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Abstract. We study the tunneling of chiral electrons in graphene tghoa region where
the electronic spectrum changes from the usual linear digpeto a hyperbolic dispersion,
due to the presence of a gap. It is shown that contrary to tmeeting through a potential
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1. Introduction

A new and exciting field in condensed matter physics startbénwgraphene - a two-
dimensional, one carbon-atom thick material - was isolé#edhe first timel[1] 2] It was
experimentally shown that the charge carriers in grapheuklde controlled by a bottom gate
setup-up; the charge carrier were shown to be either holekecirons depending on the sign
of the bottom gate voltage. In the transition from hole-lbatgeelectron-based transport the
conductivity shows a minimum (not zero) valueg,;,. Its experimental value is of the order
of omin ~ 4€%/h,[1,12,[3[4] but the actual value seems to be some what sarepkendent.[5]
This value foro,,;,, imposes therefore a limitation on the minimum value of theeemt a field
effect transistor made of graphene can transport. Thesgxistof a conductivity minimum in
graphene is a consequence of the fact that the elementatatexts of graphene are Dirac
fermions, with a linear dispersion relation, instead ofalselectrons with parabolic-like
dispersion, characteristic of ordinary semi-conductanserestingly enough, the calculated
value of the conductivity of graphene at the neutrality paroff the experimental value by
the factorl/7. [6, [7,[8]Although this value is the more common result fog theoretical
calculation ofst°, there are, however, several different values availabtheriterature[[9]

It is also interesting that a clean graphene sample with lfitetieads and smooth edges has
a value ofc = o' as long as it width«() is much larger than its length ], being smaller

thancotie in the opposite limit.[[10] Considering the case of metallimchair edges, it found

min
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thato > o for w/L < 1 and thatr — o2 for w/L > 1.[10] This shows that disorder

is not needed for having ~ o',

Another characteristic of Dirac electrons in graphene &rthbility to tunnel through
a potential barrier with probability one! [11,]12] This sdled Klein tunneling of chiral
particles has long ago been proposed in the framework oftqoaalectrodynamics,[13, 14,
15] but was never observed experimentally. Graphene ogeasoute to observe this effect
in a tabletop experiment, where the potential is createdonyeselectrostatic gate potential.
The manifestation of Klein tunneling is also present wheetebns in graphene are forced to
transverse a — p junction, leading to a selective transmission of thosetedas approaching
the junction perpendicularly.[16] Other unusual effesisch as the focusing of an electric
current by a single — n junction are also characteristic of Dirac electrons in geage. [17]

As appealing as the Klein tunneling may sound from the pdiniew of fundamental
research, its presence in graphene is unwanted when it ctaregsplications of graphene
to nanoelectronics. This comes about because the pincheofield effect transistor may be
very ineffective. The same may occur because of the mininamduactivity of graphene at the
neutrality point (as discussed above). One way to overcbeeetdifficulties is by generating
a gap in the spectrum. From the point of view of Dirac fermitims is equivalent to the
generation of a mass term. There are two known forms of géngrgaps in the spectrum
of graphene. The first one is by patterning graphene nammm&fl8, 19] The mechanism
of producing these gaps depends on the nature of the teiomraftthese nanoribbons. For
armchair nanoribbons the gap comes from quantum confineofiditac fermions induced
by the finite nature of the ribbons in the transverse directieor zigzag nanoribbons the gap
stems from the formation of polarized spin edge-statesacieristic of these type of ribbons.
The formation of these polarized states is also possiblgéagpdr graphene.[20] It is interesting
to notice that Klein tunneling can also be circunvented bygia graphene bilayer.[11] The
value of the induced gaps depend on the width of the ribbartdpb large widths it is of the
order of 0.1ev.

Another possibility of generating gaps in the graphene tspecis to deposit graphene
on top of hexagonal boron nitride (BN). [21] This materiahisand gap insulator with a boron
to nitrogen distance of the order of 1.45 [23] (in graphene the carbon-carbon distance is
1.42,&) and a gap of the order af ev. It was shown that in the most stable configuration,
where a carbon is on top of a boron and the other carbon in thheelhis centered above a
BN ring, the value of the induced gap is of the order of 58unDepositing graphene on a
metal surface with a BN buffer layer leadsste-doped graphene with an energy gap of 0.5
eV.[22]

The two mechanisms described above can be used to prodacgaments of graphene
where in some spatial zones of the material the Dirac elestmill have gaps in the
spectrum. The first possibility is to pattern graphene dasigch that in several areas of
the graphene flake narrow nanoribbons may exist. Anothesilpibty it to combine wafers
of silicon oxide and hexagonal boron nitride, such that ia tbegion where the BN is
located the local spectrum of graphene will present a finge. gWe shall explore in this
paper this latter possibility and the way it can prevent Kieinneling from occurring. The
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two mechanisms just mentioned can then be at the heart aefut@noelectronics built of
graphene. The second method is also related to junctionsaphgne with other kind of
systems, being them superconducting,[24, 25] normal-ectod/graphene/normal-conductor,
[26] or multiterminal junctions.[27] Also the study of eteen transport in disordered
graphene samples is of interest|[28] specially becausdutiieeling may be assisted by
impurities,[29] which is a manifestation of Klein tunnedin

For a review on the experimental aspects of graphene phgs&cthe work of Geim and
Novoselov/[30] Some of the theoretical aspects of grappémsics are reviewed qualitatively
by Castro Netcet al,[31] by Katsnelson,[[32] and by Geim and MacDonald;|[33] areno
comprehensive review is given by Castro Netal.[34] For a review on Klein tunneling see
the work by Beenakker.[35]

2. Basic definitions.

As described in the previous section, we assume that it isilpleso manufacture slabs with
SiO,-BN interfaces, on top of which a graphene flake is depositis Will induce spatial
regions where graphene has a vanishing gap intercalatédregions where the BN will
cause a finite gap.

In the following we will consider the graphene physics in tdifferent regions: the
k—region, where the graphene sheet is standing on top of, $ik ag—region, where a
mass-like term is present, caused by BN, inducing an enegyfyvalue2t’ (for all numerical
purposes we usé =0.1eV). The wavefunctions in these two regions will be referred/Ry
andvy, respectively. The geometry of the scattering procesgiesented in Fig.11.

The Hamiltonian for massless Dirac electrons in grapherjmal the K -point in the
Brillouin zone is given by

Hg:'UFO-'pv (l)

whereo = (0,,0,),p = —ih'V, 0;, Withi = x, y, 2, is thei Pauli matrix, and» = 3ta/(2h),
with ¢ the nearest neighbor hopping matrix in graphene anide carbon-carbon distance.
Therefore, in the massless wave function, inthaegion ¢ = 0), is given by

- L 1 eik-r
b= 5 (L ) @
with
u(k, s) = se', 3)

s = sign(F) andf = arctan (k,/k,). The corresponding energy eingenvalue is

E = fophy[k2 + k2 = hopk, 4)

with £ the absolute value of the wavevector.
In a region of finite mass the Hamiltonian for Dirac electrans

H,=vpo-p+to,, (5)
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with mv% = ' the mass termrf is the effective mass); as a consequence the electronic
spectrum will present a finite energy gap of valié In the ¢-region (the gaped region,
t' # 0), the wave funcion is

1 1 iqr

where
/

o G . (7

UF(qsﬂ qu)
Due to momentum conservation, electrons propagating ¢firaé — ¢ interface will conserve
their wavevector component parallel to the interface. Thalsng this interface to be located
along they axis, we will have alway$, = ¢,. Theg-region eigenenergy, associated with the
eigenstate (6) and the Hamiltonian (5), is

E=£\/(¢2 + k2)(hvp)? + t7. (8)

It is amusing to notice that the spectrul (8) has the same fsnfor the electrons in
a graphene bilayer, when the two graphene planes are atetiiffelectrostatic potentials.
[36,[37] Using Egs.[(8) andl(4), we write

vphq, = \/E2 cos? (0) — t2 9)

and, depending ofv? cos? (¢) being larger or smaller that¥?, ¢, may take a real or a pure
imaginary value. Wave propagation follows for the formesesaevanescent waves in the
latter.

For a realg,, and sincey, = k,, we have

VE? —t?sin (¢) = |E|sin () (10)

whereg is the angle of propagation of the electron in theegion (see Figll). Equation_(10)
is just the usual Snell’'s law, for electrons being refracéthe interface separating the-
andg— regions. We see that > 0 whenevetE| > t'.

v(q, s)

2.1. Forward and backward propagation.

We consider now the simple reflection in the interface, wité incident and the reflected
waves both on thé— or on theg—region.

In the k—region, the z—component of the wavevector of the reflected wave is
symmetrical with respect to the incident wave. Thus, fos ttase, we have the following
transformations under a reflection (see alsdFig.1)

ky = —ky and e — 70 = 710, (11)
This leads to the generalization of Eds. (2) dnd (3)
Uy = +set?, (12)

wl:{l: — L < 1 ) 6:|:ik:wx+ik:yy‘ (13)
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Figure 1. Top figure: graphene band structure for the massless andvmaases. In this latter,
the gquasi-parabolic bands have a gap enétgy Bottom figure: geometry in the reflection
in the &k — ¢ interface. An incident Wavefunctiom,‘j with wavevectork, is reflected and
refracted into the), and theq/);r wavefunctions with wavevectoks andq., respectively.
Since the momentum is conserved at the interface, one hiag thak,. The refracted wave
propagates with an anglg which is slightly larger than the incident and reflectedlasg
with |q.| < |k;|, @ consequence of energy conservation.

where the plus and minus signs refers to waves propagaéspectively, in the positive and
negative directions of the-axis.
A similar reasoning leads to the generalization of (7 (q, s),

E—t

= . 14
v hop(£q, — iky) (14)
and, also, of thg—region wavefunction to
1 1 o
Q/)(:Il: _ E < o ) 6:|:Zl]xl‘+lkyy. (15)

The differences we have just highlighted on the wavefunstiand coefficients for
forward and backward propagating particles can be also isettte differences in positive
and negative angles of incidence in the interface. This gdsare useful, when a guiding-
wave kind of device is made. Let us therefore analyze the wasek, — —k,. If in Eq.
(11) we keepk, unaltered and “reflect” instedd, we would obtain

k, = —k, and ¢ — e (16)
with similar relations forp, the angle in the g-region. For this cases, we get

v£(=¢) = —v5(¢) and ug(—0) = —ux(0). (17)
Apart from a minus sign, these relations shows that the tleeatipn of changing the sign of
k, (i.e., the angle of incidence) is equivalent to the one ohdireg the sign ok, (¢, in the
g-region). Of curse that the extra minus sign in the rightdhside of both expressions in Eq.

(@7) are of no consequence within the calculation of refbecénd transmission coefficients
that follow.
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2.2. Real and evanescent waves ingfregion

Since in theg-region there is a gap in the energy spectrum teran take both real and pure
imaginary values. In the first case, we have wave propagatithis region, in the latter just
evanescent waves. No simple expression as the one given.bflBEgcan be written in this
case. Instead, we need to consider separately the casesqyler real or a pure imaginary
number.

2.2.1. Forg, real. For realg,, we can write a similar expression to the one in EEq] (12),
vy = Fvet?, (18)
with ¢ given by Eq. [(1D) and
_E—t  E-t
vrhlgl  VE? — 17

where Eq.[(B) was used.

(19)

v

2.2.2. Forg, pure imaginary. Sincek, is always a real number, Ed._(14) implies thaty,if
is a pure-imaginaryy.. also is, and then

vy = Fivy, (20)
where
E—-t
T — 21
T T hop(tk, — o) (21)
with the realabsorption coefficient defined ag, = i«, anda given by
a= (th)_l\/t’2 — E?cos(6)?. (22)

2.2.3. Complex conjugate of the andwv.. coefficients. For the calculation of the intensity
reflection and transmission coefficient we will need to da#h the complex conjugate of the
u+ andv, coefficients. The definition (12) far. implies that

Uy = —Usg. (23)

In the case ofv,, its complex conjugate depends on the the fact of having laorea
imaginaryg,,

vl = { —Ug %f Qx %s .real . (24)
—vy  if g, is imaginary

3. Transmission and reflection at the interface: the step ca&s

3.1. Reflection and transmission amplitude coefficients.

We compute now the reflection and transmission amplitud&iceats for electrons crossing
an interface between/a— and ag— region. Unlike what happens in optics and due to the
differences on back and forward propagation, we will neecbtusider not only two but four
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Figure 2. The four different possible cases for reflection/transioiss an interface between
k andgq regions.

different cases: electrons crossing the interface commong thek—region in the forward and
backward senses, and those crossing the interface coromglieg—region, also propagating
on the positive and negative senses ofitlexis. These four cases are summarized in[Big. 2.

3.1.1. Propagation from &— into ag—region. We start by deriving the amplitude reflection
and transmission coefficients, which will be denoted*,:gsandtfq respectively, for the case
of the propagation from &— into ag— region. This situation is described in FIg. 1 and also
in Fig.[2.a).

Since there is a partially reflected wave, the total wavetiongn thek—region must be
written as an superposition of one associated with the amtidlectrons and other with those
that are reflected,

Uy (r) = Ayl + By, . (25)

A and B are the normalized amplitudes for the incident and refleatae functions. In the
g-region, withC' the amplitude of the transmitted wave function, we have

W, (r) = Cvf. (26)

Using Egs. [(2b) and_(26), and imposing the continuity coadibf the particle’s wave
function at the interface, i.el(z,y = 0) = ¥ (x,y = 0), we find
B vy—u C
t T oapdtt =2 =141 27
Tk:q A u_ — v, an kq A + I'kqv ( )

where the superscript recall that the incident wave function is, in this case, eteng in the
positive direction of the:-axis.

Had we considered the case were the particles travel in tlokwaad direction,
represented by Fig.2.c), we would have obtained
V- —UuU— _ _
H and tk:q =1 + rkq‘ (28)

This result can be obtain simply by exchanging the plus byrhmis signs in EqL(27).

Tk:q -
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3.1.2. Propagation from theg— into the k—region. For computing the reflection and
transmission coefficients for the cases where the electome from the;—region into the
k-region,r;'; andtffk, we need only to exchange <« v in the corresponding backward and
forward expression$ (27) arid (28). The result is

+ Ut — Ut + +
ri=———and t;,. =1+1r". 29
ak U — Uyt ak ak ( )

3.2. Amplitude coefficients: general algebraic relations.

It will be very useful in the following, for expression sinifptation purposes, the derivation
of simple relations between the reflection and transmisaiaplitude coefficients. Similar
relations to those we present here exist also for the photmties case. For instance, we
may write+r5 + t;2 = 1 when a light beam is reflected and refracted in a diopter batwe
regionsl and2, with the plus or minus sign corresponding respectivelyheodases whene,,
the index of refraction of mediurh, is smaller or larger that the one of regidn

Here, however, we have that in genergl, # r..,, (@and similarly for the transmission
coefficients) and these relations are less trivial (we haeel the notatiom # n = {k, ¢}).

Using the definitions in Eqs._(27), (28) and(29), we can write

R+T =1, (30)
where
R = T,jqrgq = T;}jq_k
T =thth, = toteg:
These relations are general and don’'t depend onytheeing real or imaginary. Another

general relations, useful to simplify expressions of thensmission of multi-layered
structures, are

(31)

+ tim
TmnTrTm = —R X tT . (32)

3.3. Intensity reflection and transmission coefficients.

The general definitions for the intensity reflection anddraission coefficients are

R = T (Tinn)”

T = tha(th) = 1- B

mn mn’

(33)

where we keep the same notation as before. We will considerseparately, the cases were
¢. 1S a real number or a pure imaginary.

3.3.1. Forg, real. For g, a real number, we note first that for any# n = {k, ¢},

(Fon)™ = T

(34)
R=R"
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These relations are just a consequence of the definition§ oin Eqgs. [27),[(2B), and(29),
and in Egs.[(23) and(24). Using EG.(34) in Hq.l(33) results in

R=R and T =T forgq,real,

which is valid, for both interfaces and both directions afgagation. Furthermore, using Eq.

(30) we get
R+T =1,

an expected result.
Explicitly, the R coefficient defined in Eq[(31) is given by

(vpv- — 1) — (u_vy +ujv_)

R = :
(vpv- —1) — (u_v_ +ujvy)

Making use of Eqs[{14) anf{112), we may write

and upvy = sv et 0+

whereuv is given by Eq.[(I) and by Eq. [10). Using these expressions we obtain

1+ v*—2swvcos (0 —¢)

R= 1+v2+2svcos(6+¢)’
where
(04 6) = ~2ET (4, cos (6) F K, sin (6))
V COS RN qx F Ky .
Finally, after algebraic simplification, we obtain
kx — Oz
R=R= : 35
ky + 4z (35)
3.3.2. Forg, pure imaginary. For g, a pure imaginary, we see that
(Fom)” T = 1
(36)
RR* =1
Using these relations along with E@. [33), we straightfadiyaobtain
R,fq =1 and T,ffl =0 with ¢, a pure imaginary. (37)

This is an expected result since the transmisgioa 1 — R must be zero in the case where
the wave in the:-region enters in the gap of theregion. If the incident wave propagates
in the gap region, i.e. it is an evanescent wave, the coef[is:ilé;tk anqufC are physically
meaningless.

We see from the second expression[inl (36) fRat a modulo 1 complex quantity. It
may be written as

R = e, (38)
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with 2¢ a convenient definition of its argument. To compute this enigl the spirit of Eq.
(22), we replace, by i« in Eq. (35) to obtain

k, — i«
R= ky +io
Computing the real part of this quantity, we get
2E? cos(0)?
cos (2¢) = —m 1
and, after straightforward manipulation,
cos () t' = cos (0) |E| or else tan(p) = k:g’ (39)

xT

a Snell type expression for tlye pure imaginary case.

SinceR = RR* = 1 for ¢, a pure imaginary, a general expression for the intensity
reflection and transmissions coefficients (valid gotboth real and pure imaginary) is given
by

R=1-T

ki — qu
ky + 4y
B ‘1+1)2 —25@005(9—@‘

4
1402+ 2swvcos (6 + ¢) (40)

Naturally, Eqg. [(40) depends afy since bothv, ¢, and¢ depends on this quantity. When
one considers the case= ¢ = t' = 0 one obtains? = 0. This expression is plotted in a
density/contour plot in Figl3.

4. The barrier.

With the above definitions, the computation of transmissiod reflections coefficients for
any type of multi-interface device follows similar expriess as those found in normal
opticsdl To illustrate this, we consider in the following a heterasture made of g—region
of width w placed between two semi-infinite slabsiefegions, as shown in the Figl 4. Our
goal will be the derivation of the intensity transmissioeffient for this case, which we will
denoted byl},. We notice that results for barriers of the same height wherspectrum of the
the electrons is linear in every spatial regions was consdim Ref. [38].

In Figure 4, the wave functiovr; describes an electron, traveling in the positive direction
of z—axis, just before crossing tltkopterg — k. This wave function can be seen as resulting
from the coherent superposition of two wave functions, osiadpitself after a round trip in
the g—region, given byW, ¢/, ¢, ¢%*, and another one which is tliecidentwave funtion
U, after crossing the first interfade— ¢, equal toV, t,jq e=v  Adding these two contribution
and solving in order t@’; we obtain,
by €9

et 2w
1 Tl gk €99

\111:\110

i There is no analog, however, for the gap-region with normeitience.
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Figure 3. Intensity transmission for particles crossing the integffrom ak-region into a
g-region. The black region corresponds to a zero transmissi@ase that correspond to the
total internal reflection in the usual photonic optics.
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Figure 4. Barrier: scheme for the computation of the transmission.

If we denote the amplitude transmission coefficient for Hasrier agz = ¥, /¥, and using
the fact thatl, = ¢/, W,, we finally obtain

L - (41)
where the definitions (30) were used.
4.1.q, real: free propagation.
If there is wave propagation in theregion,q, is real,R = Rand7 =T, and

Ty —tyt, — 1 — Ry — [1 4 (sz sin? (qmw)] o (42)
where we used the finesse definition

Fo YE_1? (43)

T  2q’
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Figure 5. Transmission of a barrier for @region width ofw = 50a (top) andw = 300a
(bottom). For a sufficient narrow width, the wave tunnelsasrtheg-region resulting in a
non null transmission. In optics, this behavior is knowrrastratedtotal internal reflection.
The dashed lines marks the region where in the step, thentissisn is zero.

to highlight the similarity with an Fabry-Pérot solid eial(made of glass, for example) in
usual opticsl[39] However, this similarity is elusive. hetsolid etalon case, in general, the
finesse is almost a constant coefficient since the interfaeisctivities (e.g., in a diopter
glass-air) has a small dependence on the energy (opticalaases are typically far from the
visible part of the spectrum and there’s no gap as in the chfeea@raphene with a mass
term). In the case treated hefE,has a strong dependence on the endrgyf the particles

and, furthermore, there is also a gap present. We will regigtabry-Pérot type of device
further in this work.

4.2. Inside the gap: frustrated total internal reflection.

Inside the gapy, is a pure imaginary and there’s no wave propagation. Thisrgas to the
total internal reflection in optics, where only an evanese&ve exists that carries no energy
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Figure 6. Transmission coefficient for a simple step and severaldrarfor normal incidence.
In the barriers case, there is feustrated total internal reflection and, in the gap, the
transmission is non zero and increases with decreasingwvalithe width of the-region.
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Figure 7. Left: Transmission coefficient for a barrier with a widita and for different angles
of incidence). At E = 0, all curves have the same value andffot /2, the transmission is

a delta function at? = 0. Right: Zero energy transmission coefficient of a barridiuastion
of its widthw.

(since in here, the coefficierit,, = 1) and decays exponentially in thedirection (although
keeping the phase teraf+¥ in they direction).

However, by placing &-region nearby the evanescent wave, some of the energy of the
totally reflected wave tunnels throughout the gap regionhenpmena known in optics as
frustrated total internal reflectionThis phenomena is also described by Eql (42), whenever
q. becomes a pure imaginary. In this case, replaging: i« and using the definitions (22)
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.t 7

Figure 8. Schemes for the computation of the transfer matrices.

and [38) we may simplify Eq[.(42) to

1
Tg=tpth=1—Rp=——, 44
B Blp B 1+C ( )
where we have used the definition
B sin'h22 (ozw)7 (45)
sin? ()

which will be used in the following. IfE = 0, Eq. (39) implies thatp = —x/2 and
a = t'/vph. Ty is in this case independent #find is equal to

Tg(E = 0) = cosh™ (wvih) (46)

This behavior is clearly shown in left panel of F[d. 7. In thght panel of Fid.l7 it is shown

how this tunneling transmittance at zero energy varies thigtbarrier width. A0% reduction
is accomplished for a barrier with a width of approximat&tya.

5. Transfer matrices

The method used in the last Section for computigpgalthough being simple becomes very
difficult to handle for more complex hetero-structures hwitore than two interfaces. These
type of cases are usually treated with the useaisfermatrices. These will be computed in
the following. Figuré B shows the scheme used to computedhsfer matrix in an interface
k — g andq — k. In both cases, our goal is to derive and ¥, from the knowledge o¥, and

(. Defining
)= (37
= an )
(o) =3 (3
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k-region g-region k-region g-region k-region
W, W, W, W, W,
lp(l) l'IJl qu ws
< W—> < W—>

Figure 9. The diode heterostructure: two thin slabsgefregions of widthw separated by a
k—region of widthd, all inside semi-infinite slabs df—regions.

whereM,,,,, is the transfer matrix for the generiec — n interface, and using Eq[_(B1), we
obtain the result

1 T
i tam
M, = (47)
rt 1
o o

The determinant of this matrix is given by

Da@@ﬁ:[Da@@ng:Q? (48)

t
qk
As expectedDet(My, x M) = 1. The free propagation of a particle inka- and in a
g—region of width¢ is given, respectively, by

6ik15 0 e“]z& 0 ]

O R E O 9)

6. The diode.

We consider now a more complex system composed by a sandiyiwb g@-regions of width
w separated by a slab offa-region with widthd, inside two semi-infinitec—regions. To
derive the amplitude transmission coefficient of such actiine we need to compute the
expression,
ta = Mgk Lig(w) Mg L (d) Mg, Lig (w) Mg

The result of this expression can be simplified using Eg., (@3ulting in

T2 p2igew
(R e2igew _ 1)2 _ R(62iqu _ 1)2 e2ikzd”
For the most important case where theregions are barriers with energy higher than the

energy of the particles, we have a resonant diode. In this @ad using the definitions (22)
and [38) we get

tp =

sinh? (aw) hnd -

tp =15 x |1 —

50
sinh? (aw + i) ’ (50)
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Figure 10. Transmission of a diode structure with= 50a andd = 100a (top) andd = 200a
(bottom).

wheret s is the amplitude transmission for a simple barrier, giverelyy (41).

We may simplify Eq. [(5D) by expanding the temimh (aw + i) and expressing the
result in a complex polar representation. Doing this andgutie definition forC in Eq. (45)
we obtain

sinh® (aw)
sinh? (aw +ip) 1+
with the phase term argument given by

exp (129)

¢ = — arctan [coth (aw) tan (¢)].
The intensity transmission coefficient can now be easilymaed, being equal to
1
TD - ) )
1+ (%]—“D) sin® (@ + k,d)
where now, th&liode finessé ), is given by

Fp=m/c(1+0). (52)

(51)
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6.1. Reuvisiting the Fabry-&tot: etalon made with "mirrors”.

The expression_(51) results in the simple case of a Fabryteélon if:
(i) aw > 1, which impliescoth (aw) = 1 andg = ;
(i) E < t', which implies thatp ~ 7 /2.

With these approximations we get
T .
Fp = B sinh (2aw)

and then
1

" 1+ sinh? (2aw) cos? (kpd)’
an expression that can be derived from a delta function piatetreatment, treated in Section
[7.

Tp (53)

6.2. The diode tunneling conductance.

Let us now compute the tunneling conductance of the deviégrasion of the potential bias
V, the chemical potential of the leads, and the lengt the barrier. We shall assume that the
device is operating in the region where the chemical paéafithe leads lies inside the gap
of the barrier. The total tunneling current density (i. e turrent per unit of cross-sectional
length) through the device is given by

J(V,w) = — #if#/deEdE cos 8 T(E, 6)
X [f(E—pr) — f(E— pr)] (54)

wheref(z) = (1+e*/ D)1 iy = p+eV/2, ug = p—eV/2, andu the chemical potential
of leads in the equilibrium state. The linear response cotaaice per unit of cross-sectional
length is given, at zero temperature, by

G(p,w) = 6—2 e df cos 0T (u,0) (55)
’ h 3m2at J -z )2 e
In Fig. (11) we plot&(u, w) as function ofu for several widthso. It is clear that the value of
G(u, w) may change by several orders of magnitude, cloge+$o0 by a small change qi.

Naturally for wider barriers one obtains a smaller condoucta

6.3. A limiting case.

The limiting case of barrier can be represented by a dehation potential,V (x,y) =
go.6(x). (See next section for complete discussion of delta fungbiotentials in the Dirac
equation.) It is interesting to compute the reflected flux oth Schodinger and Dirac
electrons for this potential. In the first case one obtains
_ (2mg/n*)
 4k3cos? 0 + (2mg/h*)?’

(56)
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Figure 11. (color on line) Linear response conductaidég:, w), per Dirac cone, as function
of the chemical potential, for different values of the widthy. The hopping matrix is taken
tobet =2.7evandt’ =0.1lev.

whereas for Dirac electrons the result is
R = tanh®[g/(hvp)] . (57)

It is clear that for electrons in grapheiiis angular and energy independent. For the case
g > hop the reflexion tends to unity.

7. The diode: a limiting case.

Finally we want to discuss a limiting case of the resonantéling diode made of graphene.
The device is represented in FIg. 9. The corresponding studgchrodinger electrons was
done by Tsu and Esaki.[43]

A limiting situation of the device described in Figl 9 is onbewe the barriers are are
describe by a scalar Lorentz potential of the form

1
Viz,y) = limgo-[1 - 0(|z] - €)]o-

+ ligoo[1 = 0(0s — d| — ).

= go.[0(x) + 0(x —d)]. (58)
The connection with the true barrier is made by identifyingith at'wa, with e @ numerical
constant of dimensions inverse of length. This form of theeptal is equivalent to a mass
term and therefore to a gap in the spectrum. However, givershiort range nature of the
potential, its effect comes only in the boundary conditionposed on the wave function at
the potential position.

The problem of Dirac electrons in delta function potentiaés been studied in the

past[44,/ 45] and is not without subtleties. [46] 47, 48] Thbtketies can be traced back
to the problem of evaluating the integral

_l f(z)d(x)dx, (59)
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where f(z) is a discontinuous function at = 0. If we try to solve the problem of Dirac
electrons with a delta function potential using the sanekj42] one uses for Schrodinger
electrons we face the problem defined by the intedral (59)is Ehso because the wave
function of Dirac electrons in a delta function potentialliscontinuous at the point where
the delta function is located. There are several strategiesvercome this difficulty.
[44,145,[46, 47| 48] The most straightforward was devised lpKdllar and Stephenson
[44,/45] and generalized by Dominguez-Adame and Macial@8hort, the Dirac equation
along ther direction can be can be written as

do(x) _ -
= G@)o(a). (60)
whereg(x) is a spinor wave function. This problem can be formally sdlas
o) = Toelo “O% g (ay), (61)
where the operatdf, is the position order operator such that
T[G(2)G(y)] = G(@)G(y)0(x - y) + G(y)G(2)0(y — z). (62)

Since we are interested in determine the boundary condititweyed by the wave function
¢(z) at the delta function position we consider the infinitesimedrvalz € [—e, €] obtaining
$e) = Tpel = C@d gy (63)
The integral is dominated by the delta function and for thebjgm we are treating in this
paper we obtain the following boundary condition
ole) = e T g(—c) . (64)
To evaluate how the exponential actsggr-¢) we use the Lagrange-Silvester formbla[47] for
a functionf (M) of a matrix M

Ao — M M —M
f(]\/[):f()\l)l)\jﬁjuf(&)ﬁ’

where), » are the eigenvalues @ . For the problem at hand, Ed._(65) leads to the following
boundary condition around = 0

< 6a(0) ) ot §< 6a(0°) ) 4 isnh < 3u(07) ) | )

(65)

¢p(07) ¢(07) —$a(07)
whereg = v;;h is an adimensional interaction constant a8fdepresent positive and negative
infinitesimals. A similar boundary condition holds for = d. For the potentiall[(88) we
can now define three different regions, I, I, and Ill, defireesk: < 0, 0 < = < d, and
x > d, respectively. In each of these regions the wave functioa sim of two plane
waves of opposite momentum along thedirection, with each plane wave multiplied by
the coefficientsAr and Br, wherel” =1, I, and Il labels the three regions defined above.
Once the matrixI’ has been computed (see appendix Appendix A) the reflection
coefficient is obtained from
T
Ty

(67)

r =
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Figure 12. (color on line) Top panels: transmitted fldx (E = 0.1,0) for fixed § = 2 and
two d =100z, 200z and for fixedd = 100a and threg; =0.5, 1, 2. Bottom panels: transmitted
flux Tt (E, 0 = 0) for the same previous cases.

and the transmitted fluX; from
Ty=1—1rr". (68)

For the case of zero electrostatic potentiélss= 0, we obtain
T 1
77 1 ¥ sinh? (2g) cos? (2dk)’
which is a similar expression to the one [nl(53)it= aw. It is simple to identify the limit
T — 1, which occurs wheBkd = (2n + 1)m, withn =0,1,2, .. ..

In Figure[12 we show the transmitted flif% (£, #) as function of the energy and of the
anglef. The barrier between the leads and the center of the deviepiissented by a delta
function potential, therefore wider barriers are représgby larger values af. From Fig.12
we can see that for larger valuesgthe transmission in the forward direction is essentially
zero except at some resonant energies, where the tranemggses to one. As function of
the angle we see that there are some angles for which therissien in also one. When the
length of central part of the device is increase (lakfehe resonances become closer to each
other and more resonances appear.

In Figure[18 we present an intensity plot Bf(E, ¢) for a device withg = 0.5 and
d = 200a. In this figure we can follow the evolution of the resonanaeshe £ versusf
plane. The six lines of larger transmission are associatddtie resonances we see in Fig.
[12 forg = 2 andd = 100a.

As before, the linear response conductance per unit of @@s$onal length is given, at
zero temperature, by Eq._(55) and represented ih Fig 14.nkalt galues of; the conductance
shows smooth oscillations whereas for largeralues strong resonances are observed. The
number of observed resonances depends on the léngth

(69)
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Figure 13. (color on line) Intensity plot of ;(E, #) for a device withg = 0.5 andd = 200a.
There are clearly well defined regions of large intensitpgraission.
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Figure 14. Linear response conductance per unit of cross-sectiomgtheat zero temperature.
The top panels show (u, d) with g=0.5, 1 and the lower panels show the same quantity but
for g=2, 4.

8. Final remarks.

In this paper we discussed the tunneling properties of Dalactrons in two-dimensions
when they transverse regions of space where the spectrisantsea finite energy gap. In
the case we considered here the gap is induced by depositpipene on top of Boron
Nitride, rendering, in this way, the sub-lattices A and B +emuivalent. The consequence
is the opening of a gap in the energy spectrum, that we hawsrrized by the parameter
t' = 0.1¢t. We have shown that the existence of an energy gap preverkdem paradox from
taking place, a necessary condition for building nanoedeet devices made of graphene. We
have also shown that basic devices like a resonant tunngilraig can be made of graphene,
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by intercalating two regions where the spectrum of graph@eeents a gap. We have also
shown that simple analytical expressions can be derivethéotunneling through these types
of heterostructures. In addition we have showed that aihigitase of the resonant tunneling
diode can be understood by using Dirac delta function piatsnt

Clearly that one is lead to think that a full description oé thallistic (no impurities)
transport process in the system should also include theteffetemperature and phonons.
We note, however, that the electron-phonon interactiorbkas shown to have a small effect
in the optical conductivity of graphene. [49] Which meanatthhonons should not be very
important in the description of the transport process. Also polaronic effect leads to a
renormalization of the velocityr in thek — region and to the renormalization of the effective
massmv% = t' in the ¢ — region. But since these two parameters can be considered as
effective ones there is no point in including the polarorffea explicitly. In concerns the
temperature, clearly it will be of no importance when themlwal potential is above the gap.
When the energy is in the gap there will certainly be tempeeaactivated transport adding
on top of the tunneling current. For small temperaturesitiiide a small effect.

We believe our results of relevant for future nanoelectrsmipplications of graphene.
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Appendix A. Details of sectior(Y results.

We now give the details that allows one to derive the résupplying boundary conditions
derived in Sed.]7 and’B—matrix description[42] for the scattering problem we obtai

Arrr ) ( Ar ) ( Ty T ) ( Ar )
=T = A.l
< Biir By T, T4 By (A1)

T = Vi MyVy ' M (A.2)

with

The several matrices involved in EQ. (A.2) are defined as

M1 = COShg ( 191 1—i91 )

Slei —S51€
’i91 _ —’i91
+ i¢sinh g o1¢ e 5 (A-3)
—1 —1
1 e702 gy
vl _ 7 A4
2 2 cos 0, ( e —sy ) .
ikod —ikad
. e e
M; = COSh9< soet@2tkad) g o—i(02tk2d) )
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+ isinh g < ‘926_(2,: - _Szf;fekzkd) ) , (A.5)
and
—i(03+ksd —ikad

Vit = 2 Cols 0, < eez(;::kg;)) i38636i1;d ) : (A.6)
The momenta, andks are given by

k; = Wih (E—U;)?— (E —U,)?sin?6, (A.7)
with i = 2, 3. The angle®, are defined as

0; = arctan @ , (A.8)

ki
with k, = |E — U|sin6,/(vrh). Thes; functions are given by, = sign(E — U;), with
1 = 1,2,3. The potential energies; represent some electrostatic potential created in the
corresponding region. Although an analytical expresswrYfcan be produced by carrying
out the four matrix multiplications, the resulting expriessis too cumbersome to be given
here. In the special case that &ll = 0, the matrix elements df have a simple form given

by

Ty, = cosh® § + e % ginh? g, (A.9)
and

Ty = —sie (1 + e %*9) cosh §sinh 7, (A.10)
with s = sign F, k = |E| cos8/(vrh), andf the incident angle in the barrier.
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