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Abstract

Successful data assimilation depends on the accurate estimation of forcing data uncertainty. 

Forcing data uncertainty is typically estimated based on statistical error models. In practice, the 

hyper-parameters of statistical error models are often estimated by a trial-and-error tuning 

process, requiring significant analyst and computational time. To improve the efficiency of 

forcing data uncertainty estimation, this study proposes the direct use of existing ensemble 

climate products to represent climate data uncertainty in the ensemble Kalman filter (EnKF) of 

flow forecasting. Specifically, the Newman et al. (2015) dataset (N15 for short), covering the 

contiguous United States, northern Mexico, and southern Canada, is used here to generate the 

precipitation and temperature ensemble in the EnKF application. This study for the first time 

compares the N15 generated climate ensemble with the carefully tuned hyper-parameters 

generated climate ensemble in a real flow forecasting framework. The forecast performance 

comparison of 20 Québec catchments shows that the N15 generated climate ensemble yields 

improved or similar deterministic and probabilistic flow forecasts relative to the carefully tuned 

hyper-parameters generated climate ensemble. Improvements are most evident for short lead 

times (i.e., 1-3 days) when the influence of data assimilation dominates. However, the analysis 

and computational time required to use N15 is much less compared to the typical trial-and-error 

hyper-parameter tuning process.  

KEY WORDS: Climate data uncertainty; hyper-parameter tuning; ensemble Kalman filter 

(EnKF); short-term ensemble flow forecasting; Newman et al. (2015) dataset
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1. Introduction

Ensemble Kalman filter (EnKF) is a sequential data assimilation technique that was proposed by 

Evensen (1994) as an alternative to the extended Kalman filter. The EnKF uses an ensemble of 

simulations to represent the distribution of the system state and replaces the covariance matrix by 

the sample covariance . It is hence well suited to highly nonlinear models (catchment 

hydrological models in our case) as noted in other studies (McMillan et al., 2013; Reichle and 

Koster, 2003). The EnKF has many variants, such as using a pair of ensemble Kalman filters 

(Houtekamer and Mitchell, 1998), a hybrid techniques that combine the EnKF with the 3D 

variational method (Hamill and Snyder, 2000) or with the variance redactor (Heemink et al., 

2001), an ensemble square root filter (Tippett et al., 2003), and a bias-aware retrospective EnKF 

(Pauwels et al., 2006). These methods all need an ensemble of simulations to represent the state 

ensemble and model error covariance.

The background error of the state ensemble, before updating, includes internal error and external 

error. Both are worth considering in the state ensemble generation of the data assimilation. The 

internal error is introduced by the use of imperfect initial conditions, and the external error refers 

to the model deficiency (Evensen, 1994). In the EnKF, an ensemble of initial conditions can be 

generated by adding random noise to the best guess initial conditions or by repeating the warm-

up procedure with changed forcing data and/or model parameters (Evensen, 1994; Reichle and 

Koster, 2003). In the simplest form, the EnKF only accounts for the background error associated 

with initial conditions (Evensen, 2003; Hamill and Snyder, 2000; Tippett et al., 2003). The 

external error can be incorporated by either treating the model deficiency as a whole and adding 

random noise to deterministic model outputs, or explicitly accounting for different sources of 
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model errors, such as model parameter errors, data errors, and structure errors (Del Giudice et al., 

2015; Kumar et al., 2016; Liu and Gupta, 2007). This paper focuses on explicitly accounting for 

measured climate data uncertainty in the EnKF, which is one part of the external error. For the 

remainder of this paper, climate data uncertainty and climate ensemble will both refer to the 

measured historical climate. In contrast, ensemble flow forecasting also can involve climate 

forecast uncertainty and a corresponding forecasted climate ensemble. 

In the EnKF applications of flow forecasting, the most common way of explicitly accounting for 

climate data uncertainty is treating climate variables as random variables and perturbing climate 

variables with stochastic errors. In most studies, the error is additive or multiplicative and is 

assumed to be Gaussian with a predefined constant or proportional variance (Khaki et al., 2017; 

Rasmussen et al., 2015; Weerts and El Serafy, 2006). Some other probability distributions and 

stochastic processes are also utilized to generate climate errors (Abaza et al., 2014b; Dunne and 

Entekhabi, 2006; Eicker et al., 2014; Leisenring and Moradkhani, 2011). Although the 

predefined error models are easy to construct, they may not reflect the best estimates of the true 

climate. For example, the common multiplicative stochastic error model approach (e.g., Kavetski 

et al., 2006a) has the inherent deficiency that it is unable to quantify measurement uncertainty 

when no rainfall is recorded, which can be especially important in poorly gauged areas (Wright 

et al., 2017). Another problem is that the distribution variances and stochastic model parameters 

are often subjectively determined based on the order of magnitude or user’s experience of 

uncertainty (Rasmussen et al., 2015; Reichle et al., 2002). 
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A solution to reducing the subjectivity in determining climate errors is hyper-parameter tuning, 

also known in the literature as filter calibration, filter tuning, and EnKF optimization (e.g., Khaki 

et al., 2017; Reichle and Koster, 2003; Thiboult et al., 2016). In the context of the EnKF, hyper-

parameters refer to the parameters of the prior error distributions. Hyper-parameter tuning is a 

process that recursively tries various sets of hyper-parameter values until the optimal filter 

performance or forecast performance is found. A typical example is in Reichle and Koster (2003) 

where a lognormal distributed error is used to perturb measured precipitation values. The 

standard deviation of the error distribution is determined by trying a selection of standard 

deviation values until the best filter performance is achieved. The filter performance is assessed 

by the root mean square error (RMSE) of the aggregated difference between the true state and its 

EnKF estimate over all catchments. In addition, many studies conduct climate relevant hyper-

parameter tuning with other processes to improve the characterization of the background error, 

such as adjusting the hyper-parameters of system response observation errors (e.g., streamflow 

errors) (Clark et al., 2008; Reichle and Koster, 2003; Wang et al., 2017), and choosing ensemble 

size and state variables (Thiboult et al., 2016; Wang et al., 2017).

In addition to the manual hyper-parameter tuning, there are some advanced approaches to reduce 

the subjectivity of climate uncertainty estimation in flow prediction. The main idea behind these 

advanced approaches is to infer the climate relevant hyper-parameters with hydrological model 

parameters based on automatic calibration algorithms. For example, in Bayesian inference, the 

input error is expressed by an error model. The likelihood function is adjusted to incorporate the 

input error so that the hyper-parameters can be inferred with hydrological model parameters via  

Bayesian inference (Del Giudice et al., 2016; Kavetski et al., 2006a, 2006b, Renard et al., 2011, 
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2010a; Sikorska et al., 2012). Another example is to simultaneously conduct model calibration 

and data assimilation (e.g., EnKF and particle filter). The hyper-parameters and hydrological 

model parameters are updated either simultaneously with the states within the assimilation 

(Moradkhani et al., 2005; Salamon and Feyen, 2010, 2009) or out of each assimilation loop 

(Vrugt et al., 2005). 

These advanced approaches are essentially calibration algorithms that explicitly consider climate 

uncertainty in parameter inference. In contrast, the previously introduced hyper-parameter tuning 

is separate from model calibration and is implemented with fixed hydrological model parameters. 

To our knowledge, the manual hyper-parameter tuning is more popular than any advanced 

approaches in EnKF based flow forecasting. The main reason is that it is still uncommon for 

people to explicitly consider climate data uncertainty in model calibration, so the advanced 

approaches have not been widely applied in practice. Moreover, very few of these advanced 

approaches have been set up and validated in the real flow forecasting with forecast climate and 

data assimilation. For instance, the Bayesian inferred climate hyper-parameters are rarely used to 

generate the climate ensemble for the EnKF. In contrast, in the literature, there are numerous 

studies adopting the hyper-parameter tuning in EnKF based flow forecasting (e.g., see Abaza et 

al., 2014a; Li et al., 2014; McMillan et al., 2013; Noh et al., 2014; Reichle et al., 2002; Reichle 

and Koster, 2003; Thiboult et al., 2016). For example, Thiboult et al. (2016) use hyper-parameter 

tuning to estimate climate uncertainty because they determined hydrological model parameters 

before data assimilation without considering climate uncertainty. Therefore, the tuned hyper-

parameter approach is taken as the baseline approach to compare our new approach with in this 

study.
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Although hyper-parameter tuning largely solves the subjectivity problem of determining climate 

errors, it has three limitations. The first is the intensive time and computational cost that users 

have to spend in the iterative application of data assimilation and forecasting to evaluate filter or 

forecast performance and find the optimal hyper-parameters for each case study (McMillan et al., 

2013; Noh et al., 2014; Slater and Clark, 2006). This issue is due to the ad hoc nature of the 

hyper-parameter tuning operation. The second limitation is that hyper-parameter tuning mixes 

the climate uncertainty estimation with the data assimilation and flow forecasting processes. 

Climate data uncertainty is mostly caused by measurement errors, so its uncertainty estimation 

depends on measurement errors. However, hyper-parameter tuning determines climate 

uncertainty after running data assimilation and flow forecasting, the resultant hyper-parameter 

values may vary with the factors, such as the tuning and data assimilation method, and the 

climate forecast, which are irrelevant to the climate variable measurement. A consequence of this 

issue is that sometimes the climate errors are overestimated to compensate other model or initial 

condition errors and to eventually ensure good filtering and forecast performance (Clark et al., 

2008; Evensen, 2007; Thiboult and Anctil, 2015). This is essentially getting the right results for 

wrong reasons. The third issue is the lack of consideration of the spatio-temporal correlation in 

generating climate errors. It is easy to understand that accounting for the spatio-temporal 

correlation gives a better description of the true climate. A better climate ensemble gives a better 

description of background error and thereby a better filter performance (McMillan et al., 2013; 

Rasmussen et al., 2015; Reichle and Koster, 2003). In practice, most EnKF applications neglect 

the climate spatio-temporal correlation (e.g., Abaza et al., 2014; Eicker et al., 2014; Rasmussen 

et al., 2015; Thiboult and Anctil, 2015; Whitaker and Hamill, 2002). Part of the reason is for 
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simplicity, but the more important reason is that the spatio-temporal correlation characteristics of 

the uncertain climates are unknown beforehand and hard to quantify (Rasmussen et al., 2015). In 

the very few studies that account for the correlation(s), the temporal correlation is typically 

modelled with an autoregressive model of order one, and the spatial correlation is computed by 

the nested grid approach or the Fourier transform (Clark et al., 2008; Reichle and Koster, 2003; 

Tangdamrongsub et al., 2015). 

Given these limitations of hyper-parameter tuning, a small number of studies have tried to avoid 

it by generating a climate ensemble (and a system response observation ensemble) before the 

EnKF phase. Slater and Clark (2006) and Clark et al. (2006) generate precipitation and 

temperature ensembles prior to the EnKF, based on a geo-statistical method introduced by Clark 

and Slater (2006). Huang et al. (2017) directly use the 100 members of a historical ensemble 

climate dataset developed by Newman et al. (2015) to force their hydrological model in the 

EnKF. The latter dataset is generated by following the geo-statistical method of Clark and Slater 

(2006) but making several modifications, among which the foremost is incorporating the 

temporal correlation in the spatially correlated random field generation (Newman et al., 2015). 

For short, the Newman et al. (2015)  dataset is referred to as N15 in the remainder of this paper. 

Although N15 has been used in some applications, more precisely, seasonal streamflow 

simulations (not forecasting), it has not yet been established that it yields better streamflow 

forecasting than the carefully tuned hyper-parameters based climate ensemble. The answer to 

this question has wide implications for the applications of the EnKF and its variants. If N15 

produces the practically same forecasting results as the carefully tuned hyper-parameters do, then 

the subjective and arduous hyper-parameter tuning practice can be eliminated.  The  saved time 
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can instead be used to further enhance forecast performance in other ways, such as improving the 

model parameters and structure, and taking into account the other model errors in filter 

calibration. 

Therefore, the objectives of this study are to: (1) compare the climate ensemble generated by 

N15 with the climate ensemble generated by carefully tuned hyper-parameters, and (2) compare 

their flow forecast results over a large number of catchments in the EnKF based ensemble flow 

forecasting. This is the first study to compare the N15 generated ensemble with the carefully 

tuned hyper-parameters generated climate ensemble in a real flow forecasting framework. The 

tuned hyper-parameters and corresponding flow forecasting results are taken from Thiboult et al. 

(2016), and relevant details are provided here in Section 2 and Section 3.

   

The remainder of the paper is organized as follows. Section 2 describes in detail the EnKF 

method, forecasting experiments, and two comparative approaches of generating climate 

ensembles. Section 3 presents the comparison results and discussion of the climate ensembles 

and the flow forecasts over 20 Québec catchments. Conclusions and future work can be found in 

Section 4.  
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2. Methods and Data

2.1. Ensemble Kalman Filter

This section provides a brief summary of the EnKF algorithm. More information about the EnKF 

equations and mathematical background can be found in Evensen (2003) and Houtekamer and 

Mitchell (2001). The state vector  evolves according to: 𝐗

                                               (1)𝐗 ‒
𝑡 = 𝐌𝑡(𝐗 +

𝑡 ‒ 1, 𝐔𝑡, θ) + 𝛈𝑡  

where  and  represent the prior and posterior estimates of the state, respectively.  is the 𝐗 ‒ 𝐗 + 𝐌

non-linear forward operator forced by the previous state, the climate input , and the model 𝐔

parameter .  is the model error due to uncertainties in model structure, model parameters,  θ 𝛈

initial conditions, and input data. 

The state is transformed to the system response observation  by: 𝐙

                                                                 (2)𝐙𝑡 = 𝐇𝑡(𝐗 ‒
𝑡 ) + 𝛜𝑡

where  is the observation operator that converts the model state to the observation.  is 𝐇  𝐇(𝐗 ‒ )

the prior estimate of the system response.  is the response observation error.   𝛜

When a response observation is available, the model state can be updated as a weighted average 

between the prior state and the difference between the prior estimate and observation of the 

system response: 

                                                   (3)𝐗 +
𝑡 = 𝐗 ‒

𝑡 + 𝐊𝑡(𝐙𝑡 ‒ 𝐇𝑡(𝐗 ‒
𝑡 ))

where  is the Kalman gain.  functions as the weight in a state update and is calculated by:𝐊 𝐊
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                                                  (4)𝐊𝑡 = 𝐏𝑡𝐇𝑇
𝑡(𝐇𝑡𝐏𝑡𝐇𝑇

𝑡 + 𝐑𝑡)
‒ 1 

where  is the covariance of the state error, and  is the response observation error covariance. 𝐏 𝐑

When solving the Kalman gain, Houtekamer and Mitchell (2001) propose calculating  and 𝐏𝐇𝑇

 directly from the ensemble members, rather than calculating each element of Equation (4):𝐇𝐏𝐇𝑇

                                 (5)𝐏𝑡𝐇𝑇
𝑡 =

1
𝑁 ‒ 1∑𝑁

𝑖 = 1(𝐗 ‒
𝑡,𝑖 ‒ 𝐗 ‒

𝑡 )[𝐇(𝐗 ‒
𝑡,𝑖) ‒ 𝐇(𝐗 ‒

𝑡 )]𝑇

                       (6)𝐇𝑡𝐏𝑡𝐇𝑇
𝑡 =

1
𝑁 ‒ 1∑𝑁

𝑖 = 1[𝐇(𝐗 ‒
𝑡,𝑖) ‒ 𝐇(𝐗 ‒

𝑡 )][𝐇(𝐗 ‒
𝑡,𝑖) ‒ 𝐇(𝐗 ‒

𝑡 )]𝑇

 where  is the ensemble size , and 𝑁 (𝑖 = 1,…, 𝑁)

                                                               (7)𝐗 ‒
𝑡 =

1
𝑁∑𝑁

𝑖 = 1𝐗 ‒
𝑡,𝑖

                                                       (8)𝐇(𝐗 ‒
𝑡 ) =

1
𝑁∑𝑁

𝑖 = 1𝐇(𝐗 ‒
𝑡,𝑖)

Since the focus of this research is investigating the influence of different climate ensembles on 

flow forecasting, it is important to clarify how the change of climate inputs affects the EnKF. 

Changes in the input  will be firstly passed to the prior state  according to Equation (1). 𝐔 𝐗 ‒

Change of state estimate  will then affect the prior estimate of system response  based 𝐗 ‒ 𝐇(𝐗 ‒
𝑡 )

on Equation (2) and finally affect the state update based on Equation (3).

2.2. Hydrological Model

Thiboult et al. (2016) use 20 hydrological models to account for model structure uncertainty in 

ensemble flow forecasting, arguing that different hydrological models may compensate each 

other in terms of the overall forecast performance. Since the focus of this study is on the climate 
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ensemble, the multi-model approach is not retained to ensure that the different sources of 

uncertainty are disaggregated. A single hydrological model, GR4J (Génie Rural à 4 paramètres 

Journalier) model, corresponding to the 5th model of Thiboult et al. (2016), is chosen to provide a 

fair comparison of the different climate ensembles. 

The GR4J model is a daily time-step, lumped four-parameter rainfall-runoff model. It is 

proposed by Perrin et al. (2003) and has been applied in numerous studies (e.g., Demirel et al., 

2013; McInerney et al., 2017; Renard et al., 2010). In GR4J, basin processes are described by a 

production store and a routing store. The model includes a conceptual representation of the main 

hydrological processes such as percolation, routing, and groundwater exchange. GR4J takes the 

precipitation depth and the potential evapotranspiration as input.

In addition, two methods are employed to provide necessary driving forces for GR4J in Thiboult 

et al. (2016). The precipitation depth is calculated by the two-parameter snow accounting routine 

Cemaneige (Valéry et al., 2014) that is driven by daily precipitation and air temperature and 

generates the amounts of rain and snowmelt of the catchment. The potential evapotranspiration is 

estimated by a conceptual formula proposed by Oudin et al. (2005) based on air temperature and 

calculated radiation.

There is a total of six parameters in the hydrological model - four in GR4J and two in Cemaneige. 

The parameter values for each catchment are taken from Thiboult et al. (2016) who determined 

the optimal parameter sets by minimizing the root mean square error between the simulated and 
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observed flows over the 1990-2000 period with the shuffled complex evolution calibration 

method (Duan et al., 1992).

2.3. Research Area and Data 

Our research is conducted on the same 20 catchments as Thiboult et al. (2016) that are located in 

southern Québec, Canada. The 20 catchments have different physiographic characteristics and 

hydrological responses. Some main characteristics are listed in Table 1.  

Table 1. Main characteristics of the 20 Québec catchments.  and are the observed streamflow 𝑄 𝑃
and precipitation, respectively (from Table 1 of  Thiboult et al. (2016)).

No. River name Area 
(km2)

River 
length 
(km)

Average 
slope (%)

Mean 
ann.  𝑸
(m3/s)

Coeff. of 
variation 
of 1𝑸

Mean 
ann.  𝑷
(mm)

Mean ann. 
Snow 
(cm)2

1  Trois Pistoles       923 52 0.52 18 1.81 1109 382
2  Du Loup              512 45 0.78 10 1.47 1050 378
3  Gatineau             6796 190 0.12 127 1.08 1023 332
4  Dumoine              3743 145 0.13 50 0.81 968 297
5  Kinojevis            2572 83 0.12 39 1.12 921 324
6  Matawin              1383 68 0.29 24 1.11 1025 328
7  Croche               1551 102 0.33 29 1.24 996 360
8  Vermillon            2650 145 0.20 39 1.10 957 312
9  Batiscan             4483 167 0.45 96 1.03 1162 381
10  Sainte Anne          1539 84 0.81 51 1.20 1412 502
11  Bras du Nord         643 77 0.82 19 1.21 1385 499
12  Du loup              767 57 0.78 12 1.27 1020 332
13  Aux Ecorces          1107 54 1.04 28 1.09 1236 450
14  Metabetchouane       2202 155 0.43 48 1.19 1168 420
15  Peribonka            1010 101 0.50 19 1.16 1000 376
16  Ashuapmushuan        15342 342 0.16 300 0.92 984 379
17  Ashuapmushuan        11200 232 0.12 227 0.88 1001 394
18  Au Saumon            586 69 0.65 8 1.36 877 334
19  Mistassini           9534 278 0.20 200 1.08 1004 409
20  Valin                761 59 1.06 24 1.13 1123 453
Note: 1. Coefficient of variation is the ratio of the standard deviation to the mean. It shows the extent of 
variability relative to the mean for daily flow. 2. Mean annual snow is the average yearly snowfall depth. 
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Measurements of streamflow, precipitation and maximum and minimum temperatures are 

provided by the Direction de l’Expertise Hydrique. Precipitation and temperature data are 

gridded and generated by Kriging interpolation over a  grid cell given station measurements. 0.1°

According to the Québec climate monitoring program (Bergeron, 2016), precipitation is 

measured by tipping bucket gauge, heated tipping bucket gauge, or weighting rain gauge. The 

daily precipitation and temperature measurements are interpolated based on 392 meteorological 

stations over the domain from  to  and from  to . The 20 catchments of 43°𝑁 53°𝑁 55°𝑊 81.5°𝑊

Table 1 are situated in the region where the station density is relatively high. The Kriging error is 

less than  for precipitation and is around  for both the maximum and the 0.1 𝑚𝑚/𝑑 0.1℃

minimum temperatures.

Forecast precipitation and maximum and minimum temperatures are retrieved from the 

THORPEX interactive grand global ensemble (TIGGE) database. The raw forecast data are at 

 and 6-hour resolution. They are downscaled from  to  by a bilinear interpolation and 0.5° 0.5° 0.1°

aggregated from 6-hour to daily time step to improve spatial resolution and meet the time step 

requirement of the hydrological model. The forecast climate has 50 members, and the forecast 

lead time is 9 days. In model application, the forecast climate is lumped to the catchment scale 

by calculating the average of all the grid cells within the catchment. 

2.4. Forecasting Experiment

In the forecasting phase, simulation, data assimilation, and forecasting alternate as follows: (1) 

the model is forced with the measured climate up to the first day t of the forecast, (2) the state 



  

15

estimates are updated based on the measured flow with the EnKF, and (3) the model is forced 

with meteorological forecasts to generate hydrological ensemble flow forecasts until t+9 days.  

In Thiboult et al. (2016), the simulation and forecasting periods are November 1, 2003 to 

October 31, 2008 and November 1, 2008 to December 1, 2010, respectively. In the simulation 

period, the model is started with the same initial states (e.g., water levels of two stores) on 

November 1, 2003 and evolves until October 31, 2008 with the measured climate. In simulation, 

the EnKF is implemented to generate multiple state conditions as a consideration of the initial 

condition error for forecasting. In data assimilation, Thiboult et al. (2016) explicitly addresses 

the model errors from initial conditions and climate input data (i.e., precipitation and temperature) 

as well as the flow observation error in the EnKF, while it does not account for the model 

structure and parameter errors in an explicit manner. The EnKF ensemble size is 50. State 

variables are daily updated.

A forecasting system can be identified by the climate forecast and a collection of settings for the 

hydrological model and the data assimilation technique. Since the EnKF is the focus of this study, 

the settings for the climate forecast and hydrological model are identical from one forecasting 

system to another, and only the EnKF implementation is varied to compare the performances of 

three forecasting systems. The three systems are differentiated by their climate ensembles used in 

the EnKF. Two climate ensembles are generated by the carefully tuned hyper-parameters, while 

the third climate ensemble is generated from the N15 dataset. The detailed climate ensemble 

generation processes and their corresponding forecasting systems are explained below. 
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2.4.1. Traditional Ensemble Generation

This study uses two forecasting systems of Thiboult et al. (2016): system H and system H’. More 

precisely, the subsets of systems H and H’ since a single hydrological model, not 20 hydrological 

models, is used for forecasting. The two forecasting systems have been chosen because systems 

H and H’ differ only in hyper-parameter magnitudes and are both examples of the hyper-

parameter tuning approach. The two approaches represent two commonly used hyper-parameter 

tuning strategies in practice. Hyper-parameter tuning of system H’ only involves estimating 

hyper-parameters from the literature, while hyper-parameter tuning of system H requires more 

attention and computational costs. 

Systems H and H’ are henceforth referred as the statistical specific (Ss) system and the statistical 

uniform (Su) system, respectively, in this paper. 

 The Ss system: its hyper-parameters are chosen to optimize forecast performance. As 

such, the hyper-parameters values here are artificially overestimated and compensate for 

other sources of uncertainty that are not explicitly accounted for in the EnKF. The 

optimal hyper-parameters of system Ss are specific to each catchment. 

 The Su system: its hyper-parameters describe a more realistic estimate of climate and 

flow data uncertainties and exhibit more reasonable perturbation magnitudes. The hyper-

parameters of system Su are uniform for all catchments.

A brief overview of the Thiboult et al. (2016) hyper-parameter tuning processes, based on 

processes reported in detail in Thiboult and Anctil (2015), is provided as follows. In both 

systems, precipitation is perturbed by a Gamma distribution with the mean being the observation 
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and standard deviation being a proportion of the observation. The proportion has three options 

(25%, 50%, and 75%). Temperature is perturbed by an additive error that follows a normal 

distribution with zero mean and two standard deviation options (  and ). Maximum and 2℃  5℃

minimum temperatures are both perturbed by the same additive error random variable. Flow is 

also perturbed by a normally distributed additive error where the mean error is zero and the 

standard deviation is proportional to the observed flow at each time step, and the proportion has 

two options (10% and 25%). The temporal and spatial correlations of errors are not considered in 

the ensemble generation. All error distributions and their variances constitute the hyper-

parameters of the streamflow forecasting experiment. In total,  combinations of 3 × 2 × 2 = 12

hyper-parameter values are tested in the hyper-parameter tuning experiments. 

Thiboult et al. (2016) also identify the optimal state variables in the process of hyper-parameter 

tuning to further improve forecast performance. The GR4J model has two potential state 

variables to be updated in the EnKF. One is the water level of the production store (S), another is 

the water level of the routing store (R). Updating these states affects the model in different ways, 

especially regarding the time lag between state updating and the effect on simulated streamflow. 

Three state combinations (S, R, and both S and R) are tested with the hyper-parameter tuning.

In the hyper-parameter tuning of system Ss, each of the 12 hyper-parameters and state variables 

are tested. Forecast results are evaluated in terms of reliability and bias in Thiboult and Anctil 

(2015). Reliability is measured by the Normalized Root-mean-square error Ratio (NRR). Details 

of NRR are provided in Appendix A.1. Bias is measured by the Nash Sutcliffe efficiency 

coefficient (NSE) between the observed flow and the forecasted flow ensemble median. The 
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optimal combination of hyper-parameters and state variables is taken as the one that achieves the 

best NSE among the three best NRRs. Table 2 summarizes the optimal hyper-parameters and 

state variables of 20 catchments of system Ss. 

Table 2. Optimal hyper-parameters and state variables of 20 catchments of the statistical specific 
Ss system (from Thiboult et al. (2016)).

Catchment 
No.

Precipitation 
distribution standard 
deviation proportion

Temperature 
distribution standard 
deviation )(℃

Flow distribution 
standard deviation 
proportion

State 
variables

1 0.75 2 0.1 S-R*

2 0.75 2 0.1 S-R
3 0.25 5 0.1 R
4 0.75 2 0.1 R
5 0.75 2 0.1 S-R
6 0.75 2 0.1 R
7 0.75 2 0.1 S-R
8 0.75 5 0.1 R
9 0.75 2 0.1 S-R
10 0.75 2 0.1 S-R
11 0.75 5 0.1 S-R
12 0.5 2 0.1 S-R
13 0.75 2 0.1 S-R
14 0.5 2 0.1 S-R
15 0.75 2 0.25 S-R
16 0.75 2 0.1 S-R
17 0.75 2 0.1 R
18 0.75 2 0.25 S-R
19 0.75 2 0.1 S-R
20 0.75 2 0.1 S-R
* S-R refers to both S and R.

Here it is worth clarifying the workload of tuning hyper-parameters for system Ss. As mentioned 

before, there are 12 combinations of hyper-parameters, and three possible choices for the state 

variables (R, S, and both R and S). This means that there are  combinations for each 12 × 3 = 36

catchment to be tested. Since we worked on 20 catchments, this requires  36 × 20 = 720

ensemble flow forecasting experiments. This is still tolerable as we work with GR4J which only 
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has two state variables, but in the case where one uses a hydrological model with more state 

variables, the number of flow forecasting experiments increases dramatically as the number of 

combinations per catchment model is given by , where  is the number of state variables.2𝑟 ‒ 1 𝑟

The hyper-parameters of system Su are a simpler version of the hyper-parameters of system Ss 

and are used to describe climate uncertainty more realistically (Thiboult et al., 2016). The 

standard deviation proportion of precipitation distribution is 25%, the standard deviation of 

temperature distribution is , the standard deviation proportion of flow distribution is 10%. 2℃

The state variables S and R are both updated for every catchment. The hyper-parameter 

magnitudes of Su are lower than or equal to those of Ss given in Table 2. The climate ensembles 

generated by the tuned hyper-parameters of Ss and Su are called the traditional ensemble to 

distinguish from the N15 generated climate ensemble.

2.4.2. Newman et al. (2015) Ensemble Generation

This section presents how to use Newman et al. (2015) dataset, N15, to generate the precipitation 

and temperature ensemble.  N15 has 100 historical realizations of daily total precipitation, mean 

temperature, and daily temperature range for the period 1980-2012. The dataset covers the 

contiguous United States, northern Mexico, and southern Canada at  resolution. It is free for 1 8°

download at https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html. 

Newman et al. (2015) Dataset (N15)

N15 is generated from an observation based probabilistic interpolation system. An overview of 

the probabilistic interpolation system is as follows. The probabilistic interpolation system is 

https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
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composed of two steps: spatial interpolation and ensemble generation. In spatial interpolation, 

the probability of precipitation at each grid cell is estimated by a locally weighted logistic 

regression, and the magnitudes of precipitation and temperature are estimated by a locally 

weighted linear regression. Both regressions use the latitude, longitude and elevation of 

neighboring stations as explanatory variables. The climate ensemble is then generated by using 

the spatially correlated random fields (SCRF) sampled from the standard normal distribution. 

The SCRF’s spatial and temporal correlations are accounted for by the nested grid approach and 

the autoregressive model of order one, respectively (Fang and Tacher, 2003; Newman et al., 

2015). Due to the spatio-temporal correlation and the cross correlation between precipitation and 

temperature variables in the SCRF generation, each climate ensemble member calculated from 

the SCRF cannot be substituted or combined with other members across time and space. 

N15 has many advantages over the hyper-parameters derived climate ensemble. First, it produces 

realistic precipitation occurrence by using zero-to-one probability, not zero-or-one probability, to 

quantify the probability of precipitation, even for zero precipitation observations. Second, it 

considers the spatial and temporal correlations of the random fields of each grid cell. Third, the 

high-resolution grid of the dataset enables applications to both lumped and distributed 

hydrological models. Fourth, the dataset covers an extensive area and thus can be directly used 

for catchments within the contiguous United States, northern Mexico, and southern Canada. 

Modelers do not need to repeat the time-consuming error model specification and hyper-

parameter tuning processes case by case.

Bias Correction  
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It is always necessary to check the quality of an ensemble climate dataset before utilizing it in 

operation because it is found that the meteorological ensembles can be inconsistent with 

observations, and hydrologically important variables need to be adjusted to be realistic before 

being used (Graham et al., 2007; Hay et al., 2000; Lenderink et al., 2007; Piani et al., 2010; Yang 

et al., 2010). This study corrected the bias of precipitation, mean temperature, and daily 

temperature range at the catchment scale. The detailed bias correction procedure applied here is 

described in the following paragraph.

Bias refers to the difference between the ensemble mean and the true value of the variable being 

evaluated. Since the truth is unknown, the observation is taken as the truth here. Taking 

precipitation as an example, we first calculated the lumped precipitation of each catchment based 

on the N15 ensemble mean and the observation, respectively. Then we computed the deviations 

between the catchment ensemble mean and the observed precipitation over time. Based on the 

above analysis, we found that the precipitation ensemble has a systematic bias in contrast with 

the observation, while the temperature ensembles do not show systematic bias. The precipitation 

bias correction was carried out by shifting all the ensemble members at the catchment scale by 

the same magnitude that equals to the difference between the ensemble mean and the observation 

at each time step. Bias correction is applied independently to each time step, so the correction 

magnitude varies with time. In addition, the temperature ensemble members were shifted one 

day ahead due to the time lag of the ensemble versus the observation (this correction was deemed 

appropriate based on personal communications with the N15 dataset developer). With these 

settings, 100 bias corrected realizations of daily precipitation, and 100 corrected realizations of 
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mean temperature and daily temperature range were defined as the 100-member bias corrected 

N15 ensemble. 

 

In Thiboult et al. (2016), the EnKF ensemble size is 50, while N15 has 100 members. To provide 

a fair comparison of the systems, 50 members are randomly selected from the 100-member bias 

corrected N15 ensemble without replacement. The selected 50 members are referred to as the 

ensemble N and the corresponding forecasting system is called system N. Except the climate 

ensemble, system N uses the identical flow perturbations and state variables with system Su in 

the EnKF phase. Table 3 summaries the EnKF settings of the three systems Su, Ss, and N 

regarding data perturbations and state variables.  

Table 3. EnKF data perturbations and state variables of systems Su, Ss. N.  and  represent 𝑃, 𝑇, 𝑄
the measured precipitation, temperature, and flow, respectively.  and  are the standard 𝑐𝑃 𝑐𝑄
deviation proportions of the precipitation and flow distributions, respectively.  is the standard 𝜎
deviation of the temperature distribution. Here system Ss contains all the optimum hyper-
parameters and state variables of 20 catchments. See Table 2 for details of each catchment. 

System Statistical uniform (Su) Statistical specific (Ss) N

P~Gamma(
1

𝑐𝑃
2, 𝑐𝑃

2 ∙ 𝑃)Precipitation 
perturbation

𝑐𝑃 = 0.25 𝑐𝑃 = 0.25, 0.5 or 0.75

T~Normal(𝑇, 𝜎2)Temperature 
perturbation

𝜎 = 2 𝜎 = 2 or 5

Derived from N15

Q~Normal(𝑄, 𝑐𝑄
2 ∙ 𝑄2)Flow 

perturbation 𝑐𝑄 = 0.1 𝑐𝑄 = 0.1 or 0.25 𝑐𝑄 = 0.1
State 

variables S-R* S, R, or S-R S-R
* S-R refers to both S and R.
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2.5. Evaluation of Ensemble Flow Forecasts

The flow forecasts of each forecasting system are assessed from two perspectives: deterministic 

and probabilistic. The metrics below are used to measure flow forecast performances for systems 

Su, Ss, and N and are selected to be consistent with the metrics used in Thiboult et al. (2016). 

Deterministic Forecast

When a deterministic flow forecast is required, the mean of the forecast ensemble is evaluated. 

The RMSE is used as the deterministic forecast evaluation metric.

                                                (9)𝑅𝑀𝑆𝐸 =
1
𝑇∑𝑇

𝑡 = 1(𝑧𝑡 ‒ 𝑧𝑡)
2

where  is the number of time steps of the evaluation period . and  are the 𝑇  (𝑡 = 1,…,𝑇) 𝑧𝑡 𝑧𝑡

forecasted ensemble mean flow and the observed flow at time , respectively. The RMSE is non-𝑡

negative with the optimum of zero. Units of RMSE are the units of the flows.

Probabilistic Forecast

When probabilistic flow forecasts are required, the ensemble flow forecast results are evaluated 

by comparing the ensemble flow forecasts with the measured flows. Being consistent with 

Thiboult et al. (2016), the mean continuous ranked probability score (MCRPS) is adopted as the 

ensemble forecast evaluation metric. The continuous ranked probability score (CRPS) measures 

the proximity of the forecast distribution and the measurement distribution at a single time step. 

When the measurement is deterministic, the CRPS is calculated as (Gneiting and Raftery, 2007): 

                       (10)𝐶𝑅𝑃𝑆(𝐹𝑡(𝑧),𝑧𝑡) = ∫ + ∞
‒ ∞ (𝐹𝑡(𝑧) ‒ 𝐻{𝑧 ≥ 𝑧𝑡})2𝑑𝑧
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where  is the cumulative distribution function of ensemble flow forecast at time .  is the 𝐹𝑡 𝑡 𝑧

forecasted flow.  is the Heaviside function expressed as:𝐻{𝑧 ≥ 𝑧 𝑡}

                                                       (11)𝐻{𝑧 ≥ 𝑧𝑡} = {1, 𝑓𝑜𝑟 𝑧 ≥ 𝑧𝑡
0, 𝑓𝑜𝑟 𝑧 < 𝑧𝑡

The range of CRPS is non-negative with the best value of 0. Units of CRPS are the units of the 

flows.

MCRPS is the average CRPS over the entire evaluation period. MCRPS is also non-negative 

with the optimum of zero.

             (12)𝑀𝐶𝑅𝑃𝑆 =
1
𝑇∑𝑇

𝑡 = 1𝐶𝑅𝑃𝑆(𝐹𝑡(𝑧),𝑧𝑡)

In addition, reliability and spread are assessed for probabilistic flow forecasts. As in Thiboult et 

al. (2016), the mean absolute error of the reliability diagram (MaeRD) is used to estimate 

reliability. The reliability diagram is a graph of the observed frequency of an event plotted 

against the forecast probability of an event (Hartmann and Pagano, 2002). In theory, a perfect 

forecast system will result in forecasts with a probability of X% being consistent with the 

observations X% of the time. Hence when plotting a reliability diagram, comparisons are made 

against the diagonal. A curve above the diagonal line denotes an over-dispersion, an under-

dispersion is in the opposite case (Thiboult et al., 2016).

The MaeRD measures the average distance between the forecast probability and the observation 

probability over all quantiles of interest (Thiboult et al., 2016).
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                              (13)𝑀𝑎𝑒𝑅𝐷 =
1
𝐾∑𝐾

𝑘 = 1|𝑃𝑓𝑐𝑠𝑡, 𝑘 ‒ 𝑃 𝑜𝑏𝑠, 𝑘|

where  is the number of quantiles of interest .  and  are the forecast 𝐾 (𝑘 = 1,…,𝐾) 𝑃𝑓𝑐𝑠𝑡, 𝑘 𝑃𝑜𝑏𝑠, 𝑘

probability and observed probability at the  quantile of interest, respectively.  equals to nine 𝑘𝑡ℎ 𝐾

in this study. The MaeRD is dimensionless and non-negative with the optimal value of zero.

Spread is an indicator that should be considered along with reliability because a perfectly reliable 

forecast at the cost of excessively high dispersion is not desired. The spread equals to the square 

root of the average ensemble variance over the evaluation period (Fortin et al., 2014).

                                                      (14)𝑠𝑝𝑟𝑒𝑎𝑑 =
1
𝑇∑𝑇

𝑡 = 1𝑉𝑎𝑟(𝑧𝑡)

                                            (15)𝑉𝑎𝑟(𝑧𝑡) =
1

𝑁 ‒ 1∑𝑁
𝑛 = 1(𝑧𝑡, 𝑛 ‒ 𝑧𝑡)2

where  is the forecast ensemble size .  is the  forecasted flow at time . The 𝑁 (𝑛 = 1,…,𝑁) 𝑧𝑡, 𝑛 𝑛𝑡ℎ 𝑡

spread is non-negative with an optimum of zero and has units of the flows.

3. Results Analysis and Discussion

The comparison results are presented in two sections. Section 3.1 compares the climate 

ensembles of systems Su, Ss, and N. Section 3.2 compares the flow forecasts of systems Su, Ss, 

and N. 

3.1. Climate Ensemble Comparison 

Taking precipitation as an example, Figure 1 compares the 50-member climate ensembles of 

systems Su, Ss, and N for the Aux Ecorces catchment (the 13th catchment of Table 1) in the 
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period of July 15-31, 2009. The center line in each box represents the median of the ensemble (

, the top and bottom edges of the box are the first and third quartiles of the ensemble (  and 𝑞2) 𝑞1

). The whiskers above and below the box are the maximum and minimum of the ensemble 𝑞3

excluding the outliers. Members are considered as outliers if their value is either greater than 𝑞3

 or less than .  equals to 2.7 times of the ensemble standard + 𝑤(𝑞3 ‒ 𝑞1) 𝑞1 ‒ 𝑤(𝑞3 ‒ 𝑞1) 𝑤

deviation and corresponds to a 99.3% percent coverage for normally distributed data. Outliers 

are represented by the small cross outside the whiskers. 

Figure 1 demonstrates that the three climate ensembles follow different distributions, and there is 

a stronger temporal correlation in the N ensemble than in other two ensembles, especially for the 

measured low and no precipitation events near high ones. For instance, a heavy rain event occurs 

on July 26, system N is the only system to observe a significant probability of rainfall for the 

preceding and following days (e.g., July 25, 27). Considering the temporal correlation, it is likely 

that the traditional ensembles miss parts of this rainfall event.

Figure 1. Here.

In fact, there are a large number of non-zero precipitation estimates in ensemble N when the 

precipitations are zero in all members of the Su and Ss ensembles. For the entire forecasting 

period (761 days), a total of  daily climate ensembles are generated for 761 × 2 × 20 = 30,440

systems Su and Ss over 20 catchments. Among them, 5293 are such zero precipitation ensembles 

and account for 17.4% of the total ensemble. However, in system N, 94% of the corresponding 
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5293 N ensembles have at least one ensemble member with a non-zero precipitation. This 

demonstrates that ensemble N generates a non-zero probability of precipitation when ensembles 

Su and Ss estimate no precipitation (zero probability). As explained in Section 2.4.2, this 

capacity is due to the use of zero-to-one probability, not zero-or-one probability, to quantify the 

probability of precipitation, even for days with precipitation observations equal to zero. This is 

an appreciable feature of the N ensemble and is beneficial to generate more reliable predictions. 

Studies have shown that forcing data uncertainty dominate model errors (Carpenter et al., 2001; 

Slater and Clark, 2006). Climate is the most important driving factor for hydrological models to 

generate a spread in the state variables, and this spread is essential to map the state variable space 

in the EnKF (Reichle et al., 2002). With ensembles Su and Ss, when no precipitation is observed, 

the climate spread is zero. Therefore, the state variable spread would tend to collapse. However, 

ensemble N preserves a greater state variable spread, even during meteorological periods where 

precipitation is less likely to occur.

To investigate the overall ensemble spread cross the forecasting period, we compared climate 

ensemble N with climate ensembles Su and Ss, respectively, in terms of the metric spread. Recall 

that spread is calculated as the square root of the mean ensemble variance over the evaluation 

period (Equations (14)-(15)). Based on an analysis of spread across the 50 forecast climate 

members and 20 catchments for the entire forecasting period, and so a sample size of 

50×20=1000, the precipitation spread of ensemble N is always greater than that of Su but smaller 

than that of Ss for 95% of the 1000 ensembles, the temperature spread of ensemble N is smaller 

than the spreads of Su and Ss for all the 1000 ensembles.
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3.2. Flow Forecast Comparison 

RMSE and MCRPS  

Figure 2 shows the RMSE and MCRPS of the forecasts issued by systems Su, Ss, and N for 20 

catchments. The RMSE and MCRPS are used to demonstrate the deterministic and probabilistic 

forecast performances, respectively. For brevity, the 2nd, 4th, 5th, and 7th lead day results are not 

shown. The center of each radar plot corresponds to the optimal metric value, while the outer 

circle indicates the worse metric value for a given lead time. In Figure 2, system N yields 

improved or similar results relative to systems Su and Ss over all lead times. This is partly 

explained by the ability of system N to account for the uncertainty of low and no rainfall events, 

as mentioned in Section 3.1. 

Moreover, the improvements of system N are notable for the 1st and 3rd lead days and diminish 

with increasing forecast horizons. This phenomenon indicates that the N15 generated climate 

ensemble is beneficial for improving short-term flow forecast. On the other hand, the decreasing 

relative improvement as the forecast horizon increases is understandable because data 

assimilation is known for its dominant influence on shorter horizons, while meteorological 

ensemble forecasts typically dominate longer ones (Thiboult et al. 2016).

Figure 2. Here.

Reliability and Spread

Figure 3 details the reliability diagrams of systems Su, Ss, and N. All three systems are under-

dispersed and are therefore over confident for all lead times. Possible reasons include inaccurate 
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or biased meteorological forecasts or poorly calibrated model parameters. Another potential 

reason for only systems Su and N is the lack of full consideration of model errors in the EnKF, 

so the state variable space is not fully explored. To achieve reliability with a given forecast 

system, a post-processing of the meteorological and/or hydrological forecasts would be 

necessary. Some operational guidance can be found in Abaza et al, (2017), Boucher et al. (2015), 

Raftery et al. (2005), and Rana et al. (2014). This study did not conduct post-processing because 

post-processing would complicate the comparison of the effects of climate ensemble on flow 

forecasting. 

Figure 3. Here.

Larger differences among the systems are observed from the MaeRD and spread results as 

depicted in Figure 4. Compared with system Su, system N successfully reduces the MaeRD for 

more than 70% of the 20 catchments without significant spread changes. Thus, ensemble N 

produces more reliable flow forecasts than ensemble Su. Compared with system Ss, system N 

globally worsens the MaeRD. Nonetheless, this decrease of performance needs to be qualified 

since the reliability of system Ss is achieved through inflated hyper-parameters in order to get 

more reliable hydrological ensembles by indirectly accounting for additional sources of 

uncertainty. Like in Figure 2, the metric differences between all three systems diminish with 

increasing forecast horizons as the data assimilation dominates short-term forecasts (Thiboult et 

al. 2016).

Figure 4. Here.
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It is not unexpected that system Ss gets wider prediction spread than system N because system Ss 

uses higher and catchment specific perturbation magnitudes to account for other model errors in 

the EnKF. High climate uncertainty can be propagated to model outputs generating wide 

prediction intervals that contain more flow observations. From this point of view, the under-

dispersion problem of system N can be fixed by taking into account other model errors that are 

specific to the catchment and the hydrological model in the EnKF.   

In terms of incorporating other model errors in the EnKF, one can consider the errors of other 

climate inputs, model parameter and model structure. For example, Reichle et al. (2002) add 

errors to wind speed, short- and long-wave radiative flux, and surface pressure in addition to 

precipitation and temperature. Clark et al. (2006) consider the model parameter uncertainty in the 

EnKF by generating 100 parameter sets corresponding to 100 climate ensemble members via the 

Monte Carlo Markov Chains. 

Hydrograph

To visualize the flow forecast improvements due to N15, Figure 5 illustrates the first lead day 

flow forecasts of systems Su, Ss, and N for the Aux Ecorces catchment (the 13th catchment of 

Table 1) and a portion of the forecasting period. The ensemble mean and the 95% prediction 

intervals of forecasted flows are shown. Figure 5 confirms the forecast performance upgrade by 

using ensemble N. The deterministic flow forecasts are more consistent with the observations in 

system N than in systems Su and Ss. Also, more observations fall into the 95% prediction 
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envelope of system N than that of systems Su and Ss. Specifically, looking at the peak flow 

forecasts in May 2009, the ensemble means of systems Su and Ss always underestimate the 

peaks. The 95% prediction intervals of systems Su and Ss cover only a small part of the 

observations. In comparison, system N improves the consistency between the ensemble mean 

and the peak, and its 95% forecast intervals contain almost all the peak flows.

Figure 5. Here.

4. Conclusions and Future Work

This paper proposed using an existing ensemble climate product to efficiently represent climate 

data uncertainty in the EnKF of short-term ensemble flow forecasting. Specifically, this study 

used the Newman et al. (2015) dataset,  referred to here as N15, to represent measured 

precipitation and temperature uncertainties. To our knowledge, this is the first study to compare 

the N15 generated climate ensemble with the carefully tuned hyper-parameter generated climate 

ensemble in real ensemble flow forecasting. The tuned hyper-parameters are from two ensemble 

forecasting systems developed in Thiboult et al. (2016). One is system Su, a subset of system H’ 

in Thiboult et al. (2016), that uses somewhat realistic perturbation magnitudes to represent 

climate uncertainty. Another is system Ss, a subset of system H in Thiboult et al. (2016), that 

uses unrealistically inflated hyper-parameters to implicitly compensate unaccounted model errors 

and optimize forecast performance. The  hyper-parameters of the two systems are carefully tuned 

by Thiboult and Anctil (2015). Another highlight of this study is that a large number of 

experiments (20 Québec catchments) are explored to draw general conclusions.
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The climate ensemble comparison shows that there is a stronger temporal correlation in the N15 

generated climate ensemble than in the traditional ensembles Su and Ss, especially for the 

measured low and no precipitation events near high precipitations. N15 estimates a non-zero 

probability of precipitation when both traditional ensembles predict zero probability of 

precipitation. The ensemble flow forecast comparison of 20 catchments demonstrates that the 

N15 generated ensemble yields improved or similar deterministic and probabilistic flow 

forecasts relative to both traditional climate ensembles as measured by a variety of performance 

metrics (i.e., RMSE, MCRP, reliability diagram, MaeRD, and spread). The relative improvement 

of N15 derived forecasts is especially significant for short lead times (i.e., 1-3 days in our case) 

when the influence of the data assimilation dominates. 

Our comparison study suggests that it is possible to eliminate the need for precipitation and 

temperature relevant hyper-parameter tuning from the EnKF by using an example historical 

ensemble climate product without losing flow forecast performance. Moreover, two gains are: (1) 

saving a great amount of time and computational cost from hyper-parameter tuning, and (2) 

partly disaggregating sources of uncertainty in the EnKF by explicitly addressing precipitation 

and temperature uncertainties. The saved efforts can be used to incorporate unaccounted model 

errors (e.g., model parameter and structure errors). Explicit consideration of uncertainty sources 

in the EnKF is critical  in the pursuit of the right results for the right reasons.

N15 is an effective resource of historical climate ensemble for the contiguous United States, 

northern Mexico, and southern Canada. This resource provides realistic and spatio-temporally 

correlated precipitation and temperature uncertainty estimates. It is straightforward to be used for 
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both lumped and distributed hydrological model applications. Moreover, its climate ensemble 

generation method is applicable to real-time flow forecasting as its real-time ensemble 

generation code is available (readers can contact the N15 dataset developers to get the code). 

Future work should investigate the use of other historical climate ensemble products according to 

research area and data availability. 

There are two areas for improving our research. First, our findings depend on the fact that we 

considered the initial condition uncertainty and the input and output data uncertainty in the EnKF. 

The forecasting performance improvements may not be as significant as they are presented here 

after adding other model errors (e.g., model structure and parameter errors) due to the 

compensation effect. In the future, more experiments are needed to explicitly incorporate the 

model parameter and model structure uncertainties in the EnKF. This could be achieved by, for 

example, using multiple parameter sets per model and multiple hydrological models in the state 

update, respectively. After taking into account other uncertainties, the authors will explore if the 

N15 based forecast broadens the prediction intervals without deteriorating the overall forecast 

performance. The second future research area is to investigate the transferability of the current 

findings to other hydrological models. Our research is built on a single hydrological model (i.e., 

GR4J), and though the results are promising, the N15 based forecasting needs to be validated for 

a variety of hydrological models, in particular, distributed hydrological models. 
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1 Figure caption list

Figure 6. 50-member climate precipitation ensembles of systems Su, Ss, and N for the Aux 

Ecorces catchment (the 13th catchment of Table 1) and the period of July 15-31, 2009. See Table 

3 for the descriptions of systems Su, Ss, and N.

Figure 7. RMSE and MCRPS of systems Su, Ss, and N of 20 catchments for the 1st, 3rd, 6th, and 

9th lead days flow forecasts. The RMSE is the root mean square error between the forecasted 

ensemble mean and the observed flows. The MCRPS is the mean continuous ranked probability 

score between the forecasted ensemble and the observed flows. See Table 3 for the descriptions 

of systems Su, Ss, and N. Each catchment is identified by the label on the outer edge of the circle 

and  the catchment metric result is represented by the value on the corresponding spoke. Metric 

values radiate outward on spokes from the central value of zero (optimal). 

Figure 8. Reliability diagrams of systems Su, Ss and N for all 20 catchments and the 1st, 3rd, 6th, 

and 9th lead days flow forecasts. Each curve of a reliability diagram refers to a catchment. The 

diagonal line represents the perfectly reliable forecast. See Table 3 for the descriptions of 

systems Su, Ss, and N.

Figure 9. MaeRD and spread of systems Su, Ss and N of 20 catchments for the 1st, 3rd, 6th, and 

9th lead days flow forecasts. The MaeRD is the average distance between the forecast probability 

and the observation probability over nine quantiles. The spread is the square root of the average 

variance of forecasted flow ensemble. See Table 3 for the descriptions of systems Su, Ss, and N. 

Each catchment is identified by the label on the outer edge of the circle and the catchment metric 

result is represented by the value on the corresponding spoke. Metric values radiate outward on 

spokes from the central value of zero.

Figure 10. Flow forecasts of systems Su, Ss, and N for the Aux Ecorces catchment (the 13th 

catchment of Table 1) and a portion of the forecasting period. See Table 3 for the descriptions of 

systems Su, Ss, and N.
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Highlights

 EnKF-based flow forecasts use an existing historical climate ensemble product (N15)

 N15 gives more realistic climate uncertainty than tuned statistical error models

 N15 yields improved or similar flow forecast quality

 N15 saves users from tuning precipitation and temperature relevant hyper-parameters 

 N15 enables disaggregating hydrologic model uncertainty sources in the EnKF




