcription in isthmus. These results, 

propose different roles of both ligands and receptors studied. As observed for VEGF, FGFR1 

also had a higher transcription in the isthmus, which  is the portion with the highest  

microvascular density. These findings might suggest a role of the angiogenic factors  VEGF 

and FGF, mediated by their specific receptors, on isthmus angiogenesis and/or 

microvascularization. In fact, when comparing protein expression of all oviduct portions, also 

FGFR1 had the highest protein level in the isthmus, which could reinforce the role of this 

receptor, modulating the action of these growth factors in blood vessel development. FGFR2 

protein expression presented interesting differences. Either in ampulla and in isthmus, the 

highest protein expression occurred in the follicular phase, while in the infundibulum it depicted 

the highest expression in mid-luteal phase. The increased expression of this receptor could be 

ascribed to the largest microvascular density in the isthmus, in the follicular phase (Gabler et 

al. 2004). As well, these data might reinforce the importance that FGF system likely represents 

in creating the proper conditions for oviduct physiological events in the follicular phase 

(Archibong, Petters & Johnson, 1989; White et al., 1989). In fact, also in other reproductive 

endocrine organs, such as the CL, FGF has been associated to luteal cell proliferation (Grazul-

Bilska et al, 1995), and to luteal P4 production (Grazul-Bilska et al., 2001).     

5.3. Oviduct specific glycoprotein expression in equine oviduct 

In this work, mRNA OVGP transcription was augmented in ampulla and isthmus, compared 

with infundibulum. In ampulla, OVGP transcription was the highest in early and mid-luteal 

phase. Nevertheless, OVGP protein expression was increased in isthmus, and when each 

oviduct segment was analyzed separately, follicular phase was the one that presented the  largest 

expression. Differences between mRNA and protein expression, may be explained by the fact 

that gene expression is regulated at multiple levels (e.g., transcriptional and post-

transcriptional) to maintain oviduct function under physiologic conditions (Vogel & Marcotte, 

2013). Besides, proteins are more stable than mRNAs, with a maximum half-life of 

approximately 46 h, compared to 7 h for mRNAs (Vogel & Marcotte, 2013). Protein abundance 

reflects a dynamic balance among the processes of spanning the transcription, processing and 
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damage of mRNAs, translation, localization, modification and destruction of the resulting 

proteins. 

As already demonstrated in this work, isthmus had the highest expression of other proteins, 

such as FGFR1 and KDR. Caudal isthmus of the mouse oviduct acts as a reservoir for 

spermatozoa during the estrus (Suarez, 1987). This is probably one main reason for these 

proteins to exhibit a higher expression in this oviduct portion. Concerning OVGP1, its 

expression has shown the same pattern in all equine oviduct portions, with the highest 

expression in follicular phase. This confirms that also in the mare, this protein has a core 

importance in the process that occurs in oviduct. In fact, in 1990, Boice claimed that the bovine 

oviduct secretes a class of a specific glycoprotein that is present in the luminal fluid at the time 

of fertilization.  Later on, it was concluded that the number of sperm that bound in vitro to 

human oocytes in the presence of OVGP, was superior to when only control medium was used 

(O’Day-Bowman et al., 1996). Also in the sow, the addition of OVGP increased the cleavage 

of blastocysts, and reduced the incidence of polyspermy in oocytes (Kouba et al., 2000). In 

woman, a positive correlation between serum E2 and LH, and mRNA OVGP transcription, 

besides a negative correlation with P4 have been reported (Briton-Jones and co-authors (2001). 

Indeed, it was in the peri-ovulatory period in woman that OVGP transcription was the highest 

(Lok et al., 2002). These results agree with the results reported in this work, substantiating the 

highest OVGP expression in mare oviduct, in the follicular phase, when both gametes meet in 

the oviduct and when fertilization will occur.   

The hormones OXT, ovarian steroids, and cytokine TNF showed a somewhat different 

modulatory role on OVGP mRNA levels. Transcription of OVGP1 in follicular phase, was 

stimulated by OXT and TNF; by E2 in early-luteal phase, and P4 in mid-luteal phase.  It has 

already been demonstrated that OXT and TNF can stimulate PGs productions, either in cow 

(Szóstek et al., 2011) or as demonstrated by us, in the mare (Pinto-Bravo et al., 2017). Although 

the relationship between PGs and OVGP1, in mare oviduct has not yet been defined, OXT and 

TNF also upregulated OVGP1 transcription during follicular phase, which could suggest their 

involvement in oviduct proteomic profile in this phase of the estrous cycle. In addition, E2 up-

regulation of OVGP mRNA transcription during early luteal phase could be the result of a 

higher level of this hormone in the follicular phase, which could prime the oviductal tissue for 

a further E2 positive effect. 

Progesterone, the main steroid hormone in the luteal phase, has exhibit its stimulatory effect on 

OVGP1 transcription during this phase, on equine oviduct explants. This observation could be 

ascribed as a process for preparation for a higher expression of the OVGP protein, during the 
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follicular phase, due to gene expression regulation at multiple levels, and different half-lives of 

transcripts and proteins (Vogel & Marcotte, 2013).  

When considering OVGP secretion, in ampulla explants no treatment tested exerted any effect, 

when compared to control. These results are in disagreement with OVGP protein expression 

and transcripts.  This could be explained by the time of tissue incubation (24 h), or the doses of 

the factors tested that could not have been the most adequate ones to trigger differences on 

OVGP production. Other possible reasons, could be related with post-transcriptional and/or 

translation regulatory mechanisms (Vogel & Marcotte, 2013). 

This work, also demonstrated that sperm cells can up-regulate the secretion of OVGP by equine 

isthmus, which agrees with other works. Georgiou and co-authors (2005), demonstrated in 

swine, that the presence of spermatozoa or oocytes in the oviduct alter the secretion of specific 

proteins by oviduct. In fact, in rabbit, several oviductal proteins are altered 2 h after male 

gametes exposure (Artemenko et al., 2015), and in rabbit, semen increases OVGP secretion 

(Steinberger et al., 2017). Nevertheless, the increase in OVGP secretion, in the presence of 

sperm, was only observed in the isthmus, but not in the ampulla. Since the isthmus has a 

paramount importance as a sperm reservoir and in preparation of spermatozoa for fertilization, 

the up-regulation of OVGP in this portion of the oviduct by the influence of sperm reinforces 

the importance of this glycoprotein. 

Our data suggest that direct contact between spermatozoa and oviduct epithelium is not 

essential, since there was no difference when isthmus explants were incubated directly with 

sperm cells, or without direct contact with sperm. We may suggest that spermatozoa themselves 

will secrete substances, which will induce the epithelial cells to secrete OVGP, creating the 

adequate oviductal milieu for fertilization and early embryo development. Nevertheless, our 

data are slightly in disagreement with previous works in rabbit, which stated the absolute need 

for a direct contact between oviduct epithelial cells and sperm cells, to enable the oviduct to 

secrete specific proteins, in response to insemination (Artemenko et al., 2015).    

Therefore, more research is necessary to clarify the mechanisms involved in the cross-talk 

between oviduct epithelial cells, spermatozoa and even oocytes and embryos.    

5.4. Collagen in equine oviduct: possible relationship with endometrial 

fibrosis and pathways involved  

In order to search for fibrosis in mare oviduct, collagen presence was assessed and its presence 

correlated to endometrium fibrosis, mare´s age and Kenney´s classification (1978). To the best 
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of our knowledge, this is the first time that endometrial fibrosis is related to oviduct structural 

collagen changes in the equine species. The present study showed differences in mRNA 

transcription of COL1 and COL3, particularly amongst the three anatomical segments of the 

oviduct. In fact, COLI mRNA transcripts were increased in isthmus, while no influence of 

estrous cycle or mare´s age was found. Regarding COL3, although it also presented a higher 

transcription in isthmus, it had some differences in infundibulum and isthmus regarding the 

estrous cycle phase and the mare’s age. When we compared the expression of COL1 by WB 

analysis, among the three portions of oviduct, in different age mares and throughout the estrous 

cycle, we concluded that the ampulla presented a higher COL1 expression than the 

infundibulum. In the ampulla COL1 expression was increased in follicular phase and early-

luteal phase with respect to mid-luteal phase. The infundibulum presented a higher expression 

in older mares, while the ampulla did not presented any difference between different ages. Also, 

in equine endometrium it was reported that the distribution of type I collagen was dependent 

on the estrous phase cycle (Walter, Handler, Reifinger & Aurich, 2001). In equine oviduct there 

was a clear relationship between age and collagen expression, since COL1 protein was 

increased in the infundibulum of older mares; in the ampulla, COL1 expression did not show 

any difference, but in the isthmus, middle age mares presented COL1 highest expression.  

Regarding the development of equine chronic endometrial disease (based on Kenney’s 

classification) and its possible relation with age, it was concluded that mares up to 9 years old 

should not present any sings of it and only mares with only 17 years old, or more, are likely to 

have severe signs of chronic endometrial disease (Ricketts & Alonso, 1991). More recently, 

another study also confirmed a positive relation between animal age and disease severity, since 

they proved that endometrosis in older mares (> 12 years old), was more severe than in young 

mares (2  4 years old) (Aresu et al., 2012). In conclusion, there seems to occur differences in 

COL1 and COL3 transcription, either due to the segment of the oviduct considered, either to 

the phase of the estrous cycle and even due to the age of the mare. Also, the expression of COL1 

protein can be influenced by the same factors on different scales. 

Among the group of mares in this study, COL1 mRNA, in ampulla and isthmus, was higher in 

mares previously classified as Kenney III, than those mares classified as Kenney II. 

Nevertheless, these changes were not verified in COL3 transcription. These facts tempt us to 

consider, even though with caution, that COL1 may be more involved in the fibrotic process in 

oviduct, than COL3.  

The PSR stain is actually a technique involved in some controversy. Traditionally it has been 

considered as a reliable method to evaluate and differentiate type I from type III collagen, under 

a polarized light microscope (Rittie, 2017). However, some authors have reported that polarized 
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colors only reflect fiber thickness and packing (Lattouf et al., 2014). Nevertheless, even though 

PSR data should be analyzed with caution, in our opinion, this technique revealed interestingly 

results in the present study. The proportion of COL1 expression vs COL3 was analyzed, both 

in endometrium and oviduct by PSR stain. In the group of mares classified as having a Kenney 

category I endometrium, there was no difference concerning the relation of both types of 

collagen in the oviduct, interestingly, in the endometrium of these mares, COL3 presented a 

higher expression than COL1, which agrees with the fact that COL3, might have no deleterious 

effect on fibrosis (Masseno, 2009).  In mares classified as Kenney II, there was no difference 

between COL3 expression and COL1. Nevertheless, COL1 expression was superior than COL3 

in all portions of the oviduct. In Kenney’s III group, in endometrium COL1 was more expressed 

than COL3, but in oviduct, the same pattern was observed only in isthmus. These results are 

partially in agreement with others, in which COL3 was more expressed in mares classified in 

category I (as in our study), but also in category II (Lunelli, Cirio, Leite, Camargo & Kozicki, 

2013). Nevertheless, this group did not consider mares in category III, so we cannot compare it 

clearly with our results. However, the present work is fully in covenant with what was reported 

by Masseno (2009), who acknowledged that COL3, is predominant in healthy endometrium 

and will be gradually replaced by COL1, as fibrosis advances.  

Taken in together, oviduct COL1 and COL3 transcription and/or protein expression could be 

influenced by different factors, like mares’ age, and Kenney’s endometrium classification. 

Since oviduct COL1 transcription in ampulla and isthmus showed differences in mares 

presenting different degree of periglandular fibrosis, as well as differences in percentage of 

COL1 and COL3 deposition in the oviduct, in a dissimilar fashion to the endometrium, claim 

the need for a specific classification grid about the degree of oviductal fibrosis. Indeed, this 

could clarify the presence of pathological changes in the equine endometrium, but also in the 

oviduct and possible relationship with infertility and reproductive failure. It is important to 

remember that mares with Kenney’s category III endometrium have more degenerative 

structures and fewer cellular organelles, lack cilia in the lumen of the glands, and despite 

extensive fibrotic tissue in the lamina propria and inflammatory cells in most tissue layers 

(Ferreira-Dias, Nequin & King, 1994; Ferreira-Dias, Nequin & King, 1999). As far as we know, 

no knowledge is available about the relationship between equine oviduct structural arrangement 

of its components and layers, and the normal function of this organ, as it exist in endometrosis. 

Transcription of either COL1 and COL3 in isthmus was highly correlated with collagen 

transcription in the endometrium. These aspects suggest that the fibrotic process occurring in 

endometrium, can have repercussions on the neighbor oviduct, particularly in the isthmus. 

Using the rat as a model, it was also suggested that cases of endometriosis, present structural 



Chapter V - Discussion 

113 

and functional abnormalities of the oviduct, such as attenuated intercellular signaling, oviduct 

contractility, impaired immunoregulation, stem cell-mediated tissue repair and tissue fibrosis 

(Yang, Yang, Lin, Yang & Shen, 2015). 

In the present work, TNF showed a questionable relationship with collagen transcription in 

equine oviduct, although there is linkage between TNF transcription in endometrium and COL3 

transcription in ampulla. The cytokine TNF may have a controversial effect on fibrosis in 

different organs and species. Distler (2008), in a very interesting review, presented several 

examples where TNF can either exhibit a profibrotic effect, or an antifibrotic action. In fact, as 

previously referred, TNF inhibits both the transcription of collagen in cultured dermal 

fibroblasts, and the synthesis of COL3 and fibronectin (Mauviel et al., 1988). Also, TNF is 

involved in the resolution of established pulmonary fibrosis through reducing and programming 

the status of profibrotic macrophages (Redent et al., 2014). Moreover, TNF has been referred 

as a profibrotic cytokine by many other authors. Theiss and co-authors (2005) defended that 

TNF promotes a profibrotic phenotype of intestinal myofibroblast. Very recently, Hon and co-

authors (2018), explained how TNF can up-regulate the expression of nuclear factor kappa B, 

which can induce the differentiation of lung resident mesenchymal stem cell into myofibroblast, 

and so exacerbates pulmonary fibrosis. In human endometriosis, TNF can act indirectly, by 

stimulation of MMPs expression (Sillem, Prifti, Monga, Arslic & Runnebaum, 1999). In the 

equine oviduct, TNF up-regulated COL1 transcription just during the follicular phase. No 

difference was observed either during early or mid-luteal phase. Nevertheless, COL1 did not 

change its protein expression, under the influence of TNF, throughout the estrous cycle. In 

conclusion, in equine oviduct, TNF does not exhibit a clear effect on collagen type I deposition. 

Since TIMP1 inhibits collagenases and other enzymes, it may not induce liver fibrosis by itself, 

but can significantly exacerbate hepatic fibrosis (Yoshiji et al., 2000). In liver fibrosis, 

coincident with an increase in collagen deposition, an increase in the expression and release of 

TIMP1 occurs (Robert et al., 2016).  In a rat model, where pulmonary fibrosis was induced by 

paraquat, not only MMP2 and MMP9, but also TIMP1 was upregulated, 21 days after the initial 

treatment (Wang et al., 2011). Furthermore, TIMP1 can modulate the expression of genes 

related to liver fibrosis, and so, TIMP1 pathway could be considered a potential target for 

therapeutic intervention of fibrotic diseases. In oviduct tissues there are some reports of TIMP1 

expression (Buhi et al., 1997; Zampini, Argañaraz, Miceli & Apichela, 2014; Peng et al., 2015). 

In goat oviduct, TIMP1 was upregulated by E2 and presented a positive effect on viability of 

cultured oviductal epithelial cells. For that, it was associated to fertilization process and early 

embryonic development (Peng et al., 2015).  In equine endometritis some bacteria can induce 

the release of neutrophil extracellular traps (NETs), which can be implicated in in collagen 
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deposition in endometrium, namely by changing TIMP and TGFβ transcription (Rebordão et 

al., 2014). The results of our work, point out to some influence of TIMP1 on COL1 

transcription, at least in the infundibulum, since both variables presented a significant Pearson 

coefficient, and linear regression indicated that 53.9% of COLI transcription in infundibulum, 

could be ascribed to TIMP1 transcription. Nevertheless, this pathway does not seem to have 

any particular effect either in COL1 or COL3 transcription in ampulla or isthmus.  

In equine oviduct, none of the MMPs evaluated showed a significant correlation with collagen 

type transcription. However, MMP2 transcription in endometrium presented a significant 

correlation with both types of collagen in infundibulum, and isthmus, while MMP9 was only 

correlated with COL1 and COL3 transcripts in isthmus. Concerning MMP9, it is usually 

elevated in lung tissues and bronchoalveolar lavage fluids obtained from mice lungs where 

fibrosis was induced after intratracheal administration (Cabrera et al., 2007). Also, MMP9 can 

activate TGFβ contributing to enhance the pool of this cytokine (Yu & Stamenkovic, 2000). In 

equine endometrium MMP9 was found in stromal and glandular epithelial cells, but with no 

significant differences in expression between young and old mares. Also, the expression of this 

enzyme did not significantly differ between mares with endometrosis and the control group 

(Aresu et al., 2012). MMP9 is mainly produced by leucocytes, and in horse, is more associated 

with acute inflammation, than with chronic conditions (Clutterbuck, Harris, Allaway & 

Mobasheri, 2010).  

In the kidney, in an experimental study conducted in rats, it was concluded that Mmp2, was 

related with hydronephrosis and renal fibrosis, during unilateral ureteral obstruction (Tveitarås 

et al., 2015). In ocular lens, MMP2 plays a role in matrix contraction via TGFβ, which 

reinforces the relationship between MMPs and TGFβ (Eldred et al., 2012). In a group of ectopic 

tubal implantation cases, it was evaluated the expression of several MMPs and TIMPs, and 

related with hCG levels and the depth of invasion. It was concluded that the expression was 

higher in cases of deeper implantation of trophoblast (Qiu, Xie, Chen & Gemzell-Danielsson, 

2011). According to these authors, an imbalance between MMPs/TIMPs expression at the 

ectopic implantation, may lead to extensive destructive degradation of the extracellular matrix. 

Matrix metalloproteinases are also present in the ovary, where they can be involved in diseases 

like polycystic ovarian syndrome (Light & Hammes, 2015). These results were lately confirmed 

by another research group, who also found a positive relation between the expression of MMP2 

and MMP9, with the incidence of polycystic ovarian syndrome (Ranjbaran et al., 2016). 

Expression of MMP3 and TIMP2 were evaluated in serosal tissues from intraperitoneal organs 

and adhesions. It was observed that differences on their expression may predispose an organ to 

develop more adhesions than other (Chegini et al., 2002). Also, this same group argued that 
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serum levels of TIMP2 may be useful to identify individuals with an increased risk to develop 

adhesions. In equine endometrium, MMP2 is present in dilated and fibrotic endometrial glands, 

and in significant amounts in regions presenting peri-glandular fibrosis, which can indicate an 

active role in the development of chronic equine endometrial degenerative 

fibrosis/endometrosis (Walter, Handler, Miller, & Aurich, 2005). Still in equine endometrium, 

another group detected MMP2 in stromal cells by immunohistochemistry, and like MMP9, no 

difference was found between old and young mares (Aresu et al., 2012). In bovine oviduct, 

MMP2 among other proteins of MMPs, was evaluated during the estrous cycle. It was observed 

that MMP2 concentration was increased around time of ovulation, compared with luteal phase 

(Gabler, Killian & Einspanier, 2001). These authors concluded that MMPs, which were 

regulated distinctly in the oviduct, could be implicated in fertilization and early embryo 

development, as it was previously referred about the TIMP1, in the goat. Despite several 

experimental works have demonstrated the role of MMPs and even TIMPs in the development 

of fibrotic diseases, and others point out to their importance in reproductive functions in 

oviduct, there are not many, explaining their possible involvement in fibrogenesis in oviduct of 

mammal species. In mice, in which neutropenia was previously induced, hydrosalpinx was 

achieved by Chlamydia muridarum urogenital infection. Mice submitted to neutropenia, 

showed a significant reduction in MMP9 production, and after resolution of infection, a 

significant reduction in hydrosalpinx, providing evidences that neutrophils produce MMP9, 

which play a significant role in the development of fibrosis in oviduct (Lee, Schripsema, Sigar, 

Murray, Lacy & Ramsey, 2010). In conclusion, since MMPs are mostly released by leucocytes, 

and MMPs are generally involved in fibrotic processes in different organs, including some 

reproductive organs, and the endometrium is an organ with a very dynamic leucocyte 

population, it may justify the fact that MMP9 and MMP2 transcription in the endometrium, 

may influence collagen transcription in oviduct. 

In this experimental work, it was possible to conclude that PGs transcription was correlated 

with collagen transcription, particularly in ampulla and isthmus. In ampulla, PTGES seems to 

be inversely related with COL3 transcription, while AKR1C3 was positively associated with 

either COL3 transcription in ampulla, or with COL1 and COL3 transcription in isthmus. Several 

studies have referred the anti-fibrotic role of PGE2, and the pro-fibrotic action of PGF2α. For 

instance, in intestinal disease, PGE2 significantly decreased intestinal inflammation and 

collagen deposition in a murine model (Baird, Lloyd, Lawrance, 2015). In hepatic fibrosis 

induced in rats, PGE2 could mediate a reduction in the fibrotic process (Zakaria & El-Sisi, 

2016). Also in cases of pulmonary fibrosis induced by bleomycin, mPGE2 exerted an essential 

effect against pulmonary fibrogenesis via EP2 mediating signaling transduction (Wei et al., 
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2014). PGE2 can not only prevent differentiation of fibroblasts into myofibroblasts, but can 

even reverse the established myofibroblast differentiation, as it was demonstrated in a study 

carried out with human fibroblast obtained from patients with IPF (Garrison et al., 2013). In 

addition, PGF2α, has been implicated in the development of IPF and stimulates collagen 

production of lung fibroblast via FP (Oga et al., 2009; Olman, 2009; Aihara et al., 2013). In 

equine endometritis, prostaglandins may be related to endometrial fibrosis pathogenesis by 

stimulating collagen deposition (Rebordão et al., 2014). Also in skin, PGF2α is implicated in 

fibrosis development (Kanno et al., 2013). In osteoarticular diseases, isoforms of PGF2α were 

found in patients suffering from osteoarthritis. Collagen production by fibroblast-like 

synoviocytes was positively associated with PGF2α, which suggest a profibrotic role of this 

prostanoid, also in articular tissue (Remst, Blaney Davidson & van der Kraan, 2015). Based on 

the examples mentioned, and once that both enzymes related with PGs synthesis (PTGES and 

AKR1C3) were correlated with collagen transcription, we may conclude that these hormones 

are implicated in collagen deposition in equine oviduct, particularly in isthmus.  

In equine oviduct, although TGFβ mRNA was not evaluated, its receptors ALK5 and TGFβRII, 

were assessed. Intestingly both receptors were significantly correlated with either COL1 or 

COL3 transcription in isthmus. In human medicine, there is a tremendous interest about the role 

of TGFβ in the development of fibrotic disease, in several organs. For instance, in chronic 

kidney disease (CKD), TGFβ is considered the “master regulator of fibrosis” (Meng, Nikolic-

Paterson, & Lan, 2016). Several articles have demonstrated the influence of TGFβ in CKD, 

either about its origin (mainly from macrophages), either about its influence on the expression 

of secondary molecules/proteins, also involved in the process (Meng, Chung & Lan, 2013; 

Shen, Liu, Fan & Qiu, 2014; Muñoz-Félix, González-Núñez, Martínez-Salgado & López-

Novoa, 2015). Besides that, and based on the influence that TGFβ has on CKD, the demand for 

new molecules which could represent a possible treatment for this disease has been pursued 

(Wu, Shi, Lu, Ma & Cheng, 2015; Park et al., 2013). Several studies have addressed the role of 

TGFβ in liver fibrosis, as well as possible modalities of treatments (Tu et al., 2014; Roy et al., 

2015; Crosas-Molist, Bertran, & Fabregat, 2015). Also in cardiac fibrosis, several mediators 

may be implicated in the process, including TGFβ (Kong, Christia & Frangogiannis, 2014). In 

equine endometrium, it was proved that prolonged exposure to NETs, up-regulated TGFβ 

transcription, also confirming its influence in the development of equine endometrosis 

(Rebordão et al., 2014). 

Nodal is a member of TGFβ superfamily, that has been under study in the reproductive tract. It 

has already been identified in bovine uterus and oviduct (Argañaraz et al., 2013), and in mare 

endometrium (Morazzo et al., 2017). Nevertheless, its functional importance has not been 



Chapter V - Discussion 

117 

established, but it was related either with pregnancy maintenance and/or fertility process in the 

cow (Argañaraz et al., 2013). In contrast, in the mare, Nodal might be involved in endometrium 

fibrosis (Morazzo et al., 2017). Based on the evidences that TGFβ is implicated in fibrogenic 

processes in several organs, our results suggest that this cytokine is also involved in the collagen 

deposition in equine oviduct, in particular in the isthmus. 

Since fibrosis is a very complicated and multi-factorial process, and it may be implicated in 

several organ functions, including the oviduct, therefore, further studies in this area is 

recommended for a better understanding of its involvement in equine fertility. 
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The results reached with this work allow for a better understanding of some mechanisms 

implicated in oviduct regulation. These data put forth and strengthen the hypothesis that 

exacerbated collagen deposition in equine oviduct may be responsible for infertility and point 

us possible players in this pathological process. 

Regarding the results from these four studies, it is possible to draw the following conclusions: 

1. Ovarian steroid hormones, oxytocin, and PGs modulate oviductal function in a 

coordinated mode, providing proper conditions for regular oviductal function. 

2. Angiogenic factors FGF1, FGF2, VEGF and respective receptors expression in equine 

oviduct, agree with microvascular density changes. 

3. A higher expression of OVGP was detected in isthmus and in the follicular phase. 

4. Sperm cells will increase OVGP secretion, providing an adequate milieu for fertilization 

and early embryo development. 

5. These data suggest that OVGP is important for sperm cells final preparation and/or 

capacitation, since it is in the isthmus, and during follicular phase, that male gametes 

will be present in this oviduct segment 

6. Mare oviduct can suffer fibrosis process since COL1 and COL3 present differences on 

their expression. 

7. Transcription of COL1 and COL3 in equine oviduct is correlated with transcription of 

the same genes in endometrium 

8. Mares endometrium classified in category III presents the same relationship between 

COL1/COL3 as the isthmus. Therefore, we might conclude that in these cases, 

endometrium can reflect what is occurring in the isthmus. 

9. Transcription of COL1 and COL3 is correlated and dependent of several pathways in 

oviduct. 

10. Some genes in endometrium, which can be implicated in collagen expression in this 

organ, are also linked to COL1 and COL3 transcription in oviduct, confirming a linkage 

of fibrosis between these two organs.  

11. Collagen expression can be differentially up-regulated by ovarian steroids and oxytocin, 

since they stimulated mRNA or protein expression in different estrous cycle phases. 

12. In equine oviduct, in contrast to other organs in other animal species, TNFα does not 

influence collagen expression.  
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