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Preface

There are always challenges and new environments to explore. A thesis on management is cer-

tainly an adventure for me. I am a professional in �nancial services and not an academic thus

adaptation has been permanent over last years to cope with the PhD requirements and to write

this document. Nonetheless, I have been fortune in taking along my professional career several

courses and certi�cations that kept me in touch with academia and very inspiring minds.

The need to be updated in some areas of �nance to be able to bridge between the cutting edge

on theory and the industry, drove me to the challenge of pursuing this PhD.

The selection of a topic for a deep dive into �nance and build some innovative feature and

contribute to the �eld is something that is di�cult, takes time and is very demanding. In my

case the idea of protective strategies was growing since the Master's degree in �nance, in 2011,

and the missing pieces were combined at the lectures during the PhD course along with the

discussions with my Supervisor, Prof. Raquel M. Gaspar. From the practitioners' point of view,

the implementation of protective strategies or downside protection mechanisms brings always

a question: when individual investors are seeking return from risky assets and still demand a

protection in bear markets are they being rational or just relying on asset managers capabili-

ties? Institutional investors, in particularly pension funds, insurance companies, endowments

and foundations are in the asset management business to de�ne the best strategies to face

their liabilities on the short and long run and thus their objectives are set into a statement of

investment policy. The term liability driven investments and asset and liability management

are concepts and strategies that are very common and e�ective, once investors are aware of the

pitfalls and limitations.

However, this awareness of the pitfalls and limitations for individual investors regarding pro-

tective strategies is not e�ective, even when investors are protected with regulation on sales

and risk pro�ling by the sell side. Therefore this general idea for the thesis has evolved and

became the central point for a question: Are portfolio insurance strategies a good option for

investment?.

After the classes of the PhD course, in 2012, the objective of �nalizing a thesis become almost

an utopia due to the competing tasks and commitments in a daily basis. Managing all these

factors and not giving up was only possible because of my wife and our daughter support. Crit-

ical was also my supervisor motivation that thrive me to keep on the topic and to challenge the

research. She was enthusiastic and capable of creating all conditions for keeping me involved

in this process.
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During the PhD programme I also had the privilege of taking graduation course for a Mas-

ter in Science in Risk Management at Stern in New York University where I met challenging

colleagues in my cohort with whom I worked closely in a strategic capstone on robo-advising

investments. This work allowed a di�erent approach into digital economy and to all �nancial

aspects on a very sophisticated market.

During this journey, there were a lot of people that either on my daily job or on my �second

life� environment contributed to this personal project. For them all I am truly grateful for

their prompt and unconditional support. Finally, from a pure personal and professional per-

spective, I do believe that people in the business of professional services and corporations or

public service should be focus on delivering the best to the entities they work for and their �nal

bene�ciaries. In some cases there is no need for external scrutiny from third parties, but regu-

latory environments made almost compulsory a portfolio of certi�cations. Nevertheless, being

eager about assessments towards a continuous learning process, this work made my awareness

on how important it is to bridge between academia and industry in a very di�erent level.

The most important is not the destination, but the journey and how we embrace it. Regardless

of the outcome and the level of contribution to the �nancial �eld, the relevance of this work

is about using all the techniques that are available and respond to the question: what strives

individual investors into strategies that are intended to protect their wealth, but in extreme

scenarios are the ones that will hurt them directly? The answers, however, are not complete,

which is something that will keep me focus on this particular topic in the future.

Thank you all for this amazing opportunity to keep on learning.
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Abstract

This work focus on a speci�c protective investment strategy developed in the foundations of

options theory.

Although individual investors' risk pro�le has evolved to accommodate remuneration on risks

taken, still averse investors tend to appreciate the rallies of risky markets when relatively pro-

tected from downward movements.

One of the strategies addressing this conundrum was developed in the 1980s and evolved from

inclusion of options. In fact portfolio insurance strategies are important �nancial solutions sold

to institutional and individual investors, that protect against downside risk while maintaining

some upside valuation potential. The way these strategies are engineered has been criticized,

and some analysts point them as one of the causes for increasing market volatility in depressed

markets. In spite of the negative opinion, and the di�culties to explain their solid market

share, investors keep on buying portfolio insurance.

As these strategies are reactive to risky assets price movements we review the impact of port-

folio insurance strategies on stability of �nancial markets. In particular, we go from the crisis

of October 1987 to some of the current resurgence of protective views on recent equity market

rallies.

The objective of this thesis is three-fold: have a transversal approach to portfolio insurance

strategies using current tools and assess the �tting of these �nancial solutions to individual

investors; contribute to the literature on portfolio insurance, specially, on the discussion on

the values derived from protective strategies; �nally, taking account new business platforms,

discuss how new digital tools for investments may enhance capabilities for pro�ling individual

risks and set strategies that are proper per each investor. The work points to some features that

may de�ne the characteristics of individual investors' risk pro�le with the product de�nition

for portfolio strategies. In particular we set the common approach for di�erent utility functions

and evaluate how these strategies respond to investors' risk and return requirements. We �nd

no relevant results under the Expected Utility Theory (EUT) to explain why individuals invest

in portfolio insurance.

In this thesis we support the use of behavioural �nance to explain the popularity of portfolio

insurance investments. In order to clarify their popularity, we compare investors' decision using

two distinct frameworks: the EUT and the behavioural approach based on the prospect and cu-

mulative prospect theory. We rely on Monte Carlo simulation techniques to compare portfolio

insurance investment strategies against uninsured basic benchmark strategies. Our compara-
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tive analysis allows us to conclude that cumulative prospect theory may be a viable framework

to explain the popularity of (at least some) portfolio insurance investments. The results point

the best choices to be the naïve portfolio insurance strategies instead of the complex products.

Ultimately we take a view on the digital marketplace for portfolio management in particular

when using robo-advisors. There is a growing number of automatic platforms that de�ne in-

vestors risk pro�le using a set of questions on psychological and behaviour features. Based on

these characteristics, robo-advisors propose asset allocation into portfolios that tend to address

investors aspirations within their risk pro�le. However, we found that even using some ques-

tions on downside risks - which tend to be responded by portfolio insurance strategies - there

is a biased approach on the sample of robo-advisors in our study that may hide future mis-

matching from individual investors aspirations and deliverables from these platforms. A cross

sectional analysis for the same risk type investor end up with di�erent risk reward patterns

from the sample of robo-advisors. There is, therefore, a potential long term mismatch between

risks and risk tolerance levels that investors think they are bearing. This opens the space to

review how the regulation is actually addressing mis-selling and e�ective risk pro�ling on indi-

viduals. In this case we point out the need for guidelines on policy issues regarding robo-advisor.

Keywords: portfolio management, portfolio insurance, expected utility, behavioural �nance and

robo-advisor.
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Resumo

Este trabalho centra-se nas estratégias de proteção baseadas nos fundamentos da teoria das

opções. Apesar da avaliação do per�l de risco dos investidores individuais ter vindo a evoluir

no sentido de incorporar o conceito de remuneração pelo risco tomado, continuam a existir

evidências que apontam para os investidores avessos ao risco apreciarem o movimentos de val-

orização dos ativos com risco, desde que bene�ciem de uma proteção relativamente a situações

de perda.

Uma das estratégias de investimento que permite responder a este desa�o foi desenvolvida nos

anos 80 a partir da evolução da teoria das opções. De facto, as estratégias de �portfolio insur-

ance� são soluções relevantes, tanto para investidores institucionais como individuais, para a

proteção de carteiras em situção de perdas nos mercados de ativos de risco mas que permitem,

simultaneamente, bene�ciar do potencial de valorização nos movimento de subida de preços. A

forma como estas estratégias têm sido desenvolvidas é alvo de críticas, tendo alguns analistas

apontado estas estratégias como uma das causas de maior volatilidade nos mercados em situ-

ações de quedas nos preços. No entanto, os investidores continuam a alocar os seus recursos a

soluções de �portfolio insurance� apesar destas avaliações negativas.

Dado que estas estratégias são reativas quando ocorrem movimentos nos preços, neste trabalho

efetuamos uma revisão dos impactos das estratégias de portfolio insurance na estabilidade dos

mercados �nanceiros. Em particular, revimos a crise de Outubro de 1987 e damos nota sobre

alguns dos movimentos mais recentes relativamente ao ressurgimento das estratégias de pro-

teção face aos últimos movimentos de subida dos preços do mercado acionista.

São três os objetivos desta Tese: estabelecer uma abordagem transversal às estratégias �port-

folio insurance� utilizando as técnicas disponíveis para avaliar a adequação destas soluções aos

investidores individuais; contribuir para a literatura, em particular para a avaliação do valor

obtido pelos investidores em �portfolio insurance�; �nalmente, tendo em conta a evolução das

novas plataformas digitais de gestão de ativos com base em �robo-advisors�, discutir como se

pode incrementar a capacidade de desenhar per�s de risco e níveis de tolerância adequados a

cada investidor. No âmbito do trabalho avaliamos algumas das características que permitem,

de alguma forma, avaliar a adequação das soluções de �portfolio insurance� ao per�l de risco

dos investidores individuais. A metodologia que utilizamos baseia-se na abordagem da Teoria

da Utilidade Esperada, com diversas funções e parâmetros, de forma a analisar a resposta em

termos de utilidade face a diversos cenários de risco e retorno. Os resultados obtidos nesta abor-

dagem não permitem uma explicação su�cientemente robusta para justi�car o investimento dos
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investidores individuais nestas soluções.

Na Tese é desenvolvida uma análise que suporta a abordagem das �nanças comportamentais

para a explicação da popularidade dos investimentos em estratégias de �portfolio insurance�.

Com efeito, baseamos a análise na comparação das decisões dos investidores em enquandra-

mentos distintos, i.e. teoria da utilidade e �nanças comportamentais baseadas em �prospect

theory� e �cumulative prospect theory�. A partir de simulações de Monte Carlo comparamos o

valor atríbuido pelos investidores num conjunto de estratégias �portfolio insurance� frequente-

mente disponibilizados no mercado com estratégias sem mecanismos de proteção. Os resultados

desta análise comparativa permitem concluir que a �cumulative prospect theory� pode ser um

enquadramento viável para explicar a popularidade de, pelo menos, algumas das estratégias

de �portfolio insurance�. Os resultados apontam para que de entre as estratégias de �portfolio

insurance� as mais simples - do tipo naive - sejam preferidas, face a estratégias assentes em

soluções mais complexas.

Por último, tendo presente a evolução digital que tem vindo a ser introduzida na gestão de

investimentos para particulares, com especial incidência nos designados �robo-advisors�, abor-

damos a forma como estas plataformas determinam as estratégias de investimento. Existe um

número cada vez maior de plataformas que de�ne o per�l dos investidores através de um ques-

tionário com recolha de elementos psicológicos e comportamentais. Com base nas características

recolhidas a partir dessas questões, as plataformas de �robo-advisors� propõem uma alocação

a diversas classes de ativos que pretendem endereçar as aspirações dos investidores individuais

de acordo com o seu per�l de risco. No entanto, na nossa análise, veri�camos que apesar da

utilização de perguntas sobre situações de perda de valor nos ativos - cenários a que as estraté-

gias de �portfolio insurance� pretendem dar resposta - regista-se uma abordagem enviesada na

amostra de plataformas �robo-advisors� que podem, no futuro, potenciar divergências entre

as aspirações dos investidores e os resultados estimados a partir das alocações de�nidas pelas

plataformas. Isto signi�ca que podemos estar perante um �mismatch� no longo prazo entre os

riscos e níveis de tolerância ao risco em que os investidores julgam que podem incorrer, face

a questionários recolhidos no processo de de�nição da sua estratégia de investimentos. Este

facto abre espaço para a discussão sobre a forma como a regulamentação pretende gerir, em

termos de orientações, os procedimentos de �mis-selling� e efetiva de�nição dos per�s de risco

dos investidores individuais. Face a estas situações, identi�camos alguns aspetos que podem

vir a ser relevantes para orientações sobre políticas quanto a risco, retorno e comportamento

dos investidores individuais.
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Palavras-Chave: gestão de portfolio, �portfolio insurance�, teoria da utilidade esperada, �nanças

comportamentais e �robo-advisor�.
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�The �rst thing you have to know is yourself. A man who knows himself can step outside
himself and watch his own reactions like an observer.�

Adam Smith, The Money Game

�Never complain of that of which it is at all times in your power to rid yourself.�

Adam Smith, The Theory Of Moral Sentiments
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Chapter 1

Introduction

The paradigm of risk vs returns evolved through times as individuals' capability to understand

the impact of losses changed under a framework that speci�es the rationality of their decisions

based on a set of assumptions. In fact, knowing that some of the decisions by individuals may

di�er from the prescriptive results from Modern Portfolio Theory (MPT) (Markowitz, 1952,

1959) rises questions on the drivers of individual investment decisions.

Portfolio insurance is an asset allocation or hedging strategy that gives an investor the capa-

bility to decide the amount of risk he or she is willing to accept through a trade-o� between

risk and expected return. In these strategies the objective is to limit the downside risk while

maintaining the possibility of bene�ting partially from the upside potential from risky assets

(Leland and Rubinstein, 1976).

Portfolio insurance are dynamic hedging strategies that have been pointed as contributors to

relevant �nancial crisis, specially the October 1987 market crash (Schiller, 1988), although they

were not the sole causes of such crisis. Like other investment strategies, portfolio insurance are

based on models, which are always a simpli�cation of reality, yet the more complexity to be

included into the model and the level of sophistication for estimations the more accuracy is

reached in order to adjust the results with investors expectations. However, the di�erent mar-

ket players - insures, hedgers and speculators - and interdependencies between markets (cash

and futures) in moments of instability along with incomplete information creates imbalances

1



2 Chapter 1. Introduction

that may impact portfolio insurance strategies and, simultaneously, enhances feedback loops

with e�ects on liquidity. All these e�ects are stressed with computer based trading and, under

speci�c circumstances, vicious cycle of forced selling conducts to violations on portfolio insur-

ance targets (Leland, 2011).

In spite of these risks, the speci�city of the rational on loss preventing investment strategies

can be the trigger to understand the reason for individual investors to keep on investing in

portfolio insurance strategies. Thus, in this thesis we want to identify the reasons that lead

individual investors to invest in portfolio insurance strategies and to set the conditions that

may �nd these investments as the choices of speci�c segment of investors.

It is common practice in the literature to set a framework for analysis of investment decisions

under uncertainty based on di�erent theories. Therefore, our work comprehends the normative

Expected Utility Theory (EUT) and Prospect Theory (PT) and Cumulative Prospect Theory

(CPT) to test di�erent attitudes towards risk. Investors are not all alike, their decisions are

focus either on utility derived from a certain amount of estimated wealth, an expected mon-

etary value or gains and losses against a pre-established reference. The valuation or utility is

driven by a set of factors that may be collected and perceived using a formulation. The way

portfolio insurance strategies �t the rationality in each of the explanatory theories enhances a

possible segmentation on investors appetite for this type of products. Our work supports the

use of behavioural �nance to explain the popularity of portfolio insurance investments.

Due to the emergency of modern platforms to develop asset management based on advanced

algorithms that match individual aspirations and investors' risk pro�les and risk tolerance �

robo-advisors � we dive into a sample of platforms that are growing in relevance. This is

a new space for de�ning risk pro�les based on questionnaires that aim to set risk tolerances

and some guidelines on how individual behave before scenarios of downside and how much

they can accommodate on the loss side. We investigate how these mechanisms are mimicking

human decision in order to bridge between risk aversion and value seeking behaviours. The

risks involved in such process may not be perceived by investors using robo-advisors and that

can trigger an unsustainable con�dence on expected future returns that may not be protected.
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The critical point is how risk pro�ling is being adequately de�ned with the algorithms on

robo-advisors. We raise some issues that may be addressed with new policy and guidelines.

During the research we presented our work at the Portuguese Finance Network conferences on

June 2016 and July 2018. A version of a joint work developed on robo-advising and risk pro�l-

ing was also presented at the International Conference on Computational Finance in September

2017 in Lisbon.

The thesis combines the �ndings of individual research papers, but was organized in seven

chapters, being the Chapter 2 a general approach to portfolio insurance strategies and their

characteristics. The remaining four chapters are dedicated to the topics that were the basis

for research: A Review on the Impact of Portfolio Insurance Investments on Market Stability;

Who Can Portfolio Insurance Strategies Attract? Mapping Solutions to Investors; Investor's

Perspective on Portfolio Insurance - Expected Utility vs Prospect Theories; and Market Inno-

vation, Robo-Advising and Protection. The �nal chapter presents the conclusions of this work

and highlights areas for future research.



Chapter 2

Fundamentals of Portfolio Insurance

Portfolio insurance is an asset allocation or hedging strategy that gives an investor the capability 

to decide the amount of risk he or she is willing to accept through a trade-o� between risk and 

expected return. Although it is not a formal insurance policy it may resemble the insurance 

concept as it is possible to limit the downside risk while maintaining the possibility of bene�ting 

partially from the upside potential of the investment strategy.

Portfolio insurance is related with any investment strategy that protects the amount of the 

portfolio, which can be made of bonds, equity or real assets. If the value of the assets increases, 

the increase of the insured portfolio will be lower, but even so it will increase. These strategies 

allow the investor to participate in the appreciation of value of a risky portfolio while limiting 

the potential of losses. Thus can also be considered similar to the features of investment in 

options.

There are four main mechanisms to implement a portfolio insurance investment (Ho et al., 

2013, Meucci, 2010, Lee et al., 2013):

1 Stop loss orders

2 Purchase of exchange-trade put options

3 Synthetic options

4 Dynamic hedging using futures contracts

Derived from these mechanisms, the most common portfolio insurance strategies are Option

4
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Based Portfolio Insurance (OBPI), Constant Proportion Portfolio Insurance (CPPI) and the 

Stop Loss Portfolio Insurance (SLPI).

The most simple strategy is the SLPI and is based on stop limit orders as its underlying order 

type. These are placed at a speci�c price, and if the market price reaches the order price, the 

order will be executed as a limit order. In this case all the risky assets under this condition 

will be sold and revert into non-risky assets. The SLPI strategy was used by Rubinstein (1985) 

and is also a dynamic portfolio strategy, but the portfolio is fully invested in risky assets and 

only considers a single transaction that may occur when the minimum amount for a target on 

wealth is breached.

The �rst approach to more complex portfolio insurance strategies was developed by Leland and 

Rubinstein (1976), who analysed the portfolio insurance techniques based on the options pric-

ing formula of Black and Scholes (1973). The original OBPI concept consists in an investment 

based on �nancial options. The investment is allocated between a risk-free investment and a 

call option on the underlying portfolio1. Nevertheless, to build this strategy is necessary to �nd 

listed options with speci�c strike prices and maturities for each investment portfolio, which is often 

not possible. Thus, Leland and Rubinstein (1981) based on the pricing formula of Black and Scholes 

(1973) and Merton (1973) developed a replication of the payo� of the OBPI strategy, which means a 

replication of a call and a bond or a put and the underlying asset. This strategy is also known in 

literature by Dynamic OBPI and consists in a dynamic portfolio strategy that allocates the capital 

between risk-free assets and risky asset. The proportion in-vested between these two assets is de�ned 

through delta hedging according to the Black-Scholes model. The underlying idea of these strategies 

is to provide protection against potential market losses, while preserving the upward potential (see 

e.g. Grossman and Villa (1989) and Basak (1995)), allowing participation in market rallies. Due to a 

dynamic allocation strategy, the portfolio is protected against market falls by a guaranteed �oor, 

which preserves a minimum level of wealth at a speci�c time horizon. The investor has the ability to 

limit downside risk, particularly in falling markets, while allowing some participation in upside 

markets (Bertrand and Prigent, 2016).

The CPPI strategy was introduced by Perold (1986) and later by Black and Jones (1987) for

1Due to the put-call parity theorem the investment can also be combined between the underlying portfolio
and a put option on the underlying portfolio.
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equity instruments and by Perold and Sharpe (1988) for �xed-income instruments. This strat-

egy is also a dynamic portfolio strategy which divides the portfolio between risk-free and risky

investments. The proportion invested is de�ned by setting a �oor and a multiplier. This strat-

egy ensures a prede�ned �oor by dynamically rebalancing allocations between a risky asset and

a risk-free asset. A constant proportion or multiplier, m, of the excess value of the investment

above the �oor (the bu�er) is allocated to the risky asset, the rest is invested in the risk-free

asset. The �oor and the multiplier are exogenous variables to the model and are determined

by the investor's risk attitude and his or her views on the evolution of the risky asset. The

lower the �oor and the higher the multiplier, the greater the allocation to the risky asset. The

investor then has a higher upside potential but the �oor is reached more quickly if the risky

asset price falls.

2.1 Portfolio Insurance designers

Hayne Leland had the idea of portfolio insurance in the mid 1970s when his brother mentioned

that institutional investors had been away from the market after the 1974 slump and missed the

recovery period after. After the initial idea, he discussed it with Mark Rubinstein and set out

a product for pension funds. The marketing and business actions took o� after John O'Brian,

a former executive at A. G. Becker for pension fund investments analysis, joined them at the

Leland O'Brian & Rubinstein (LOR) as chief executive.

After the crisis of October 19th, 1987, portfolio insurance was referred as a major factor for the

plunge of the Dow Jones of 508 points. At the time LOR clients also noted that the product did

not delivered what was expected. The technique has pitfalls, as pointed out decades after the

crisis by their designers, but is still running and being loaded with funding and also enlarging

the scope for more asset classes. Innovations come with a learning curve and portfolio insurance

has made that path.
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Figure 2.1: Portfolio Insurance - The inventors and missionaries Hayne Leland, John O'Brian
and Mark Rubinstein, from Business People of the Year, The Guys Who Gave Us Portfolio
Insurance, Fortune, January 4, 1988

2.2 Portfolio Insurance Strategies - Mechanics

Despite the misleading designation, portfolio insurance is not an insurance contract where an

investor pays a premium for a risk transference to an insurance company to limit losses from

adverse market conditions. Instead, is a strategic asset allocation that may limit the risk taken

by the investor through techniques that actually change return distributions.

These strategies are not recent, they had their origins on Black-Scholes-Merton's work on op-

tion theory in the early 1970s (Black and Scholes, 1973, and Merton, 1973). To some extent,

portfolio insurance can be seen as an investment on a �nancial option: an investment on a risky

underlying, plus a put option written on the asset, or, by the put-call option parity theorem

(Cox and Rubinstein, 1985), as an investment in the bank account and call options on the risky

underlying. With this strategy a minimum is set for the value of the portfolio (�oor), regardless

of the price movement of the risky underlying.

Due to falling costs on trading and exuberant product innovation (e.g. structured �nancial

products, index notes, warrants, etc.), portfolio insurance managers have extended portfolio

insurance solutions from institutional to their retail segments.
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Financial markets, specially since de 1980s, have su�ered several crises impacting severely on

investors' wealth. The intensity of those crises varied across markets and asset classes, but

the uncertainty became a permanent factor in investors' decisions. This new environment of

uncertain outcomes coupled with global integration, and the increasing complexity of invest-

ment alternatives, drove investors' decisions into a more demanding risk management process,

which lead the market players to provide both hedging and leverage solutions for a large array

of investors (Pain and Rand, 2008).

In spite of continuous concerns from di�erent parties, and the increasing complexity of risk

management decisions (Brady Report, 1988; Rubinstein, 1999; Tucker, 2005), portfolio insur-

ance popularity has not decreased. If some strategies turned to be polemic and lost popularity,

such as CPPIs (see Costa and Gaspar, 2014, and Carvalho et al., 2016), other have emerged

in their place as is the case of Time Invariant Portfolio Protection (TIPP). Nowadays investors

are presented with a wide range of strategies, o�ered from very active distribution channels on

retail banking and institutional segments.

The implementation of portfolio insurance is possible using naïve, or advanced strategies.

Therefore an investor can choose from a simple SLPI to a complex Risk-Based portfolio in-

surance. The most common portfolio insurance strategies on retail and institutional markets

amongst the array of possibilities are the synthetic OBPI and the CPPI - with a multiplier su-

perior to 1. Along with these strategies, investors and portfolio managers also utilize the naïve

insurance strategies such as SLPI or CPPI with a multiplier equal to 1. Table 2.1 presents

major strategies that can be developed under the portfolio insurance framework.

Table 2.1: List of major portfolio insurance strategies
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2.2.1 Stop Loss Portfolio Insurance

In a SLPI strategy, the investor sets the equivalent to a stop loss order, which is a conditional

instruction to sell the risky underlying if it's value falls below a given level. In this case, an

investor, who allocates the total initial wealth (V0) in the underlying risky asset, cuts the loss

to a predetermined level, should the market fall, and, simultaneously, allows gains in an upward

market. A major problem with this strategy is the path dependency (Rubinstein, 1985): when

market falls below the prede�ned �oor portfolio, stock is sold and converted into cash/bonds,

which are held until maturity. Unless the investor decides to re-enter the risky underlying mar-

ket there is independence on future market movements until maturity. The investor position

in the risky underlying is held as long as the present value (PV ) of the �oor (FT ), which is

the minimum acceptable wealth value at maturity de�ned by investor, is smaller than current

wealth (portfolio value at time t), i.e. the investor will be 100% invested in the risky underlying

as long as Vt > PVt(FT ) and it will be 100% invested in the risk free asset otherwise. Thus the

exposure to risky underlying (ESt):

ESt =


Wt, if Vt > Ft

0, if Vt ≤ Ft,

(2.1)

where the value of the �oor at maturity FT = K. During the investment period at any time t,

Ft = PVt(FT ) = Ke−r(T−t), r is the risk-free rate and (T − t) is the time to maturity.

If the market value of the risky underlying falls below the discounted �oor (Ft), portfolio is

sold and converted into the risk-free asset (EBt), and held until maturity.

Therefore, at maturity, if we consider the �nal wealth of the investor as the value of a stop loss

portfolio (V SLPI), we have the following:

V SLPI
T = EST + EBT


EST = 0 ∧ EBT = ESte

r(T−t), if Vt < Ft,

EST = WT ∧ EBT = 0, if Vt ≥ Ft.

(2.2)
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2.2.2 Option-Based Portfolio Insurance

A simple OBPI strategy consists of an investment in a risky asset (usually a �nancial index)

plus an option written on that asset - i.e. a contract that gives the holder the right to sell a

certain quantity of the underlying asset to the writer of the option at a speci�ed price, up to a

speci�ed date. This strategy permits the investor to set a �oor equal or below the value of the

portfolio should the value of the risky asset fall.

Figure 2.2: Example of a OBPI pro�t at expiration - Pain and Rand (2008)

Figure 2.2 describes the net pay-o� pro�le for an investor in an OBPI position at the maturity.

The dashed magenta line (AA) shows the pay-o� to the investor, at di�erent levels of the price

of the underlying asset, from simply owning that asset. If the value of the risky asset is below

the cost of purchase (K) the investor would be facing a loss. The dashed blue line (BB) shows

the net pay-o� from simply owning a put option on the underlying asset with the strike price

for the option set at the initial capital investment, K. If at expiration of the option the value

of the risky asset is below the strike price, the investor can pro�t by buying the asset in the

open market and selling it to the writer of the option (i.e., a �nancial institution) at the agreed

price (less the premium paid for the option itself). In contrast, if the price of the asset is

above the strike price at expiration, the investor does not exercise the put option and it expires
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with no value. As with all derivatives, an option transaction is a zero-sum game - for every

person who gains on a contract, there is a counter-party that loses. Thus in this case, if the

put option expires with positive value the investor gains but the writer of the option (i.e., the

counter-party of the contract) loses. By combining the two investments (the underlying risky

asset and a put option) in a single strategy, the OBPI enables the investor to obtain the pay-o�

line CC which limits the potential downside risk - the pay-o� on the option o�sets any loss on

holding the risky asset, thereby providing the capital protection. In principle, the pay-o� from

an OBPI is identical to the pay-o� from a call option on the underlying asset (a contract that

gives the holder the right to buy the underlying asset at a speci�ed price) and investing the

remnant of the funds in a risk-free asset such as a government security. The maximum loss for

the investor is the cost of the premium for the OBPI.

Due to this similarity, it is normal to create an analogy with traditional types of insurance.

The investor seeks an assured value for his investment in return for paying a premium for the

option while the option writer hopes to make pro�ts from these deals by charging premiums

(typically across a range of options that he may have sold) that compensate for the risk taken.

Some investors seeking portfolio insurance, for example retail investors, may not have direct

access to options markets. And for some asset classes, an options market may not exist at all.

However, in theory at least, it is possible to achieve the pay-o� on an option without using

options directly. Using the insights of Black-Scholes (1973), Leland and Rubinstein (1981)

showed that it was possible to replicate the pay-o� of an option by creating a dynamic portfolio

of the underlying asset and a risk-free asset. By adjusting the holding of the underlying asset

in response to changes in the underlying asset price over time (dynamic hedging), the returns

to the portfolio replicate those of a call option.

Investors, pursuing an OBPI strategy, hold a portfolio of a risky asset, and an at-the-money

option on that asset. The investor de�nes a �oor on the value of the portfolio, and protects

wealth if the risky asset market price falls. The proportions of the risk-free and risky assets

depend on the price of at-the-money options at the time of initial investment. OBPI is, usually,

a static approach if it happens that the option can be bought, but in practice the option often

needs to be replicated using a dynamic, discretely monitored investment strategy. Additionally,
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as perfect hedging is often rare, due to the possible correlation of the market index between

the strategy's risky underlying and the used option, there may be tracking problems (Lee et

al., 2013), which lead asset managers to avoid options. A solution to the tracking problem is

using dynamic rebalancing (synthetic option) to hedge the portfolio of risk-free and risky assets

against downside risk, according to the delta of an option. Therefore, synthetic option, is used

as an alternative in the OBPI (Rubinstein and Leland, 1981).

In fact, a static OBPI strategy can be implemented either using put or call options (Leland,

1980). With the put option, investor holds the underlying risky portfolio and buys a put option

with striking price equal to �oor. When an investor insures the portfolio with call options, there

is a call on the underlying risky asset with striking price equal to the �oor and holds risk free

(cash/bonds) asset discounted by the risk-free interest rate until maturity.

As in Costa and Gaspar (2014), an OBPI using call option has the following pay-o�:

V OBPI
t = ESOBPIt + EBOBPI

t , (2.3)

where: 
ESOBPIt = qStN(d1),

EBOBPI
t = qKe−r(T−t)N(−d2) + EBOBPI

t=0 ,

and C0 is the price of a call at the money in inception, St is the price of the underlying risky

asset, K is the strike price (�oor), the number of call options is given by q =
V OBPI
t=0 −Ke−rT

C0
,

and the initial amount in risk free asset is EBOBPI
t=0 = (1 − q)Ke−rT . The factor N(x) is the

cumulative probability distribution function for a standardized normal distribution, and d1 and

d2, which are de�ned by:

d1 =
(ln( S

K
) + (1

2
rσ2)T )

(σ
√
T )

, (2.4)

d2 = d1 − σ
√
T , (2.5)
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where σ is the standard deviation of the underlying risky asset returns.

As portfolio insurance strategies must be self-�nanced, the option prices are incorporated into

portfolio weights to accommodate the insurance price.

2.2.3 Constant Proportion Portfolio Insurance

The basic structure of a CPPI is a portfolio that switches the investment mix dynamically

between a risk-free and a risky asset according to a discrete trading rule. Each period the

investor calculates how much needs to be invested in the risk-free asset in order to guarantee

a given percentage of the initial investment - this is known as the cost of the guarantee or the

'�oor' - as well as the value of the portfolio in excess of that �oor (the 'cushion' or 'reserve'). A

constant 'multiple' is then applied to the cushion to determine the amount to be invested in the

risky asset in each period. The multiple is typically chosen to re�ect the expected performance

of the risky asset as well as the risk preferences of the investor. The multiple determines the

potential leverage of the investment. A multiple of one implies no leverage; a multiple of zero

is equivalent to a purely risk-free investment.

Table 2.2 provides an illustrative worked example of a simple CPPI strategy for a 100 mone-

tary units investment over ten years where the price of the underlying asset is assumed to �rst

rise and then fall over the investment period. At time zero, the guarantee of 100% of principal

costs 78.1 (the present value of 100 received in ten years' time at a risk-free rate of 2.5%) so

the initial cushion is 21.9 (100 - 78.1). With a multiple of 3 this implies an investment in

the risky asset of 65.6 and 34.4 in the risk-free asset. Over time, if the growth in the value

of the risky asset exceeds the risk-free rate of interest, the cushion will rise and more of the

portfolio should be switched into the risky and away from the risk-free asset. In the second

panel a a multiplier of m = 5 is considered instead. By period 1 the CPPI strategy involves a

negative position in the risk-free asset (i.e., borrowing funds to invest more in the risky asset

than the value of the portfolio). As the risky asset price falls, more of the portfolio is reallo-

cated away from the risky asset. In the second half of the investment period, the portfolio is
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Table 2.2: Example of a CPPI evolution - adapted from Pain and Rand (2008)

switched mostly into the risk-free asset. If developments in the risky asset require that the CPPI

portfolio is entirely reallocated to the risk-free asset we have a situation known as �cash-locked�.

CPPI strategy was �rst presented by Black and Jones (1987). It is a portfolio of risky and

risk-free assets, where holdings are dynamically rebalanced according to a discrete trading rule

in order to achieve at maturity a minimum amount of the initial portfolio. In each period, the

investor sets the weight on risk-free asset to guarantee the prede�ned minimum amount�the

�oor (FT = KT ). The di�erence between this discounted �oor and the initial portfolio value

(Vt=0) is called the cushion (Cu). The amount invested in the risky asset is de�ned by applying

a factor�multiple (m)�to the cushion. The result is the exposure (ESCPPIt = m × Cut). In

this strategy, the investor must decide both the �oor and the multiplier.

The outcome of the CPPI strategy is the following:



2.2. Portfolio Insurance Strategies - Mechanics 15

V CPPI
t = ESCPPIt + EBCPPI

t , (2.6)

where: 
ESCPPIt = m× Cut,

EBCPPI
t = V CPPI

t − ESCPPIt ,

and the �oor at any time t ∈ [0;T ] is Kt = KT e
−r(T−t), the cushion is calculated at rebalancing

moments Cut = V CPPI
t −Kt and m remains �xed until maturity. A simple approach to CPPI

determines daily adjustments, between the fraction of risky and risk-free assets, in order to

assure the �oor. When m > 1, there is a a potential leverage of the investment.

If the multiplier is set to m = 1 it is equivalent to put aside the present value of the �oor in

the risk free asset and investing the remaining (i.e., the cushion) in the risky underlying, we

have what is sometimes called a naïve strategy (see Costa and Gaspar, 2014).

2.2.4 Time Invariant Portfolio Protection

The TIPP is a variant of CPPI proposed by Estep and Kritzman (1988), and incorporates a

dynamic absolute �oor, which is ratchet up whenever the portfolio value increases. In this way,

the investor not only protects a percentage of the initial wealth, but can incorporate intra-

period gains into the protection �oor.

V TIPP
t = ESTIPPt + EBTIPP

t , (2.7)

where: 
ESTIPPt = m× Cut,

EBTIPP
t = V TIPP

t − ESTIPPt ,
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and the �oor at any time t[0;T ] is:

KTIPP
t =


V TIPP
t e−r(T−t), if V TIPP

t > Kt,

KT e
−r(T−t), ifV TIPP

t ≤ Kt,

The cushion is calculated at rebalancing moments Cut = V TIPP
t −KTIPP

t and m remains �xed

until maturity. Due to this mechanism, at the end of period (T ), the TIPP strategy is expected

to have a greater percentage of risk-free assets than the CPPI.

2.3 Literature Review

There have been extensive theoretical work on the optimality of portfolio insurance strategies,

as well as empirical studies comparing di�erent portfolio strategies against alternative basic

investment strategies (i.e., Buy-and-Hold (B&H), mix B&H and risk-free allocation). There

are also comparative studies using simulation methods that focus on the dominance of portfolio

insurance strategies in speci�c market conditions.

The �rst studies on the evaluation of the performance of CPPI and synthetic OBPI were made

by Zhu and Kavee (1988). They �nd that both strategies capture partial upside, and protect on

the downside risk. However, this market protection has two costs: explicit (transactions costs),

and implicit (returns that are forgone when using the protection). Perold and Sharp (1988)

simulate the performance of four dynamic asset allocation strategies in bull, bear, trendless and

volatile markets�namely, the B&H, constant mix, CPPI, and OBPI; they �nd that there is no

dominance of a particular strategy in all situations.

Cesari and Cremonini (2003) use measures for risk, returns, and risk adjusted performance to

compare portfolio insurance strategies. This study compares plain portfolio strategies (B&H,
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constant mix,) and portfolio insurance strategies (CPPI, OBPI, and SLPI). Some features are

included in the strategies and the comparison is made between several alternatives. Cesari and

Cremonini (2003) �nd that there are no dominant strategies in any of the simulated market

conditions.

In Ho et al. (2013), several portfolio strategies are tested, and the authors �nd that depending

on the assessment perspective, di�erent strategies are dominant in speci�c market conditions.

The performances are evaluated from six perspectives: in terms of the Sharpe ratio and the

volatility of portfolio returns, the CPPI is the best performer; whereas the VaR based upon the

normal distribution is the worst; concerning the average and the cumulative portfolio returns

across years, the Expected Shortfall (ES)-based strategy, using the historical distribution, ranks

�rst; moreover, the ES-based strategy results in a lower turnover within the investment horizon,

thereby saving transaction costs 2.

Anaert et al. (2009) evaluate the performance of the stop-loss, synthetic OBPI, and constant

proportion portfolio insurance techniques, based on a block-bootstrap simulation; they consider

traditional performance measures, along with some measures that capture the non-normality

of the return distribution (value-at-risk, expected shortfall, and the Omega measure). Anaert

et al. (2009) compare them to the more comprehensive stochastic dominance criteria, and �nd

that, even though a B&H strategy generates higher average excess returns, it does not stochas-

tically dominate the portfolio insurance strategies, or vice versa. They indicate that a 100%

�oor value should be preferred to lower �oor values, and that daily-rebalanced synthetic OBPI,

and CPPI strategies, dominate their counterparts with less frequent rebalancing.

Zagst and Kraus (2011) also analyse, and compare, two standard portfolio insurance strategies:

2The complexity of portfolio insurance strategies has increased and some features related with downside risk
were added. The Risk Based Portfolio Insurance used the VaR and Expected Shortfall concepts. The Expected
Shortfall is de�ned as the expected value of the loss of a portfolio in a certain percentage of worst cases within
a given holding period. The allocation to the risky asset is adjusted each day so that the expected shortfall of
the portfolio does not exceed a target value. The VaR-based portfolio insurance is a strategy that permanently
controls the shortfall risk of the portfolio. The allocation to the risky asset is adjusted each day so that the
shortfall probability does not exceed a target value. The �rst authors to analyse these features in portfolio
insurance were Zhao and Ziemba (2000)



18 Chapter 2. Fundamentals of Portfolio Insurance

OBPI and CPPI. Various stochastic dominance criteria, up to third order are considered. Zagst

and Kraus (2011) derive parameter conditions implying the second and third order stochastic

dominance of the CPPI strategy. In particular, restrictions on the CPPI multiplier resulting

from the spread between implied and empirical volatilities are analysed. As they consider risk-

aversion in stochastic dominance analysis, it is possible to derive speci�c conditions for the

market parameters, as well as the CPPI multiplier, m, implying the second and third order

stochastic dominance of the CPPI strategy.

Almeida and Gaspar (2012) analyse the performance of most common portfolio insurance strate-

gies based on a block-moving bootstrap simulation and �nd that unleveraged CPPI strategy

should be preferred in terms of stochastic dominance. Recently, Costa and Gaspar (2014) com-

pare naïve strategies of portfolio insurance with the OBPI, and CPPI classical strategies, and

�nd that the ones that seem to be the best, in general, are the unleveraged CPPI (m = 1),

and the SLPI strategy. As these two strategies can be implemented by any investor, the more

complex investment strategies�whether based in options, or in CPPI strategies with multipli-

ers used in real life�seem to make little sense, as they lead to worse stochastic performances.

Dichtl et. al. (2017) test for statistical signi�cance of the di�erences in downside perfor-

mance risk measures between pairs of portfolio insurance strategies using a bootstrap-based

hypothesis test. They �nd that the classical portfolio insurance strategies (synthetic put and

CPPI) provide superior downside protection compared to a simple stop-loss trading rule and

that more recently developed strategies, as the TIPP strategy or the dynamic VaR-strategy,

do not provide signi�cant improvements over the more traditional portfolio insurance strategies.

Carvalho et al. (2016) also study the design problem of CPPI due to the cash-lock e�ect that

is caused by the path dependency of these strategies.

From the studies referred above there is evidence that, for some investors, in speci�c market

conditions, downside risk can drive the investment decision. In behavioural �nance theory
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there is evidence that investors, contrary to the expected utility axioms, are more sensitive to

losses than to gains. As portfolio insurance strategies target a protection on the downside that

characteristic may explain the popularity of such strategies in the marketplace. In the �eld of

behavioural �nance prospect theory became a relevant framework to explain investors' selection

of protection strategies.

Vrecko and Branger (2009) are among the �rst to consider prospect theory to explain portfolio

insurance popularity. Their study analyses the two most popular portfolio insurance strategies,

OBPI and CPPI. The analysis is done both for an investor with Constant Relative Risk Aver-

sion (CRRA), and for a Cumulative Prospect Theory (CPT) investor. They �nd that a CRRA

investor does not pro�t from portfolio insurance, and chooses rather low protection levels. A

CPT investor, on the other hand, strongly prefers portfolio insurance to constant proportion

strategies. Both loss aversion, and probability weighting of CPT, turn out to be critical to

explain the attractiveness of portfolio insurance, as utility gains drop sharply if one of these

two elements of CPT is eliminated.

The study of Dichtl and Drobetz (2011) analyses portfolio insurance strategies in a behavioural

�nance context, and �nd that most portfolio insurance strategies are the preferred investment

strategy for a prospect theory investor.

The paper of Tawill (2017) di�erentiates between investors' risk preferences and their choice of

either OBPI or CPPI using partial-moments-based risk-adjusted performance measures. The

analysis covers EUT and PT investors and the results show investors' risk preferences in the

gain domain are the key determinants of the choice between OBPI and CPPI. The author

�nds that OBPI is the preferred strategy for expected utility and prospect utility investors who

are risk averse in the gain domain and CPPI provides a higher risk-adjusted performance for

investors who are risk seeking in gains and risk averse in losses.

Our work on �nding the reasons for individual investors to allocate assets to portfolio insurance
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strategies di�ers from Dichtl and Drobetz (2011) approach, as we include a di�erent perspective

to compare investors' preferences on both traditional and naïve portfolio insurance strategies.

The comparative approach between the EUT and CPT thrives to de�ne a reasonable explana-

tion for investors' decision regarding the popularity of portfolio insurance strategies based on

a CPT framework.

2.4 Market Developments

From an incumbent market in the late 1970s, portfolio insurance investments gained momentum,

and became an important strategy in asset management industry. According to Pain and

Rand (2008), it is di�cult to precise the size, and rate of growth, of portfolio insurance, since

isolated data are not available. Data on portfolio insurance is still very disperse and not

categorized in the di�erent strategies. An indicative way of monitoring the amount of assets

under the umbrella of portfolio protective strategies is obtained from the statistics of equity

linked structured notes that comprises Structured Notes with Principal Protection and some

variants of �principal protection�, �capital guarantee�, �absolute return�, �minimum return� or

similar terms. The volume of assets depicted in the graphic reveals a consistent evolution:

Figure 2.3: Market estimates on structured products - Source: BIS and Sundaram, Rangarajan
K. (2016, Notes on Derivatives, Stern NYU)

Pain and Rain (2008) report that traditional OBPI investments have not been particularly com-

mon. In part, this re�ects the di�culty in explaining options to investors. But CPPI products
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have become much more prevalent and over time have been designed with additional features

in hedge funds and funds of hedge funds (i.e., investment funds that consist of a portfolio of

other investment funds rather than a direct investment in shares, bonds or other securities).

CPPI has also been written on corporate bonds and credit derivatives such as credit default

swaps (so-called credit CPPI), property and private equity.

As referred by Pain and Rand (2008), CPPI investments evolved since their inception, and in-

corporated di�erent features, particularly the constraints on leverage and investment level; the

variable �oors and multipliers, and, also, the inclusion of caps. The authors reinforce the role of

portfolio insurance as a distributor of �nancial risk among agents willing to absorb it. In fact,

issuers of portfolio insurance solutions can be exposed to relevant downside risk (unexpected

high losses), enhancing the conditions to more volatile �nancial markets.

Specially on the US market there have been several issues and alerts to individual investors ei-

ther by U.S. Securities and Exchange Commission and Financial Industry Regulatory Authority

related with the complexity of the protective strategies and the risks involved 3.

Popular features in CPPI investments have evolved to incorporate various di�erent features.

Of particular note are the following:

• Constraints on the investment level. In the event that the underlying asset price falls, the

allocation to the risky asset can potentially fall to zero. Once that happens there is no

chance for the strategy to recover. To counter this, some products have been developed to

incorporate a minimum level of investment in the risky asset. Equally, to avoid unbounded

investment in the risky asset as its price rises, a maximum investment level is sometimes

imposed.

• Constraints on leverage. Exposure to the risky asset of more than the initial available

funds can be achieved by allowing borrowing. But often there will be limits on how much

can be borrowed, depending on collateral or margin limits. In relation to variable and

'straight-line' �oors, when the price of the underlying asset increases, any gains made by

the CPPI strategy can still be lost if prices subsequently fall. To address this, products

with so-called 'ratcheting' are available which allow the investor to lock-in gains made

3For a comprehensive listing of investors alerts please see https://www.sec.gov/investor/alerts and
http://www.�nra.org/investors/alerts.
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from upward movements in the risky asset price. More speci�cally, the �oor is increased if

the cushion exceeds some agreed threshold, with the trigger typically set as a percentage

of the highest portfolio value or as a percentage of any gains achieved. The �oor in a

conventional CPPI is sensitive to the level of interest rates (since it a�ects the present

value of the pay-o� on the risk-free asset). As interest rates fall, the �oor would rise and

the investment switches away from the risky asset.This in turn would limit the potential

upside from the CPPI, which could be signi�cant (if interest rates and the risky asset are

negatively correlated for example).

• Time constraints. The �oor can be allowed to vary linearly with time, a feature sometimes

known as a 'straight-line' �oor. Concerning variable multiples, rather than having a �xed

multiple, some product structures allow for the multiple to vary over time in relation to

the volatility of the risky asset and re�ecting investors' appetite for risk. This is sometimes

referred to as dynamic portfolio insurance (DPI). There is often a maximum level for the

multiple, which is often based on the results of stress tests performed on the risky asset.

• Volatility caps. Some CPPI products include mechanisms that allow the percentage

exposure to the risky asset to be reduced if its realised volatility exceeds a certain level.

Although portfolio insurance has been around for some time, it has experienced something of a

re-emergence over the past few years. This appears to stem from lower structuring and trading

costs and a broadening in, and growth of, asset classes on which investors �nd the idea of

principal protection attractive. Many of the developments in principal-protected products are

common to structured products more generally.

In the next chapter we go through major crisis associated with portfolio insurance and highlight

some of the recent resurgence signs of capital protection solutions in the market. In spite of

the criticism and vicious cycle that are attributable to portfolio insurance strategies, there are

individual investors allocating resources into this structured products and banks and assets

managers still o�er these solutions to their clients. Although nowadays there is awareness of

the risks involved in the mismatch between investors risk pro�le and selling procedures by

the sell-side, the past events in some crisis have con�rmed feedback loop e�ects that can be

exacerbated in depressed markets (Leland, 2011).



Chapter 3

The Impact of Portfolio Insurance on

Market Stability

An Overview

Portfolio insurance are dynamic hedging strategies with special characteristics that led, amongst

other factors, to increase downward pressure on prices during bear markets (Grossman and

Zhou, 1996). For that reason they are thought to have contributed to relevant �nancial crisis

(Schiller, 1988, Leland, 2011). In fact, in the last decades, several crisis on �nancial markets

occurred with impacts on investors' wealth. The severity of those crises enhanced uncertainty

as a determinant factor on investors' decision process. Financial innovation made the asset

management industry a laboratory of new techniques, either for hedging, or for leveraging po-

sitions on a variety of investors. The several types of investors demanded di�erent solutions, so

they could achieve their goals. A response for investors, who prefer protection on the downside,

and simultaneously take advantage from the market upside, was developed based on the work

of Black, Jones and Merton on early 1970s. In this chapter we review the impact of portfo-

lio insurance strategies on asset price and individual investor perspective, specially under a

decision making process for non sophisticated individuals. There has been recent protection

environment for individual investors either from a stronger scrutiny for asset management and

distribution channels of investment products or from strict requirements imposed to selling side

on the investment products and adequacy of investors (e.g. The European Markets in Finan-

23
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cial Instruments Directive - MiFID), but the evolution on computer based trading and the high

frequency trading and algorithm trading can impact the market quality. Portfolio insurance

strategies have a distinctive characteristic: they tend to sell assets after market prices have

declined, and to buy after market prices rise. In equities and hedge funds this method has been

used extensively, and it has been applied also to the credit market, since 2006. Due to such

particular characteristic of portfolio insurance strategies, the 1987 and 2007 crises emerged as

real case scenarios for the analysis of the impact caused by portfolio insurance strategies, or

algorithm trading, which were developed by asset managers. Generally, it has been accepted

by o�cial institutions (Brady Report, 1988) that massive selling orders on a depressed market

contributed to the increased volatility and losses on investment portfolios. Both the industry

and academic literature have also pointed out portfolio insurance strategies as a major driver

for the increased volatility in �nancial markets, mainly on the crash of 1987. The �illusion of

liquidity� that is kept under stress market conditions was especially relevant on the crash of

October 1987, but also on the extreme conditions of the 2007 �nancial crisis (Carlson, 2006).

In portfolio protection strategies the basic design is to capture the upside markets, and protect

portfolios on the event of downside market movements. Some portfolio managers de�ne mini-

mum rate of return, or a guarantee (a �oor) on the initial investment, and thus a permanent

and dynamic re-balancing between risky assets and low risk asset classes (bonds and cash)

encapsulate a very simple strategy, which is against common sense: buy on the upside and

sell on the downside. This biased view may be supported by the fact that buyers of portfolio

insurance are investors with very low tolerance to downside risk. The 2007 credit crisis became

an interesting area for discussion between those who think portfolio insurance strategies were

to be blame again, and those that point di�erent reasons for the crisis. In fact, the evolution

on the portfolio insurance strategies, which extended the dynamic hedging techniques to credit

portfolios (i.e., constant portfolio debt obligations - CPDO), was referred as a relevant factor

for the credit crisis (Pain and Rand, 2008). This �new generation� of portfolio insurance -

including credit Constant Proportion Portfolio Insurance (CPPI) and CPDO - bene�ted from

the ratings assigned from major agencies, and thus some opinions tend to highlight the role

of portfolio insurers on the depressed credit market, due to the e�ects of the complex credit

structures used by these dynamic hedging techniques.
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The management of portfolio insurance strategies based on the concepts and mechanisms, high-

lighted in previous chapter, relies on models which are always a simpli�cation of reality. The

more complexity to be included into the model and the level of sophistication for estimations,

the more accuracy is reached in order to adjust the results of insured portfolios with investors

expectations (Rubinstein, 1999). However, the di�erent market players - insures, hedgers and

speculators - and interdependencies between markets (cash and futures) in moments of instabil-

ity along with incomplete information creates imbalances that may impact portfolio insurance

strategies and, simultaneously, enhances feedback loops with e�ects on liquidity. All these ef-

fects are stressed with computer based trading and, under speci�c circumstances, vicious cycle

of forced selling conducts to violations on portfolio insurance �oors, which, in turn push more

selling orders into the market.

3.1 An Integrated Approach On Computer Based Trading

Almost native to the design of portfolio insurance is the Computer-Based Trading (CBT) that

relies on High Frequency Trading and Algorithm Trading. To address this ecosystem, the

Government O�ce for Science in the United Kingdom ended in 2012 the Foresight Project

on Computer Trading in Financial Markets to assess the impact of CBT on market quality:

liquidity, price e�ciency/discovery and transaction costs. A relevant message from this study

is that "despite commonly held negative perceptions, the available evidence indicates that high

frequency trading (HFT) and algorithmic trading (AT) may have several bene�cial e�ects on

markets. However, HFT/AT may cause instabilities in �nancial markets in speci�c circum-

stances".

Although the e�ect of CBT on market quality is controversial, the studies developed in this

Project suggest that CBT has several bene�cial e�ects on markets:

• Improvement on liquidity, as measured by bid-ask spreads and other metrics;

• Decrease on transaction costs for both retail and institutional traders, due to changes

in trading market structure, which are related closely to the development of HFT in

particular;
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• Increased e�ciency on market prices, consistent with the hypothesis that CBT links

markets and thereby facilitates price discovery.

In spite of the improvements, there are concerns relating to market quality which are relevant.

In particular, periodic iliquidity has a greater potential. The nature of market making has

changed, with high frequency traders now providing the bulk of such activity in both futures

and equities. However, high frequency traders typically operate with little capital and have no

obligations to provide liquidity during periods of market stress. These factors, together with

the ultra-fast speed of trading, create the potential for periodic illiquidity. One of the recent

events from this market characteristics is the US Flash Crash. The Foresight Project also refers

that there is no direct evidence that HFT has increased volatility in �nancial markets. But

under speci�c circumstances, the authors point that CBT can lead to signi�cant instability.

In fact, self-reinforcing feedback loops, as well as a variety of informational features inherent

in computer-based markets, can amplify internal risks and lead to undesired interactions and

outcomes. It is highlighted that this can happen even in the presence of well-intentioned

management and control processes. There are three mechanisms that within CBT may enhance

instability:

• Non-linear sensitivities to change, where small changes can have very large e�ects, not

least through feedback loops;

• Incomplete information in CBT environments where some agents in the market have more,

or more accurate, knowledge than others and where few events are common knowledge;

• Internal �endogenous� risks based on feedback loops within the system.

Although the feedback loops can be worsened by incomplete information and a lack of common

knowledge, a behaviour factor designated by �normalisation of deviance�, where unexpected

and risky events come to be seen as increasingly normal, until a disastrous failure occurs, is a

relevant contributor for the negative e�ects of feedback loops.

The analysis on the market impacts has come a long way since the Brady Report (1988). Sev-

eral studies addressed the price and volatility e�ect under equilibrium models. The conclusions
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are contrary and based on a diversity of assumptions. Basak (1995) states that at a gen-

eral equilibrium level the comparison between economies with no portfolio insurance investors

and economies where these investors are active indicates a decrease on market volatility and

risk premium. The �ndings of Basak oppose those from Brennan and Schwartz (1989) and

Grossman and Zhou (1996), but follow the views of Donaldson and Uhlig (1993). The major

di�erence between Brennan and Schwartz (1989) and Grossman and Zhou (1996) is the type

of maximization technique as in the former paper insurers are managing risk in an automaton

way. The insurers' trading is based on the rules de�ned for the risk exposure and �oor a�ecting

the portfolio strategy instead of maximizing a utility function. The di�erence between Basak

(1995) and Grossman and Zhou (1996) is the timeframe of the insurers' actions as their horizon

ends before maturity, thus allowing the security price model as a di�usion process relative to a

Brownian movement to include jumps before the payo�s. This assumption creates a price jump

at the insurance maturity, anticipating a price discontinuity that is required for equilibrium.

This technique although enhancing the equilibrium seems to be di�cult to incorporate in an

economy with anticipation of price jumps, as referred by Grossman and Zhou (1996).

This component of volatility was also a particular area of the aforementioned Foresight Project:

�Leverage, Forced Asset Sales, and Market Stability: Lessons from Past Market Crises and the

Flash Crash�. It includes a clear description on potential factors to explain the crisis, and

one of the contributors was Leland (2011), who is one of the designers of portfolio insurance

strategies.

Leland (2011) refers that �While most market participants base their trading on their view of

asset fundamentals relative to price, an important subset of investors must sell even if they

believe market fundamentals don't warrant selling. Such forced selling may be idiosyncratic,

i.e. uncorrelated across market participants. But in other cases, forced selling may be related to

general declines in asset prices and thus correlated across investors. This type of forced selling

can lead to price declines which in turn force further selling and further price declines, a positive

feedback situation that can lead to extreme market volatility and crashes.�. The elements

towards this view are based on the Brady Report (1988), a previous work by Gennotte and

Leland (1990) and a post-mortem analysis of the Crash of 20th October 1987 by Carlson (2006).
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Portfolio insurance grew rapidly between 1982 and 1987. Estimates suggested $70-$100 billion

in funds were following formal portfolio insurance programs by mid-1987 (Gennotte and Leland,

1990), but there were also other protection strategies such as stop loss orders. The Brady

Report (1988) discusses the causes of the crash of October 19th, 1987, when the market fell

more than 20% in one day. There were no signi�cant news of events of su�cient importance to

explain the magnitude of the price fall. The Brady Report therefore focused on internal market

causes rather than external events. In particular, the Brady Report centred attention on a

number of large institutions following �price insensitive strategies� such as portfolio insurance.

It describes enormous waves of portfolio insurance selling forcing down the equity prices. This

led to a "vicious circle", as the selling enhanced further price declines which in turn led to

additional portfolio insurance selling. Thus portfolio insurance selling played a role in 1987

that was similar to forced margin sales in 1929. While forced margin selling was not initially

highlighted in 1987, there were margin calls in both futures and options markets, where margins

were as low as 8% of underlying values. This view is stressed by Carlson (2006): �Failure of

retail investors to meet margin calls spurred liquidations in options markets. Brokers placed

emergency margin calls to their retail investors with exposed options positions. In the absence of

additional margin, these positions were supposed to be liquidated. The Brady Report indicates

that this happened frequently and these liquidations likely added to the selling pressure in

�nancial markets.� Some observers have noted that portfolio insurers were just one group of

sellers amongst many on October 19th, 1987. They did about 15% of the total volume of trading

on that day. However, these trades were all in one direction, and trading was at a record level

that day. Carlson (2006) refers to three factors, amongst several, explaining the severity of

the crash: margin calls, program trading and misinformation. He notes that di�erent investors

with incomplete information operating in cash and futures markets, sometimes simultaneously,

led to relevant imbalances that eventually were settled. Portfolio insurance trading was an

early example of Algorithmic Trading (AT). The trading strategy was dictated by computer

algorithms (determining Black-Scholes or related hedges and de�ning necessary sales/purchases)

and implemented primarily in the S&P 500 futures markets. The liquidity of these markets

had increased dramatically in the preceding �ve years of the crisis.

The major conclusions of the 2011 study by Leland for the Project on The Future of Computer
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Trading in Financial Markets on the section about recent crisis are the following:

�
1. The speed with which insurers, hedgers, and other forced sellers needed to trade was

far greater than the speed at which natural counter-parties could place orders. Market

makers were overwhelmed by the imbalance of orders from such sellers during the crises.

2. The rapid fall in prices resulting from forced selling and order imbalances was mistaken by

many investors for some terrible but unobserved event a�ecting fundamentals. Thus, the

market did not quickly recover. This is in contrast with theories based solely on limited

liquidity of market makers, in which case (with unchanged fundamentals) the decline in

values should be temporary.

3. Theory (and common sense) predict that the forced selling by portfolio insurers and

others would have had much less price impact if it were known to be forced (rather than

informed) selling.

4. Market makers who normally would have provided liquidity saw their equity rapidly

disappear. They withdrew from the market, and there were no �nancial entities prepared

to take their place on short notice.
�

Previous to this study, in 1999, Mark Rubinstein wrote the book �Rubinstein on Derivatives�

and some comments on the risks of implementing portfolio insurance were discussed on the

DerivativesStrategy.com, on September 1999: The Real-World Pitfalls of Portfolio Insurance.

Rubinstein notes the attractiveness of portfolio insurance for investors who feel strongly, rela-

tive to other investors, that cannot tolerate losses at all � but nonetheless would like to invest

in risky assets because of their high expected returns. This topic was addressed before by

Rubinstein (1988) in relation to the 1987 crisis. The insured portfolio by design should perform

better than the underlying portfolio on the downside, in this way it must perform worse on the

upside. The degree of attractiveness is managed by the shortfall relative to the performance of

the underlying portfolio on the upside.

In reality, the insured portfolio is not typically literally insured (guaranteed by a second party).

Although portfolio insurance can sometimes be implemented with listed options, taking into

account the costs and the gap risks, most portfolio insurance are implemented by dynamic

hedging using only the underlying portfolio (or, more commonly, a highly correlated portfolio
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of futures) and cash. Because the common way to determine exactly how much to be selling

or buying over time is to use a modi�ed version of the Black-Scholes formula and its derived

delta, there are problems with portfolio insurance implementations that can arise which are

not anticipated by the Black-Scholes formula. If Treasury bills are used as the proxy for cash,

their interest rate is known with certainty over their life. However, the rate of change of the

T-bill price over each day is still uncertain. For the most part, this can be handled by using

as cash a zero-coupon bond maturing near the payo� date of the strategy. In addition, the

upside capture (and delta) can be recalculated each day based on the remaining riskless return

through the payo� date. With this feature the �oor is preserved even in the presence of un-

certain future spot returns. Due to the need of increasing accuracy on more precise portfolio

insurance models, some strategies require a generalization of the Black-Scholes formula that al-

lows for uncertain future spot returns. However a major issue is the volatility of the underlying

portfolio that is unknown. There are several techniques to reduce the uncertainty by using the

realized volatility after periods of low or high volatility and thus predict the upside capture.

The estimates are done on a daily basis to preserve the �oor of the insured portfolio. Then, the

rebalancing calculation should be performed joining the realized volatility and the estimation,

but with a decreasing weight on the estimation as maturity decreases. If there is a high degree

of con�dence of how the volatility is about to evolve, some speci�c models of option pricing

can be used, instead of the Black-Scholes formula.

Rubinstein (1999) addresses all these problems and notes that �can be reduced by combining

static positions in options with dynamic replication. Indeed, if the replicating strategy could be

achieved using only buy-and-hold positions in European exchange-traded options (static repli-

cation), then uncertain riskless returns and uncertain volatility would not be a problem at all.

Jumps in underlying portfolio prices would also not pose a problem. In fact, any dependence

of the results on the special assumptions behind the Black-Scholes formula would be removed.�

However there are still major issues on monitoring and rebalancing the insured portfolio. One

unexpected factor is price jumps that can derail the insured portfolio and violate the �oor. But

for rebalancing when static hedging is not enough, transaction costs must be factor in into the

rebalancing calculations. Rubinstein (1999) refers that these pitfalls can be managed and thus

improve the results of portfolio insurance strategies.
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Although the �rst designers of portfolio insurance are aware of the pitfalls of it, sophistication

on the protective solutions on �nancial markets is a mean to satisfy the needs of loss aversion

investors. The development of these solutions is based on risk management techniques in order

to deliver what is agreed between investors and asset managers. Estimations are not �awless

but are the backbone of dynamic hedging.

Because models are always a simpli�cation of reality, moments of instability along with potential

incomplete information create imbalances that may impact portfolio insurance strategies and,

simultaneously, enhance feedback loops with e�ects on liquidity. All these e�ects are stressed

with computer based trading and, under speci�c circumstances, vicious cycle of forced selling

enhances violations on portfolio insurance �oors. General equilibrium models are relevant to

assess the price e�ects and the volatility impacts, but microstructure models are determinant

to assess information and liquidity that feeds into feedback loops.

The resurge of portfolio insurance strategies incorporated into products that are distributed to

individual investors is a way to satisfy the needs of investors that are loss averse but, simultane-

ously, tend to be attracted to the up scale of risky markets as the equity asset class. Individual

investors are protected with by-laws of transparency on distribution rules, transparency and

information on product characteristics, with rules on selling procedures about investments, def-

inition of scope for investment consultants, but are not protected against crisis that can be

exacerbated by the investments they hold.

The risks that were not mitigated in last �nancial crisis persist. Although there are new ap-

proaches to portfolio insurance, and even more sophisticated trading algorithms and robots,

there is a wrong sense of availability of data that can be masked as complete information in-

stead of a misinterpretation of data or information asymmetry. Individual investors should be

aware of it, because regulators and asset managers as well as institutional investors are all part

of a system that always reach moments of equilibrium even after major imbalances. Portfo-

lio insurance strategies aggregate all of these entities within the same system, however is just

a component and although it may accelerate imbalances should not be viewed as their sole cause.
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3.2 The Industry Perspective

Portfolio insurance strategies represent a standard practitioners �buy high and sell low� rule

for the risky asset. When the underlying asset markets move in one particular direction, either

trending up or down, these actions may enhance feedback e�ects in markets that amplify price

movements. Before markets that are deep and liquid, these feedbacks e�ects are expected to

be limited. However, if the underlying asset markets do not have these characteristics, the

feedback e�ects may reinforce market prices movements. Additionally, in stress situations the

various loss preventing strategies that may present low correlations became more correlated

with the underlying assets when all strategies are set to reduce risky exposure in the same

time-frame. This was the situation described about the 1987 stock market crash in the Brady

Report (1988) .

A major risk of implementing a portfolio insurance strategy is that the payo�s are particularly

sensitive to rapid losses in the risky asset prices before the portfolio can be rebalanced. In these

situations, the value of the insured portfolio could fall below the �oor and, for example, the

issuers of CPPI products would su�er a gap risk. In particular, if the issuers send out several

CPPI products written on di�erent underlying assets, and those seemingly uncorrelated assets

suddenly become much more correlated in stressed conditions (such as the credit crunch led

by the subprime mortgage crisis since September 2007), then the scale of the gap risk may be

very much underestimated.

Pain and Rain (2008) state that �overall, it seems unlikely that portfolio insurance-related

investments contributed signi�cantly to the latest bout of �nancial market volatility that began

in Summer 2007. And, in all but a handful of cases, market contacts observe that the gap

risk in CPPI products has not crystallised. Nonetheless, �nancial markets currently remain

fragile and vulnerable to further shocks. It is therefore important that market participants and

policymakers alike are alert to situations when portfolio insurance could potentially work to

amplify �nancial market instability�.

Under severe conditions, unexpected big losses may jeopardize the issuers and the stability of

�nancial markets. In theory, the issuer of CPPI products can hedge such exposure to gap risk

by options. The issuer needs to model the likely worst-case move in the risky asset price before

the next rebalancing opportunity and build the cost of this implicit option into the premiums
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and fees charged to the investors (or in the case of limited possibilities to transfer costs to

clients, the issuer needs to calculate the amount of capital that needs to be provided). But, in

practice, the pricing of such options can be quite complex, because the issuer does not exactly

know the underlying asset price process and correlations in stressed markets. Furthermore, it is

di�cult for the issuers to �nd available options through which to hedge their exposures. Pain

and Rand (2008) report that some issuers of CPPI products create securities that package up

the gap risk and sell these to investors, including private banks and funds.

Although it is technically clear that portfolio insurance strategies could distribute the risks

amongst di�erent risk pro�les of individual and institutional investors, markets are not perfect

and in some conditions portfolio insurance can induce market instability. The conditions to

factor in the instability may be the following:

1. Impact of dynamic hedging on illiquid markets.

2. Imperfect information and the gap risk.

3. Limited available instruments to hedge the exposure to gap risk.

Pain and Rand (2008) reinforce the role of portfolio insurance as a distributor of �nancial risk

among agents that are willing to absorb it. In fact, issuers of portfolio insurance solutions

can be exposed to relevant downside risk (unexpected high losses) enhancing conditions to a

more fragile stability of �nancial markets with increasing volatility. More generally, portfolio

insurance is an example of how �nancial innovations, which in most circumstances enable risk

to be better managed, can also potentially accentuate market instability. Speci�cally, it is

relevant to investigate the impact of these portfolio management techniques on price, liquidity

and volatility. Also of importance is the level of agency costs by portfolio managers: are they

managing accordingly to a target rate of return for a client, or are they protecting their balance

sheets from underperformance results on minimum rate of return contracts with retail clients?

As an announcement of all the ingredients for the crisis of 2007, Tucker (2005) made a speech

about risk dispersion and risk management and highlighted the need to understand risk in

order e�ectively managed it. The innovation enhanced by the dynamic strategies is refereed

as a positive contribution, but �nancial intermediaries should identify structural imbalanced

options positions in markets that could face illiquidity after some stressed conditions and major
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price downfalls.

After the crisis, portfolio insurance resurged and retail investors poured into protection of wealth

but keeping in mind the upside potential of markets. The newspaper The New York Times,

November 11th 2015, Wealth Special Section,�For Investors, 'Portfolio Insurance' Against Mar-

ket Declines.�, describes some of the portfolio insurance techniques available to individual in-

vestor - directly or through their investment advisors - that can be employed to protect wealth

over time. The short term volatility protection is referred as being di�erent from shielding

against future loss in retirement income. For the short term protection or betting views on

volatility the fear index Vix provides investment on Exchange Tradable Fund (ETF) and the

entry timing and exit are the drivers for investors' returns. As an alternative protection the

options are also highlighted as an adequate investment. The sense of protection and the adop-

tion of such shields against market declines always emerges after some losses are pocketed by

investors.

Several market opinions started to highlight, again, the bene�ts of portfolio insurance - Forbes,

March 4th 2016, �Add Portfolio Insurance Just in Case of Market Crash In 2016.� - after the

strong equity returns on 2016 and the rising fear of loses on the increasing wealth from market

returns. But one year after, on the Financial Times, March 21 2017, �Rise In New Form of

'Portfolio Insurance' Sparks Fears.�, the rise of new forms of portfolio insurance is said to spark

fears. It is referred that institutional investors were allocating considerable amounts of money

into risk mitigation or crisis o�set programmes - long maturity government bonds and trend-

following hedge funds, like "Commodity Trading Advisor" (CTA) - that act as a counterweight

when markets are in turmoil. The CTA are computer-driven vehicles that take advantage of �-

nancial markets' tendency towards momentum. These instruments often bet against an already

falling market, shorting it to pro�t from further declines and thrive when the other strategies

are unravelling. Therefore, the fear of losses has driven institutional investor towards this strat-

egy. But, in practice this idea is similar to portfolio insurance which is fuelling some concerns

over re-incidence on feedback loops and mostly on a generalized approach where short-term

market behaviour can be destabilising.

On addition to these strategies, the fear index, VIX, has been a new trend for portfolio insur-
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ance. In this case volatility ETF's track the Vix volatility index, which tends to move in the

opposite direction of stock prices in general. Bloomberg, October 25th 2017, �Sometimes You

Beat the Bear. Lately, the Bear Beats You.�, has referred the emergent impact of such funds due

to its structure which is design to amplify short-term moves. Although some providers market

these vehicles for traders instead of long term investors, the selling point is still protection on

downside markets. Thus, not being aware of some of the technicalities of protection vehicles

can be as bad as the worst scenario they tend to prevent.

The Fear index was also pointed on Financial Times, February 6th 2018, �Shorting Volatility:

Its Role in the Stocks Sell-O�.�, as the corner of a complex and expanding volatility ecosys-

tem that has evolved over the past decade and is being compared with the portfolio insurance

strategies. The Vix Exchange-Traded Products are tradable asset but volatility is a relevant

input into investment strategies. When asset managers short volatility and others use it as a

proxy for risk on turmoil markets, volatility can be-get more volatility causing a selling vicious

cycle from a feedback loop.

From The Wall Street Journal of 19th October 2017, �A Stock Market Panic Like 1987 Could

Happen Again�, the Nobel prize winner Prof. Robert Shilller notes that there is a resurgent

idea about portfolio insurance as a solution that was designed to protect investors from falling

markets but, instead, it helped to exacerbate a breakdown on stock market. However nothing

happened solely on the 19th October. Some previous trigger events caused the selling cycle:

the drop of 9% on the S&P 500 index, one week before the crash, signalled a selling action

for existing portfolio insurance models, then mutual funds were forced to alleviate their equity

holdings to meet redemptions and �nally, the impact on liquidity from margin calls that shrunk

liquidity and enhance lack of reliable information for trading (Carlson M, 2006). The time-line

of the crash presented by Carlson (2006) is an impressive sequence of events for which portfolio

insurance contributed but is hardly the sole explanation for those events.

More than 30 year after the October stock market crash of 87 the market views are now en-

visaging new forms of risks similar to the causes of Black Monday. Larry Summers, former US

Treasury Secretary, said on a comment to Prospect Magazine of April 2018, �Back to School:

Top Economists On What Their Subject Needs to Learn Next.�, that modern economies are not

self-equilibrating systems and are dominated by positive feedback e�ects that destabilize. He
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refers that margin calls, bank runs, portfolio insurance, option hedging, all cause more selling of

assets as their values go down. In this way, when selling causes lower prices, which cause more

selling, the market mechanism is in trouble. The challenge Mr Summers refers is to prevent

vicious cycles from developing and to contain them when they start, which means more smarter

government policy and not a retreat into market fundamentalism.

Recently, after the 2016 and 2017 rallies on equities, the beginning of 2018 presented some signs

of correction on equity prices. Amongst several reasons pointed out by practitioners, the domi-

nance of machines, algorithms and passive investment instruments and strategies were referred

as the causes for the market instability, much like portfolio insurance disrupted markets in

October, 1987 (The Street, April 2018, �Why the Stock Market Collapsed Monday and What's

Next.�).

Specially related with the individual investor perspective, in the next chapter we focus on

the attractiveness of portfolio insurance strategies to identify which rational investors, despite

potential crisis, would select these protection strategies in distinctive market conditions.



Chapter 4

Who Can Portfolio Insurance Strategies

Attract?

Mapping Solutions to Investors

The analysis of investment decisions under uncertainty in the literature is based on di�erent

theories. From the normative Expected Utility Theory (EUT) to Behavioural Finance Theory

(BFT) one can test di�erent attitudes towards risk. Investors are not all alike, their decisions

are focused either on utility derived from a certain amount of estimated wealth, an aspiration,

an expected monetary value or gains and losses against a certain reference. The valuation or

utility is driven by a set of factors that may be collected and perceived using a formulation.

The way portfolio insurance strategies �t the rationality in each of the explanatory theories

enhances a possible segmentation on investors appetite for this type of products.

The speci�city of the rational on loss preventing investment strategies can be the trigger to

understand the reason for individual investors to keep on investing in portfolio insurance strate-

gies. The aim of this chapter is to identify the conditions that drive individual investors into

portfolio insurance strategies and also to set the descriptive characteristics of segments of indi-

vidual investors that choose protective strategies. We address �rstly a prescriptive framework

for rational investors and in the next chapter we change the framework towards BFT.

37
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The paradigm of risk vs returns evolved through times as individuals' capability to understand

the impact of losses changed under a framework that speci�es the rationality of their decisions

based on a set of assumptions. In fact, knowing that some of the decisions by individuals

may di�er from the prescriptive results of Modern Portfolio Theory (MPT) raises questions on

the drivers of individual investment decisions. Although Mean-Variance Analysis (MVA) and

EUT are foundational pillars in any advance course in asset management, the recognition that

behaviour factors must be taken into account for individual decisions is gaining grounds (Hens

and Bachmann, 2011).

To test the drivers of investors' choice we based our analysis on simulation of a risky asset and

set several portfolio insurance strategies and simple investments on the risky asset, a risk-free

asset and a 50:50 portfolio of risky and risk-free assets. The ultimate wealth level derived from

portfolio strategies and the latter, is valued using MVA and some utility functions on di�erent

risk aversion levels. The results of the valuation are compared in high to low volatility market

and high to low expected returns using a market conditions matrix.

The remaining of the chapter is organized as follows: Section 4.1 de�nes the framework for

portfolio insurance. Section 4.2 provides a short review on the investment decision under un-

certainty. The methodology and results are set in Sections 4.3 and 4.4. The conclusions are

presented in Section 4.5.

4.1 Portfolio Insurance

The way portfolio insurance strategies set the rationality in each of the explanatory theories

enhances a possible segmentation on investors' appetite for this type of products. Investors that

under EUT are characterized by having average expectations, but with marginal increasing risk

tolerance with wealth, may prefer to be exposed to portfolio insurance. Investors who have

average risk tolerance, but whose expectations of returns are more optimistic than average,
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may buy portfolio insurance strategies (Leland, 1980). However, not all portfolio insurance 

strategies are able to perform according with investors objectives, as is the case of Constant 

Proportion Portfolio Insurance (CPPI). In fact, a simple Stop Loss Portfolio Insurance (SLPI) 

strategy may perform better than the more elaborate portfolio insurance strategies (Costa 

and Gaspar, 2014). As Option Based Portfolio Insurance (OBPI) and CPPI strategies o�er 

alternative protected pay-o�s, it is relevant to examine under what circumstances an investor 

should prefer one type of protection over the other. Zhu and Kavee (1988) use Monte Carlo 

simulation to compare various statistic samples of replicated OBPI and CPPI pay-o�s. El 

Karoui et al. (2006) investigate which strategy over a �nite horizon maximizes a utility criterion 

and prove the optimality of OBPI strategies when a position in the risky portfolio requires a 

given level of guarantee. Bertrand and Prigent (2011), Annaert et al. (2009), and Zagst and 

Kraus (2011) compare OBPI and CPPI using stochastic dominance criteria.

When the risky asset price follows a geometric Brownian di�usion the portfolio value can, 

theoretically, never reach the �oor, but in reality markets experience jumps. Benninga and 

Blume (1985) show that portfolio insurance strategies are still desired by investors in incomplete 

markets. In the presence of market jumps Bertrand and Prigent (2016) study how extreme 

moves in asset returns may impact portfolio insurance and Cont and Tankov (2009) examine 

the gap risk - the risk of falling below the �oor - and derive the gap loss distribution and various 

associated risk measures in the context of a jump-di�usion model. Zhu and Kavee (1988) and 

Bertrand and Prigent (2011) compare OBPI and CPPI strategies with an underlying following 

a compound Poisson process. With this perspective of protection, investors demand di�erent 

solutions so that they could achieve their goals on expected wealth, or on potential gains and 

losses.

Leland (1980) stated the following:

�Since much of the demand for options is attributed to investors who are either

more bullish or more bearish on the expected return of the underlying stocks, it

seems important to include di�ering expectations as a possible source of demand

for options or for portfolio insurance. Our principal conclusions are:

1) Investors who have average expectations, but whose risk tolerance increases with

wealth more rapidly than average, will wish to obtain portfolio insurance.
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2) Investors who have average risk tolerance, but whose expectations of returns are

more optimistic than average, will wish to obtain portfolio insurance.

Institutional investors falling in class (1) might include pension or endowment funds

which at all costs must exceed a minimum value, but thereafter can accept reason-

able risks. "Safety-�rst� investors would �nd portfolio insurance attractive on this

basis. Institutional investors falling in class (2) would include well-diversi�ed funds

which believe themselves to have positive �alphas��i.e., funds which expect on av-

erage to achieve excess returns by superior stock selection. In order to exploit these

excess returns to equities, but at the same time keep risk within tolerable levels,

insured-type strategies are optimal.�

The search for a segmentation of portfolio insurance investors is not novel. In fact, the way

these solutions are presented to investors in order to �t their needs is still a major issue, as

theoretical frameworks de�nes speci�c conditions to assess investors' expectations. In fact, even

theorists of PT (Kaheman and Tversky, 1979) have stated that reasonable people could, in most

of the time, follow EUT axioms having thus a rational choices.

Portfolio insurance investors may have di�erent perspectives on risk and return on reference

values for their gains and losses. However, investors' decisions under uncertainty may be non-

rational according to prevailing normative theoretical frameworks, like the EUT, but may fol-

low guidelines on a descriptive framework as Prospect Theory (PT) and Cumulative Prospect

Theory (CPT). In this twofold environment it is necessary to identify de drivers for selecting

portfolio investment strategies and understand the mapping between protective strategies and

investors preferences. We are addressing the �rst environment.

4.2 Investors' Decision Under Risk

The decision process deals with two de�nitions, risk and uncertainty, that sometimes are not

su�ciently clari�ed leading to some misunderstanding on the analysis of investors' �nancial
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decisions results. The de�nition of risk commonly accepted in the literature which was pre-

sented by Knight (1921), refers to situations in which the probabilities of di�erent outcomes are 

known, while uncertainty refers to situations in which the probabilities are unknown. Based on 

these de�nitions it is possible to distinguish uncertainty attitudes from risk attitudes.

We are using a de�nition of decision theory that deals with how investors make decisions and 

with how investors should make decisions. Therefore, the heartland of decision theory is cen-

tred in choice under uncertainty. From the idea in the 17th century of Pascal of expected value 

and the paper of Bernoulli (1954) where he de�nes a utility function and computes expected 

utility instead of expected �nancial value, there have been di�erent approaches. In 1947, Von 

Neuman and Morgenstern presented an axiomatic framework of EUT that de�nes a normative 

theory. Based on this economic theory people behave as rational agents setting the grounds to 

a decision-making behaviour under risk. Against this normative theory some authors (Allais, 

1953; Ellsberg, 1961) show that describing investors' behaviour leads to violations of the EUT 

axioms. Incorporating actual human behaviour in decision-making demonstrates that losses 

loom larger than gains and that people are more focused on changes in their utility states then 

the states themselves and estimation of subjective probabilities is very biased (Tversky and 

Kahneman, 1979, 1992).

The decision theory can be detailed through the Expected Utility Theory (EUT) and Prospect 

Theory (PT). Although the abnormal behaviours in �nancial markets may be explained using 

di�erent models, in this chapter we focus our attention in EUT because it is still a dominant 

framework to assess investment strategies.

4.2.1 Mean-Variance Analysis

The most used framework to support investment decision is based on objective criteria: choices 

between alternatives are de�ned using mean and variance (Markowitz, 1959). However, the two fund 

theorem of Tobin (1958) is supported on two restrictive conditions: Constant Rela-tive Risk Aversion 

and normally distributed log-returns (Merton, 1973).
Under MVA the best portfolio is set by two variables: the risk-return opportunities and in-
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Figure 4.1: Example of a risk aversion comparison - adapted from Hens and Bachmann (2011)

vestor's preferences. The risk-return combinations of assets de�nes the set of e�cient portfolios

from which we derive the e�cient frontier. Investor's preferences are given by an utility func-

tion:

ui(µ, σ2) = µ− αi

2
σ2, (4.1)

where αi > 0 is a parameter describing the risk aversion of investor i (the higher is αi the

more risk averse is the investor). In this case, the higher the risk aversion, the higher is the

required expected return for a unit increase in risk1. Although the two fund theorem limits

the heterogeneity of investors to a single portfolio of risk-free asset and the tangent portfolio,

market solutions rarely rely on this theoretical approach (conservative, moderate or aggressive

type investors with di�erent mix of cash, bonds or stocks). When investors present a high level

of risk aversion they tend to select investment strategies with low expected returns and risk,

moving down the e�cient frontier. Investors with a low level of risk aversion select portfolios

that move up along the e�cient frontier.

1See p. 154-155 in T. Sargent, Macroeconomic Theory, 2nd. edition for a detailed analysis on the �Mean
Variance Utility Function�.
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4.2.2 Investors' Decision in Expected Utility Theory

The Expected Utility Theory (EUT) is based on the assumption that investors maximize their

�nal expected wealth when making investment decisions. Utility is analysed based on two ap-

proaches: the cardinal and the ordinal.

Cardinal utility, a quantitative approach, measures the satisfaction of individuals by utils and

the marginal utility derived from consumption or amount of wealth. This has been promoted

by classical and neo-classical economists. The ordinal utility, promoted by modern economists

(Hicks and Allen, 1934), measures ranks and the qualitative approach using indi�erence curves

states a comparative level of satisfaction between di�erences of consumption or amount of

wealth. The ordinal utility is used mainly on consumer theory under certainty and represents

preferences before certain outcomes (Debreau, 1954). The analysis of consumer theory under

uncertainty is based on the work of Von Neumann-Morgenstern (1947) that designs the cardinal

framework for utility that represents random outcomes. Cardinal utility function is an utility

index that maintains preference orderings uniquely up to positive a�ne transformations.

The analysis we perform relies on the cardinal utility approach, which states that choice over

lotteries, satisfying certain axioms (presented hereunder), implies maximization of the expec-

tation of a utility function, de�ned over outcomes. Our work is based on tractable utility

functions of two kinds: the class of linear risk tolerance or Hyperbolic Absolute Risk Aversion

(HARA). The special cases are the quadratic, the exponential (or Constant Absolute Risk Aver-

sion (CARA)) and the power utility function (or Constant Relative Risk Aversion (CRRA)).

The expected utility model, initially designed by Bernoulli (1954), was developed by Von Neu-

mann and Morgenstern (1947). The theory is based on preference axioms that de�ne decision

making of a rational investor over uncertain prospects: completeness, transitivity, continuity

and independence. The EUT assumes investors verify this set of rational axioms:

• Completeness. For every A and B eitherA � B or A � B. This means that the

individual either prefers A to B, or is indi�erent between A and B, or prefers B to A.

• Transitivity. For every A, B and C with A � B and B � C then A � C. If an investor

decides according to the completeness axiom then also decides consistently.
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• Continuity. Let A, B, and C be three lotteries with A � B, and α ∈ (0, 1]; then

αA + (1 − α)C � αB + (1 − α)C. When two gambles are mixed with a third one, they

maintain the same preference order as when the two are presented independently of the

third one.

• Independence. Let A, B and C be lotteries with A � B � C; then there exists a

probability p such that B is equally good as pA+(1−p)C. When there are three lotteries

(A, B and C) and the investor prefers A to B and B to C, then there should be a possible

combination of A and C in which the individual is then indi�erent between this mix and

the lottery B.

As individuals do not care directly about monetary values of the outcomes, but care about

utility that money provides, their goal is to maximize expected utility. The expected utility

function measures the expected utility of a set of possible outcomes as the sum of the products

of the utility received from each outcome, multiplied by its respective probability of occurrence2:

E[U(Xi)] = p1U(X1) + p2(X2) + · · ·+ pnU(Xn) =
n∑
i=1

piU(Xi). (4.2)

Based on this formulation, it is possible to de�ne alternative investor attitudes toward risk 3.

An individual is risk averse if the expected utility from the outcome associated with a risky

choice is less than the utility from a certain outcome�which is equal to the expected, or mean,

outcome associated with the risky choice:

E[U(X)] < U [E(X)]. (4.3)

In general, an investor is considered risk loving if the expected utility from the outcome asso-

ciated with a risky choice is greater than the utility from one outcome with certainty�which

is equal to the expected, or mean, outcome associated with the risky choice:

E[U(X)] > U [E(X)]. (4.4)

2The formula applies only to discrete time model, which is the one we select to perform the Monte Carlo
simulation on the risky asset price.

3Investor attitude towards risk is evaluated using Jensen's inequality, and the utility function derivative.



4.2. Investors' Decision Under Risk 45

An individual can be characterized as risk neutral if the expected utility obtained, from the

outcome associated with a risky choice, is precisely equal to the utility he gets from an outcome

with certainty�which is equal to the expected, or mean, outcome associated with the risky

choice:

E[U(X)] = U [E(X)]. (4.5)

In order to map between the physical measure of money and the perceived value of money it

is necessary to have functions, which are called utility functions. The most common utility

functions used in �nance are the exponential, logarithmic, power and iso-elastic, due to its

mathematical tractability.

There were experimental works in the decades after Von Neumann and Morgenstern (1947),

that showed individuals systematically violate EUT when choosing among risky gambles. There

have been alternative theories to explain the experimental evidence. Some are better known

such as the weighted-utility theory [Chew and MacCrimmon (1979), Chew (1983)], the im-

plicit expected utility [Chew (1989), Dekel (1986)], the disappointment aversion [Gul (1991)],

the regret theory [Bell (1982), Loomes and Sugden (1982)], the rank-dependent utility theory

[Quiggin (1982), Segal (1987, 1989), Yaari (1987)], and the prospect theory [Kahneman and

Tversky (1979), Tversky and Kahneman (1991, 1992)].

Regarding the measures of risk aversion, there are two possibilities to measure it: Absolute

Risk Aversion (ARA), and Relative Risk Aversion (RRA). The ARA measures aversion to a

loss in absolute terms, and the RRA measures aversion to a loss relative to investor's wealth.

From Figure 4.2 it is possible to verify the di�erence of the curvature of utility function. The

evolution of marginal utility determines the way an investor reacts before uncertainty. Arrow-

Pratt measures risk aversion for di�erent utility characterizations:

- absolute risk aversion

Ra(X) = −U
′′(X)

U ′(X)
(4.6)

- and relative risk aversion

Rr(X) = −XU ′′(X)

U ′(X)
. (4.7)

An investor's allocation of wealth to risky assets depends on the risk aversion characteristics

of his utility function. If he has Increasing Absolute Risk Aversion (IARA), then, as wealth
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increases, he will hold less money in risky assets. If an investor has Constant Absolute Risk

Aversion (CARA), he will have the same amount of money in risky assets, as wealth increases.

If an investor has Decreasing Absolute Risk Aversion (DARA), then, as wealth increases, he

will hold more money in risky assets. If an investor has Increasing Relative Risk Aversion

(IRRA), then, as wealth increases, he will hold a lower percentage of wealth in risky assets. If

an investor has Constant Relative Risk Aversion (CRRA), he will have the same percentage of

wealth in risky assets, as wealth increases. If an investor has Decreasing Relative Risk Aversion

(DRRA), then, as wealth increases, he will hold a higher percentage of his wealth in risky assets.

If a decision maker accepts the EUT axioms it is possible to evaluate the consequences of

uncertainty based on an utility function, which lead him/her to maximize the expected utility.

In fact the expected monetary value of the pay-o�s X − i with probabilities pi, i = 1, 2, 3, ..., n

can be compared with the utility derived from a Certainty Equivalent (CE):

U(CE) =
n∑
piU(Xi). (4.8)

i=1

The choice between di�erent investment strategies depends on how the decision maker assesses 

the certainty equivalent with the expected monetary value. If CE is less than the expected 

monetary value investor shows a risk aversion attitude. On the contrary if CE is larger than 

the expected monetary value, investors are keen on risk and attractiveness of lotteries/uncer-

tainty.

Concerning the shape of the utility function, a risk averse investor shows a concave curve, a 

risk neutral investors shows linear utility function and a risk seeker presents a convex curve. 

In our analysis we follow the more simple utility functions of the CARA, CRRA, or HARA, 

instead of more complex like the ones proposed by Markowitz (1959), that have concave as 
well as convex segments along the curve. For a detailed revision of utility curves please see 

Friedman and Sunder (2011).

The most tractable utility functions used in literature are the following:
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Figure 4.2: Example of a risk aversion investor - adapted from Jonhson (2007)

• linear

U(X) = a+ bX, b > 0 (4.9)

• quadratic

U(X) = X − 1

2
bX2, b > 0 (4.10)

• exponential

U(X) =
1

a
(1− e−aX), a > 0 (4.11)

• logarithmic 
U(X) = x1−c−1

1−c , c 6= 1

U(X) = ln(X), c = 1

(4.12)

• power


U(X) = sc+1−(s−X)c+1

(c+1)sc
, s > 0, c > 0, X < s

U(X) = s
c+1

, X ≥ s, where s can be considered a level of saturation.
(4.13)

We also stated the power utility function, but we will not use it due to the unknown level of

saturation that is set per individual. As utility functions are the base of a �moral� value, as

stated by Bernoulli (1873), the cardinal analysis of the utility is not changed by positive a�ne

transformations..
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4.3 Methodology

We use Monte Carlo method, which is widely use in the literature4, to simulate a risky asset

pattern�see Table 4.1�, in order to evaluate the performance of portfolio insurance strategies,

and benchmark investments. After the outcomes of the di�erent strategies we use several

approaches to assess the level of satisfaction of each strategy. Based on the di�erent utility

functions we identify the segments of investors that may be attracted to portfolio insurance

strategies and then we group by homogeneous risk aversion investors in order to map their risk

attitude to the expected returns from portfolio insurance.

We run numerical solutions on Monte Carlo simulations to build stock market scenarios with

normally distributed price returns. The continuous compound stock market returns are gener-

ated 100.000 times, using a Geometric Brownian Motion (GBM), for a one year time horizon,

with 252 trading days. We assume there is a risk-free asset paying a constant rate of return

(r), and a risky asset with dynamics:

dSt = µStdt + σStWt, (4.14)

where µ is the mean, σ is the volatility and W is a Wiener process. In order to de�ne a stochastic

process for stock returns consistent with the assumptions of Black and Scholes (1973), which

support the engineering of portfolio insurance strategies, we set the dynamics of log returns of

the risky asset as:

d(lnS) = (µ− σ2

2
)dt+ σdWt, (4.15)

where dWt is a Wiener process describing the development of a normally distributed variable.

We de�ne 9 stock market scenarios: high, medium and low volatility; high, medium and equiv-

alent risk-free equity returns, in order to capture a large span of possible bear and bull market

conditions. We set the nominal risk-free interest rate at 5% in order to allow a larger portion

of investment in risky assets and comparison with previous studies (e.g., Dichtl and Drobetz,

2011, Costa and Gaspar, 2014).

4Several research papers use this numerical method: e.g. Pézier and Scheller, 2011, Dichtl and Drobetz,
2011, Costa and Gaspar, 2014
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Table 4.1: Stock market scenarios

Volatility

High: σ = 30% Medium: σ = 20% Low: σ = 10%
Expected return

µ
15% Scenario 1 Scenario 4 Scenario 7
10% Scenario 2 Scenario 5 Scenario 8
5% Scenario 3 Scenario 6 Scenario 9

In each of the scenarios of Table 4.1 we have 100.000 paths on stock market returns to compare

the results amongst strategies5. The stochastic process for the stock returns is consistent with

the assumption of Black and Scholes (1973) option pricing model, which we use to depict the

features of the synthetic options strategy for portfolio insurance performance as in Bird et al.

(1990).

Following the conditions used in most empirical studies of portfolio insurance, simulations do

not consider tax, bid and o�er spreads, nor transaction costs on the stock market. However,

we are aware that tax and transaction costs are relevant facts that impact the performance and

may a�ect the �nal wealth.6

We do not apply any �lter on portfolio shifts (single or cumulative), in order to avoid biased

comparisons. The time horizon of the investment period is one year, which is the standard

maturity in retail and institutional markets before a regular feview on investment strategy,

hence we consider the 252 trading days of the stock market7. Regarding the trading days they

were also used by Dichtl and Drobetz (2011), and Branger and Vrecko (2009). With simulated

data, we compare the �nal wealth from portfolio insurance, and benchmark strategies, using the

5We simulate one hundred thousand paths for the Monte Carlo simulation, and run the exercise several times
to test robustness. We �nd the results to be coherent. The calculations were made on Matlab programming
and partially on Excel with VB programming.

6The transaction costs factor was addressed by Leland (1985) using an adjustment to volatility in order to
accommodate the upward and downward �nal price of the transactions:

σ2
A = σ2(1 +

√
2/πk

σ
√
t

),

where σ is the annualized standard deviation of the stock returns, k is the round-trip transaction costs as a
proportion of the volume of transaction, and t is the revision interval as a proportion of a year. In our study
we do not include this adjustment as the gained precision does not have a relevant impact of strategies' returns
distributions.

7We use a one year investment period in order to compare several strategies. However, for CPPI and TIPP,
it is necessary to perform additional studies for longer maturities, specially, if the focus of the investor is the
long term objective for speci�c levels of wealth (i.e. pension funds, target funds, life-cycle funds).



50 Chapter 4. Who Can Portfolio Insurance Strategies Attract?

�rst two moments of the distributions (following the standards in portfolio insurance literature)

and use di�erent classes of utility function to calculate the investor's expected utility.

The portfolio insurance strategies considered are:

1. Stop Loss Portfolio Insurance (SLPI)

2. Option Based Portfolio Insurance (OBPI) with synthetic option

3. Constant Proportion Portfolio Insurance with m = 1 (CPPI m=1)

4. Constant Proportion Portfolio Insurance with m = 3 (CPPI m=3)

5. Time Invariant Portfolio Protection (TIPP) .

The portfolio insurance strategies are benchmarked against:

1. Passive stock market strategy (Risky Asset)

2. Portfolio with risky and risk free assets (50:50)

3. Risk-free cash market deposit (Risk Free).

In SLPI, the investor sets a stop loss order, which is a conditional order to sell portfolio stock

if the value of the stock falls below a given level (i.e., the �oor). Once the market value of the

risky asset portfolio falls below the discounted �oor, the portfolio is sold, and converted into

risk-free assets, then held until maturity.

Regarding the simulation of the OBPI strategy, we use Bird et al.(1990) approach on synthetic

put portfolio insurance strategy, because perfect hedging in portfolio insurance with listed put

options is frequently not possible. The synthetic put strategy was suggested by Boyle and

Schwartz (1977), Brennan and Schwartz (1979), Rubinstein and Leland (1981), and uses the

Black and Scholes (1973) option pricing model to create a synthetic European put option on

the risky asset. The synthetic put strategy continuously adjusts a portfolio of a protective put

(S + P ) and using a dynamic replica protects an equity portfolio using a basket of equity and

debt investments.
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Using the Black and Scholes (1973) option pricing model and the call-put parity theorem (Cox

and Rubinstein, 1985), the portfolio is de�ned by:

S + P = S − SN(−d1) +Ke−rTN(−d2) (4.16)

S + P = S[1−N(−d1)] +Ke−rTN(−d2)

S + P = SN(d1) +Ke−rTN(−d2),

where S is the underlying risky asset price, P is the price of the put option, K is the strike

price, r is the risk-free rate, and T is the time to maturity. The functions N(x) are standard

normal cumulative distribution functions with d1 and d2.

The insured portfolio is implemented by investing SN(d1) in the underlying risky asset and

Ke−rTN(−d2) in the risk-free asset. However, to ensure a self-�nanced strategy, Bird et al.

(1990) de�ne two conditions in relation to the fraction of the insured portfolio and the risk free

asset (B):

g(S + P ) +B = S, 0 ≤ g ≤ 1 (4.17)

gK +BerT = K (4.18)

With these conditions the strategy keeps the target to achieve the �oor and is self-�nanced.

Solving equations 4.17 and 4.18 and based on the put-call option parity theorem:

g =
S −Ke−rT

S + P −Ke−rT
(4.19)

and

B =
PKerT

C
(4.20)

As the call option (C), using the call-put option parity theorem, is:

C = S + P −KerT (4.21)



52 Chapter 4. Who Can Portfolio Insurance Strategies Attract?

the g fraction can be written as:

g =
C − P
C

(4.22)

From equation 4.22 the value invested in the underlying risky asset is:

gSN(d1) = SN(d1)
C − P
C

= ESOBPIt (4.23)

As the total initial value to invest is the value of the equity S, the fraction to invest in the

strategy is:

w = N(d1)
C − P
C

(4.24)

The investment in the risk-free asset is:

gN(−d2)Ke−rT +B = Ke−rT
CN(−d2) + PN(d− 2)

C
= EBOBPI

t (4.25)

The fraction of the strategy investment in the risk free asset is:

1− w = 1−N(d1)
C − P
C

(4.26)

Using the market value of the strategy and recalculating d1 and d2 it is possible to determine

the relative holdings of ESOBPIt and EBOBPI
t . However, during the investment period, the

synthetic approach involves a dynamic management of the proportion of both asset classes.

The CPPI strategy is simulated with two multipliers (m = 1;m = 3). Under the scope of naïve

strategies, we simulate a CPPI with a multiplier of one, hence we include a static downside

protection strategy. In relation to CPPI with m = 3 the simulation eliminates short positions

by using a constraint on the risk-free asset:wrisk−free =
EBCPPI

t

V CPPI
t

∈ [0; 1], as in Benninga (1990),

Annaert et al. (2009), and Dichtl and Drobetz (2011):

ESCPPIt = max[min(mCut, V
CPPI
t ), 0]. (4.27)

The constraint is included in each simulated path at the end of each trading day, when risky
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and risk-free asset allocations are recalculated.

We also include in the simulation the TIPP, which is a variant of CPPI, that allow us to

compare a solution where an investor incorporates the intra-period gains into the protection

�oor. The protection level is ratchet up when the portfolio value increases.

We use a passive stock market strategy in order to have a static strategy on the stock market

(ESt). In the portfolio of risky and risk-free assets (50:50), we use a passive approach on both

markets: in stock market we simulate the risky asset (St), and for the risk-free bond/cash

market we set a riskless asset (B): strategy is implemented with 50% allocated in each market

(0.5ESt + 0.5Bt). As a �xed return risk-free product is a frequent benchmark, for one year

period risky investments, we include an interest rate (r) of 5% for a riskless asset (B) (i.e., a 1

year deposit).

4.4 Results

The results are presented in two perspectives: a performance measurement in a statistical

approach; and under the frameworks of valuation for the MVA environment and also for EUT.

On each of these two valuation frameworks we de�ne di�erent risk pro�les for investors in order

to create a wider scope. The results are compared per strategy for speci�c market conditions.

Simulation results are presented using a �oor of 100% for the portfolio insurance strategies per

scenario.

4.4.1 Performance Measures

Portfolio insurance and benchmark strategies are compared using descriptive statistics (1 to 4

moments). Additionally, we also include two of the most common performance ratios: Sharpe

and Sortino. Table 4.2 contains four moments of the distributions of returns at maturity, and

Table 4.3 shows the performance ratios. Although the descriptive statistics, and some of the

performance ratios, are not su�cient to conclude on the best portfolio insurance strategy, when

the focus is the wealth protection, or potential wealth increase (Annaert et al., 2009), it is
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interesting to point results under several market conditions.

Table 4.2: Distributions of returns (Floor = 100%)

Floor = 100% SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Panel A: Mean return p.a. (%)

S1-µ : 15%;σ : 30% 9.09 7.70 5.67 6.91 5.87 15.08 10.04 5.00
S2-µ : 10%;σ : 30% 6.98 5.40 5.39 5.97 5.51 10.03 7.49 5.00
S3-µ : 5%;σ : 30% 5.11 3.43 5.13 5.13 5.02 5.01 5.00 5.00
S4-µ : 15%;σ : 20% 10.49 9.56 5.66 6.89 5.89 15.06 10.02 5.00
S5-µ : 10%;σ : 20% 7.51 6.61 5.39 5.96 5.52 10.01 7.50 5.00
S6-µ : 5%;σ : 20% 5.09 4.24 5.12 5.11 5.12 4.99 5.00 5.00
S7-µ : 15%;σ : 10% 13.96 12.77 5.66 6.91 5.90 15.00 10.0 5.00
S8-µ : 10%;σ : 10% 9.00 8.28 5.39 5.96 5.51 10.00 7.50 5.00
S9-µ : 5%;σ : 10% 5.08 4.84 5.12 5.12 5.12 5.00 5.00 5.00

Panel B: Volatility p.a. (%)

S1-µ : 15%;σ : 30% 18.37 17.16 1.63 6.40 2.47 29.97 15.07 0.00
S2-µ : 10%;σ : 30% 16.32 15.55 1.56 5.65 2.46 30.09 15.06 0.00
S3-µ : 5%;σ : 30% 14.26 13.91 1.48 4.95 2.42 29.97 14.94 0.00
S4-µ : 15%;σ : 20% 15.88 13.58 1.08 4.05 1.69 20.02 10.02 0.00
S5-µ : 10%;σ : 20% 13.64 11.97 1.03 3.56 1.68 19.98 10.06 0.00
S6-µ : 5%;σ : 20% 11.50 10.25 0.98 3.10 1.66 19.95 9.95 0.00
S7-µ : 15%;σ : 10% 10.92 8.97 0.53 1.95 0.85 9.98 5.03 0.00
S8-µ : 10%;σ : 10% 9.51 7.90 0.51 1.71 0.85 10.03 5.03 0.00
S9-µ : 5%;σ : 10% 7.59 6.31 0.49 1.48 0.85 10.02 5.00 0.00

Panel C: Skewness

S1-µ : 15%;σ : 30% 2.46 1.40 0.89 3.04 0.20 0.00 0.43 -
S2-µ : 10%;σ : 30% 2.80 1.55 0.88 3.16 0.24 0.00 0.43 -
S3-µ : 5%;σ : 30% 3.20 1.69 0.90 3.32 0.29 0.01 0.45 -
S4-µ : 15%;σ : 20% 1.60 1.11 0.57 1.84 0.07 -0.01 0.28 -
S5-µ : 10%;σ : 20% 1.98 1.36 0.58 1.95 0.09 -0.01 0.28 -
S6-µ : 5%;σ : 20% 2.47 1.62 0.60 2.01 0.15 0.01 0.31 -
S7-µ : 15%;σ : 10% 0.31 0.45 0.27 0.86 -0.01 -0.01 0.13 -
S8-µ : 10%;σ : 10% 0.79 0.83 0.29 0.89 0.01 0.00 0.15 -
S9-µ : 5%;σ : 10% 1.40 1.31 0.28 0.88 0.02 -0.01 0.14 -

Panel D: Excess Kurtosis

S1-µ : 15%;σ : 30% 5.56 2.29 1.41 15.27 -0.29 0.00 0.24 -
S2-µ : 10%;σ : 30% 7.73 3.09 1.39 17.27 -0.31 -0.01 0.23 -
S3-µ : 5%;σ : 30% 10.44 4.18 1.44 19.26 -0.32 0.00 0.27 -
S4-µ : 15%;σ : 20% 1.62 0.99 0.53 5.78 -0.12 0.00 0.09 -
S5-µ : 10%;σ : 20% 3.23 1.98 0.62 6.93 -0.16 0.01 0.13 -
S6-µ : 5%;σ : 20% 5.77 3.39 0.64 7.61 -0.18 0.01 0.14 -
S7-µ : 15%;σ : 10% -0.87 -0.30 0.14 1.32 -0.02 0.00 0.02 -
S8-µ : 10%;σ : 10% -0.36 0.25 0.18 1.46 -0.02 0.02 0.05 -
S9-µ : 5%;σ : 10% 1.13 1.64 0.14 1.40 -0.03 0.00 0.03 -
This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark
strategies. Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns
were simulated using Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one
year with 252 trading days. The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1.
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The annual expected return is presented in Panel A of Table 4.2. In relation to expected returns

in three bullish market conditions (Scenarios 1 − 2, 4 − 5 and 7 − 8), holding the risky asset

delivers the highest expected return. Amongst the portfolio insurance strategies, the SLPI is

the option with the highest expected return. The synthetic OBPI is better than the unleveraged

CPPI(m = 1), when market presents high returns, which is explained by the cost of protection

that is accommodated in markets with high expected returns. The TIPP, with the ability to

protect intermediary gains, presents the second lowest expected returns, amongst the portfolio

insurance strategies, due to the cost of �cashing in� the intermediary upward movements of the

risky asset. However, in depressed markets it tends to present better performance, excluding the

unleveraged CPPI. The reason for the dominant results of the passive stock market strategy in

bullish markets, compared with any of the portfolio insurance strategies, lies on the protection

cost of downside risk, which is implicit on the latter. In a neutral market (Scenarios 3, 6 and

9), expected returns from the simulated strategies are all very similar, except for the synthetic

OBPI, which penalizes returns due to volatility.

The annual volatilities are presented in Panel B of Table 4.2. The results are dependent on

volatility parameter we set for the scenarios. TIPP and unleveraged CPPI are the portfolio

insurance strategies with the lowest volatility in all scenarios. Regarding the benchmark strate-

gies, naturally, the 50 : 50 strategy delivers the lowest volatility (except for the case of risk-free

asset). The characteristic of moving up the �oor of TIPP limits the dispersion of the returns

at maturity, which gives the investor the lowest volatile strategy in all scenarios,except in the

case of unleveraged CPPI. A particular feature of the SLPI strategy is that volatility decreases

as scenarios change from more unstable market conditions to less volatile market (in relation

to expected returns), due to the lower probability of activating stop loss orders.

The skewness measure is presented in Panel C of Table 4.2. Return distributions with positive

skewness have frequent small losses, and some large gains; whereas, those with negative skew-

ness have frequent small gains, and some large negative returns. Due to the characteristics of

portfolio insurance strategies, we expected the results to show positive skewness, which was

con�rmed by the results. The SLPI return distributions have the highest skewness, as the loss

cutting features make these distributions very right tailed. However, this does not occur in all
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scenarios, as the more bullish and volatile the market, the bigger the probability of the stop

loss order being activated, and in these situations the leveraged CPPI (m = 3) strategy has the

most right tailed returns distribution.

The excess kurtosis results are presented in Panel D of Table 4.2. Higher kurtosis means that

variance results from infrequent extreme deviations, rather than frequent modest deviations

(Gujarati, 1992). As expected, return distribution of the benchmark strategies are mesokurtic,

because the returns follow a lognormal distribution. The TIPP return distributions, are near

mesokurtic in all scenarios, due to the fact that a dynamic �oor limits deviations. In scenarios

7 to 9, in particular, the SLPI strategy is near mesokurtic, since low volatility and high returns

make it less probable to execute the stop loss order, thus becoming a proxy of the lognormal

return distribution. A leptokurtic distribution has more returns around the mean, but with

large deviations. The return distributions of portfolio insurance strategies, in general, have

leptokurtic behaviour and in the scenarios with the highest volatility we observe higher excess

kurtosis.

Table 4.3 presents the results for the performance ratios: Sharpe and Sortino. The Sharpe

ratio (Sharpe, 1994) is a measure of reward to volatility, which indicates the performance of

an investment adjusted by the incurred risk. The ratio measures the excess return per unit of

deviation in an investment or a strategy, which is generally referred to as risk8. The higher the

ratio, the better the performance adjusted by the risk. The ratio is given by:

SharpeRatio =
r̄p − rf
σp

, (4.28)

where r̄p is the expected return of the portfolio, σp is the volatility of portfolio and rf is the

risk-free interest rate of the market.

The Sortino ratio measures the risk-adjusted return of an investment (Sortino and Price, 1994),

and is a modi�cation of the Sharpe ratio, penalizing only those returns falling below an investor's

8The use of Sharpe ratio for a highly non-normal investment outcome like the distribution obtained from
portfolio insurance is not adequate - thus the monitoring by risk-based indicators - but is still very common by
practitioners.
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required rate of return, while the Sharpe ratio penalizes both upside and downside volatility

equally. Though both ratios measure an investment's risk-adjusted returns, they do so in

signi�cantly di�erent ways, which will frequently lead to di�ering conclusions, regarding to the

true nature of the investment's return-generating e�ciency. The Sortino ratio is commonly used

to compare the risk adjusted performance of strategies with di�ering risk and return pro�les.

As most investors consider risk as the probability of not attaining the target return, this is an

important measure for the downside risk. The Sortino ratio is given by:

SortinoRatio =
r̄p −MAR

σd
, (4.29)

where r̄p is the expected return of the portfolio, MAR is the target return de�ned by the

investor for the portfolio (in some cases it is named the minimum acceptable return), and

σd is the downside deviation volatility of portfolio, that can be interpreted as the annualized

standard deviation of returns below the target. The formula for the σd is:

σd =

√√√√ n∑
i=1

min[(ri −MAR), 0]2

n
. (4.30)

When results from Sharpe and Sortino ratios are negative, conclusions are di�cult to reach and

additional performance ratios such Omega and Upside potential are necessary to complement

the analysis. The study by Costa and Gaspar (2014) is an example of a complete performance

ratio study, but in our work we use only a brief analysis of performance, as our focus is on the

expected utility and prospect theory perspectives.

The Sharpe ratio results are presented in Table 4.3, Panel A. In all market scenarios the best

reward to risk is given by the unleveraged CPPI (m = 1) strategy, which dominates all the

other strategies.

The results of the Sortino ratio are presented in Panel B of Table 4.3. In bullish and volatile

markets, because the ratio penalizes the downside, the Stop Loss strategy delivers the best

risk-adjusted return. However, in the majority of market conditions, the unleveraged CPPI
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delivers the highest Sortino ratio, as the returns are right tailed.

Table 4.3: Performance ratios (Floor = 100%)

Floor = 100% SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Panel A: Sharpe

S1-µ : 15%;σ : 30% 0.49 0.45 3.45 1.07 2.35 0.54 0.68 -
S2-µ : 10%;σ : 30% 0.42 0.34 3.42 1.05 2.21 0.35 0.51 -
S3-µ : 5%;σ : 30% 0.36 0.24 3.42 1.03 2.10 0.17 0.34 -
S4-µ : 15%;σ : 20% 0.66 0.70 5.21 1.69 3.46 0.80 1.01 -
S5-µ : 10%;σ : 20% 0.55 0.55 5.20 1.66 3.26 0.53 0.76 -
S6-µ : 5%;σ : 20% 0.44 0.41 5.18 1.63 3.05 0.25 0.50 -
S7-µ : 15%;σ : 10% 1.27 1.42 10.50 3.51 6.90 1.61 2.01 -
S8-µ : 10%;σ : 10% 0.94 1.04 10.41 3.45 6.43 1.04 1.50 -
S9-µ : 5%;σ : 10% 0.66 0.76 10.39 3.42 5.96 0.50 1.00 -

Panel B: Sortino (MAR = 5%)

S1-µ : 15%;σ : 30% 9.55 1.29 9.05 5.69 4.90 1.21 1.59 -
S2-µ : 10%;σ : 30% 7.25 0.91 8.27 4.85 4.43 0.76 1.13 -
S3-µ : 5%;σ : 30% 5.33 0.58 7.62 4.16 4.04 0.36 0.71 -
S4-µ : 15%;σ : 20% 14.09 2.37 13.09 6.97 6.86 1.71 2.27 -
S5-µ : 10%;σ : 20% 10.01 1.64 11.75 5.84 6.07 1.06 1.58 -
S6-µ : 5%;σ : 20% 6.82 1.06 10.62 4.88 5.38 0.48 0.97 -
S7-µ : 15%;σ : 10% 12.88 5.59 28.95 12.79 15.06 3.69 4.88 -
S8-µ : 10%;σ : 10% 8.35 3.69 23.99 9.81 12.36 2.09 3.12 -
S9-µ : 5%;σ : 10% 5.00 2.26 19.91 7.56 10.07 0.88 1.77 -
This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark
strategies. Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns
were simulated using Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one
year with 252 trading days. The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1.

We elaborate a complete rerun of the model using a �oor of 80% on the portfolio insurance

strategies. The results con�rm the overall �ndings when �oor is at 100%.

Table 4.4 presents the performance indicators. As expected, the portfolio insurance strategies

yield wider range of returns and high volatility. The new conditions result in positive skewness

for portfolio insurance strategies, but bigger exposure to risky assets leads to a less positive

skew distribution.
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Table 4.4: Distribution of returns (Floor = 80%)

Floor = 80% SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Panel A: Mean return p.a. (%)

S1-µ : 15%;σ : 30% 15.04 9.93 7.77 13.04 11.56 15.08 10.04 5.00
S2-µ : 10%;σ : 30% 9.86 5.50 6.41 8.84 8.22 10.03 7.49 5.00
S3-µ : 5%;σ : 30% 5.12 5.12 5.12 5.13 5.12 5.01 5.00 5.00
S4-µ : 15%;σ : 20% 16.02 16.02 7.79 13.56 12.00 15.06 10.02 5.00
S5-µ : 10%;σ : 20% 10.37 8.08 6.42 9.07 8.44 10.01 7.50 5.00
S6-µ : 5%;σ : 20% 5.11 3.26 5.12 5.11 5.11 4.99 5.00 5.00
S7-µ : 15%;σ : 10% 16.20 15.60 7.77 13.83 12.23 15.00 10.00 5.00
S8-µ : 10%;σ : 10% 10.49 9.93 6.41 9.16 8.58 10.00 7.50 5.00
S9-µ : 5%;σ : 10% 5.16 4.63 5.13 5.13 5.14 5.00 5.00 5.00

Panel B: Volatility p.a. (%)

S1-µ : 15%;σ : 30% 28.70 24.97 7.69 22.53 18.31 30.02 15.49 0.00
S2-µ : 10%;σ : 30% 27.46 23.68 7.41 21.07 17.66 29.96 15.11 0.00
S3-µ : 5%;σ : 30% 26.09 26.09 7.15 19.58 16.96 30.03 14.77 0.00
S4-µ : 15%;σ : 20% 20.16 19.08 5.15 16.19 12.88 20.05 10.44 0.00
S5-µ : 10%;σ : 20% 19.72 18.43 4.95 14.99 12.50 19.97 10.16 0.00
S6-µ : 5%;σ : 20% 19.10 17.55 4.77 13.77 12.03 19.99 9.92 0.00
S7-µ : 15%;σ : 10% 10.03 10.02 2.58 8.66 6.63 10.03 5.26 0.00
S8-µ : 10%;σ : 10% 10.03 10.02 2.49 7.92 6.57 10.03 5.13 0.00
S9-µ : 5%;σ : 10% 10.03 9.99 2.40 2.40 6.42 10.03 5.01 0.00

Panel C: Skewness

S1-µ : 15%;σ : 30% 0.47 0.68 0.67 1.09 0.51 0.00 0.42 -
S2-µ : 10%;σ : 30% 0.62 0.83 0.70 1.25 0.63 0.01 0.45 -
S3-µ : 5%;σ : 30% 0.78 0.78 0.69 1.40 0.75 0.00 0.45 -
S4-µ : 15%;σ : 20% 0.07 0.25 0.43 0.78 0.24 -0.01 0.27 -
S5-µ : 10%;σ : 20% 0.19 0.38 0.45 0.93 0.35 0.00 0.29 -
S6-µ : 5%;σ : 20% 0.33 0.53 0.45 1.07 0.47 0.00 0.29 -
S7-µ : 15%;σ : 10% 0.00 0.00 0.22 0.46 0.02 0.00 0.14 -
S8-µ : 10%;σ : 10% 0.01 0.01 0.24 0.59 0.09 0.01 0.16 -
S9-µ : 5%;σ : 10% 0.01 0.03 0.22 0.22 0.18 0.00 0.14 -

Panel D: Excess Kurtosis

S1-µ : 15%;σ : 30% -0.57 -0.05 0.75 0.81 -0.35 0.00 0.24 -
S2-µ : 10%;σ : 30% -0.41 0.22 0.82 1.35 -0.20 0.01 0.29 -
S3-µ : 5%;σ : 30% -0.20 -0.20 0.81 1.90 -0.04 0.02 0.29 -
S4-µ : 15%;σ : 20% -0.36 -0.37 0.29 0.26 -0.39 0.00 0.08 -
S5-µ : 10%;σ : 20% -0.45 -0.34 0.34 0.69 -0.35 0.00 0.12 -
S6-µ : 5%;σ : 20% -0.50 -0.26 0.33 1.14 -0.29 -0.01 0.11 -
S7-µ : 15%;σ : 10% -0.01 -0.02 0.07 0.03 -0.11 -0.01 0.01 -
S8-µ : 10%;σ : 10% 0.03 0.00 0.12 0.36 -0.16 0.02 0.06 -
S9-µ : 5%;σ : 10% -0.06 -0.12 0.06 0.06 -0.27 -0.01 0.01 -
This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark
strategies. Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns
were simulated using Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one
year with 252 trading days. The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1.
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The Sharpe ratio results are presented in Table 4.5. Overall, the unleveraged CPPI with a

lower �oor, continues to yield the best reward to risk. However, a greater exposure to risk,

with increasing probability of losses, results on a lower Sharpe ratio for portfolio insurance

strategies. The results of the Sortino ratio show high dispersion, as the chances of negative

outcomes are bigger. Comparing these results with the Sortino ratio for portfolio insurance

strategies with a �oor of 100%, we observe lower values, as expected.

Table 4.5: Performance ratios (Floor = 80%)

Floor = 80% SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Panel A: Sharpe

S1-µ : 15%;σ : 30% 0.52 0.40 1.00 0.58 0.63 0.54 0.68 -
S2-µ : 10%;σ : 30% 0.36 0.23 0.86 0.42 0.46 0.35 0.51 -
S3-µ : 5%;σ : 30% 0.19 0.19 0.71 0.26 0.30 0.17 0.34 -
S4-µ : 15%;σ : 20% 0.79 0.84 1.50 0.83 0.93 0.81 1.01 -
S5-µ : 10%;σ : 20% 0.52 0.44 1.29 0.60 0.67 0.53 0.76 -
S6-µ : 5%;σ : 20% 0.26 0.18 1.06 0.37 0.42 0.25 0.50 -
S7-µ : 15%;σ : 10% 1.61 1.55 2.99 1.59 1.84 1.61 2.01 -
S8-µ : 10%;σ : 10% 1.04 0.99 2.56 1.15 1.30 1.04 1.50 -
S9-µ : 5%;σ : 10% 0.51 0.46 2.12 2.12 0.79 0.51 1.00 -

Panel B: Sortino (MAR = 5%)

S1-µ : 15%;σ : 30% 1.71 1.16 2.43 2.14 1.86 1.20 1.59 -
S2-µ : 10%;σ : 30% 1.14 0.66 1.94 1.45 1.31 0.75 1.13 -
S3-µ : 5%;σ : 30% 0.61 0.61 1.50 0.83 0.82 0.35 0.71 -
S4-µ : 15%;σ : 20% 1.79 1.79 3.52 2.73 2.35 1.74 2.30 -
S5-µ : 10%;σ : 20% 1.15 1.02 2.74 1.77 1.60 1.07 1.59 -
S6-µ : 5%;σ : 20% 0.57 0.41 2.05 0.97 0.94 0.48 0.98 -
S7-µ : 15%;σ : 10% 3.71 3.53 7.56 5.05 4.38 3.71 4.89 -
S8-µ : 10%;σ : 10% 2.08 1.96 5.41 2.97 2.72 2.09 3.12 -
S9-µ : 5%;σ : 10% 0.90 0.80 3.79 3.79 1.47 0.90 1.79 -
This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark
strategies. Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns
were simulated using Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one
year with 252 trading days. The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1.

4.4.2 Investors' Decision

We set the investor's risk pro�le based on the parametric utility function which give us a set

of points from neutral to high level of risk aversion (α). Based on the return distributions per

each market scenario, presented on previous section, the utility values derived on each strategy

are calculated and compared amongst insurance portfolio strategies and with the benchmark
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portfolio strategies.

Table 4.6: Mean variance analysis (Floor = 100%)

Floor = 100% SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Panel A: MVA α2 = 0 (risk neutral)

S1-µ : 15%;σ : 30% 0.091 0.077 0.057 0.069 0.059 0.151 0.100 0.050
S2-µ : 10%;σ : 30% 0.070 0.054 0.054 0.060 0.055 0.100 0.075 0.050
S3-µ : 5%;σ : 30% 0.051 0.034 0.051 0.051 0.051 0.050 0.050 0.050
S4-µ : 15%;σ : 20% 0.105 0.096 0.057 0.069 0.059 0.151 0.100 0.050
S5-µ : 10%;σ : 20% 0.075 0.066 0.054 0.060 0.055 0.100 0.075 0.050
S6-µ : 5%;σ : 20% 0.051 0.042 0.051 0.051 0.051 0.050 0.050 0.050
S7-µ : 15%;σ : 10% 0.140 0.128 0.057 0.069 0.059 0.150 0.100 0.050
S8-µ : 10%;σ : 10% 0.090 0.083 0.054 0.060 0.055 0.100 0.075 0.050
S9-µ : 5%;σ : 10% 0.051 0.048 0.051 0.051 0.051 0.050 0.050 0.050

Panel B: MVA α = 2 (low risk aversion)

S1-µ : 15%;σ : 30% 0.023 0.018 0.056 0.061 0.058 -0.029 0.053 0.050
S2-µ : 10%;σ : 30% 0.017 0.006 0.053 0.053 0.054 -0.081 0.029 0.050
S3-µ : 5%;σ : 30% 0.010 -0.004 0.051 0.046 0.050 -0.130 0.007 0.050
S4-µ : 15%;σ : 20% 0.054 0.059 0.056 0.066 0.058 0.070 0.078 0.050
S5-µ : 10%;σ : 20% 0.038 0.037 0.054 0.057 0.055 0.020 0.054 0.050
S6-µ : 5%;σ : 20% 0.024 0.021 0.051 0.049 0.051 -0.030 0.031 0.050
S7-µ : 15%;σ : 10% 0.116 0.112 0.057 0.068 0.059 0.130 0.095 0.050
S8-µ : 10%;σ : 10% 0.072 0.070 0.054 0.059 0.055 0.080 0.045 0.050
S9-µ : 5%;σ : 10% 0.039 0.040 0.051 0.051 0.051 0.030 0.046 0.050

Panel C: MVA α = 5 (medium risk aversion)

S1-µ : 15%;σ : 30% -0.331 -0.291 0.053 0.018 0.051 -0.961 -0.193 0.050
S2-µ : 10%;σ : 30% -0.263 -0.248 0.051 0.020 0.047 -1.026 -0.209 0.050
S3-µ : 5%;σ : 30% -0.203 -0.207 0.049 0.021 0.044 -1.071 -0.220 0.050
S4-µ : 15%;σ : 20% -0.210 -0.135 0.055 0.048 0.055 -0.340 -0.030 0.050
S5-µ : 10%;σ : 20% -0.158 -0.113 0.053 0.044 0.052 -0.393 -0.051 0.050
S6-µ : 5%;σ : 20% -0.114 -0.089 0.050 0.039 0.048 -0.448 -0.072 0.050
S7-µ : 15%;σ : 10% -0.010 0.027 0.056 0.064 0.058 0.037 0.072 0.050
S8-µ : 10%;σ : 10% -0.023 0.005 0.054 0.056 0.054 -0.021 0.045 0.050
S9-µ : 5%;σ : 10% -0.021 -0.001 0.051 0.048 0.050 -0.075 0.020 0.050

Panel D: MVA α = 10 (high risk aversion)

S1-µ : 15%;σ : 30% -1.596 -1.395 0.043 -0.135 0.028 -4.329 -1.090 0.050
S2-µ : 10%;σ : 30% -1.262 -1.154 0.042 -0.100 0.025 -4.421 -1.071 0.050
S3-µ : 5%;σ : 30% -0.966 -0.933 0.040 -0.071 0.022 -4.439 -1.035 0.050
S4-µ : 15%;σ : 20% -1.156 -0.826 0.051 -0.013 0.045 -1.843 -0.437 0.050
S5-µ : 10%;σ : 20% -0.856 -0.650 0.049 -0.004 0.041 -1.891 -0.438 0.050
S6-µ : 5%;σ : 20% -0.610 -0.483 0.046 0.003 0.037 -1.941 -0.440 0.050
S7-µ : 15%;σ : 10% -0.457 -0.275 0.055 0.050 0.055 -0.336 -0.030 0.050
S8-µ : 10%;σ : 10% -0.362 -0.229 0.053 0.045 0.052 -0.398 -0.053 0.050
S9-µ : 5%;σ : 10% -0.237 -0.151 0.050 0.040 0.048 -0.452 -0.074 0.050
This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark
strategies. Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns
were simulated using Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one
year with 252 trading days. The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1. The utility
is calculated per each stylized aversion level increasing α factor.
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A risk neutral investor (Panel A) in general values the risky strategy against the other strate-

gies in most market conditions. The expected value of its wealth is, in most scenarios, higher

when investing in the risky asset. In market conditions where the expected returns are lower,

regardless of the volatility conditions, the choices are almost indi�erent amongst all strategies

except for the OBPI which is not selected in any circumstances.

As the level of risk aversion increases (Panel B), as expected under MVA, the required return

per unit of risk increases. In the low level of risk aversion the strategy selection shift occurs

from the risky asset towards protective strategies as CPPI (m=3) and TIPP. In high volatility

conditions with low expected returns the preferred strategy is the CPPI(m=1). In low volatile

market conditions and high and medium returns the preferred strategy is the risky asset. In

low return environment investors shift from risky asset exposure to protective strategies like

CPPI(m=1), CPPI(m=3) and TIPP. In medium volatile conditions the shift from risky asset

exposure to protective strategies (CPPI(m=1) and TIPP occurs at the lower end of returns.

A medium risk aversion investor (Panel C) in low volatile conditions selects a 50:50 risky

exposure and in low return environment changes towards a protective strategy (CPPI(m=1) or

TIPP).

The higher the volatility the more protective strategies are chosen by medium risk version

investors.

For investors with high levels of risk aversion (Panel D) this trend is reinforced, and there is a

generalized exposure to the risk free asset.

General results point to a risk exposure towards the risk free - �y to safety - on investors with

medium to high level of risk aversion. As the level of risk aversion decreases the return seeking

investments tend to become more attractive as the return per unit of risk is perceived with a

higher utility. Investors with decreasing level of risk aversion to medium levels, depending on

market conditions, tend to exhibit a safety attitude bene�ting protective strategies (the more

simple portfolio strategies like CPPI and TIPP) in more volatile conditions. On less volatile

conditions investors seek return and show more exposure to risky assets.

The graphics on return and risk deploys strategy results based on di�erent scenarios for market

conditions. The portfolio insurance strategies are set with a �oor of 100%.
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Figure 4.3: Return and risk space - Floor set at 100% for portfolio insurance strategies
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To test these results we also change the �oor from 100% to 80%. The distribution of returns is

presented in Table 4.4.

Table 4.7: Mean variance analysis(Floor = 80%)

Floor = 80% SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Panel A: MVA α2 = 0 (risk neutral)

S1-µ : 15%;σ : 30% 0.150 0.099 0.078 0.130 0.116 0.151 0.100 0.050
S2-µ : 10%;σ : 30% 0.099 0.055 0.064 0.088 0.082 0.100 0.075 0.050
S3-µ : 5%;σ : 30% 0.051 0.051 0.051 0.051 0.051 0.050 0.050 0.050
S4-µ : 15%;σ : 20% 0.160 0.160 0.078 0.136 0.120 0.151 0.100 0.050
S5-µ : 10%;σ : 20% 0.104 0.081 0.064 0.091 0.084 0.100 0.075 0.050
S6-µ : 5%;σ : 20% 0.051 0.033 0.051 0.051 0.051 0.050 0.050 0.050
S7-µ : 15%;σ : 10% 0.162 0.156 0.078 0.138 0.122 0.150 0.100 0.050
S8-µ : 10%;σ : 10% 0.105 0.099 0.064 0.092 0.086 0.100 0.075 0.050
S9-µ : 5%;σ : 10% 0.052 0.046 0.051 0.051 0.051 0.050 0.050 0.050

Panel B: MVA α = 2 (low risk aversion)

S1-µ : 15%;σ : 30% -0.014 -0.025 0.066 0.029 0.049 -0.019 0.059 0.050
S2-µ : 10%;σ : 30% -0.052 -0.057 0.053 0.000 0.020 -0.075 0.032 0.050
S3-µ : 5%;σ : 30% -0.085 -0.085 0.041 -0.025 -0.006 -0.129 0.008 0.050
S4-µ : 15%;σ : 20% 0.079 0.087 0.073 0.083 0.087 0.082 0.085 0.050
S5-µ : 10%;σ : 20% 0.026 0.013 0.059 0.046 0.053 0.026 0.058 0.050
S6-µ : 5%;σ : 20% -0.022 -0.029 0.047 0.013 0.022 -0.029 0.031 0.050
S7-µ : 15%;σ : 10% 0.142 0.136 0.076 0.123 0.114 0.142 0.101 0.050
S8-µ : 10%;σ : 10% 0.085 0.079 0.063 0.079 0.077 0.085 0.073 0.050
S9-µ : 5%;σ : 10% 0.031 0.026 0.050 0.050 0.043 0.031 0.046 0.050

Panel C: MVA α = 5 (medium risk aversion)

S1-µ : 15%;σ : 30% -0.879 -0.680 0.004 -0.504 -0.303 -0.965 -0.193 0.050
S2-µ : 10%;σ : 30% -0.844 -0.646 -0.005 -0.466 -0.308 -1.017 -0.207 0.050
S3-µ : 5%;σ : 30% -0.800 -0.800 -0.013 -0.428 -0.308 -1.076 -0.221 0.050
S4-µ : 15%;σ : 20% -0.348 -0.295 0.045 -0.192 -0.087 -0.340 -0.029 0.050
S5-µ : 10%;σ : 20% -0.382 -0.344 0.034 -0.190 -0.111 -0.393 -0.051 0.050
S6-µ : 5%;σ : 20% -0.405 -0.353 0.023 -0.186 -0.130 -0.449 -0.072 0.050
S7-µ : 15%;σ : 10% 0.036 0.030 0.069 0.045 0.067 0.036 0.072 0.050
S8-µ : 10%;σ : 10% -0.021 -0.026 0.056 0.013 0.032 -0.021 0.045 0.050
S9-µ : 5%;σ : 10% -0.074 -0.078 0.044 0.044 0.000 -0.074 0.020 0.050

Panel D: MVA α = 10 (high risk aversion)

S1-µ : 15%;σ : 30% -3.968 -3.018 -0.218 -2.407 -1.560 -4.345 -1.094 0.050
S2-µ : 10%;σ : 30% -3.673 -2.750 -0.211 -2.131 -1.478 -4.383 -1.063 0.050
S3-µ : 5%;σ : 30% -3.353 -3.353 -0.204 -1.866 -1.387 -4.459 -1.039 0.050
S4-µ : 15%;σ : 20% -1.872 -1.659 -0.055 -1.176 -0.709 -1.847 -0.438 0.050
S5-µ : 10%;σ : 20% -1.840 -1.617 -0.058 -1.033 -0.697 -1.889 -0.438 0.050
S6-µ : 5%;σ : 20% -1.773 -1.508 -0.062 -0.896 -0.673 -1.947 -0.441 0.050
S7-µ : 15%;σ : 10% -0.341 -0.346 0.044 -0.236 -0.098 -0.341 -0.031 0.050
S8-µ : 10%;σ : 10% -0.398 -0.402 0.033 -0.222 -0.130 -0.398 -0.053 0.050
S9-µ : 5%;σ : 10% -0.451 -0.452 0.023 0.023 -0.155 -0.452 -0.074 0.050
This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark
strategies. Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns
were simulated using Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one
year with 252 trading days. The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1. The utility
is calculated per each stylized aversion level increasing α factor.
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The change of the �oor from 100% to 80% increases the potential for the returns from portfolio

insurance strategies, although in the case of the SLPI strategy the leverage tends to increase

the number of sell-o�s of the risky asset. For a risk neutral investor (Panel A) the most simple

portfolio strategy � Stop Loss � is almost indi�erent compared with a risky asset portfolio in

every scenario.

In volatile market conditions a low risk aversion investor values simple protective strategies

(CPPI (m=1)) as the potential for upward movements is more frequent if the �oor is decreased,

thus allowing more risk appetite. However, in low return scenarios with high and medium

volatility, a low risk investor tends to favor a risk-free exposure.

In low volatility and low return there is indi�erence between the risk-free and CPPI strategies.

In medium return scenario with medium volatility a CPPI (m=1) is the most valuable strategy,

which is the same for high volatility conditions and medium returns. The reason is based on the

lower �oor for protective strategies. In low volatility conditions with medium to high returns

the choices between exposure to risky asset or SLPI strategy is indi�erent.

For medium to high risk aversion investors the strategy decision relays generally on the risk-free

exposure, re�ecting a �y to safety approach with no valuation on the more �exible de�nition

of minimum guaranty at the maturity.

The graphics on return and risk deploys strategy results based on di�erent scenarios for market

conditions. The portfolio insurance strategies are set with a �oor of 80%.
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Figure 4.4: Return and risk space-Floor set at 80% for portfolio insurance strategies
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4.4.3 Expected Utility Analysis

The analysis is based on the assessment of di�erent risk pro�les per each scenario. The returns'

distribution simulated on 9 scenarios depicts a di�erent approach to risk that lead to a possible

aggregation of homogeneous behaviours. We use four di�erent utility functions with a wide level

of risk aversion in order to test numerically in what market conditions investors are selecting

portfolio insurance strategies.

Table 4.8: Scenario 1 - Utility (Floor = 100%)

Floor

100%

SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Linear utility: U(X) = a+ bX

a = 2, b = 5 223.18 220.39 216.33 218.83 216.75 237.36 226.31 215.25
Quadratic utility: U(X) = X − b

2
X2

b = 0.025 -47.75 -42.86 -33.94 -36.69 -34.33 -68.42 -46.37 -33.02
b = 1 -6,164 -5,915 -5,478 -5,637 -5,502 -7,268 -6,170 -5,421
b = 5 -31,257 -30,004 -27,815 -28,615 -27,934 -36,804 -31,294 -27,524

Exponential utility: U(X) = 1
a
(1− e−aX)

a = 0.025 0.067 0.058 0.055 0.065 0.057 0.104 0.089 0.050
a = 1 0.051 0.044 0.053 0.061 0.055 0.058 0.074 0.049
a = 5 0.021 0.006 0.048 0.049 0.048 -0.162 0.032 0.044

Logarithmic utility: U(X) = X1−c

1−c

c = 0.5 20.779 20.669 20.558 20.668 20.577 21.317 20.973 20.506
c = 1, U(X) = ln (X) 4.672 4.663 4.660 4.670 4.662 4.710 4.694 4.655

c = 1.25 -1.245 -1.248 -1.248 -1.245 -1.247 -1.236 -1.238 -1.249
c = 1.5 -0.194 -0.195 -0.195 -0.194 -0.194 -0.192 -0.192 -0.195

This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark strategies.
Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using
Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one year with 252 trading days.
The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1. The utility is calculated per each utility function.

Investors in a high volatile market with high level of expected return on the risky asset whose

utility is represented by a linear function will have higher value by exposure to the risky asset.

Linear transformations do not change the order amongst the selected strategies. Under a

quadratic utility valuation, which implies globally increasing absolute risk aversion, an investor

with low b factor tends to select the CPPI(m=1) strategy. As b increases the risk aversion also

increases thus leading investors into risk-free assets. In this cases, the possibility of bene�ting

from a protective strategy and gain from the upside of the risky asset is not valued. An investor

with a negative exponential utility function has a constant attitude towards risk expressed

in absolute dollar terms. In this case an increasing coe�cient of risk aversion changes the
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selection from the risky asset exposure to a 50:50 strategy and for higher coe�cient a change

towards CPPI and TIPP strategies. An investor with a low risk aversion, represented with the

logarithmic utility function, will select the risky asset in any circumstances.

Table 4.9: Scenario 2 - Utility (Floor = 100%)

Floor

100%

SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Linear utility: U(X) = a+ bX

a = 2, b = 5 218.96 215.79 215.79 216.94 216.01 226.15 220.70 215.25
Quadratic utility: U(X) = X − b

2
X2

b = 0.025 -42.28 -37.85 -33.49 -34.95 -33.72 -56.73 -41.16 -33.02
b = 1 -5,864 -5,625 -5,450 -5,531 -5,464 -6,582 -5,853 -5,421
b = 5 -29,746 -28,544 -27,670 -28,078 -27,740 -33,350 -29,695 -27,524

Exponential utility: U(X) = 1
a
(1− e−aX)

a = 0.025 0.052 0.039 0.052 0.056 -0.451 0.054 0.064 0.050
a = 1 0.040 0.028 0.051 0.053 -0.567 0.010 0.051 0.049
a = 5 0.016 -0.004 0.046 0.044 -1.699 -0.269 0.012 0.044

Logarithmic utility: U(X) = X1−c

1−c

c = 0.5 20.600 20.463 20.532 20.579 20.542 20.795 20.709 20.506
c = 1, U(X) = ln (X) 4.657 4.645 4.658 4.661 4.658 4.660 4.669 4.655

c = 1.25 -1.250 -1.253 -1.248 -1.247 -1.248 -1.251 -1.246 -1.249
c = 1.5 -0.195 -0.197 -0.195 -0.195 -0.195 -0.197 -0.194 -0.195

This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark strategies.
Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using
Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one year with 252 trading days.
The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1. The utility is calculated per each utility function.

Investors in a high volatile market with medium level of expected return on the risky asset,

whose utility is represented by a linear function, will have higher value by exposure to the

risky asset. Under a quadratic utility valuation an investor with low b factor tends to select

the risk-free exposure. As b increases the risk aversion also increases thus keeping investors in

risk-free assets. In this cases, the possibility of bene�ting from a protective strategy and gain

from the upside of the risky asset is not valued. Investors with a negative exponential utility

function change the selection from the 50:50 strategy towards CPPI strategies as coe�cient of

risk aversion increases. An investor with a low risk aversion, represented with the logarithmic

utility function, will select the risky asset and as risk coe�cient increases there is a drift from

risky asset to CPPIm=1 and TIPP and also towards 50:50 strategy.
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Table 4.10: (continued)

Floor

100%

SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Table 4.10: Scenario 3 - Utility (Floor = 100%)

Floor

100%

SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Linear utility: U(X) = a+ bX

a = 2, b = 5 215.23 211.86 215.25 215.25 215.25 215.24 215.25 215.25
Quadratic utility: U(X) = X − b

2
X2

b = 0.025 -37.57 -33.66 -33.05 -33.42 -33.10 -46.01 -36.26 -33.02
b = 1 -5,602 -5,380 -5,422 -5,437 -5,424 -5,940 -5,550 -5,421
b = 5 -28,432 -27,315 -27,530 -27,605 -27,539 -30,121 -28,173 -27,524

Exponential utility: U(X) = 1
a
(1− e−aX)

a = 0.025 0.038 0.023 0.050 0.049 0.050 0.004 0.039 0.050
a = 1 0.029 0.014 0.049 0.046 0.048 -0.041 0.028 0.049
a = 5 0.010 -0.013 0.044 0.039 0.043 -0.396 -0.010 0.044

Logarithmic utility: U(X) = X1−c

1−c

c = 0.5 20.439 20.285 20.506 20.499 20.504 20.277 20.449 20.506
c = 1, U(X) = ln (X) 4.643 4.628 4.655 4.654 4.655 4.610 4.644 4.655

c = 1.25 -1.254 -1.258 -1.249 -1.250 -1.249 -1.267 -1.254 -1.249
c = 1.5 -0.197 -0.198 -0.195 -0.195 -0.195 -0.202 -0.197 -0.195

This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark strategies.
Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using
Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one year with 252 trading days.
The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1. The utility is calculated per each utility function.

Investors in a high volatile market with low level of expected return on the risky asset, whose

utility is represented by a linear function, present no relevant preference except for OBPI

strategy that is not a choice, compared with the other strategies. Under a quadratic utility

valuation an investor with low b factor tends to select the risk-free exposure. As b increases the

risk aversion also increases thus keeping investors in risk-free assets. However, due to the low

expected return, the CPPI(m=1) presents a value very close to the risk-free. Investors with a

negative exponential utility function are indi�erent between risk-free asset and the CPPI(m=1).

Except when a = 1, where the TPPI present the highest value. An investor with a low risk

aversion, represented with the logarithmic utility function, will select either the risky asset or

the CPPI(m=1) and as risk coe�cient increases there is a wider choice between the risk-free,

CPPI(m=1) and TIPP.
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Table 4.11: Scenario 4 - Utility (Floor = 100%)

Floor

100%

SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Linear utility: U(X) = a+ bX

a = 2, b = 5 225.99 224.12 216.32 218.79 216.78 237.11 226.18 215.25
Quadratic utility: U(X) = X − b

2
X2

b = 0.025 -47.10 -43.73 -33.91 -36.19 -34.31 -59.18 -44.01 -33.02
b = 1 -6,193 -6,022 -5,477 -5,616 -5,502 -6,893 -6,073 -5,421
b = 5 -31,408 -30,549 -27,807 -28,509 -27,933 -34,931 -30,809 -27,524

Exponential utility: U(X) = 1
a
(1− e−aX)

a = 0.025 0.086 0.081 0.055 0.066 0.057 0.128 0.095 0.050
a = 1 0.072 0.070 0.053 0.063 0.055 0.103 0.086 0.049
a = 5 0.039 0.041 0.048 0.053 0.049 0.026 0.059 0.044

Logarithmic utility: U(X) = X1−c

1−c

c = 0.5 20.948 20.882 20.558 20.673 20.580 21.438 21.004 20.506
c = 1, U(X) = ln (X) 4.691 4.687 4.660 4.671 4.662 4.734 4.700 4.655

c = 1.25 -1.239 -1.240 -1.248 -1.244 -1.247 -1.226 -1.236 -1.249
c = 1.5 -0.192 -0.192 -0.195 -0.194 -0.194 -0.188 -0.191 -0.195

This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark strategies.
Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using
Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one year with 252 trading days.
The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1. The utility is calculated per each utility function.

Investors in a medium volatile market with high level of expected return on the risky as-

set, whose utility is represented by a linear function, select the risk asset exposure. Under a

quadratic utility valuation an investor with low b factor tends to select the risk-free exposure.

As b increases the risk aversion also increases thus keeping investors in risk-free assets

Investors with a negative exponential utility function value the risky asset exposure, but as the

risk aversion increases they seek security on 50:50 strategy and also CPPI(m=3). An investor

with a low risk aversion, represented with the logarithmic utility function, will select the risky

asset. As risk coe�cient increases there is no change on the strategy, due to the high expected

return.
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Table 4.12: Scenario 5 - Utility (Floor = 100%)

Floor

100%

SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Linear utility: U(X) = a+ bX

a = 2, b = 5 220.02 218.22 215.79 216.93 216.04 226.17 220.71 215.25
Quadratic utility: U(X) = X − b

2
X2

b = 0.025 -40.52 -37.88 -33.47 -34.58 -33.70 -48.50 -39.11 -33.02
b = 1 -5,814 -5,673 -5,449 -5,516 -5,463 -6,253 -5,771 -5,421
b = 5 -29,499 -28,791 -27,667 -28,003 -27,737 -31,707 -29,286 -27,524

Exponential utility: U(X) = 1
a
(1− e−aX)

a = 0.025 0.062 0.054 0.052 0.057 0.054 0.080 0.070 0.050
a = 1 0.052 0.048 0.051 0.055 0.052 0.059 0.063 0.049
a = 5 0.029 0.027 0.046 0.048 0.046 -0.021 0.041 0.044

Logarithmic utility: U(X) = X1−c

1−c

c = 0.5 20.682 20.610 20.532 20.584 20.544 20.927 20.744 20.506
c = 1, U(X) = ln (X) 4.667 4.662 4.658 4.662 4.659 4.686 4.676 4.655

c = 1.25 -1.246 -1.248 -1.248 -1.247 -1.248 -1.241 -1.243 -1.249
c = 1.5 -0.194 -0.195 -0.195 -0.194 -0.195 -0.193 -0.193 -0.195

This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark strategies.
Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using
Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one year with 252 trading days.
The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1. The utility is calculated per each utility function.

Investors in a medium volatile market with medium level of expected return on the risky as-

set, whose utility is represented by a linear function, select the risk asset exposure. Under a

quadratic utility valuation an investor selects the risk-free exposure regardless of the b factor.

Investors with a negative exponential utility function value the risky asset exposure, but as the

risk aversion increases they seek security on 50:50 strategy and also CPPI(m=3). An investor

with a low risk aversion, represented with the logarithmic utility function, will select the risky

asset. As risk coe�cient increases there is no change on the strategy, due to the high expected

return. Results, on general, are very similar with the outcomes of scenario 4.



72 Chapter 4. Who Can Portfolio Insurance Strategies Attract?

Table 4.13: Scenario 6 - Utility (Floor = 100%)

Floor

100%

SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Linear utility: U(X) = a+ bX

a = 2, b = 5 215.17 213.48 215.24 215.22 215.23 214.99 215.12 215.25
Quadratic utility: U(X) = X − b

2
X2

b = 0.025 -35.40 -33.29 -33.02 -33.13 -33.04 -38.42 -34.31 -33.02
b = 1 -5,514 -5,397 -5,421 -5,424 -5,421 -5,631 -5,470 -5,421
b = 5 -27,992 -27,401 -27,523 -27,542 -27,526 -28,577 -27,770 -27,524

Exponential utility: U(X) = 1
a
(1− e−aX)

a = 0.025 0.042 0.036 0.050 0.049 0.050 0.028 0.044 0.050
a = 1 0.036 0.030 0.049 0.048 0.048 0.009 0.039 0.049
a = 5 0.020 0.015 0.044 0.042 0.044 -0.084 0.020 0.044

Logarithmic utility: U(X) = X1−c

1−c

c = 0.5 20.463 20.390 20.505 20.502 20.505 20.391 20.474 20.506
c = 1, U(X) = ln (X) 4.647 4.641 4.655 4.654 4.655 4.634 4.650 4.655

a = 1.25 -1.252 -1.254 -1.249 -1.249 -1.249 -1.257 -1.251 -1.249
a = 1.5 -0.196 -0.197 -0.195 -0.195 -0.195 -0.198 -0.196 -0.195

This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark strategies.
Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using
Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one year with 252 trading days.
The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1. The utility is calculated per each utility function.

Investors in a medium volatile market with low level of expected return on the risky asset,

whose utility is represented by a linear function, select the risky asset exposure. Under a

quadratic utility valuation an investor with low b factor tends to select the risk-free exposure.

As b increases the risk aversion also increases thus keeping investors in risk-free assets.

Investors with a negative exponential utility function value the risk-free asset exposure and

CPPI and TIPP, and as the risk aversion increases they continue to seek security. An investor

with a low risk aversion, represented with the logarithmic utility function, will select the risk-

free asset. As risk coe�cient increases there is a wider scope os choices between CPPI, TIPP

and risk-free strategies. Results from market conditions as in scenario 6 determine similar

choices as the scenario 3. There is a shift towards safety, except for the linear utility function.
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Table 4.14: Scenario 7 - Utility (Floor = 100%)

Floor

100%

SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Linear utility: U(X) = a+ bX

a = 2, b = 5 232.91 230.55 216.33 218.82 216.81 237.31 226.28 215.25
Quadratic utility: U(X) = X − b

2
X2

b = 0.025 -50.37 -47.54 -33.90 -36.02 -34.30 -54.18 -42.80 -33.02
b = 1 -6,459 -6,300 -5,477 -5,610 -5,502 -6,697 -6,027 -5,421
b = 5 -32,751 -31,950 -27,807 -28,479 -27,934 -33,951 -30,577 -27,524

Exponential utility: U(X) = 1
a
(1− e−aX)

a = 0.025 0.124 0.116 0.055 0.067 0.057 0.144 0.100 0.050
a = 1 0.112 0.106 0.054 0.064 0.056 0.130 0.094 0.049
a = 5 0.077 0.077 0.048 0.056 0.050 0.090 0.074 0.044

Logarithmic utility: U(X) = X1−c

1−c

c = 0.5 21.318 21.217 20.559 20.678 20.582 21.528 21.030 20.506
c = 1, U(X) = ln (X) 4.730 4.721 4.660 4.672 4.662 4.750 4.705 4.655

c = 1.25 -1.227 -1.229 -1.248 -1.244 -1.247 -1.220 -1.234 -1.249
c = 1.5 -0.188 -0.189 -0.195 -0.193 -0.194 -0.186 -0.190 -0.195

This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark strategies.
Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using
Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one year with 252 trading days.
The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1. The utility is calculated per each utility function.

Investors in a low volatile market with high level of expected return on the risky asset, whose

utility is represented by a linear function, select the risky asset exposure. Investor with

quadratic utility values a strategy based on risk-free assets.

Investors with a negative exponential utility function value the risky asset strategy in any

circumstances. An investor with a low risk aversion, represented with the logarithmic utility

function, will select the risky asset. As risk coe�cient increases there is no change of strategy.

These market conditions are relatively rare and may not occur for longer periods of time, but

if they persist less risk averse investor favour expected return.
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Table 4.15: Scenario 8 - Utility (Floor = 100%)

Floor

100%

SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Linear utility: U(X) = a+ bX

a = 2, b = 5 223.00 221.56 215.78 216.92 216.03 226.05 220.53 215.00
Quadratic utility: U(X) = X − b

2
X2

b = 0.025 -40.96 -39.25 -33.45 -34.42 -33.66 -43.72 -37.78 -32.81
b = 1 -5,890 -5,793 -5,448 -5,509 -5,462 -6,059 -5,714 -5,408
b = 5 -29,884 -29,397 -27,663 -27,970 -27,730 -30,738 -29,002 -27,458

Exponential utility: U(X) = 1
a
(1− e−aX)

a = 0.025 0.081 0.076 0.052 0.058 0.054 0.095 0.074 0.050
a = 1 0.074 0.071 0.051 0.056 0.52 0.086 0.070 0.049
a = 5 0.053 0.054 0.046 0.050 0.047 0.059 0.057 0.044

Logarithmic utility: U(X) = X1−c

1−c

c = 0.5 20.856 20.795 20.532 20.586 20.544 21.000 20.755 20.494
c = 1, U(X) = ln (X) 4.687 4.682 4.658 4.663 4.659 4.700 4.679 4.654

c = 1.25 -1.240 -1.241 -1.248 -1.247 -1.248 -1.236 -1.242 -1.250
c = 1.5 -0.192 -0.193 -0.195 -0.194 -0.195 -0.191 -0.193 -0.195

This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark strategies.
Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using
Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one year with 252 trading days.
The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1. The utility is calculated per each utility function.

Investors in a low volatile market with medium level of expected return on the risky asset, whose

utility is represented by a linear function, select the risky asset exposure. Under a quadratic

utility valuation an investor selects the risk-free strategy.

Investors with a negative exponential utility function value the risky asset. An investor repre-

sented with the logarithmic utility function will select the risky asset.
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Table 4.16: Scenario 9 - Utility (Floor = 100%)

Floor

100%

SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Linear utility: U(X) = a+ bX

a = 2, b = 5 215.17 214.67 215.25 215.24 215.24 215.15 215.20 215.25
Quadratic utility: U(X) = X − b

2
X2

b = 0.025 -33.83 -33.14 -33.02 -33.04 -33.02 -34.32 -33.32 -33.02
b = 1 -5,452 -5,414 -5,421 -5,421 -5,420 -5,471 -5,432 -5,421
b = 5 -27,678 -27,491 -27,523 -27,526 -27,523 -27,774 -27,579 -27,524

Exponential utility: U(X) = 1
a
(1− e−aX)

a = 0.025 0.047 0.045 0.050 0.050 0.050 0.044 0.048 0.050
a = 1 0.043 0.042 0.049 0.048 0.049 0.039 0.046 0.049
a = 5 0.032 0.033 0.044 0.044 0.044 0.018 0.038 0.044

Logarithmic utility: U(X) = X1−c

1−c

c = 0.5 20.487 20.467 20.506 20.505 20.505 20.475 20.497 20.506
c = 1, U(X) = ln (X) 4.652 4.650 4.655 4.655 4.655 4.650 4.654 4.655

c = 1.25 -1.250 -1.251 -1.249 -1.249 -1.249 -1.251 -1.250 -1.249
c = 1.5 -0.196 -0.196 -0.195 -0.195 -0.195 -0.196 -0.195 -0.195

This table shows descriptive statistics of the distributions of returns at maturity for the portfolio insurance and the benchmark strategies.
Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using
Monte Carlo, and the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one year with 252 trading days.
The returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1. The utility is calculated per each utility function.

Investors in a low volatile market with low level of expected return on the risky asset, whose

utility is represented by a linear function, select the CPPI(m=1). Under a quadratic utility

valuation an investor with low b factor tends to select the risk-free exposure, CPPI(m=1) and

TIPP. As b increases the risk aversion also increases but exposure remains the same. Investors

with a negative exponential utility function value the risk-free asset exposure and CPPI and

TIPP, and as the risk aversion increases they continue to seek security either from risk-free of

portfolio insurance.

An investor with a low risk aversion, represented with the logarithmic utility function, will

select the risk-free asset, CPPI and TIPP. As risk coe�cient increases the strategy remains

stable.
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4.5 Conclusions

In our work we set di�erent risk aversion levels for several descriptive utility functions. The

numerical examples, using a stochastic simulation of the returns for portfolio insurance strate-

gies and benchmark investments, create conditions to de�ne homogeneous groups of individual

investors for whom the selection of protective strategies can be relevant. In order to identify

portfolio insurance strategies that are attractive for investors we de�ned market conditions.

Based on this procedure it is possible to check if categories of investors with certain type of

utility functions value protection and, simultaneously, are keen on the upside potential of risky

asset.

The determinants of choices are set by market conditions used for the simulation. When mar-

kets present high level of volatility and low returns, in absolute or relative terms, except for

the investors whose utility is characterized by a quadratic function, where risk free exposure is

always more value, investors somehow tend to have a wider scope of choices by using protective

strategies but also with a twist into the upside potential. Results from scenarios 3, 6 and 9

represent a group of investors that tend to de�ne some security on the expected return, but

value the possibility of bene�ting from market upside. However, as the level of expected return

increases there is a shift towards risky asset exposure and also CPPI with lower multiplier.

Investors with utility represented by a quadratic utility function value security. When expected

return is low and volatility is within medium to low levels, there is a change from absolute

security to some level of security given by protective strategies that set a �oor, but permits

some bene�t from the upside potential of risky assets.

Remaining groups of investors, either with exponential or logarithmic utility functions, do not

value protective strategies, because they are very focused on expected return. However, as the

risk aversion level increases, there is a reduction from total exposure to risky markets to some

level of protection, by 50:50 strategies or CPPI with multiplier of 1 or 3, depending on the

volatility level and expected returns.
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Table 4.17: Summary of results - Investors' strategies choices

Under MVA framework, general results reveal a risk exposure towards the risk free - �y to safety

- on investors with medium to high level of risk aversion. As the level of risk aversion decreases,

the return seeking investments tend to become more attractive as the return per unit of risk

is perceived with higher utility. Investors with decreasing level of risk aversion, depending on

market conditions, tend to exhibit a safety attitude bene�ting protective strategies (the more

simple portfolio strategies like CPPI and TIPP) in more volatile conditions. On less volatile

conditions investors seek return and show more exposure to risky assets. Additionally, a general

result from the analysis is that the higher the expected return the lower is the level of protection

required by investors, and the higher the level of volatility the higher is the protection required.
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These results on investors with descriptive utility functions support the idea that there are

not potential buyers of portfolio insurance strategies, except in very speci�c market conditions:

scenarios of low expected returns and increasing volatility. That situation is also visible under

MVA, where a �ight to safety also depicts some valuation on protective strategies with upside

potential.

This study does not take into account the level of wealth on each group of investors, but having

tractable utility functions this point is not relevant, except for di�erent wealth segments of

investors, which are out of scope on our work as there is no impact on simulation results. We

expect to include in future work some of the utility functions that de�ne a bridge between

expected utility and prospect theory.

The absence of clear circumstances where portfolio insurance strategies are demanded by in-

vestors and the changing market conditions may raise the question of adequacy of investment

solutions to individual investors. Portfolio insurance solutions are complex investments that

need to be matched with individual investors risk pro�le. When �nancial institutions sell these

protective solutions they must, under current regulation, avoid mis-selling. The most common

�nancial frameworks as are the MVA and EUT may not support entirely the de�nition of risk

pro�le of individual investors to whom a portfolio insurance would match.

The results do not support a clear explanation for individual investors' choices into portfolio

insurance. In the next chapter we introduce behavioural �nance factors in order to evaluate

the adequacy of a non-prescriptive utility valuation framework to evaluate the selection of

protective investment strategies. Based on the same distribution results from the simulation

performed we compare standard utility functions with cumulative prospect value functions.



Chapter 5

Investor's Perspective on Portfolio

Insurance

Expected Utility vs Prospect Theories

In spite of controversial opinions surrounding the bene�ts for investors, along with analysis

that portfolio insurance strategies may have contributed to exacerbate �nancial crises (Shiller,

1988; Dybvig, 1988; Brennan and Schwartz, 1989; Rubinstein, 1999; Tucker, 2005; Leland,

2011; Vandenbroucke, 2015), the fact is that the idea of insurance of risky investments remains

attractive for a large segment of investors (Pain and Rand, 2008; Vrecko and Branger, 2009).

Some theoretical studies, such as those of Benninga and Blume (1985), have questioned the

optimality of portfolio insurance strategies under investors' expected utility functions. Black

and Perold (1992) documented that a CPPI strategy, with unconstrained borrowing, only max-

imizes expected utility when investors show Hyperbolic Absolute Risk Aversion (HARA) utility

functions.

The classical Expected Utility Theory (EUT) establishes the foundation to explain investors'

choices under uncertainty. However, it has faced di�culties in explaining individual's invest-

ment decisions.

The traditional �nance paradigm pursues an explanation for �nancial markets using models in

which agents are rational, based on two assumptions: �rst, when agents receive new informa-

tion, they update their beliefs correctly; second, given their beliefs, agents make choices that

79
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are normatively acceptable. This traditional framework is appealingly simple, and it would be

very satisfying if its predictions were con�rmed in the data. However, after years of e�ort, it

has become clear that basic facts about the aggregate stock market, the cross-section of average

returns and individual trading behaviour are not easily understood in this framework (Barberis

and Thaler, 2003).

Behavioural �nance is a new approach to �nancial markets that emerged in response to the

di�culties faced by the traditional paradigm. In broad terms, it argues that some �nancial

phenomena can be better understood using models in which some agents are not fully rational.

Portfolio insurance allows downside protection of wealth, which is an objective aligned with

the experimental results of several studies on behavioural �nance (see for example Tversky and

Kahneman, 1974, 1979, 1992, and Barberis and Thaler, 2003). Investors tend to be more averse

to losses, i.e., they are more reactive to losses than gains, which implies that it may exist a

match between this behaviour with the characteristics of portfolio insurance. In fact, prospect

and cumulative prospect theories (Tversky and Kahneman, 1974, 1992) can support investors'

decision for downside protection mechanisms, as investment decisions in this framework are not

assessed by the amount of expected �nal wealth, but on the valuation of outcomes, taking into

consideration the prospects of both gains and losses (Barberis and Tahler, 2003).

In this chapter we use portfolio insurance strategies and plain investments on stock market

and risk-free assets to �nd how capable are these alternative theories � EUT, PT, CPT �

to explain the persistent popularity of portfolio insurance. Concretely we use a set of popular

portfolio insurance strategies benchmarked against plain strategies: a risk-free cash investment,

a passive stock market investment and a buy and hold investment between risk-free cash and

equities. For all these investment strategies we compare the return distributions and compute

standard performance measures. Nonetheless our focus is on understanding investors' invest-

ment decisions under alternative theoretical settings.

The results of the comparison between the level of utility for risk averse, risk neutral and risk

lover investors under expected utility present no evidence that portfolio insurance strategies

dominate the investment on stocks or risk-free assets. In order to explain portfolio insurance

popularity, we use prospect and cumulative prospect theories, and our �ndings point to cumu-
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lative prospect theory as a strong framework to explain the attractiveness of portfolio insurance

strategies. The results are also very interesting from the perspective of product design as they

point the best choices to be the very simple portfolio insurance strategies instead of the complex

products. Results are in line with previous work developed by Dichtl and Drobetz (2011), and

Vrecko and Branger (2009).

5.1 From Expected Utility Theory to Cumulative Prospect

Theory

The expected utility theory (EUT) is based on the assumption that investors maximize their

�nal expected wealth when making investment decisions. Prospect theory characterizes choices

made by individuals between risky alternatives, based on empirical evidence. In this theory,

investors assess their decisions, against a reference target, in terms of gains and losses. This

formulation means that utility is de�ned over gains and losses rather than over �nal wealth

positions, which was an idea proposed by Markowitz (1952). This �ts naturally with the way

gambles are often presented and discussed in everyday life. According to experiments by Kah-

neman and Tversky (1979), there is consistency with the way people perceive attributes such

as brightness, loudness, or temperature relative to earlier levels, rather than in absolute terms.

They show that for two gambling problems where, individually, bets achieve the same level of

expected wealth, people decide di�erently on each of the gamble, because they focus on gains

and losses.

Barberis and Thaler (2003) refer that �prospect theory may be the most promising for �nancial

applications�. In fact it is seen as �the most successful at capturing the experimental results�,

which exhibit most of the anomalies in �nancial market behavior. As prospect theory is not

a normative theory, like the EUT, the authors Kahneman and Tversky intend to get people's

attitudes to risky gambles as parsimoniously as possible. Although risk aversion investors are

considered to be always rational under expected utility theory, they showed that when investors

face losses, a risk seeking behaviour would be rational. There are now cognitive explanations for
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increasing and decreasing marginal utility of wealth, which lead to risk tolerant or risk seeking

behaviours1.

Prospect theory investors' value function has a sigmoid curve�with the curve being concave

for gains, and convex for losses; the degree of response is de�ned by a factor λ�, representing

risk-aversion in the domain of gains, and risk-seeking in the domain of losses. This means that,

for the same referential absolute variation, the impact of losses is bigger than the impact of

gains. Investors weight the probabilities of outcomes, and evidence highlights the fact that

events with low probabilities are overweighted.

Figure 5.1: Example of a value function - adapted from Tversky and Kahneman (1992)

In its �rst formulation prospect theory was concerned with simple prospects of the form

(x, p; y, q), which had at most two non-zero outcomes. In this prospect an individual receives

x with probability p, y with probability q, and nothing with probability (1 − p − q), where

p+ q ≤ 1. The decision between the prospects depends on its value (V ). The overall value of a

prospect is de�ned in two scales π and v, where π associates with each probability p a decision

weight π(p), re�ecting the impact of p on the value of the prospect, and v assigns each outcome

x a number v(x) which re�ects a subjective value for the outcome. The outcomes are de�ned

1There are several well known examples in the literature that question the normative behaviour of individuals
(e.g. Allais (1953) and St Petersburg (Bernoulli, 1954) paradoxes).
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relative to a reference point, which is the zero point of the value scale (i.e. measures losses and

gains). That means that V is de�ned on prospects and v is de�ned in outcomes. Therefore:

V (x, p; y, q) = π(p)v(x) + π(q)v(y), (5.1)

where v(0) = 0, π(0) = 0, π(1) = 1 and when prospects are sure V (x, 1) = V (x) = v(x).

The evaluation of strictly positive or negative prospects follows a di�erent formula. First, all

prospects are edited into two components: one where there is no risk (the minimum gain or

loss that is certain), and a risky component (the additional gain or loss that derives from the

game). When p+ q = 1 and x > y > 0 or x < y < 0:

V (x, p; y, q) = v(y) + π(p)[v(x)− v(y)] (5.2)

With this value function, the risk-less component has no decision weight, which is applied to the

value di�erence between the outcomes. Kahneman and Tversky (1979) propose a value function

that is steeper for losses than the value function for gains, generally concave for gains and convex

for losses, and is de�ned on deviations from a reference point. The weighting function de�ned

by the authors is set to capture the impact of events on the desirability of prospects and not

the likelihood of the events. Thus the weights should not be stated as probabilities.

The theory originally introduced by Tversky and Kahneman in 1979 has been modi�ed since

then. Based on additional evidence, Tversky and Kahneman (1992) propose a generalization

of prospect theory which can be applied to gambles with more than two outcomes, leading to

the cumulative prospect theory (CPT).

The cumulative prospect value function is de�ned as strictly increasing and assess the negative

and positive outcomes of each prospect (f):

V (f) = V (f+) + V (f−) =
n∑

i=−m

πiv(xi), (5.3)

where V (f+) =
∑0

i=−m π
−
i v(xi), V (f−) =

∑n
i=0 π

+
i v(xi) and −m ≤ i ≤ n.
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With this value function it is possible to evaluate investment strategy prospects (from negative

to positive outcomes in relation to a reference point�initial wealth) for a cumulative prospect

theory investor, as in the case of expected utility framework. In this theory, a two compo-

nent power valuation function is de�ned to characterize the curve pattern describing decision

behaviour:

v(∆x) =


(∆x)α (∆x) ≥ 0

−λ(−∆x)β (∆x) < 0,

(5.4)

where i denotes outcomes, ∆xi and i = (1, · · · , N), which are ranked in ascending order. The

parameters α ≈ β ≈ 0.88 for the exponent re�ect the diminishing sensitivity. The parameter

λ ≈ 2.25 is the coe�cient of loss aversion, a measure of the relative sensitivity to gains and

losses. These parameters were set based on experiences by Tversky and Kahneman (1992).

Investors assign the value to all outcomes by applying single probabilities in prospect theory,

while in cumulative prospect theory probabilities are weighted:

πi =


π−i = w−(p−m + · · ·+ pi)− w−(p−m + · · ·+ pi−1), 1−m ≤ i ≤ 0,

π+
i = w+(pi + · · ·+ pn)− w+(pi+1 + · · ·+ pn), 0 ≤ i ≤ n− 1.

(5.5)

Assuming that the value function is linear, the smoothing of curves are weighting functions.

They are �tted using:

w+(p) =
pγ

(pγ + (1− p)γ)(1/γ)
and w−(p) =

pδ

(pδ + (1− p)δ)(1/δ)
, (5.6)

where the parameter weighting for gains γ = 0.61, and for losses δ = 0.69, were set based

on empirical results (Tversky and Kahneman, 1992). They show the curvature for the value

function, and indicate that risk aversion for gains is more pronounced than risk seeking for

losses (for moderate and high probabilities). These weight functions determine the shape of

the indi�erence curves for CPT for non-negative and non-positive prospects, while the value of
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outcomes control their slope.

Although EUT is still a dominant framework to assess investment strategies, the abnormal

behaviours in �nancial markets may be explained using di�erent models. In particular, it is

interesting to test the features of portfolio insurance strategies in order to explore an explanation

for its attractiveness and popularity, as not all investors follow the EUT axioms.

5.2 Methodology

We use the same Monte Carlo method as presented in previous chapter to simulate a risky

asset pattern�see Table 4.1�, in order to evaluate the performance of portfolio insurance

strategies, and benchmark investments. We run Monte Carlo simulations to build stock market

scenarios with normally distributed price returns. The continuous compound stock market

returns are generated 100.000 times, using a geometric Brownian motion (GBM), for a one

year time horizon, with 252 trading days.

We keep the 9 stock market scenarios: high, medium and low volatility; high, medium and

equivalent risk-free equity returns, in order to capture a large span of possible bear and bull

market conditions. In each of the scenarios of Table 4.1 we have 100.000 paths on stock market

returns to compare the results amongst strategies. With simulated data we compare the �nal

utility from portfolio insurance and benchmark strategies in the case of investor's expected

utility and also the cumulative prospect values.

We continue to use the same portfolio insurance strategies we used for the simulation in previous

chapter:

1 Stop Loss Portfolio Insurance (SLPI);

2 Option Based Portfolio Insurance (OBPI) with synthetic option;

3 Constant Proportion Portfolio Insurance (CPPI1 and CPPI3); and
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4 Time Invariant Portfolio Protection (TIPP).

These portfolio insurance strategies are benchmarked against:

1 Passive stock market strategy;

2 Portfolio with risky and risk free assets (50:50); and

3 Risk-free cash market deposit.

In the case of the utility function selected for the calculation of the expected utility under EUT

we use three utility functions (U1;U2;U3) representative of investors' attitude towards risk:

aversion, neutrality and risk seeking. Utility functions are calculated using the �nal wealth

distribution at maturity of the portfolio insurance and benchmark strategies. We use simple

utility functions in order to compare the strategies with three di�erent type of investors.

5.3 Results

The results provide a valuation for an investor that maximizes expected utility; and valuation of

outcomes by investors under prospect and cumulative prospect theories. Simulation results are

presented using a �oor of 100% for the portfolio insurance strategies per scenario�robustness

tests in section 5.4 present results for a 80% �oor.

5.3.1 Expected Utility Theory

The results of the utility for investors are depicted in Table 5.1. The results for a risk averse

investor are presented in Panel A of Table 5.1. In bullish markets (Scenarios 1, 4 and 7), for a

risk averse investor, the highest utility is obtained from a passive stock market portfolio. The

reason for this outcome is that the passive stock market delivers the highest expected wealth

at maturity. Regarding portfolio insurance strategies, SLPI is the strategy that delivers the

highest utility. When the market is neutral (Scenarios 3, 6 and 9), the results are inconclusive,
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as there is no dominant strategy between portfolio insurance and benchmark strategies.

The results for the risk neutral investor are presented in Panel B of Table 5.1. In market

neutral conditions (Scenarios 3, 6 and 9), utility value is very similar amongst all strategies,

except for the synthetic OBPI, where the utility values are the lowest. In this strategy, due

to the costs of protection, the lower the volatility, the higher the utility value. Although very

similar, the passive stock market strategy delivers the highest utility. When market conditions

are very positive (Scenarios 1-2, 4-5 and 7-8) investors should choose the passive stock market

investment in order to maximize utility.

The results for a risk seeking investor are presented in Panel C of Table 5.1. The results are very

interesting, because, as expected, investor should choose a passive stock market strategy for

all market conditions. In any scenario, for a risk loving investor, portfolio insurance strategies

should not be appealing options, as the upward movement is only partial. In this framework,

investing in the equity market to collect a risk premium provides the best utility choice.

The results from the expected utility perspective show no strong evidence that portfolio in-

surance strategies are appealing to risk averse investors. In fact, averse investors are expected

to prefer strategies that avoid downside risk, and not waiving an upward potential. Portfolio

insurance, which meet these conditions, do not appear to be a clear choice, and these results

are in line with the work of Benninga and Blume (1985), and Black and Perold (1992). The

authors �nd that utility maximization of CPPI, under expected utility theory is attainable

under restrictive conditions for some utility functions (i.e., only if the investor has Hyperbolic

Absolute Risk Aversion (HARA)).

The results under the expected utility framework cannot explain the popularity of the portfolio

insurance strategies. Though portfolio insurance strategies have the necessary characteristics

to attract risk averse investors, we �nd no evidence from the simulations we performed that

these strategies are in the top rank for investors choices.
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Table 5.1: Results - Expected Utility Theory (Floor = 100%)

Floor = 100% SLPI OBPI
Synt.

CPPI
m=1

CPPI
m=3

TIPP Risky
Asset

50:50 Risk
Free

Panel A: Risk averse [U1(w)] = ln(w)

S1-µ : 15%;σ : 30% 4.672∗ 4.663∗ 4.660∗ 4.670∗ 4.662∗ 4.710 4.694 4.654
S2-µ : 10%;σ : 30% 4.657∗ 4.645∗ 4.658∗ 4.661∗ 4.658∗ 4.660 4.668 4.654
S3-µ : 5%;σ : 30% 4.643∗ 4.628∗ 4.655∗∗ 4.654∗ 4.655∗ 4.610 4.643 4.654
S4-µ : 15%;σ : 20% 4.691∗ 4.687∗ 4.660∗ 4.671∗ 4.662∗ 4.734 4.700 4.654
S5-µ : 10%;σ : 20% 4.667∗ 4.662∗ 4.658∗ 4.662∗ 4.659∗ 4.686 4.675 4.654
S6-µ : 5%;σ : 20% 4.647∗ 4.641∗ 4.655∗ 4.654∗ 4.655∗ 4.634 4.649 4.654
S7-µ : 15%;σ : 10% 4.730∗ 4.721∗ 4.660∗ 4.672∗ 4.662∗ 4.750 4.704 4.654
S8-µ : 10%;σ : 10% 4.687∗ 4.682∗ 4.658∗ 4.663∗ 4.659∗ 4.700 4.679 4.654
S9-µ : 5%;σ : 10% 4.652∗ 4.650∗ 4.655∗∗ 4.655∗ 4.655∗ 4.650 4.653 4.654

Panel B: Risk neutral E[U2(w)] = wT

S1-µ : 15%;σ : 30% 109.09∗ 107.70∗ 105.67∗ 106.91∗ 105.87∗ 115.18 110.09 105.00
S2-µ : 10%;σ : 30% 106.98∗ 105.40∗ 105.39∗ 105.97∗ 105.51∗ 110.08 107.59 105.00
S3-µ : 5%;σ : 30% 105.11 103.43∗ 105.13 105.13 105.12 105.02 105.01 105.00
S4-µ : 15%;σ : 20% 110.49∗ 109.56∗ 105.66∗ 106.89∗ 105.89∗ 115.06 110.03 105.00
S5-µ : 10%;σ : 20% 107.51∗ 106.61∗ 105.39∗ 105.96∗ 105.52∗ 110.09 107.55 105.00
S6-µ : 5%;σ : 20% 105.09 104.24∗ 105.12∗∗ 105.11∗∗∗ 105.12∗∗∗ 104.99 105.00 105.00
S7-µ : 15%;σ : 10% 113.96∗ 112.78∗ 105.66∗ 106.91∗ 105.90∗ 115.15 110.58 105.00
S8-µ : 10%;σ : 10% 109.00∗ 108.28∗ 105.39∗ 105.96∗ 105.52∗ 110.53 107.56 105.00
S9-µ : 5%;σ : 10% 105.08 104.84∗ 105.12 105.12 105.12∗∗ 105.07 105.04 105.00

Panel C: Risk lover E[U3(w)] = wT
2

S1-µ : 15%;σ : 30% 12,547∗ 12,045∗ 11,168∗ 11,489∗ 11,216∗ 14,768 12,548 11,025
S2-µ : 10%;σ : 30% 11,941∗ 11,460∗ 11,110∗ 11,273∗ 11,138∗ 13,384 11,908 11,025
S3-µ : 5%;σ : 30% 11,415∗ 10,967∗ 11,054∗ 11,084∗ 11,058∗ 12,090 11,298 11,025
S4-µ : 15%;σ : 20% 12,607∗ 12,263∗ 11,165∗ 11,447∗ 11,216∗ 14,019 12,354 11,025
S5-µ : 10%;σ : 20% 11,843∗ 11,559∗ 11,109∗ 11,244∗ 11,137∗ 12,727 11,744 11,025
S6-µ : 5%;σ : 20% 11,239∗ 11,002∗ 11,051∗ 11,059∗ 11,053∗ 11,473 11,137 11,025
S7-µ : 15%;σ : 10% 13,146∗ 12,825∗ 11,165∗ 11,434∗ 11,216∗ 13,627 12,261 11,025
S8-µ : 10%;σ : 10% 11,997∗ 11,802∗ 11,107∗ 11,230∗ 11,134∗ 12,340 11,644 11,025
S9-µ : 5%;σ : 10% 11,113∗ 11,038∗ 11,051∗ 11,053∗ 11,051∗ 11,152 11,060 11,025

This table shows the results of three utility functions (U1;U2;U3) representative of investors' attitude towards risk: aversion, neutrality and risk seeking. Utility functions
are calculated using the portfolio value at maturity of the portfolio insurance and benchmark strategies. Wealth at maturity is the result of accumulated daily returns of each
strategy. Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using Monte Carlo, and the risk-free
rate was set at 5%. Stock returns were simulated daily for a period of one year, with 252 trading days. The returns were simulated 100.000 for each of the 9 scenarios presented
in Table 4.1. The null hypothesis in the paired t-test is that the utility value of a portfolio insurance strategy is equal to that of the benchmark strategy with the highest utility
value. * The test statistic is signi�cant at the 1% level. ** The test statistic is signi�cant at the 5% level. *** The test statistic is signi�cant at the 10% level.
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The results lead us to change the framework towards prospect theory, in order to evaluate if

behavioural theory explains why these strategies are still popular in retail and institutional

markets.

5.3.2 Prospect and Cumulative Prospect Theories

The results for prospect value are presented in Table 5.2. We use the valuation function de-

�ned by Tversky and Kahneman (1979, 1992), and simulate the di�erent approaches: prospect

theory, and cumulative prospect theory. All the parameters are from the studies of the referred

authors. In Panel A of Table 5.2 we use mean prospect with λ = 1, which means that reaction

to losses is not di�erent from the reaction to gains. In Panel B, we incorporate a di�erent loss

reaction, using λ = 2.25. In both situations, there is no distinct weighting of the gains, and

losses; therefore, we calculate the simple mean of the simulated prospect values. In Panel C of

Table 5.2, we incorporate the cumulative probability weightings.

The results of Panel A of Table 5.2 present the prospect values for an investor with similar

reactions to gains and losses. The prospect values show that, for bullish market conditions

(scenarios 1-2, 4-5, and 7-8), a passive stock market strategy yields the best global results. In

neutral conditions (scenarios 3, 6 and 9), the unleveraged CPPI strategy is the best choice.

The leveraged CPPI and TIPP, as well as the risk-free investment have prospect values very

similar to unleveraged CPPI.

In Panel B of Table 5.2, we incorporate the loss reaction for investors in valuing outcomes, and

�nd that results become more favourable to portfolio insurance strategies. In some bullish mar-

ket conditions with medium to low volatility, a passive stock market investment delivers high

prospect value, as high negative returns are not frequent. In market conditions with high and

medium expected returns and volatility, portfolio insurance strategies yields high prospect val-

ues for investors. In most cases, leveraged CPPI is the best strategy. When market conditions

are relatively stable, and with high expected returns (scenarios 7 and 8), a risky investment

continues to deliver the highest prospect value. Except for the bearish market conditions, where

risk-free investment has the highest value, and the low to medium volatile markets with high
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expected returns, where a passive stock market strategy yields the best result, in all other

scenarios portfolio insurance strategies are the best choices.

Table 5.2: Results - Prospect and Cumulative Prospect Theories (Floor = 100%)

Floor = 100% SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Panel A: Mean prospect value (λ = 1.0)

S1-µ : 15%;σ : 30% 6.93∗ 6.42∗ 7.75∗ 8.65∗ 7.92∗ 11.61 10.50 7.16
S2-µ : 10%;σ : 30% 5.43∗ 4.58∗ 7.45∗∗∗ 7.73∗ 7.51 6.43 7.70 7.16
S3-µ : 5%;σ : 30% 3.63∗ 2.47∗ 7.12∗ 6.73∗ 7.02∗ 0.73 4.62 7.16
S5-µ : 15%;σ : 20% 9.68∗ 9.85∗ 7.79∗ 9.02∗ 8.03∗ 15.22 11.95 7.16
S6-µ : 10%;σ : 20% 6.82∗ 6.59∗ 7.45∗ 7.92∗ 7.56∗ 9.14 8.65 7.16
S7-µ : 5%;σ : 20% 4.67∗ 4.27∗ 7.15∗ 6.99∗ 7.11∗ 3.52 5.64 7.16
S9-µ : 15%;σ : 10% 14.96∗ 14.36∗ 7.79∗ 9.15∗ 8.06∗ 17.53 12.84 7.16
S10-µ : 10%;σ : 10% 9.98∗ 9.69∗ 7.47∗ 8.08∗ 7.60∗ 11.76 9.77 7.16
S11-µ : 5%;σ : 10% 5.74∗ 5.92∗ 7.16∗ 7.12∗ 7.15∗ 5.68 6.58 7.16

Panel B: Mean prospect value (λ = 2.25)

S1-µ : 15%;σ : 30% 5.10∗ 1.11∗ 7.75∗ 8.65∗ 7.92∗ 0.74 6.45 7.16
S2-µ : 10%;σ : 30% 3.52∗ -0.87∗ 7.45∗ 7.73∗ 7.51∗ -7.33 2.48 7.16
S3-µ : 5%;σ : 30% 1.65∗ -3.28 7.12∗ 6.73∗ 7.02∗ -15.96 -1.77 7.16
S4-µ : 15%;σ : 20% 8.60∗ 7.43∗ 7.79∗ 9.02∗ 8.03∗ 10.44 10.43 7.16
S5-µ : 10%;σ : 20% 5.64∗ 3.65∗ 7.45∗ 7.92∗ 7.56∗ 1.96 6.27 7.16
S6-µ : 5%;σ : 20% 3.38∗ 1.09∗ 7.15∗ 6.99∗ 7.11∗ -6.44 2.23 7.16
S7-µ : 15%;σ : 10% 14.69∗ 14.08∗ 7.79∗ 9.15∗ 8.06∗ 16.91 12.75 7.16
S8-µ : 10%;σ : 10% 9.61∗ 9.16∗ 7.47∗ 8.08∗ 7.60∗ 10.19 9.51 7.16
S9-µ : 5%;σ : 10% 5.21∗ 5.15∗ 7.16∗ 7.12∗ 7.15∗ 2.07 5.81 7.16

Panel C: Mean cumulative prospect value (λ = 2.25)

S1-µ : 15%;σ : 30% 17.04∗ 7.00∗ 7.86∗ 11.61∗ 7.20∗∗ 6.96 7.65 7.16
S2-µ : 10%;σ : 30% 14.34∗ 3.65∗ 7.52∗ 10.25∗ 6.88∗ -0.37 3.82 7.16
S3-µ : 5%;σ : 30% 11.30∗ 0.14∗ 5.21∗ 8.70∗ 6.68∗ -8.06 -0.18 7.16
S4-µ : 15%;σ : 20% 15.65∗ 9.08∗ 4.13∗ 9.13∗ 7.71∗ 10.48 9.44 7.16
S5-µ : 10%;σ : 20% 12.53∗ 5.31∗ 7.49∗ 8.84∗ 7.26∗ 3.42 5.82 7.16
S6-µ : 5%;σ : 20% 9.65∗ 1.37∗ 3.70∗ 7.06∗∗ 6.80∗ -4.12 1.97 7.16
S7-µ : 15%;σ : 10% 15.50∗∗ 12.98∗ 2.52∗ 6.58∗ 8.01∗ 15.83 11.98 7.16
S8-µ : 10%;σ : 10% 11.25∗ 8.36∗ 7.55∗ 8.21∗ 7.53∗ 8.67 8.42 7.16
S9-µ : 5%;σ : 10% 7.56∗ 3.60∗ 7.22∗ 7.19∗∗ 4.63∗ 1.04 4.70 7.16

This table shows the results of (mean or cumulative) prospect value. Prospect values are calculated using the portfolio gains and
losses relative to a reference point (100 or 0% return) at maturity of the portfolio insurance and benchmark strategies. Gains and
losses at maturity are the result of the accumulated daily returns of each strategy. Returns of the stock market were generated
using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using Monte Carlo, and the risk-free rate was
set at 5%. Stock returns were simulated daily for a period of one year, with 252 trading days. The returns were simulated 100.000
for each of the 9 scenarios presented in Table 4.1. The null hypothesis in the paired t-test is that the (mean or cumulative) prospect
value of a portfolio insurance strategy is equal to that of the benchmark strategy with the highest prospect value. * The test
statistic is signi�cant at the 1% level. ** The test statistic is signi�cant at the 5% level. *** The test statistic is signi�cant at the
10% level.

The results of Panel C in Table 5.2 present the cumulative prospect values. There is only

one scenario where benchmark strategies dominate portfolio insurance strategies: scenario 7
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where the best choice is a passive stock market strategy. The SLPI strategy dominates all

other strategies in the remaining scenarios. The results support a possible explanation for the

popularity of portfolio insurance on a behavioural �nance context, and especially regarding the

preference of naïve strategies as the SLPI. Amongst portfolio insurance strategies, the SLPI is

always the best choice.

The way investors react against prospects with losses or gains, and also on the di�erent valuation

of low or high probabilities, is not captured in an EUT. Hence, this is not a complete framework

to explain the attractiveness of portfolio insurance. On the contrary, a prospect theory approach

may support the longevity of strategies that o�er protection on the downside and, at the same

time, keep a potential to bene�t from the upside.

5.4 Robustness Tests

We perform several tests in order to assess the adherence of the results. We begin by changing

the �oor from 100% to 80% and rerun the model. On a second analysis, we test the parameters

of cumulative prospect theory used by Tversky and Kanhneman (1992): we change these as-

sumptions in order to increase the overweight of small probability events in negative outcomes

(we change the δ from 0.69 to 0.77, and the γ from 0.61 to 0.44, while keeping the α constant at

0.88), in line with parameters de�ned in the experiment by Wu and Gonzalez (1996) regarding

the weighting process. The �nal tests are related with the changes of risk-free rates (we stress

the risk-free rate by 150 basis points, from 5% to 3.5% and from 5% to 6.5%) in order to check

the impact on investor choices.

5.4.1 Setting the Floor at 80%

We elaborate a complete rerun of the model using a �oor of 80% on the portfolio insurance

strategies. The results con�rm the overall �ndings when �oor is at 100%.

The results under the expected utility framework are presented in Table 5.3. For a risk averse

investor, indicated in Panel A of Table 9, when the �oor is changed from 100% to 80%, the

results con�rm, overall, the utility derived from the passive stock market strategy, and, also,
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the risk-free investment. However, with the new �oor, in market conditions with low volatil-

ity, SLPI strategy and unleveraged CPPI yield a higher utility value than benchmark strategies.

The results for a risk neutral investor, presented in Panel B of Table 5.3, point that portfolio

insurance strategies do not yield higher utility to a neutral investor. In the case of a 80% �oor,

a SLPI becomes a possible choice for a risk neutral investor, in high expected market returns

with low volatility, as utility is very similar to a passive stock market strategy�as expected,

because the probability of executing the stop loss order is lower.

For a risk loving investor, the reduction of the �oor, does not change the results. They are very

similar to results from Panel B of Table 5.1, and the passive stock market strategy yields the

highest utility for all bullish or neutral scenarios.

Overall results by portfolio insurance strategies, when the �oor is reduced, and, consequently,

an increasing exposure to risky assets is allowed, present higher utility values. However, this

increase is not enough to change investors choices. The explanation for the popularity of port-

folio insurance strategies is, according with our simulation, not explained under the framework

of expected utility theory, even if we increase the upside potential.
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Table 5.3: Results - Expected Utility Theory (Floor = 80%)

Floor = 80% SLPI OBPI
Synt.

CPPI
m=1

CPPI
m=3

TIPP Risky
Asset

50:50 Risk
Free

Panel A: Risk averse [U1(w)] = ln(w)

S1-µ : 15%;σ : 30% 4.702∗ 4.667∗ 4.677∗ 4.700∗ 4.697∗ 4.710 4.694 4.654
S2-µ : 10%;σ : 30% 4.659∗ 4.629∗ 4.665∗ 4.666∗ 4.668 4.660 4.668 4.654
S3-µ : 5%;σ : 30% 4.619∗ 4.595∗ 4.653∗ 4.634∗ 4.640∗ 4.610 4.643 4.654
S4-µ : 15%;σ : 20% 4.733∗ 4.712∗ 4.679∗ 4.719∗ 4.710∗ 4.736 4.701 4.654
S5-µ : 10%;σ : 20% 4.684∗ 4.665∗ 4.666∗ 4.680∗ 4.678∗ 4.686 4.675 4.654
S6-µ : 5%;σ : 20% 4.636∗ 4.621∗ 4.654 4.645∗ 4.648∗ 4.635 4.649 4.654
S7-µ : 15%;σ : 10% 4.750∗∗∗ 4.745∗ 4.680∗ 4.731∗ 4.718∗ 4.750 4.705 4.654
S8-µ : 10%;σ : 10% 4.700∗ 4.695∗ 4.667∗ 4.690∗ 4.685∗ 4.700 4.678 4.654
S9-µ : 5%;σ : 10% 4.650∗ 4.645∗ 4.655∗ 4.653∗ 4.653∗ 4.650 4.653 4.654

Panel B: Risk neutral E[U2(w)] = wT

S1-µ : 15%;σ : 30% 115.04∗ 109.93∗ 107.77∗ 113.04∗ 111.56∗ 116.18 110.59 105.00
S2-µ : 10%;σ : 30% 109.86∗ 105.50∗ 106.41∗ 108.84∗ 108.22∗ 110.49 107.75 105.00
S3-µ : 5%;σ : 30% 105.12 101.61∗ 105.12∗ 105.13∗∗∗ 105.12∗∗ 105.11 105.06 105.00
S4-µ : 15%;σ : 20% 116.02∗ 113.38∗ 107.79∗ 113.56∗ 112.00∗ 116.29 110.64 105.00
S5-µ : 10%;σ : 20% 110.37∗ 108.08∗ 106.42∗ 109.07∗ 108.44∗ 110.55 107.78 105.00
S6-µ : 5%;σ : 20% 105.11∗∗∗ 103.26∗ 105.12∗ 105.11∗∗ 105.11∗ 105.10 105.05 105.00
S7-µ : 15%;σ : 10% 116.20∗∗∗ 115.60∗ 107.77∗ 113.83∗ 112.23∗ 116.20 110.60 105.00
S8-µ : 10%;σ : 10% 110.49∗ 109.93∗ 106.41∗ 109.16∗ 108.58∗ 110.50 107.75 105.00
S9-µ : 5%;σ : 10% 105.16 104.63∗ 105.13 105.15 105.14 105.16 105.08 105.00

Panel C: Risk lover E[U3(w)] = wT
2

S1-µ : 15%;σ : 30% 14,494∗ 12,994∗ 11,687∗ 13,624∗ 12,907∗ 14,771 12,548 11,025
S2-µ : 10%;σ : 30% 13,158∗ 11,905∗ 11,389∗ 12,546∗ 12,122∗ 13,361 11,897 11,025
S3-µ : 5%;σ : 30% 11,982∗ 10,973∗ 11,111∗ 11,624∗ 11,414∗ 12,093 11,298 11,025
S4-µ : 15%;σ : 20% 14,024∗ 13,350∗ 11,651∗ 13,283∗ 12,759∗ 14,075 12,380 11,025
S5-µ : 10%;σ : 20% 12,678∗ 12,109∗ 11,354∗ 12,206∗ 11,952∗ 12,720 11,740 11,025
S6-µ : 5%;σ : 20% 11,481∗ 11,026∗ 11,076∗ 11,293∗ 11,218∗ 11,497 11,148 11,025
S7-µ : 15%;σ : 10% 13,638∗∗∗ 13,499∗ 11,623∗ 13,058∗ 12,651 ∗ 13,638 12,266 11,025
S8-µ : 10%;σ : 10% 12,332∗ 12,207∗ 11,330∗ 11,994∗ 11,840∗ 12,333 11,640 11,025
S9-µ : 5%;σ : 10% 11,170 11,058 11,060∗ 11,117∗ 11,101∗ 11,170 11,069 11,025

This table shows the results of three utility functions (U1;U2;U3) representative of investors' attitude towards risk: aversion, neutrality and risk seeking. Utility functions
are calculated using the portfolio value at maturity of the portfolio insurance and benchmark strategies. Wealth at maturity is the result of accumulated daily returns of each
strategy. Returns of the stock market were generated using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using Monte Carlo, and the risk-free
rate was set at 5%. Stock returns were simulated daily for a period of one year, with 252 trading days. The returns were simulated 100.000 for each of the 9 scenarios presented
in Table 4.1. The null hypothesis in the paired t-test is that the utility value of a portfolio insurance strategy is equal to that of the benchmark strategy with the highest utility
value. * The test statistic is signi�cant at the 1% level. ** The test statistic is signi�cant at the 5% level. *** The test statistic is signi�cant at the 10% level.
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The results of prospect values are presented in Table 5.4. The outcomes of the simulation for

portfolio insurance strategies with a �oor set at 80% con�rms the possibility of explaining the

choices by investors for these type of strategies under the cumulative prospect valuation. The

comparison is between investors with λ = 2.25, which represent di�erent reactions to gains and

losses.

The mean prospect values of Panel B in Tables 5.2 and 5.4 denote a consistent option of the

investor for strategies with less chances of negative outcomes. There is evidence that, when

a bigger exposure to risky assets in low volatile markets (scenarios 7 and 8) is allowed, the

choice between a passive stock market and a SLPI strategy is almost indi�erent. Since the

return distributions of these two strategies tend to coincide, and present more chances of losses,

the risk-free investments becomes more attractive. We also observe a shift from leveraged to

unleveraged CPPI strategies for high and medium volatile markets(scenarios 1, 2, 4 and 5).

In general, amongst portfolio insurance strategies, the more protective the strategies are, the

more valuable to prospect investors.

The results for cumulative investors point to a possible explanation for some �ight to safety

when markets are neutral (scenarios 3, 6 and 9). In these market conditions, we can expect

a change from SLPI to risk-free investments. In positive market expectations, independently

of volatility, the cumulative value of leveraged CPPI strategies is higher than SLPI (scenarios

1-2, 4-5, and 8). The portfolio insurance strategies, under these market conditions, are still

providing better results than benchmarking strategies.

Results from Panel C of Tables 5.2 and 5.4, for positive market conditions (i.e. expected positive

risk premium), strengthens the possibility that cumulative prospect theory explains investors'

choices. The speci�c decisions of portfolio insurance are, nonetheless, dependent on the market

conditions and characteristics of each portfolio insurance strategy�e.g. the reduction of the

percentage �oor from 100% to 80% depicts a shift from SLPI to CPPI strategies.
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Table 5.4: Results - Prospect and Cumulative Prospect Theories (Floor = 80%)

Floor = 80% SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Panel A: Mean prospect value (λ = 1.0)

S1-µ : 15%;σ : 30% 15.64∗ 10.02∗ 9.87∗ 13.65∗ 12.90∗ 17.17 12.37 7.16
S2-µ : 10%;σ : 30% 10.00∗ 5.78∗ 8.21∗ 9.03∗ 9.08∗ 11.05 9.08 7.16
S3-µ : 5%;σ : 30% 5.38∗ 2.10∗ 6.68∗ 5.28∗ 5.81∗ 5.55 6.09 7.16
S4-µ : 15%;σ : 20% 18.13∗ 13.56∗ 10.30∗ 15.63∗ 14.31∗ 18.46 13.14 7.16
S5-µ : 10%;σ : 20% 11.06∗ 8.22∗ 8.40∗ 9.79∗ 9.63∗ 11.30 9.32 7.16
S6-µ : 5%;σ : 20% 5.59∗ 4.19∗ 6.92∗ 5.70∗ 6.04∗ 5.76 6.35 7.16
S7-µ : 15%;σ : 10% 19.58∗∗∗ 16.52∗ 10.51∗ 17.06∗ 15.43∗ 19.58 13.74 7.16
S8-µ : 10%;σ : 10% 12.95∗ 11.23∗ 8.85∗ 11.60∗ 11.05∗ 12.95 10.31 7.16
S9-µ : 5%;σ : 10% 6.10∗ 5.84∗ 7.15∗ 6.35∗ 6.50∗ 6.10 6.74 7.16

Panel B: Mean prospect value (λ = 2.25)

S1-µ : 15%;σ : 30% 5.23∗ 2.72∗ 8.98∗ 7.49∗ 7.56∗ 7.78 8.57 7.16
S2-µ : 10%;σ : 30% -2.19∗ -3.15∗ 7.01∗ 1.59∗ 2.54∗ -0.67 4.26 7.16
S3-µ : 5%;σ : 30% -8.62∗ -8.68∗ 5.08∗ -3.55∗ -2.06∗ -9.00 -0.03 7.16
S4-µ : 15%;σ : 20% 13.27∗ 10.28∗ 10.10∗ 12.87 11.90∗ 13.94 11.63 7.16
S5-µ : 10%;σ : 20% 4.23∗ 3.49∗ 8.07∗ 5.86∗ 6.14∗ 4.71 7.03 7.16
S6-µ : 5%;σ : 20% -3.49∗ -2.19∗ 6.38∗ 0.47∗ 1.32∗ -3.21 3.10 7.16
S7-µ : 15%;σ : 10% 19.03∗∗∗ 16.19∗ 10.51∗ 16.84∗ 15.23∗ 19.03 13.66 7.16
S8-µ : 10%;σ : 10% 11.44∗ 10.28∗ 8.85∗ 10.94∗ 10.45∗ 11.44 10.04 7.16
S9-µ : 5%;σ : 10% 2.63∗ 3.58∗ 7.14∗ 4.75∗ 5.02∗ 2.63 6.00 7.16

Panel C: Cumulative prospect value (λ = 2.25)

S1-µ : 15%;σ : 30% 9.53∗ -0.88∗ 8.15∗ 12.55∗ 8.10∗ 6.97 7.66 7.16
S2-µ : 10%;σ : 30% 3.88∗ -0.88∗ 6.35∗ 7.57∗ 4.18∗ -0.27 3.88 7.16
S3-µ : 5%;σ : 30% -1.66∗ -1.66∗ 4.51∗ 2.74∗ 0.30∗ -7.68 0.02 7.16
S4-µ : 15%;σ : 20% 11.21∗ 11.21∗ 8.91∗ 13.16∗ 9.93 10.75 9.58 7.16
S5-µ : 10%;σ : 20% 4.66∗ 2.53∗ 7.17∗ 7.89∗ 5.65∗ 3.42 5.82 7.16
S6-µ : 5%;σ : 20% -1.82∗ -3.62∗ 5.38∗ 2.73∗ 1.32∗ -4.20 1.93 7.16
S7-µ : 15%;σ : 10% 15.85∗∗∗ 15.15∗ 9.76∗ 15.20∗ 13.00∗ 15.86 12.00 7.16
S8-µ : 10%;σ : 10% 8.69∗∗∗ 7.98∗ 8.10∗ 9.76∗ 8.50∗ 8.69 8.43 7.16
S9-µ : 5%;σ : 10% 1.18∗ 0.48∗ 6.47∗ 4.43∗ 3.87∗ 1.09 4.73 7.16

This table shows the results of (mean or cumulative) prospect value. Prospect values are calculated using the portfolio gains
and losses relative to a reference point (100 or 0% return) at maturity of the portfolio insurance and benchmark strategies.
Gains and losses at maturity are the result of the accumulated daily returns of each strategy. Returns of the stock market
were generated using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using Monte Carlo, and
the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one year, with 252 trading days. The
returns were simulated 100.000 for each of the 9 scenarios presented in Table 4.1. The null hypothesis in the paired t-test is
that the (mean or cumulative) prospect value of a portfolio insurance strategy is equal to that of the benchmark strategy with
the highest prospect value. * The test statistic is signi�cant at the 1% level. ** The test statistic is signi�cant at the 5% level.
*** The test statistic is signi�cant at the 10% level.

5.4.2 Changes of Cumulative Prospect Theory Parameters

The Table 5.5 presents the cumulative prospect value with changes on the parameters for the

curvature and the elevation of the smoothing of curves. In this sensitivity analysis we modify

the assumptions in order to increase the overweight of small probability events in negative
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outcomes (we change the δ from 0.69 to 0.77, and the γ from 0.61 to 0.44, while keeping the α

constant at 0.88), in line with parameters de�ned in the experiment by Gonzalez and Wu (1999)

regarding the weighting process. The results on cumulative prospect values indicate portfolio

insurance dominates benchmark strategies in all market conditions. The portfolio insurance

strategy with higher value is the SLPI, since there is an overreaction to losses. Comparing the

results with scenarios of Panel C in Table 5.2, we �nd that cumulative values are higher, and

the downside risk aversion is managed using the same strategy�SLPI�, hence con�rming our

results that prospect theory is a viable framework to explain portfolio insurance popularity.

Table 5.5: Results - Cumulative Prospect Theories - Changing Parameters

Floor = 100% SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Cumulative prospect value (λ = 2.25)

S1-µ : 15%;σ : 30% 21.80 10.30 7.31 13.29 6.29 8.94 8.30 7.23
S2-µ : 10%;σ : 30% 19.59 7.86 7.00 11.92 5.71 2.19 4.88 7.23
S3-µ : 5%;σ : 30% 16.77 5.43 6.70 10.47 5.59 -4.87 1.30 7.23
S4-µ : 15%;σ : 20% 16.64 10.61 3.63 8.96 6.66 10.14 8.66 7.23
S5-µ : 10%;σ : 20% 14.36 8.14 7.02 8.20 6.23 4.10 5.70 7.23
S6-µ : 5%;σ : 20% 12.13 5.84 6.73 7.17 5.84 -2.93 2.29 7.23
S7-µ : 15%;σ : 10% 13.25 12.17 7.57 8.68 7.41 13.36 9.90 7.23
S8-µ : 10%;σ : 10% 10.28 8.88 7.26 7.64 6.94 7.68 7.12 7.23
S9-µ : 5%;σ : 10% 7.63 6.11 6.93 6.67 6.44 1.08 4.12 7.23

This table shows the results of (mean or cumulative) prospect value. Prospect values are calculated using the portfolio gains
and losses relative to a reference point (100 or 0% return) at maturity of the portfolio insurance and benchmark strategies.
Gains and losses at maturity are the result of the accumulated daily returns of each strategy. Returns of the stock market
were generated using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using Monte Carlo, and
the risk-free rate was set at 5%. Stock returns were simulated daily for a period of one year, with 252 trading days. The returns
were simulated 100.000 for each of the 9 scenarios presented in Table 4.1.

5.4.3 Using Risk-Free Rates at 3.5 % and 6.5 %

The Table 5.6 presents the cumulative prospect value with changes on the risk-free rate. We

modify the assumptions for the scenario generation for the stock price considering a lower risk-

free than the central macro-scenario and a higher risk-free rate (we change the risk-free rate

from 5.0% to 3.5% and from 5.0% to 6.5%).

The results on cumulative prospect values - Panel A with risk-free rate set at 3.5% - indicate
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portfolio insurance dominates benchmark strategies in all market conditions, except in scenario

7, where benchmark investment yields higher. The portfolio insurance strategy with higher

value is the SLPI. Results of Panel B also present portfolio insurance strategies with higher cu-

mulative value in all scenarios. These results con�rm general �ndings that point for preferences

on portfolio insurance investments, in particular for SLPI strategies.

Table 5.6: Results - Cumulative Prospect Theory - Risk Free at 3.5% and 6.5%

Floor = 100% SLPI OBPI

Synt.

CPPI

m=1

CPPI

m=3

TIPP Risky

Asset

50:50 Risk

Free

Panel A: Cumulative prospect value (λ = 2.25) and Risk Free = 3.5%

S1-µ : 15%;σ : 30% 14.73 5.41 4.19 8.67 5.55 6.55 6.22 5.30
S2-µ : 10%;σ : 30% 12.53 2.95 3.80 7.56 5.24 -0.47 2.52 5.30
S3-µ : 5%;σ : 30% 9.83 0.19 3.63 6.60 4.94 -8.07 -1.49 5.30
S4-µ : 15%;σ : 20% 14.07 8.61 3.14 7.60 5.02 10.66 8.38 5.30
S5-µ : 10%;σ : 20% 11.25 5.43 5.52 6.70 4.68 3.32 4.54 5.30
S6-µ : 5%;σ : 20% 8.33 2.40 5.28 5.80 5.03 -4.37 0.54 5.30
S7-µ : 15%;σ : 10% 14.41 12.98 1.71 7.08 3.16 15.89 10.97 5.30
S8-µ : 10%;σ : 10% 10.41 8.42 5.56 6.21 3.31 8.66 7.29 5.30
S9-µ : 5%;σ : 10% 7.00 4.82 5.32 3.63 5.23 1.08 3.47 5.30

Panel B: Cumulative prospect value (λ = 2.25) and Risk Free = 6.5%

S1-µ : 15%;σ : 30% 18.48 8.70 9.81 13.61 9.04 6.75 8.70 9.08
S2-µ : 10%;σ : 30% 15.73 6.19 9.41 12.47 8.53 -0.31 5.06 9.08
S3-µ : 5%;σ : 30% 12.77 3.52 8.99 10.88 8.30 -7.94 1.15 9.08
S4-µ : 15%;σ : 20% 16.91 11.75 9.79 12.28 9.61 10.75 10.69 9.08
S5-µ : 10%;σ : 20% 13.59 8.32 9.37 10.01 9.03 3.42 7.01 9.08
S6-µ : 5%;σ : 20% 10.59 5.57 8.97 9.45 8.44 -4.16 3.21 9.08
S7-µ : 15%;σ : 10% 16.31 15.15 9.86 11.40 9.97 15.86 12.99 9.08
S8-µ : 10%;σ : 10% 11.79 10.64 9.44 6.73 5.40 8.72 9.52 9.08
S9-µ : 5%;σ : 10% 7.97 6.99 9.03 8.74 8.73 0.96 5.85 9.08

This table shows the results of cumulative prospect value. Prospect values are calculated using the portfolio gains and losses
relative to a reference point (100 or 0% return) at maturity of the portfolio insurance and benchmark strategies. Gains and
losses at maturity are the result of the accumulated daily returns of each strategy. Returns of the stock market were generated
using a GBM. Portfolio insurance and benchmark strategies' returns were simulated using Monte Carlo, and the risk-free rate
was set at 3.5% and 6.5%. Stock returns were simulated daily for a period of one year with 252 trading days. The returns were
simulated 100.000 for each of the 9 scenarios presented in Table 4.1.

5.5 Conclusions

The results we computed from the expected utility perspective show no strong evidence that

portfolio insurance strategies are appealing to risk averse investors. In fact, by nature, in-

vestors that are averse to losses are expected to prefer strategies that limit downside risk, and,

simultaneously, not giving away an upward potential. Although portfolio insurance strategies

have the necessary characteristics to attract risk averse investors, we �nd no evidence from the
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simulations we performed under the expected utility framework that these strategies are in the

top rank for investors choices. Therefore, results cannot explain the popularity of the portfolio

insurance strategies.

As we change the framework towards prospect theory by Kahneman and Tversky (1979, 1992),

results from Panel C of Tables 5.2 and 5.4, for positive market conditions (i.e. expected pos-

itive risk premium), strengthens the possibility that cumulative prospect theory may explain

investors' choices. The speci�c decisions of portfolio insurance are, nonetheless, dependent on

the market conditions and characteristics of each portfolio insurance strategy�e.g., the reduc-

tion of the percentage �oor from 100% to 80% depicts a shift from SLPI to CPPI strategies.

To the best of our knowledge, based on innovative approach that compares the value perceived

by investors between expected utility and prospect theories, we �nd that cumulative prospect

theory is a viable framework to explain the popularity of portfolio insurance investments. Our

�ndings also support the �ndings of Dichtl and Drobetz (2011), and Vrecko and Branger (2009).

In spite of these results, we understand that it is necessary further analysis regarding the higher

cumulative prospect values for SLPI strategies against CPPI. In future research we will analyse

determinant factors for investment decision such as time horizon, portfolio management costs

and tax.

The framework of behavioural �nance may have the relevant factor to explain the selection of

portfolio insurance strategies by individual investors. In the market there is a trend towards

automatic platforms to help investors on the de�nition of their risk pro�les to set investment

strategies that may accomplish either their aspirations or objectives. As individual choices are

being integrated into a digital world, in the next chapter we address the integration that is

being made by robo-advisors and focus on the risks and on the limitations that these new tools

may have on protective strategies.



Chapter 6

Robo-Advising and Investors' Protection

In this chapter we review the factors a�ecting wealth management and highlight the risks of

portfolio management in robot-advising as well as the pitfalls of these platforms towards indi-

vidual investors' risk pro�le1.

The role of technology in �nance is constantly evolving. The newest idea being the concept of

robo-advising, which consists of using an algorithm based asset allocation model via an on-line

platform. The history of asset management is embedded within the concepts of Modern Port-

folio Theory (MPT), Mean-Variance Analysis (MVA) and principles of asset allocation which

are the building blocks of the algorithms used by robo-advising platforms.

The �rst introduction of technology in the stock market occurred in the early 1970s when the

world's �rst on-line stock market, NASDAQ, was created and launched (FINRA, 2016). By

the 1980s to 1990s, program trading had taken o� and computers were being used to trade

and perform analysis. By the early 2000s the National Association of Securities Deals allowed

investment analysis tools to become available on-line to investors which was the birth of robo-

advising (FINRA, 2016). The vast rise of today's robo-advisors tool place after the �nancial

2007 crisis when consumers lost trust in large �nancial institutions. With the advancements

in technology, �rms were able to o�er low cost investment planning via the internet while still

1The �ndings presented in this chapter are an extension of a joint work with colleagues from the MSc
Risk Management Class of 2017 at Stern NYU, Aized Gill, Amit Sinha, Faisal Azim and Juan Bernal. We
were involved in research for a Strategic Capstone and found grounds for a business case, specially from the
drawbacks of investor pro�ling on a sample of on-line advisory platforms. A perspective on consumer guide to
robo-advising based on this joint work was presented on September 2017 on the 2nd International Conference
on Computational Finance in Lisbon, Portugal.
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allowing customers some sense of control over their decisions (Lam, 2016).

One obvious observation of robo-advising is the lack of human touch throughout the investment

process. The involvement of humans largely depends on the service being provided and the

brokers model. Some brokers add robo-advising to their current �nancial advisory services o�er,

while others hire advisors to rea�rm or amend the suggestions o�ered by the algorithm. For

traditional robo-advisory �rms, the human component is very limited. The entire portfolios re-

balancing, monitoring and assessing are done via the algorithm and then reviewed by humans to

ensure their compliance with securities regulations. On the customer side, the human element

revolves around how much time and attention he/her dedicates to answering the questionnaire

as this determines the accuracy of the algorithm to match his/her needs (FINRA, 2016, Lam,

2016, QPLUM, 2016). It also places a burden on the customer to notify the software of any

changes to his/her risk strategy or changes in the investment goals (Fish and Turner, 2017,

Fish et al., 2017).

An important aspect of robo-advising and questionnaires are the behavioural elements associ-

ated with an investment decision making process. Most platforms agree that understanding

investor psychology and investors expectations is important to create a sound �nancial strat-

egy (Fish and Turner, 2017). A relevant argument is the distinction between clients' decisions,

which are driven by their preferences and those that are driven by psychological biases. This is

also the reason why it is important for advisors to understand how their clients make �nancial

decisions. Not understanding behaviour biases may result in inappropriate �nancial advising.

This perspective is important for establishing a link between the clients needs and certain �-

nancial objectives because the typical perception is that traditional �nance de�nes a rational

benchmark, and all behaviourally motivated decisions of the clients are irrational. This is the

frontier between a framework for rational and irrational investors. Advising is helping clients to

take rational decisions, which are consistent with their needs and preferences. Although some

theories de�ne a strict framework for rationality, this may not �t clients needs (Tversky and

Kanheman, 1976, 1992).
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In the industry the challenge is how advisors calibrate the theoretical framework with a sound

and clear classi�cation on clients needs and perceptions (Kofman and Payne, 2018). Another

frontier is how algorithms used by robot-advising incorporate these features on their question-

naires. In fact, there are clear distinctions between the results from the robo-advisors sample

we tested, either from a client risk pro�ling or from an asset allocation perspective. These

outcomes are a major concern for individual investors that have no �nancial literacy to per-

form backtesting of each proposed strategy by the robot. In spite of individual investors being

alerted either by �nancial market regulators or trading regulators (e.g., FINRA, SEC, PRA,

...), and regardless the fact that some markets, as the European, being under the umbrella of

strict directives (i.e., MIFID), there are relevant risks of mismatching between investors goals

and solutions provided by robo-advisors, due to some large scope of understanding within the

strategies put forward by the algorithms (OECD, 2017).

Over the last several years, with an ageing population transferring assets to millennial, these

individuals are more susceptible to utilizing internet based platforms for most of their �nancial

needs. Large investment institutions are mindful of these trends and have started investing

in the infrastructure of robo-platforms (McKinsey, 2015). As arti�cial intelligence evolves, the

software will be designed to handle more complex, tougher strategies, whereas the current

robo-platforms are not equipped to handle these scenarios. The strategies are o�ered based

on Exchange Tradable Fund (ETF), and there are questions on how based investing performs

would survive during a �nancial crisis as it would present itself the next time. Nonetheless,

the levels of trust humans are willing to have on a fully automated investment platform will

determine how fast robo-advising is integrated, specially on the event of �nancial crises and

the way con�icts of interests are managed (OECD, 2017, Baker and Dellaert, 2018).

6.1 The Robot and the Individual Investor

Robo-advising is a type of �nancial advisor that provides investment advice and creates port-

folio recommendations based on broad characteristics of principles of asset allocation, mean

variance analysis and modern portfolio theory (QPLUM, 2016). There is little to no human
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interaction as robo-advisers use an on-line platform created with an algorithm to provide the

recommendations. These characteristics highlight important elements such as an ETF based

strategies, rebalancing and tax loss harvesting (Lam, 2016). The behavioural components that

drive investor's expectations are associated with risk questionnaires at platforms that provides

consumers a high level overview of various robo-advisors. We work an in-depth assessment of

a sample of �ve on-line platforms: Charles Schwab, SigFig, Wealthfront, ToleRisk and RiskA-

lyze. In this analysis, back-testing is conducted to assess performance, volatility, speci�c risk

exposures, value at risk and sharpe ratios.

6.1.1 Environment

Sixty years have passed since the �rst publication of Markowitz's article on portfolio-selection

(1952), which has set the foundation for the ground-breaking concept commonly known today

as the Modern Portfolio Theory (MPT). Markowitz research primarily focused on e�ects of

correlation, diversi�cation, asset-risk and investment returns on portfolios. The MPT aims

for a better understanding of the relationship between investment risk and return and is in-

dependent of asset pricing theories (Elton and Gruber, 1997). Furthermore, Portfolio Theory

provides a method to analyse mean and variance of returns based on the assets contained in

the portfolio. The e�cient frontier consists of a set of portfolios that gives the highest level of

expected-return for each level of risk. Moreover, many aspects of the MPT and robo-advisory

platform utilize these principles as a framework to select portfolios based on expected return

and investors' appetite for risk (Fabozzi et al., 2002).

Although, the Markowitz's model laid the foundation for the theory, in historical practice it

had its limitations since it required a large amount of data (Marling and Emanuelsson, 2012).

In robo-advising, this limitation is managed since these platforms can be designed to e�ciently

utilize large quantities of historical data and optimize it in a way that can still use the MPT.

The term robo-advising is broader than most understand. Robo-advisors are not literal robots

who are conducting investment decisions. Robo-advisors are automated investment platforms
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that use software to do the same duties a typical �nancial advisor would do (D'Acunt et al.,

2017). In the United States, as of today, almost all robo-advisors are registered as �RIA�s

(Registered Investment Advisers) with the U.S. Securities and Exchange Commission (SEC),

which serve to provide investment advice through the use of a website (Strzelczyk, 2018). The

process of using a robo-advising would begin with the customer answering a set of questions.

The pro�le begins with income, age, family demographics such as spouse and children, expected

retirement, etc. Then the customer would be asked a series of questions that would determine

his/her tolerance and acceptability to risk. This is done either through selecting goals or deter-

mining a particular investing style. An algorithm used by the software would then determine a

recommended portfolio of ETF with a variety of asset classes (such as stock, bonds, etc.). The

algorithm's recommendation generally follows ten fundamental principles of asset allocation

(Lam, 2016) presented in Table 6.1.

6.1.2 Characteristics

Robo-advising platforms use an ETF based strategy to follow the principles noted above. ETFs

are a passive investment vehicle which allows its participants to take market exposure via in-

dex based strategies2. In passive indexing strategies follow the E�cient Market Hypothesis

(EMH) which in essence believes that all material, public and non-public information, is priced

in the current market valuation. The proponents of indexing strategies use the EMH to claim

that active management is unable to outperform a broad market based index as presented by

Malkiel (2003). Since indexing eliminates the need for excess portfolio analysis, rebalancing

and trading, it keeps internal costs much lower compared to an actively managed fund.

Liquidity is an important element to many sound �nancial strategies. Customers using robo-

advisors have the ability to retract their assets at any time. Given this limitation, robo-advisors

must select asset classes that are fairly liquid and stay away from classes such as private equity

as those funds are generally tied for certain time-frames. They also tend to limit their expo-

sure to actively managed mutual funds in order to keep internal costs low. As customers have

2For a detailed de�nition of indexing strategy see https://www.etf.com/publications/journalo�ndexes/joi-
articles/1791.html.
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Table 6.1: Fundamental Principles of Asset Allocation
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di�erent needs, risk pro�les and time horizons, robo-advisors will also select numerous asset

classes to satisfy their customer's situation (Lam, 2016).

Another characteristic of robo-advisors is adjusting portfolio drifts while still maintaining the

asset allocation. Volatility may cause an overweighting or under-weighting in an asset class

which may cause the portfolio to deviate from its benchmark. Due to the use of index funds,

robo-advisors are able to correct this drift without a�ecting returns. In comparison, actively

managed mutual funds would rebalance its holdings which could lead to a combination of issues

such as increased portfolio turnover, higher tax drag and possibility of lower net of fee returns.

On the other hand, robo-advisors in their strategies factor in the ETF costs along with the

spreads of bid-ask, which typically are lower for assets that are liquid and tradable. Lastly,

robo-advisors are able to minimize their tracking error risk which arises from the di�erence

between the target index and the index fund (Lam, 2016).

In robo-advising, trades are typically cleared through the robo-advisor's broker deal (i.e., a

traditional advisor may clear their trades through a clearing house, and then a trade is passed

onto the market maker or an exchange). Some robo-advisors have further advanced the trading

algorithms by incorporating a high frequency component to ensure e�cient pricing and timing

of the order. Once the client strategy is implemented, the portfolio is systematically realigned

to keep the asset allocation in line with his/her risk return pro�le (Lam, 2016).

In the US Tax-loss harvesting, is another value added feature that robo-advisors have been able

to capitalize on3.

3Tax-loss harvesting is achieved when a losing position is used to o�set gains while still maintaining a
portfolio's variance/covariance mix. While tax loss harvesting, a portfolio must remain sensitive to SEC's Wash
Sale Rule which does not allow to trade a security at a loss within 30 days before or after the sale of an identical
security. Algorithms claim they are designed in a way to work around the wash sale rule by selling something
at a taxable loss and then repurchasing comparable assets which would yield a similar risk return pro�le.
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6.2 The Human Component and In�uence of Behavioural

Finance

One obvious observation of robo-advising is the lack of human touch throughout the investment

process. The entire portfolio's rebalancing, monitoring and assessing are done via the algorithm

and then reviewed by humans to ensure their compliance with securities regulations. On the

customer side, the human element revolves around how much time and attention the customer

dedicates to answering the questionnaire as this determines the accuracy of the algorithm to

match a customer's needs. It also places a burden on the customer to notify the software of

any changes to their risk strategy or changes in the investment goals.

An important aspect of robo-advising and questionnaires are behavioural elements associated

with an investment decision making process. Most platforms agree that understanding investor

psychology and investors' expectations is important for creating a sound �nancial strategy

(FINRA, 2016).

The most important factor determining the client retention is the service quality from �nancial

advisors, besides the e�ective accomplishment of the goals set at portfolio level. Investors tend

to rely more on personal experience than marketing campaigns from �nancial services. This

evidence tends to focus advisors actions towards clients' experience when designing their strat-

egy approach on wealth (Lam, 2016).

Although clients' needs are per nature individual and speci�c, �nancial advisors try to reach

some level of standardization. They use segmentation by aggregating homogeneous groups by

needs and expectations. The most common factors for criteria are:

• Geographic

• Demographic;

• Psychographic;

• Client's pro�tability;

• Client's wealth.



6.2. The Human Component and In�uence of Behavioural Finance 107

The least important in knowing clients' needs and expectations is wealth. When clients do

not di�er with respect to their aversion toward uncertainty, which is the main feature of their

preferences, they should receive the same advice independently on their wealth. The absolute

measure of wealth may have some constrains but when dealing with ETF there are no limita-

tions when implementing investment strategies (Fish et al., 2017).

A relevant argument is the distinction between clients' decisions which are driven by their

preferences and those that are driven by psychological biases. This is also the reason why

it is important for advisors to understand how their clients make �nancial decisions. Not

understanding behaviour biases may result in inappropriate �nancial advising. In fact, clients'

loss aversion may enhance protective strategies, like portfolio insurance, but the key point is

to derive from the questionnaires levels of loss aversion and degrees of "greed"/aspirations,

making the complete process adherent under a valuation framework.

Table 6.2: Bias irrational

This perspective is important for establishing a link between the clients' needs and certain

�nancial objectives because the typical perception is that traditional �nance de�nes a rational
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benchmark, and all behaviourally motivated decisions of the clients are irrational. This is the

frontier between a framework for rational and irrational investors.

Advising is helping clients to rational decisions, which are consistent with their needs and

preferences. Although some theories de�ne a strict framework for rationality, as discussed in

previous chapters, this may not �t clients' needs. The challenge is how advisors calibrate the

theoretical framework with a sound and clear classi�cation on clients' needs and perceptions.

Another frontier is how algorithms used by robot-advising incorporate these features on their

questionnaires. Trust still is a very important factor when selecting a �nancial advisor, therefore

using algorithms is a new approach on the market that is making a steady and consolidating

path towards matching clients' needs and �nancial outcomes.

6.3 Analysis of On-line Platforms and Risks

The following exhibit compares standard features of the sample of �ve robo-advisors selected

for analysis. The selection was limited due to access conditions to account opening process

and data availability on risk pro�ling, regardless of robo-advising capabilities to provide an

end-to-end process from advising to investing.

Table 6.3: Assessment of on-line platforms
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The tables in the appendix include a compilation of questions presented by the 5 robot-advising

companies. In our analysis we aggregated them in four behaviour vectors: expectations, risk

ability, risk preference and risk awareness. The more complete questionnaires into behaviour

approach are marked with colour, the less matching ones are identi�ed with grey.

In our opinion the reason for these di�erences is not an incomplete algorithm, but rather a

strategy de�ned by these �nancial providers where subjective biases may be subject to a lighter

or deeper analysis.

Robo-advisors rebalance funds using threshold-based rebalancing. Threshold rebalancing will

rebalance a portfolio once any asset class deviates from a speci�ed percentage or target volatility.

Robo-advising on-line platforms' algorithm will automatically trade assets to bring the portfolio

back to its optimal asset mix relevant to its investor's objectives. Another important item to

consider is an investor's target, which changes with time. As time passes, the investors risk

tolerance and time horizon will also change (QPLUM, 2016).

To create the portfolio on each robo-advising platform we took the following steps:

1. Each question asked by the robo-advising platform was evaluated

2. Based on the answers to the risk evaluating questionnaires, each robo-advisory recom-

mendation was noted.

3. The risk level was checked due to di�erent options of each question.

4. Based on the risk appetite of the user three types of pro�les were created.

(a) Conservative: This pro�le was created for a consumer who has a very low level of

risk exposure. These assets are mostly used for retirement funds that are expected to

have low volatility and high liquidity. Asset allocation of these portfolios generally

tend to have low percentage allocations to speculative asset classes.

(b) Moderate: This pro�le was created for a consumer who has a medium level of risk

exposure and targets to attain returns at market level. Consumers with this risk

appetite are mostly seeking to invest for saving purposes and funds may not be

needed for immediate needs. This portfolio is expected to have a moderate amount
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of investments in speculative asset classes with some volatility and medium term

liquidity.

(c) Aggressive: This pro�le was created for a consumer who has a high level of risk

exposure and is seeking to earn returns higher than the market. This consumer

is seeking to invest generally for wealth creation that is long term in nature while

utilizing speculative and long term growth strategies. This portfolio is expected to

have a high degree of allocation in speculative asset classes with a high volatility

and low liquidity.

Investors face many risks in the market, however the following ones are those that are speci�c

to the robo-advisory platforms compared in this work.

Table 6.4: Market Risks - Adapted from GARP: Risk Concepts

After the selection of stylized investors' pro�les the next step in the analysis focused on port-

folio recommendations provided by each robo-advisory platform.
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In most platforms a portfolio is created by the algorithm which constructs an asset allocation

and provides the associated weighted percentages to those asset classes relevant to each pro�le.

In some robo-advising platforms the underlying assets were not clearly de�ned, in which case

a comparable ETF or an index was used to map the risk.

The indexes are outlined in Table 6.5 and are mapped according to their primary and secondary

risk. The assets used for portfolio construction were assessed. The primary purpose and the

assets underlying those ETFs and indexes are considered and mapped to those relevant risks

mentioned above. The next step assessed each portfolio's asset classes and determined its

primary and secondary risks relevant to each of the Index and ETF. It should be noted that

some of the ETFs and indexes may have multiple risk exposures, but on this work only primary

risk drivers were mapped.

As all robo-advising platforms use ETFs or indexes to create their asset allocation plans, we

back tested each portfolio using 10 years of price data of various indexes. In some instances,

the advice only mentioned a broad asset class without a speci�c investment recommendation.

In those instances was selected a liquid ETF or an index which aligned with the risk return

pro�le of the asset class. In some cases, when historical prices were not available for indices,

the prices from the secondary indices were used to complement the price history. Secondary

indices that are chosen have a similar asset class pro�le as the primary index they are trying

to complement. In this way we can obtain a more sound price information and capture more

market trends 4.

All the return calculations were done at the monthly frequency of the underlying ETFs and

indexes. Returns of each ETF and index were aggregated at the portfolio level to get the

monthly return of the portfolio. The return aggregation of the portfolio was done based on the

portfolio weight given by the robo-advisory platform. After this, log returns were computed

on a monthly frequency and �nal aggregated returns were done for 1 year and 5 years. We

4For example, in one of the portfolios, VOO-Vanguard S&P 500, with an inception date of September 30th
2010 was substituted with SPY- SPDR S&P 500 ETF Trust which has inception date in 1993. It should be
noted that the sources for all price information are Thomson Reuters or Yahoo Finance's database.
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Table 6.5: Mapping risks and indexes

assumed that dividend and interim cash �ows amongst all indexes are reinvested.

Portfolio volatility was computed using the standard deviation of the log returns previously
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computed. The volatility was annualized to get the �nal value. The �nal volatility �gures

attributed to various underlying risks such as equity risk, currency risk, commodity risk, in�a-

tion risk and interest rate risk were computed from the weights assigned by the robo-advising

platforms and the volatility of that ETF and Index. The assumption was made that there is

one primary market risk to each index or ETF. Additionally, we assumed that there is zero

correlation between the various market risks mentioned above. The calculations consist of one

year, �ve year and ten year volatility for the given portfolios. One year volatility risk was fur-

ther segmented to re�ect equity risk, currency risk, commodity risk, in�ation risk and interest

rate risk of the portfolio.

The following performance measures were used to evaluate portfolio recommendations.

• Worst return in 10 year period

• 5% historical Value at Risk

• 10% historical Value at Risk

• 1 year Sharpe ratio

• 5 year Sharpe ratio

• Risk pro�le of the return

Table 6.6: Assessment of on-line platforms - Wealthfront
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Table 6.7: Assessment of on-line platforms - Charles Schwab

Table 6.8: Assessment of on-line platforms - SigFig

Results from the risk pro�le derived from platform questionnaires are not consistent with the

expected results, neither on a 1 year nor on a 5 year period. Thus it is clear the possible incon-

sistencies between the life style aspirations with the strategies delivered from this automatic

risk pro�ling techniques. It is unclear how these mismatchs are impacting the wealth growth of
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Table 6.9: Assessment of on-line platforms - Tolerisk

Table 6.10: Assessment of on-line platforms - Riskalyze

investors' portfolios. They may be piling up implicit losses when opting by theses �automatic�

strategies.

The cross-sectional analysis sets the grounds to quantify potential mismatches between speci�c

individual aspirations and strategies that are not delivering those objectives. The probable
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Figure 6.1: Results - Conservative portfolios

Figure 6.2: Results - Moderate portfolios

Figure 6.3: Results - Aggressive portfolios

cause of potential mismatches may be the fact that platforms are not capable of capturing the

individual risk pro�le on on-line questionnaire. One of the reasons is that there may be some

incomplete behaviour factor missing on questionnaires.

The three risk pro�les used for all robo-platforms come up with di�erent asset allocations. The

divergence between this approach on a risk-return selection has some pitfalls. The possibil-

ity of introducing some dynamic approach for securing some level of protection is something

that needs to be thoroughly analysed as the same stylized investor may end up with severe

di�erences after being pro�led in several platforms.
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Table 6.11: Summary results
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6.4 Limitation of Robo-Advising

While automation is one of the largest strengths of robo-advising, it also has its shortfalls. The

shortfall arises when a complex scenario such as estate, trust or endowment planning is needed.

For example, an estate plan will typically involve an understanding of wills, estate taxes, state

death taxes (if applicable), along with current regulations. The idea behind robo-advising is

lowering fees, but if investors have to supplement their robo-advisor with advising they may

end up spending more than if they would have used a traditional advisor.

Another limitation of robo-advising is that the portfolio is created based on static information

that is relevant at a given point in time. Traditional �nancial advisors adjust portfolios in or-

der to match a client's ever-changing �nancial situations. Although robo-advisors do not have

face-to-face interaction, their algorithms do not lack an ability to tailor a portfolio strategy. For

example, if an investor already has an income based rental property, the portfolio recommenda-

tion would minimize its exposure to income driven asset classes such as Real Estate Investment

Trust (REIT) or corporate bonds.

The robo-advisor platforms consider factors that are signi�cant to an investor's �nancial needs.

These recommendations are completely determined by the depth of questionnaires used by

each platform. A second factor is how thorough the answers to the questions are and if the

pre-selected �elds used to answer the questions are 100% matching the client's individual situ-

ation. The robo-platforms also consider the type of account an investor is seeking advice for.

In the United States, for tax sheltered accounts, robo-advisors may recommend corporate debt

as opposed to a taxable account, they may recommend municipalities which have similar tax

equivalent yields. This element of the strategy would allow an investor to optimize his/her tax

burden. Some platforms are focused on goal-based investing, in which a strategy is designed

to manage his/her investment objectives while keeping costs and expenses low. Therefore, it is

evident that robo-platforms have the capability to constantly adjust and address the changing

needs of an investor (Lam, 2016).
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In relation to investors' protection, either on the capability of the �nancial services �rms pro-

viding robo-advising, or at the wealth investment security, there are limitations that individual

investors should be aware of (FINRA, 2016). These are related with safety of investments and

also with the necessary due diligences on �nancial �rms. Although �nancial literacy is a rel-

evant topic on �nancial decisions, there is potential for the inability to correctly describe the

relationship between investors and robo-advisor �rms (Strzelczyk, 2018) specially on �duciary

duties. The potential to better alignment between investor targets and robo-advisors is being

tested, as its popularity is growing, but there are signs that portfolio management improve-

ments are possible and some of the pitfalls derived from pervasive behavioral biases can be

reduced (D'Acunto et al., 2017, Shefrin, 2016).

6.5 Conclusions

Humans tend to execute decisions based on emotions which can end up costing their portfolios.

These emotions can be triggered by biases or swift decisions due to changes in the market.

With robo-advising, the emotional component is removed because all decisions are based on

objective data that an algorithm utilizes to determine the most e�ective asset allocation.

Over the last several years, quasi-robo advising models have begun to show at the traditional

investment houses. A hybrid model has been implemented, which contains asset management

advice from robo-platforms along with over-the-phone human advisory support. With an age-

ing population transferring assets to millennial, these individuals are more susceptible to use

internet based platforms for most of their �nancial needs.

For larger institutions, complete replacement of human advisors seems unlikely but they will

be in�uenced by a few items. First, as arti�cial intelligence evolves, the software will be de-

signed to handle more complex, tougher strategies, whereas the current robo-platforms are not

equipped to handle these scenarios. Second, how ETF-based investing will perform during a

�nancial crisis. Lastly, the levels of trust humans are willing to have on a fully automated
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investment platform will determine how fast robo-advising is integrated.

These large �nancial institutions face both a challenge and an opportunity, especially given

the costs associated with marketing and acquiring new clients. In a human advisory model,

the burden of acquiring new assets is placed on the �nancial advisor and their team. As �rms

shift towards cost cutting models, they have started to incorporate Business to Business to

Consumer (B2B2C) models in which robo-advisory �rms partner with traditional wealth man-

agement institutions to gain access to their customer base (particularly those sensitive to cost

and not in need of a particularly sophisticated investment strategy).

Robo-advising platforms although still within their early phases of development, have gained

quite a bit of traction within the wealth management sector. From our analysis we expect

robo-advisory platforms will continue to evolve over the years. As technology evolves, the

robo-advisory platforms may continue to experience an up-tick. This could be a�ected given

the millennial preference for on-line based services. If the focus remains on cost cutting elements

then passive indexing strategies could remain a viable option. Another important component is

the regulatory landscape and its evolution. In this sense, the focus that regulatory frameworks

take into the role of asset managers, depositories, custodians, exchanges, must go beyond the

nature of the supervisory of markets to the conduct of the �rms managing the robo-advisory

platforms. The value chain of these emergent �nancial services is unclear regarding the �duciary

duties and is necessary a clari�cation due to the velocity of technological evolution. However,

risk pro�ling is still a very grey area when �nancial literacy is not robust enough for investors to

comprehend the pitfalls of a wider class of protective strategies, that include portfolio insurance.

The setting of protective strategies by robo-advisers is still under analysis and remains yet a

concern. As an example, in our study the risk/return outputs obtained from the platforms for

the same set of investors' characteristics were very di�erent. The level of complexity neces-

sary for de�ning �oors and risk leverage (multipliers) can be developed but the density of the

questions and cross-checks could discourage investors to go through questionnaires, opting to
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interact with their investment advisor.

The existence of stylized investors with di�erent risk pro�les allowing the industrialization of

the asset allocation process, may limit the capital protection strategies that are still attracting a

large number of investors, as is the case of portfolio insurance. However we are seeing innovation

using arti�cial intelligence and machine learning that can trigger the o�er of downside protective

strategies. These areas are evolving and, along with regulation, there is a need to deeper

research on such dynamic topics.
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Conclusions

Summary of Thesis Achievements

The wide use of protective strategies like portfolio insurance re�ects the wish of safe-harbours

and simultaneously the eagerness of capturing market gains by investors. The conciliation of

this two objectives comes with a cost which is relevant whenever there are imbalances in �nan-

cial markets. There are records of such moments but investors still allocate assets into these

portfolio insurance strategies.

Under EUT framework, general results reveal a risk exposure towards the risk free - �y to safety

- on investors with medium to high level of risk aversion. As the level of risk aversion decreases,

the return seeking investments tend to become more attractive as the return per unit of risk

is perceived with higher utility. Investors with decreasing level of risk aversion, depending on

market conditions, tend to exhibit a safety attitude bene�ting protective strategies (the more

simple portfolio strategies like CPPI and TIPP) in more volatile conditions. On less volatile

conditions investors seek return and show more exposure to risky assets.

These results on investors with descriptive utility functions support the idea that there are

not potential buyers of portfolio insurance strategies, except in very speci�c market conditions:

scenarios of low expected returns and increasing volatility. That situation is also visible under

MVA, where linear utility functions points to a �ight to safety and some valuation on protective

strategies with upside potential.
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As some of the portfolio insurance solutions are complex investments that need to match with

individual investors risk pro�le, the absence of clear circumstances where these strategies are

demanded by investors should encourage �nancial institutions to avoid mis-selling.

However, as we change the framework for decision making towards prospect theory by Kahne-

man and Tversky (1979, 1992), results in positive market conditions (i.e. expected positive risk

premium), strengthens the possibility that cumulative prospect theory may explain investors'

choices.

The speci�c decisions of portfolio insurance are, nonetheless, highly dependent on the market

conditions and characteristics of each portfolio insurance strategy�e.g., the reduction of the

percentage �oor from 100% to 80% depicts a shift from SLPI to CPPI strategies.

To the best of our knowledge, based on such innovative approach that compares the value

perceived by investors between expected utility and prospect theories, we �nd that cumulative

prospect theory is a viable framework to explain the popularity of portfolio insurance invest-

ments.

In spite of these results, we understand that it is necessary further analysis regarding the higher

cumulative prospect values for SLPI strategies against CPPI. In future research we will review

determinant factors for investment decision such as time horizon, portfolio management costs

and tax.

The framework of behavioural �nance may be the relevant factor to explain the selection of

portfolio insurance strategies by individual investors. This rational behaviour fuels a market

where there is a trend towards automatic platforms to help investors on the de�nition of their

risk pro�les and the selection of strategies to accomplish either their aspirations or objectives.

Future Work

The evolution of portfolio management for individual investments has been speeding towards

algorithms and arti�cial intelligence, but we are still anchored into personal and human be-
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haviour. The loss aversion is striving new investment allocations and dynamic management,

however investors must be aware of the crisis that wiped out personal savings allocated to �-

nancial assets. Due to this situation there are three areas for future work that, in our opinion,

need to be addressed:

1 Analysis in continuous time framework to develop analytical models, specially to integrate

life cycle and protective solutions;

2 Augment the numerical analysis towards structured products in the area of capital pro-

tection solutions;

3 Development of risk pro�ling methodologies that mitigate future gaps between strategies

suggested by robo-advisors algorithms and long term savings objectives.

Based on the �ndings of protective strategies and the high level of digitalization in the wealth

management industry these topics are becoming extremely relevant for �nancial policies. This

is specially true on the oversight of markets and institutions, with the view to promote �nancial

stability, market e�ciency, and client-asset and consumer protection.
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