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Introduction

Post-fire mortality has been studied using a variety of 
methods (e.g. Fowler and Sieg 2004; Sieg et al., 2006) that 
may be classified into two main groups. The first includes 
indirect approaches for prediction of tree mortality based 
on fire behaviour parameters. The second includes direct 
approaches based on the measurements of tree tissue injury 
(Keyser et al., 2006; Sieg et al., 2006). Indirect approaches 
require the use of fire behaviour simulators (e.g. Finney, 
1998, 2006) which include models to calculate fire rate 
of spread (Rothermel, 1972; Albini, 1976; Rothermel and 
Rinehart 1983), fire shape (Anderson, 1983; Alexander, 
1985), spot fire distance (Albini 1979, 1983) and crown 
fire spread rate (Van Wagner, 1977; Rothermel, 1991). 
However, these systems are seldom implemented in stand 
level simulators because information about weather condi-

tions in a specific fire ignition day, fuel moisture (e.g. 1- and 
10-h fuel moisture contents) and fuel accumulation (e.g. 
shrubs growth, deadwood) are necessary and hard to pre-
dict over long planning periods, e.g. 60 years (Rothermel, 
1991; Finney, 1999; He and Mladenoff, 1999; González 
et al., 2007). On the other hand, direct approaches require 
measurements of tree tissue injury and fire intensity. These 
methods can be used for a variety of situations, e.g.  
setting acceptable upper and lower fuel moistures for con-
ducting prescribed burns, determining number of hectares 
that may be burned on a given day and developing timber 
salvage guidelines following fire (Reinhardt, 1997). Yet 
direct methods are hardly practical in a forest management 
planning context as they require input data that are not 
available to forest managers when developing forest plans.

The usefulness of post-fire models in forest planning 
depends on the information these models may provide 
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Summary

Maritime pine (Pinus pinaster Ait) is a very important timber-producing species in Portugal with a yield of ~67.1 million 
m3 year21. It covers ~22.6 per cent of the forest area (710.6 × 103 ha). Fire is the most significant threat to maritime 
pine plantations. This paper discusses research aiming at the development of post-fire mortality models for P. pinaster 
Ait stands in Portugal that can be used for enhanced integration of forest and fire management planning activities. 
Post-fire mortality was modelled using biometric and fire data from 2005/2006 National Forest Inventory plots and 
other sample plots within 2006–2008 fire perimeters. A three-step modelling strategy based on logistic regression 
methods was used. Firstly, the probability of mortality to occur after a wildfire in a stand is predicted and secondly, the 
degree of mortality caused by a wildfire on stands where mortality occurs is quantified. Thirdly, mortality is distributed 
among trees. The models are based on easily measurable tree characteristics so that forest managers may predict 
post-fire mortality based on forest structure. The models show that relative mortality decreases when average d.b.h. 
increases, while slope and tree size diversity increase the mortality.
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about the impact on mortality of variables whose future 
value may be estimated with reasonable accuracy and are 
under the control of forest managers through management 
(e.g. forest stand density, species composition, mean diam-
eter). Many studies demonstrate the relationships between 
these variables and post-fire mortality (Pollet and Omi, 2002; 
Hély et al., 2003; McHugh and Kolb, 2003). Stand struc-
ture is related to fire intensity (Fernandes, 2009), fire severity 
(Fernandes et al., 2010) and with damage/mortality (Agee 
and Skinner, 2005; González et al., 2007). The amount of 
shrubs biomass may further increase fire severity. However, 
information about the evolution of forest fuels and/or shrubs 
over planning periods longer than 5–10 years is limited.

Stand-level prescriptions provide the biological frame-
work for fire activity and damage (Weaver, 1943; Agee and 
Skinner, 2005; Peterson et al., 2005; González et al., 2005, 
2007). Management may thus effectively modify stand con-
ditions to control expected levels of fire damage (Pollet and 
Omi, 2002; González et al., 2007; Fernandes et al., 2010). 
Thus, the use of post-fire models oriented to forest planning, 
i.e. using predictor variables controllable by the manager, 
may help anticipate the outcomes of different management 
alternatives, thus reducing uncertainty (Gadow, 2000). It 
also helps to identify management alternatives that reduce 
the expected losses due to fire.

Many studies have addressed fire effects on maritime 
pine (Pinus pinaster Ait) stands. Some of them concentrated 
on fire ecology (e.g. Fernandes and Rigolot, 2007) and fire 
behaviour (Fernandes et al., 2004). Other analysed the in-
fluence of fire severity on the recruitment of maritime pine 
(e.g. Martínez et al., 2002; Fernández et al., 2008). Further 
studies have been focused on competition-induced mortality 
or drought-induced mortality (Martínez-Vilalta and Piñol, 
2002). Botelho et al. (1996) and Botelho et al. (1998) pre-
sented a mortality model for prescribed fires in maritime pine 
stands in Portugal. Basically, the existing mortality models 
have been mostly developed to serve as guidelines for timber 
salvage following fire or to be used for prescribed fires or to 
make post-fire management decisions (Botelho et al., 1996; 
Reinhardt, 1997; Rigolot, 2004; Sieg et al., 2006). Never-
theless, the development and/or use of a post-fire mortality 
model in forest planning have not attracted much atten-
tion. Few studies have used or developed post-fire mortality 
models in forest planning (Peterson and Ryan, 1986; Ryan 
and Reinhardt, 1988; Reinhardt et al., 1997; Reinhardt and 
Crookston, 2003; González et al., 2007; Hyytiäinen and 
Haight, 2009). González et al. (2007) further considered its 
application within a forest planning context without using 
tissue injury indicators neither direct fire behaviour param-
eters. Yet no such models have been developed for maritime 
pine stands in Portugal, even though maritime pine covers  
~22.6 per cent of the forest cover, totalling 710.6 × 103 ha 
with a yield of ~67.1 million m3 year21 (DGRF, 2006) and 
that 48 per cent of the forested area in Portugal that burned 
in the 1990s consisted of pure maritime pine stands (Pereira 
and Santos, 2003).

In this context, this study aims at developing post-fire 
mortality models for maritime pine that may be used for 
generating optimal management plans taking into account 

fire. The occurrence of tree death in a sample plot over a 
given period of time is a binomial outcome that may be 
modelled by logistic regression (Hosmer and Lemeshow, 
2000). Logistic regression methods have been previously 
used to predict the probability of a single tree to survive 
or die due to different causes (Regelbrugge and Conard, 
1993; Botelho et al., 1996; Rigolot, 2004; Keyser et al., 
2006; Eisenbies et al., 2007; González et al., 2007).

In this research, a three-step modelling strategy was used 
to develop the post-fire stand damage and tree mortality 
models (Woollons, 1998; Fridman and Stahl, 2001; Álvarez 
González et al., 2004). The three-step approach consists 
of (1) estimating whether mortality occurs in a stand after 
wildfire, (2) quantifying the degree of damage in terms of 
proportion of dead trees in the stand and (3) estimating 
the probability of mortality of a tree after a wildfire which 
serves to distribute the mortality among individual trees. 
Logistic regression was used in all three steps. Data from 
over 124 plots and 1174 trees were used for modelling  
purposes. Models with good ecological behaviour were 
preferred over models with purely good statistical fit.

Materials and methods

Materials

The fire data used in this study consisted of perimeters of 
2006–2008 wildfires in Portugal that were larger than 5 
ha. Burned area mapping in 2006–2008 was obtained by 
automated classification of high-resolution remote sensing 
data (i.e. Landsat Thematic Mapper (TM) and Landsat 
Enhanced TM+). In this period, ~125 000 ha burned in 
3436 fire events. Data acquisition further encompassed 
the collection of the 2006 National Forest Inventory (NFI) 
plots. By the overlay of NFI plots and fire perimeters using 
GIS tools (ArcGIS 9.2), it was possible to identity plots 
that had been measured before the wildfire occurrence. 
This analysis showed that 18 maritime pine plots of the 
12 237 NFI plots were burned between 2006 and 2008. 
In the same period, 106 additional maritime pine burned 
plots were considered. These plots were measured in areas 
where the fire perimeter was known and trees had not been 
harvested. They were located all over the country and were 
inventoried (after the fire) at the same time as the burned 
NFI plots. In total, data acquisition encompassed the post-
fire inventory of 124 plots from 2007 to 2009. In all these 
plots, no trees had been harvested after the wildfire.

The post-fire inventory involved, in the case of all 124 
plots, both the measurement of biometric variables for 
trees with diameter larger than 7.5 cm (e.g. height, diam-
eter at breast height, bole char height, crown killed height) 
and the characterization of the plot (e.g. elevation, aspect, 
slope, presence of soil erosion, shrubs species). However, 
because the objective of the model was to predict fire mor-
tality if a fire occurs over long planning horizons (i.e. over 
60 years), biometric variables tested for the model were 
limited to easily measurable tree and stand characteristics, 
which permit the forest manager to predict the effect of 
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stand structure and species composition on the expected 
mortality (Table 1).

In the case of plots that had not been measured before 
the wildfire occurrence, regression models were used 
to reconstruct the forest before the fire. Pre-fire d.b.h. of 
standing burned trees was assumed to be unaffected by fire 
and pre-fire height was estimated using an equation devel-
oped by Tomé et al. (2007) for maritime pine (equation 1).

DBH
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where d.b.h. is the tree diameter at breast height (centime-
tre), N is the stand density (number of trees per hectare) 
and hd is the dominant height (metre).

Methods

Modelling mortality with logistic regression (general 
approach)

The occurrence of stem death in a sample plot over a given 
period of time is a binomial outcome that may be mod-
elled by logistic regression (Hosmer and Lemeshow, 2000). 
Moreover, the logistic function is mathematically flexible, 
easy to use and has a meaningful interpretation (Hosmer 
and Lemeshow, 2000). The logistic model predicts a prob-
ability of an occurrence ranging continuously between  
0 and 1. The dependent variable is dichotomous (e.g. death 
or no death). The logistic regression model may be pre-
sented as:

	
=

− β + β + + β+ 0 1 1

,
1

( ... )1 p p

Y
x xe �

(2)

where Y is the dependent variable (dichotomous), x1 to xp 
are independent variables, β0 is the intercept and β1 to βp, 
are parameters.

Table 1: Descriptive statistics for variables tested as model predictors at stand level

Stand level

Stands without dead trees = 31 Stands with dead trees = 93

Variable Max Min Average SD Max Min Average SD

Altitude (m) 931 0 324.80 298.75 940 0 344.98 193.62
Slope (°) 27 0.60 12.64 6.10 32 0 13.13 7.71
avgDBH (cm) 34 5.36 17.31 7.70 29.33 4.6 13.55 5.94
N (tree/ha) 578 20 142.83 135.27 1539 20 278.06 295.82
G (m2 ha21) 21.36 0.08 4.73 5.84 38.15 0.08 7.03 8.35
Dg (cm) 37.14 7 18.40 7.92 32.69 7 16.34 6.91
Avgh (m) 19 5.30 11.77 4.06 25.75 3.47 12.82 5.88
sd (cm) 17.26 0 5.094 4.69 17.67 0 4.70 3.86
sh (m) 6.20 0 1.70 1.63 8.41 0 1.85 1.56
G/Dg 0.84 0.02 0.22 0.23 1.73 0.02 0.38 0.38
Sd/Dg 0.64 0.01 0.25 0.18 0.69 0.01 0.26 0.14
Pd (%) 0 0 0 0 0.99 0.05 0.82 0.31
Ndead (tree/ha) 0 0 0 0 1537 6 213.34 259.91

Tree level

Live trees = 234 Dead trees = 940

Variable Max Min Avg SD Max Min Avg SD

DBH (cm) 45.50 7 19.30 8.66 43.50 7.00 14.71 7.56
h (m) 28.10 3.44 13.98 4.71 23.60 3.80 11.30 4.12
g (m2 ha21) 0.16 0.00 0.04 0.03 0.15 0.00 0.02 0.02
BAL (m2 ha21) 5.17 0.00 1.20 1.15 5.40 0.00 1.35 1.27
Dg (cm) 207.03 4.90 44.73 41.18 189.23 4.90 27.36 29.01
DBH/Dg 2.21 0.24 1.03 0.33 2.22 0.33 0.94 0.27
g/G 0.01 0.00 0.01 0.01 0.11 0.00 0.01 0.01

G is stand basal area; Dg is the quadratic mean diameter; N, number of trees per ha; Pd, proportion of dead trees in the stand; Ndead, 
number of dead trees per ha; avgDBH, mean tree diameter of the stand; avgh is the average tree height; SD, standard deviation of 
tree diameters and Sh, standard deviation of tree heights of the trees in the stand; G/Dg is a density measure related to the number of 
trees per hectare. The predictor Sd/Dg expresses the relative variability of tree diameters. Altitude is measured in metres and slope is 
measured in degrees; DBH is the tree diameter at breast height; h is the tree height; g is basal area of the tree; BAL is the basal area of 
the trees higher than the studied tree, DBH/Dg and g/G are competition indexes. Max, maximum; min, minimum; Avg, average.
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Models to predict stand-level damage and tree-mortal-
ity caused by wildfires were developed using the logistic 
procedure of SAS 9.1 (SAS Institute, Cary, NC). This pro-
cedure estimates the parameters of the logistic equation 
with maximum likelihood methods.

An analysis of the relationships between each individual 
independent variable and response variables was performed 
for a preliminary assessment of the relative importance of 
each variable on post-fire damage and tree mortality. The 
final multivariate model was obtained by testing all pos-
sible combinations of variables. If the resulting mortality 
model is not biologically correct, it cannot be expected 
to perform well outside the data range (Hamilton, 1986; 
Crecente-campo et al., 2009). Thus, model building con-
sidered ecological consistency of predictors (i.e. signs of 
coefficients), importance of the variable in terms of for-
est inventory and management as well as its simplicity and 
its statistical performance and significance (e.g. 0.05 sig-
nificance level, receiver operations characteristic (ROC)  
parameters, index of concordance and correct classification 
rate (CCR)). Collinearity was assessed by adding new 
variables in the model and observing the effect to the slope 
coefficients and estimated standard errors (Hosmer and 
Lemeshow, 2000).

Standard tests and statistics for logistic regression, 
namely the likelihood ratio test and Wald’s test, were 
used. Hosmer—Lemeshow goodness-of-fit statistics and 
ROCcurve analysis from the logistic model were also used 
(Hosmer and Lemeshow, 2000). The ROC curve plots 
the probability of detecting true signal (sensitivity) and 
false signal (specificity) over all possible cut-points. To 
evaluate the discriminatory ability of a cut-point, it is com-
mon to summarize the information of the ROC curve into 
a single global value or index (e.g. area under the ROC 
curve). Models with area under ROC curve values higher 
than 0.7 are considered to provide an acceptable discrim-
ination between wildfire occurrence and non-occurrence 
(Hosmer and Lemeshow, 2000). The concordance ana-
lysis procedure was further used to help interpret results  
(Kleinbaum, 1994; Hosmer and Lemeshow, 2000).

A way to summarize the results of a fitted logistic regres-
sion model is to use a classification table. This is a result 
of cross-classifying the outcome variable (e.g. death  
occurrence) with a dichotomous variable whose values are 
derived from the estimated logistic probabilities (Hosmer 
and Lemeshow, 2000). The logistic model predicts a prob-
ability of an occurrence ranging continuously between  
0 and 1. Thus to obtain this dichotomous variable (e.g. 
death or no death), a cut-point must be defined and 
compared to each estimated probability (Hosmer and 
Lemeshow, 2000). Different selection criteria have been 
proposed, e.g. the average observed survival rate of the 
dataset and the value that maximizes the sum of sensitivity 
and specificity (Monserud and Sterba, 1999; Crecente-
Campo et al., 2009).

In this study, three different criteria were used to define the 
cut-point: (1) the value that maximizes the CCR (e.g. Ryan, 
1997), (2) the value where the sensitivity curve and the spe-
cificity curve cross each other (Hosmer and Lemeshow, 2000) 

and (3) the average observed percentage of event occurrence 
in the original data (Monserud and Sterba, 1999). Tables 
with classification error rates associated with different cri-
teria to define cut-points were constructed to help select 
the best cut-point value. Due to the relatively small number 
of plots, no specific dataset was set aside for evaluation. 
Thus, evaluation of the model was done calculating ROC 
curves and classification tables for the fitting dataset.

Modelling whether mortality will occur in a stand after a 
wildfire

In order to predict whether mortality will occur in a stand 
if a wildfire occurs, a stand-level binary variable was cre-
ated. This variable takes the value ‘1’ if mortality occurs 
within the stand (mortality of trees bigger than 7.5 cm) and 
the value ‘0’ if no death occurs. Thus, this model would 
filter the stands where some mortality would occur from 
those where all the trees survive. A number of stand-level 
features (e.g. site conditions, biometric variables) were 
tested (Table 1). The dataset showed that mortality had 
occurred in 75 per cent of burned stands (93 of 124 stands).

Estimating stand-level mortality caused by a wildfire

In stands where mortality did occur (93 over 124 stands), 
two stand-level variables were created; the number of trees 
that died after fire (i.e. number of events) and the total 
number of trees in the stand (i.e. number of trials). Then 
SAS logistic procedure used these numbers to fit the lo-
gistic regression. This model would quantify mortality 
caused by a wildfire in terms of proportion of dead trees in 
the stand. The average proportion of dead trees in stands 
where mortality occurred was 80 per cent (940 dead trees 
of 1174) (Table 1). A number of stand-level variables re-
lated to topography, biometric variables and structure 
were tested (Table 1).

Estimating post-fire individual tree mortality

The predicted variable was the probability of a tree to die. 
For modelling purposes, a tree-level binary categorical 
variable was created. This variable takes the value ‘1’ if 
death occurs, and a ‘0’ if the tree survives.

As this is a two-stage model, a variable indicating the 
proportion of dead trees in the stand (Pd) predicted with 
the stand-level model (estimating stand-level mortality 
caused by a wildfire) was tested as a predictor. For this 
reason, only trees present in stands where mortality was 
predicted were used to fit the tree mortality model (i.e. 940 
trees). Further predictors were selected by testing whether 
they improved the model (Table 1).

Results

The logistic model to predict the probability of mortality 
occurring in a stand if fire occurs is
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	 StandMort
Dg

avgDBH
=

+
− + −

1

1
2 1231 2 3943 0 1134

e
G( . . ) . )

, � (3)

where StandMort is the probability of tree death to occur 
in the stand (i.e. it differentiates the stands where all the 
trees survive from the stands where some or all the trees 
die), G is the basal area (square metre per hectare) and 
Dg is the quadratic mean diameter (centimetre) of trees. 
The predictor G/Dg is a density measure and avgDBH is 
the average diameter at breast height (centimetre). Higher 
densities contribute to a higher probability of death to 
occur in a stand, whereas this probability decreases with 
higher average diameter at breast height (see equation 3 
and Table 2). The model was successful in predicting 
whether mortality did occur after the wildfire in 73.8 per 
cent of stands (i.e. percentage of concordant pairs). The 
area under the ROC curve (0.74) indicated good discrim-
ination (Hosmer and Lemeshow, 2000).

The model to quantify stand-level mortality caused 
by wildfires where mortality did occur has the following 
form:

	 Pd  Alt  Slope  avgDBH =
+ − + + − +

1
1 0 7065 0 00491 0 1158 0 1649e ( . . . . 00 1456. , Sh) � (4)

where Pd stands for the proportion of dead trees in the 
stand, Alt is altitude (metres), Slope is measured in degrees, 
avgDBH is the average diameter at breast height (centime-
tre) and Sh is the standard deviation of the height of trees 
(metre). The relative mortality at stand-level caused by a 
wildfire (equation 4) decreases with higher average diam-
eter at breast height (Table 3). Conversely, higher vari-
ability in tree heights (Figure 1) and steep slopes increase 
the stand-level mortality. The model showed a percentage 
of concordant pairs of 80 per cent) and the area under 
the ROC curve (0.846) indicated excellent discrimination 
(Hosmer and Lemeshow, 2000).

The tree-level mortality model that best predicted the 
probability of an individual maritime pine tree to die if a 
forest fire occurs was:

	 ( 3.1958 0.0244 DBH 0.2601BAL 6.3382 Pd )

1
Ptd ,

1
− − − ⋅ + ⋅ + ⋅=

+e
� (5)

where Ptd is the probability of an individual tree to die, 
DBH is the tree diameter at breast height (centimetre), 
BAL is the basal area of trees higher than the studied  
tree (square metre per hectare) and Pd is the propor-
tion of dead trees in the stand. The model indicates that  
trees with large DBH are less prone to die due to a wild-
fire (Figure 2 and Table 4). Conversely, trees suppressed 
(high BAL) and located in stands with higher expected  
stand damage (Pd) have higher mortality probability 
(equation 5). The model was successful in predicting 
whether mortality did occur after the wildfire in 86 per 
cent of trees (i.e. percentage of concordant pairs). The 
area under the ROC curve (0.85) indicated excellent dis-
crimination (Hosmer and Lemeshow, 2000). The model 
shows a CCR of 85.1.

Table 2: Parameter estimates, standard errors (SE), Wald 
X2 statistics and P-values for the model predicting whether 
mortality will occur in a stand (equation 3)

Variables* Estimate SE

Wald

X2 P > x2

Intercept 21.231 0.5497 14.9161 <0.0001
avgDBH −0.1134 0.0344 10.8796 0.0010

G/Dg 2.3943 0.9150 6.8474 0.0089

*For the parameter definitions see Table 1.

The most appropriate cut-points were calculated for 
the model predicting whether mortality will occur in a 
stand (Table 5). If the value that maximizes the CCR 
(75.8 per cent) was used as criteria to choose the cut-
point, its value would be 0.36 (Table 5). According 
to this value, mortality would occur in 96 per cent of 
the plots (classified as dead), while inventories after 
wildfire events showed that mortality did occur only in 
75 per cent (93 plots over 124). Around 24 per cent of 
the predictions were false positives (i.e. stands that did 
not have any dead trees but were classified as if mor-
tality had occurred) and 40 per cent were false nega-
tives (i.e. stands that had dead trees but were classified 
as if mortality had not occurred). The cut-point at which 

Table 3: Parameter estimates, standard errors (SE), Wald X2 
statistics and P-values for the model predicting degree of damage 
caused by a wildfire equation 4 (i.e. proportion of dead trees in 
the stand)

Variables* Estimate SE

Wald

X2 P > x2

Intercept 0.7065 0.0687 105.8 <0.0001
Altitude 0.00491 0.000106 21.5592 <0.0001
Slope 0.1158 0.00272 18.0577 <0.0001
avgDBH −0.1649 0.00426 14.9658 <0.0001

sh 0.1456 0.0177 67.5690 <0.0001

*For the parameter definitions see Table 1.

Figure 1. Effect of average diameter (avgDBH, centimetre) and 
standard deviation of height (sh, metre) on the proportion of 
dead trees according to equation 4 for a stand located at 500 m 
above sea level with a slope of 20°.

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article-abstract/84/2/197/556393 by B-O

n C
onsortium

 Portugal user on 08 February 2019



FORESTRY202

the sensitivity and specificity curves crossed was ~0.76. 
Using this value led to a CCR of 66.9 per cent and the 
percentage of stands classified as having mortality was 
58.1 per cent (classified as dead). Using this cut-point, 
in 41.9 per cent of the stands classified as not having 
mortality (classified as alive), some trees had actually died  
(i.e. false negative). On the other hand, when the average 
observed percentage of event occurrence (Monserud and 
Sterba, 1999) was used, a cut-point of 0.70 would be 
chosen. This cut-point classified 26.6 per cent of stands 
as stands where no mortality did occur (classified as alive); 
this value was very close to the real observed rate which 
is 25.5 per cent (i.e. 31 plots over 124). However, in this 
case, the number of false negatives was 54.5 per cent and 
the CCR was 72.6 per cent. Analysing these different 
options and having in mind that a compromise has to  
be found between classification of dead trees and good 
prediction of mortality and survival rates, a cut-point 
value of 0.7 is recommended as the predicted stands 
with mortality is the closest with the observed in the 
inventoried data.

Discussion and conclusions

Post-fire mortality has been studied using a variety of direct 
and indirect methods (e.g. Fowler and Sieg, 2004; Sieg 
et al., 2006). However, they need information that is seldom 
available to forest managers beforehand (e.g. tissue  

Table 4: Parameter estimates, standard errors (SE), Wald 
X2 statistics and P-values for the tree-model predicting the 
probability of a tree to die due to a forest fire (equation 5)

Variables* Estimate SE

Wald

X2 P > x2

Intercept −3.1958 0.4237 56.9008 <0.0001
DBH −0.0244 0.0109 5.0261 0.0250
BAL 0.2601 0.0754 11.8973 0.0006

Pd 6.3382 0.4276 219.7140 <0.0001

*For the parameter definitions see Table 1.

Figure 2. Effect of diameter at breast height (d.b.h., centimetre), stand-level mortality (Pd) and BAL (m2 ha−1) on the probability 
of tree mortality using equation 5 for a BAL of 3 m2 ha−1 (a) and a Pd of 0.5 (b).

damage, fire intensity). Fire simulators may provide infor-
mation about tissue damage or fire intensity; however, they 
need information about specific weather conditions and fuel 
accumulation at the time of fire that are hard to predict over 
long planning horizons (Rothermel, 1991; Finney, 1999; He 
and Mladenoff, 1999; González et al., 2007). The unavail-
ability of this information constrains the applicability of these 
methods in long-term forest management planning. Thus, 
both approaches are hardly practical for forest planning.

The proposed logistic modelling approach to post-fire 
mortality for enhanced forest planning has been used earlier 
for predicting tree-mortality as a consequence of wind dam-
age (Lohmander and Helles, 1987; Jalkanen and Mattila, 
2000), prescribed fire (Botelho et al., 1996) and wild-
fire (Regelbrugge and Conard, 1993; McHugh and Kolb, 
2003; Rigolot, 2004; González et al., 2007). This approach 
has been also used to model natural tree mortality (Fridman 
and Stahl, 2001; Álvarez-González et al., 2004). Our re-
search confirmed the potential of the proposed approach to 
develop mortality models that may be used in forest plan-
ning (Reinhardt and Crookston, 2003; González et al., 
2007; Hyytiäinen and Haight, 2009).

The proposed approach was tested using a dataset 
encompassing 1174 trees in 124 plots located in 26 fire 
perimeters in Portugal. Results suggest that the models 
may predict accurately post-fire mortality in maritime pine 
stands in Portugal. An advantage of the three-step meth-
odology used in this study compared to other traditional 
approaches is the possibility of detecting stands where no 
mortality occurs.

Otherwise, traditional models always generate some 
mortality for all plots (Fridman and Stahl, 2001). This is 
especially important in species that have demonstrated a 
good fire resistance as the case of maritime pine (Ryan  
et al., 1994; Fernandes et al. 2008).

Prediction and classification do not follow the same 
pattern, so a compromise must be reached between good 
classification of dead trees and good prediction of mortality 
and survival rates when choosing a cut-point (Crecente-
Campo et al., 2009). In our study, a cut-point of 0.7 for 
the model predicting whether mortality occur in a stand 
(equation 3) was selected. To determine this cut-point, the 
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observed percentage of stands with mortality was used as 
suggested by Monserud and Sterba (1999). After a wild-
fire, the number of stands where at least some mortality 
occurs is usually much greater than the number of stands 
where no mortality occurs, so errors that result in under-
estimating the number of stands where mortality occurs 
could have more impact. Thus, cut-point of 0.7 presented 
the best compromise between underestimating the number 
of stand where mortality occurs (the case of cut-point = 
0.76) and overestimating mortality that occurs if cut-point 
that maximizes the number of CCR is used (0.36).

In the framework of forest management planning, equa-
tion 3 may be used to predict whether mortality may occur 
in a stand after a wildfire. As these models are developed 
to support management planning, equation 4 estimates the 
number of trees that will die in the stand (i.e. percentage of 
trees) after a wildfire (if mortality indeed occurs). Equation 
5 may then be used to distribute that mortality among trees. 
Thus, equation 5 may be used to predict the probability of 
mortality of each tree in the stand and to build a list of 
all trees in the stand ordered according to this probability 
(trees with higher probability of mortality are ranked first 
in the list). The management planning model may then  
select the trees that will be assumed to die for planning 
purposes by going down the list and stopping when it 
reaches the number of trees that are estimated to die (from 
equation 4). For this reason, no cut-point is needed to 
transform the estimated probability into a dichotomous 
variable (e.g. death or no death). Equation 5 is especially 
important when the growth and yield simulation uses an 

individual tree model (which means that every tree may 
have different characteristics). As suggested by González 
et al. (2007), the tree mortality equations can be used to 
generate mortality variation if a stochastic component 
corresponding to the residual variation of the stand-level 
mortality model is added to the prediction.

Our models are developed to predict mortality if a fire 
occurs in a forest management planning context. Thus, 
unlike former models for post-fire tree mortality that were 
developed to assess mortality after a wildfire occurrence, 
our models do not use tissue damage or fire severity as 
predictors. This is in concordance with the approach pre-
sented by González et al. (2007). However, some of the 
variables included in our models have a clear correlation 
with fire behaviour. This is the case of slope as steeper 
slopes increase the expected mortality. Biometric variables 
that impacted post-fire mortality included tree diameter 
(average d.b.h. of the stand and d.b.h. of the tree), vari-
ation of heights (Sh) and indicators of density such as basal 
area (G) and competition index (BAL). Other significant 
variables were related to fire behaviour (i.e. slope) and 
stand location (i.e. altitude). This agrees with findings of 
Fernandes et al. (2008), who stated that the level of injury 
and mortality for a given species is a combined outcome of 
fire behaviour, tree size and stand structure. In addition, 
Fernandes (2009) presented a study where combined for-
est structure data and fuel modelling to classify fire hazard  
in Portugal. He concluded that forest structure is highly  
related to fire intensity. Based in previous studies and accord-
ing to the purpose of this model, no direct measurements 

Table 5: Prediction parameters depending on the cut-points used to transform a continuous probability into a 0–1 dichotomous value 
predicting whether there is mortality in a stand or not

Cut-point CCR (%) Sensitivity (%) Specificity (%)
False  

positive* (%)
False  

negative† (%)
Classified as  

dead (%)
Classified 

as alive (%)

0.36 75.8 97.8 9.7 23.5 40.0 96.0 4.0
0.38 75.8 96.8 12.9 23.1 42.9 94.4 5.6
0.40 75.8 96.8 12.9 23.1 42.9 94.4 5.6
0.42 75.0 94.6 16.1 22.8 50.0 91.9 8.1
0.44 75.0 94.6 16.1 22.8 50.0 91.9 8.1
0.46 75.0 94.6 16.1 22.8 50.0 91.9 8.1
0.48 75.0 94.6 16.1 22.8 50.0 91.9 8.1
0.50 74.2 93.5 16.1 23.0 54.5 91.1 8.9
0.52 75.0 93.5 19.4 22.3 50.0 90.3 9.7
0.54 75.0 93.5 19.4 22.3 50.0 90.3 9.7
0.56 73.4 90.3 22.6 22.2 56.3 87.1 12.9
0.58 73.4 90.3 22.6 22.2 56.3 87.1 12.9
0.60 74.2 89.2 29.0 21.0 52.6 84.7 15.3
0.62 74.2 88.2 32.3 20.4 52.4 83.1 16.9
0.64 74.2 86.0 38.7 19.2 52.0 79.8 20.2
0.66 72.6 83.9 38.7 19.6 55.6 78.2 21.8
0.68 71.8 82.8 38.7 19.8 57.1 77.4 22.6
0.70 72.6 80.6 48.4 17.6 54.5 73.4 26.6
0.72 71.0 77.4 51.6 17.2 56.8 70.2 29.8
0.74 69.4 74.2 54.8 16.9 58.5 66.9 33.1
0.76 66.9 66.7 67.7 13.9 59.6 58.1 41.9
0.78 63.7 62.4 67.7 14.7 62.5 54.8 45.2

The percentage of observed plots where occurred tree mortality was 75%.
	 *  Stands that did not have any dead trees but were classified as if mortality had occurred.
	 †  Stands that had dead trees but were classified as if mortality had not occurred.

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article-abstract/84/2/197/556393 by B-O

n C
onsortium

 Portugal user on 08 February 2019



FORESTRY204

of fire behaviour were included in the model. This is be-
cause the purpose of this model is to predict mortality for 
long-term planning horizons (i.e. over 60 years planning 
periods), where data needed to use fire behaviour models 
is limited or even not possible to calculate for small scale 
areas located in Portugal (e.g. bush development, 1–10 h 
fuel moisture content, specific weather conditions in a 
specific day for long periods). However, dataset of fire oc-
currences which cover many different fire events was used, 
in addition, indirect variables that may be related to fire 
behaviour as can be the slope or the vertical structure of 
the stands were included in the analysis.

The need for an individual-tree mortality model for long-
term planning is justified by the fact that growth simulation 
may be done with individual tree-growth models. Thus, in-
dividual tree-mortality models even in long-term planning 
periods help to distribute stand mortality over trees with 
different tree sizes.

In concordance with other studies, in our stand-level 
mortality model, steeper slopes increase the expected pro-
portion of dead trees in the stand; this may be explained 
by an easier transfer of heat uphill (Agee, 1993; González 
et al., 2007; Hyytiäinen and Haight, 2009). In our case, 
altitude correlates positively with the degree of mortality 
in burned areas because most of the burned stands were 
located in high altitudes.

The coefficients of biometric variables in stand-level mor-
tality models indicate that even-aged stands with higher 
tree diameters have lower stand mortality than irregular 
stands with trees with smaller dimensions. Moreover, in 
stands with higher densities and smaller diameters, stand 
mortality is expected to be higher than in stands with lower 
densities. This is in concordance with studies in North-
American conifer dry forests (Pollet and Omi, 2002; Agee 
and Skinner, 2005; Ritchie et al., 2007) which indicate 
that fire severity is lower in open stands, especially when 
thinning is concurrent with surface fuel treatment. Also 
in Portugal Fernandes et al. (2005, 2010) and in southern 
Spain Gallegos et al. (2003) indicated that dense maritime 
pine stands have higher crown fire potential and tend to 
experience higher fire severity which results in higher post-
fire tree mortality. They indicate that high densities favour 
death of the lower canopy branches which are retained, 
establishing continuity with the live crown and, conse-
quently, implying high crowning potential. In our case, 
variability of tree heights (Sh) is highly related to vertical 
continuity of fuels and thus with high crowning potential 
and higher mortality.

At tree level, tree diameter (d.b.h.) was found to be nega-
tively related with tree mortality. This is in concordance 
with other studies (Ryan and Reinhardt, 1988; Hély et al., 
2003; González et al., 2007). Moreover, a competition 
index (BAL) was found to be positively related with tree 
mortality; the more suppressed is the tree (i.e. higher BAL) 
the more probability of death. This is in concordance with 
findings by González et al. (2007) and Van Mantgem et al. 
(2003), who concluded that a suppressed tree is more 
prone to die than dominant trees due to both, the fire dam-
age and the stress before the fire event.

When no pre-fire inventory was available, reverse 
engineering (i.e. regression models) was needed to re-
construct the stand. Thus, the quality of the models is 
dependent on the quality of the equations used for that 
purpose. Stands where burned trees had been harvested 
were not used in the model fitting process. Further, this 
research considered mortality within a period extending 
between 1 and 2 years after the wildfire, a time period 
between fire and the inventory that has been already used 
by other authors (Botelho et al., 1998; Fernandes et al., 
2008). In some cases, this may lead to an underestima-
tion of mortality caused by the wildfire. Nevertheless, the 
development of the first maritime pine post-fire mortality 
models in Portugal took into account all available data 
and information.

Validation of the models was done through studies of the 
performance of the functions. No specific validation data
sets were set-aside and later used for that purpose. This was 
for two main reasons. Firstly, the relatively small number 
of observations in the stand dataset. Secondly, the best pos-
sible parameter estimates were of greater interest. There 
are advantages and disadvantages of splitting the dataset 
for model validation purposes as discussed by Kozak and 
Kozak (2003). They concluded that that cross validation 
by data splitting and double cross validation provide little, 
if any, additional information in the process of evaluating 
regression models. Other authors have the same opinion, 
for instance, Picard and Cook (1984).

Post-fire mortality models are a valuable forest man-
agement planning tool (González et al., 2007). Their use-
fulness in forest planning depends on the information 
they may provide about the impact on mortality of varia-
bles whose future value may be estimated with reasonable  
accuracy. This research encompassed the development of 
maritime pine post-fire stand and tree mortality models 
for enhanced forest planning in Portugal. These models 
are based on variables that are under the control of forest 
managers (e.g. forest density, mean diameter) and pro-
vide information about the impact of forest fires under 
alternative forest conditions. Thus, these models are in-
strumental to designing silvicultural strategies that may 
decrease mortality caused by wildfires and that they can 
be used to effectively integrate fire risk into forest man-
agement planning.
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