
ar
X

iv
:0

80
5.

20
62

v1
  [

co
nd

-m
at

.m
es

-h
al

l] 
 1

4 
M

ay
 2

00
8

Tunneling of Dirac electrons through spatial regions of finite
mass
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Abstract. We study the tunneling of chiral electrons in graphene through a region where
the electronic spectrum changes from the usual linear dispersion to a hyperbolic dispersion,
due to the presence of a gap. It is shown that contrary to the tunneling through a potential
barrier, the transmission of electrons is, in this case, smaller than one for normal incidence.
This mechanism may be useful for designing electronic devices made of graphene.
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1. Introduction

A new and exciting field in condensed matter physics started when graphene - a two-
dimensional, one carbon-atom thick material - was isolatedfor the first time.[1, 2] It was
experimentally shown that the charge carriers in graphene could be controlled by a bottom gate
setup-up; the charge carrier were shown to be either holes orelectrons depending on the sign
of the bottom gate voltage. In the transition from hole-based to electron-based transport the
conductivity shows a minimum (not zero) value,σmin. Its experimental value is of the order
of σmin ≃ 4e2/h,[1, 2, 3, 4] but the actual value seems to be some what sample dependent.[5]
This value forσmin imposes therefore a limitation on the minimum value of the current a field
effect transistor made of graphene can transport. The existence of a conductivity minimum in
graphene is a consequence of the fact that the elementary excitations of graphene are Dirac
fermions, with a linear dispersion relation, instead of usual electrons with parabolic-like
dispersion, characteristic of ordinary semi-conductors.Interestingly enough, the calculated
value of the conductivity of graphene at the neutrality point is off the experimental value by
the factor1/π. [6, 7, 8]Although this value is the more common result for the theoretical
calculation ofσtheo

min , there are, however, several different values available inthe literature.[9]
It is also interesting that a clean graphene sample with metallic leads and smooth edges has
a value ofσ = σtheo

min as long as it width (w) is much larger than its length (L), being smaller
thanσtheo

min in the opposite limit. [10] Considering the case of metallicarmchair edges, it found
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thatσ > σtheo
min for w/L ≪ 1 and thatσ → σtheo

min for w/L ≫ 1.[10] This shows that disorder
is not needed for havingσ ≃ σtheo

min .
Another characteristic of Dirac electrons in graphene is their ability to tunnel through

a potential barrier with probability one. [11, 12] This so called Klein tunneling of chiral
particles has long ago been proposed in the framework of quantum electrodynamics,[13, 14,
15] but was never observed experimentally. Graphene opens up a route to observe this effect
in a tabletop experiment, where the potential is created by some electrostatic gate potential.
The manifestation of Klein tunneling is also present when electrons in graphene are forced to
transverse an− p junction, leading to a selective transmission of those electrons approaching
the junction perpendicularly.[16] Other unusual effects,such as the focusing of an electric
current by a singlep− n junction are also characteristic of Dirac electrons in graphene. [17]

As appealing as the Klein tunneling may sound from the point of view of fundamental
research, its presence in graphene is unwanted when it comesto applications of graphene
to nanoelectronics. This comes about because the pinch-offthe field effect transistor may be
very ineffective. The same may occur because of the minimum conductivity of graphene at the
neutrality point (as discussed above). One way to overcome these difficulties is by generating
a gap in the spectrum. From the point of view of Dirac fermionsthis is equivalent to the
generation of a mass term. There are two known forms of generating gaps in the spectrum
of graphene. The first one is by patterning graphene nanoribbons.[18, 19] The mechanism
of producing these gaps depends on the nature of the termination of these nanoribbons. For
armchair nanoribbons the gap comes from quantum confinementof Dirac fermions induced
by the finite nature of the ribbons in the transverse direction. For zigzag nanoribbons the gap
stems from the formation of polarized spin edge-states characteristic of these type of ribbons.
The formation of these polarized states is also possible in bilayer graphene.[20] It is interesting
to notice that Klein tunneling can also be circunvented by using a graphene bilayer.[11] The
value of the induced gaps depend on the width of the ribbons, but for large widths it is of the
order of 0.1eV.

Another possibility of generating gaps in the graphene spectrum is to deposit graphene
on top of hexagonal boron nitride (BN). [21] This material isa band gap insulator with a boron
to nitrogen distance of the order of 1.45Å, [23] (in graphene the carbon-carbon distance is
1.42Å) and a gap of the order of4 eV. It was shown that in the most stable configuration,
where a carbon is on top of a boron and the other carbon in the unit cell is centered above a
BN ring, the value of the induced gap is of the order of 53 meV. Depositing graphene on a
metal surface with a BN buffer layer leads ton−doped graphene with an energy gap of 0.5
eV.[22]

The two mechanisms described above can be used to produce arrangements of graphene
where in some spatial zones of the material the Dirac electrons will have gaps in the
spectrum. The first possibility is to pattern graphene planes such that in several areas of
the graphene flake narrow nanoribbons may exist. Another possibility it to combine wafers
of silicon oxide and hexagonal boron nitride, such that in the region where the BN is
located the local spectrum of graphene will present a finite gap. We shall explore in this
paper this latter possibility and the way it can prevent Klein tunneling from occurring. The
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two mechanisms just mentioned can then be at the heart of future nanoelectronics built of
graphene. The second method is also related to junctions of graphene with other kind of
systems, being them superconducting,[24, 25] normal-conductor/graphene/normal-conductor,
[26] or multiterminal junctions.[27] Also the study of electron transport in disordered
graphene samples is of interest,[28] specially because thetunneling may be assisted by
impurities,[29] which is a manifestation of Klein tunneling.

For a review on the experimental aspects of graphene physicssee the work of Geim and
Novoselov.[30] Some of the theoretical aspects of graphenephysics are reviewed qualitatively
by Castro Netoet al.,[31] by Katsnelson, [32] and by Geim and MacDonald; [33] a more
comprehensive review is given by Castro Netoet al..[34] For a review on Klein tunneling see
the work by Beenakker.[35]

2. Basic definitions.

As described in the previous section, we assume that it is possible to manufacture slabs with
SiO2-BN interfaces, on top of which a graphene flake is deposit. This will induce spatial
regions where graphene has a vanishing gap intercalated with regions where the BN will
cause a finite gap.

In the following we will consider the graphene physics in twodifferent regions: the
k−region, where the graphene sheet is standing on top of SiO2, and aq−region, where a
mass-like term is present, caused by BN, inducing an energy gap of value2t′ (for all numerical
purposes we uset′ =0.1eV). The wavefunctions in these two regions will be referred byψk

andψq, respectively. The geometry of the scattering process is represented in Fig. 1.
The Hamiltonian for massless Dirac electrons in graphene, around theK-point in the

Brillouin zone is given by

Hg = vFσ · p , (1)

whereσ = (σx, σy), p = −ih̄∇, σi, with i = x, y, z, is theiPauli matrix, andvF = 3ta/(2h̄),
with t the nearest neighbor hopping matrix in graphene anda the carbon-carbon distance.
Therefore, in the massless wave function, in thek−region (t′ = 0), is given by

ψk,s =
1√
2

(
1

u(k, s)

)
eik·r, (2)

with

u(k, s) = s eiθ, (3)

s = sign(E) andθ = arctan (ky/kx). The corresponding energy eingenvalue is

E = ±vF h̄
√
k2x + k2y = ±h̄vFk, (4)

with k the absolute value of the wavevector.
In a region of finite mass the Hamiltonian for Dirac electronsis

Hg = vFσ · p+ t′σz , (5)
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with mv2F = t′ the mass term (m is the effective mass); as a consequence the electronic
spectrum will present a finite energy gap of value2t′. In the q-region (the gaped region,
t′ 6= 0), the wave funcion is

ψq,s =
1√
2

(
1

v(q, s)

)
eiq·r, (6)

where

v(q, s) =
E − t′

h̄vF (qx − iqy)
. (7)

Due to momentum conservation, electrons propagating through ak−q interface will conserve
their wavevector component parallel to the interface. Thus, taking this interface to be located
along thêy axis, we will have alwaysky = qy. Theq-region eigenenergy, associated with the
eigenstate (6) and the Hamiltonian (5), is

E = ±
√
(q2x + k2y)(h̄ vF )

2 + t′2. (8)

It is amusing to notice that the spectrum (8) has the same formas for the electrons in
a graphene bilayer, when the two graphene planes are at different electrostatic potentials.
[36, 37] Using Eqs. (8) and (4), we write

vF h̄qx =
√
E2 cos2 (θ)− t′2 (9)

and, depending onE2 cos2 (θ) being larger or smaller thant′2, qx may take a real or a pure
imaginary value. Wave propagation follows for the former case, evanescent waves in the
latter.

For a realqx, and sinceqy = ky, we have
√
E2 − t′2 sin (φ) = |E| sin (θ) (10)

whereφ is the angle of propagation of the electron in theq-region (see Fig.1). Equation (10)
is just the usual Snell’s law, for electrons being refractedat the interface separating thek−
andq− regions. We see thatφ ≥ θ whenever|E| > t′.

2.1. Forward and backward propagation.

We consider now the simple reflection in the interface, with the incident and the reflected
waves both on thek− or on theq−region.

In the k−region, the x̂−component of the wavevector of the reflected wave is
symmetrical with respect to the incident wave. Thus, for this case, we have the following
transformations under a reflection (see also Fig.1)

kx → −kx and eiθ → ei(π−θ) = −e−iθ. (11)

This leads to the generalization of Eqs. (2) and (3)

u± = ±s e±iθ, (12)

ψ±
k =

1√
2

(
1

u±

)
e±ikxx+ikyy. (13)
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Figure 1. Top figure: graphene band structure for the massless and massive cases. In this latter,
the quasi-parabolic bands have a gap energy2t′. Bottom figure: geometry in the reflection
in the k − q interface. An incident wavefunctionψ+

k with wavevectork+ is reflected and
refracted into theψ−

k and theψ+
q wavefunctions with wavevectorsk− andq+, respectively.

Since the momentum is conserved at the interface, one has that qy = ky . The refracted wave
propagates with an angleφ, which is slightly larger than the incident and reflected angles θ
with |qx| < |kx|, a consequence of energy conservation.

where the plus and minus signs refers to waves propagating, respectively, in the positive and
negative directions of thêx-axis.

A similar reasoning leads to the generalization of (7) tov(q, s),

v± =
E − t′

h̄vF (±qx − iky)
. (14)

and, also, of theq−region wavefunction to

ψ±
q =

1√
2

(
1

v±

)
e±iqxx+ikyy. (15)

The differences we have just highlighted on the wavefunctions and coefficients for
forward and backward propagating particles can be also seenin the differences in positive
and negative angles of incidence in the interface. This changes are useful, when a guiding-
wave kind of device is made. Let us therefore analyze the casewhenky → −ky. If in Eq.
(11) we keepkx unaltered and “reflect” insteadky we would obtain

ky → −ky and eiθ → e−iθ, (16)

with similar relations forφ, the angle in the q-region. For this cases, we get

v±(−φ) = −v∓(φ ) and u±(−θ) = −u∓(θ). (17)

Apart from a minus sign, these relations shows that the the operation of changing the sign of
ky (i.e., the angle of incidence) is equivalent to the one of changing the sign ofkx (qx in the
q-region). Of curse that the extra minus sign in the right hand side of both expressions in Eq.
(17) are of no consequence within the calculation of reflection and transmission coefficients
that follow.
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2.2. Real and evanescent waves in theq-region

Since in theq-region there is a gap in the energy spectrum thenqx can take both real and pure
imaginary values. In the first case, we have wave propagationin this region, in the latter just
evanescent waves. No simple expression as the one given by Eq. (12) can be written in this
case. Instead, we need to consider separately the cases where qx is a real or a pure imaginary
number.

2.2.1. Forqx real. For realqx, we can write a similar expression to the one in Eq. (12),

v± = ±ve±iφ, (18)

with φ given by Eq. (10) and

v =
E − t′

vF h̄|q|
=

E − t′√
E2 − t′2

, (19)

where Eq. (8) was used.

2.2.2. Forqx pure imaginary. Sinceky is always a real number, Eq. (14) implies that, ifqx
is a pure-imaginary,v± also is, and then

v± = ∓iν±, (20)

where

ν± = ± E − t′

h̄vF (±ky − α)
, (21)

with the realabsorption coefficientα defined asqx = iα, andα given by

α = (vF h̄)
−1
√
t′2 −E2 cos(θ)2 . (22)

2.2.3. Complex conjugate of theu± andv± coefficients. For the calculation of the intensity
reflection and transmission coefficient we will need to deal with the complex conjugate of the
u± andv± coefficients. The definition (12) foru± implies that

u∗± = −u∓. (23)

In the case ofv±, its complex conjugate depends on the the fact of having a real or
imaginaryqx,

v∗± =

{
−v∓ if qx is real

−v± if qx is imaginary
(24)

3. Transmission and reflection at the interface: the step case.

3.1. Reflection and transmission amplitude coefficients.

We compute now the reflection and transmission amplitude coefficients for electrons crossing
an interface between ak− and aq− region. Unlike what happens in optics and due to the
differences on back and forward propagation, we will need toconsider not only two but four
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Figure 2. The four different possible cases for reflection/transmission in an interface between
k andq regions.

different cases: electrons crossing the interface coming from thek−region in the forward and
backward senses, and those crossing the interface coming from theq−region, also propagating
on the positive and negative senses of thex axis. These four cases are summarized in Fig. 2.

3.1.1. Propagation from ak− into aq−region. We start by deriving the amplitude reflection
and transmission coefficients, which will be denoted asr±kq andt±kq respectively, for the case
of the propagation from ak− into aq− region. This situation is described in Fig. 1 and also
in Fig. 2.a).

Since there is a partially reflected wave, the total wave function in thek−region must be
written as an superposition of one associated with the incident electrons and other with those
that are reflected,

Ψk(r) = Aψ+
k +B ψ−

k . (25)

A andB are the normalized amplitudes for the incident and reflectedwave functions. In the
q-region, withC the amplitude of the transmitted wave function, we have

Ψq(r) = C ψ+
q . (26)

Using Eqs. (25) and (26), and imposing the continuity condition of the particle’s wave
function at the interface, i.e.Ψk(x, y = 0) = Ψq(x, y = 0), we find

r+kq =
B

A
=
v+ − u+
u− − v+

and t+kq =
C

A
= 1 + r+kq, (27)

where the superscript+ recall that the incident wave function is, in this case, traveling in the
positive direction of thex-axis.

Had we considered the case were the particles travel in the backward direction,
represented by Fig.2.c), we would have obtained

r−kq =
v− − u−
u+ − v−

and t−kq = 1 + r−kq. (28)

This result can be obtain simply by exchanging the plus by theminus signs in Eq. (27).
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3.1.2. Propagation from theq− into the k−region. For computing the reflection and
transmission coefficients for the cases where the electronscome from theq−region into the
k-region,r±qk andt±qk, we need only to exchangeu ↔ v in the corresponding backward and
forward expressions (27) and (28). The result is

r±qk =
u± − v±
v∓ − u±

and t±qk = 1 + r±qk. (29)

3.2. Amplitude coefficients: general algebraic relations.

It will be very useful in the following, for expression simplification purposes, the derivation
of simple relations between the reflection and transmissionamplitude coefficients. Similar
relations to those we present here exist also for the photons’ optics case. For instance, we
may write±r12 + t12 = 1 when a light beam is reflected and refracted in a diopter between
regions1 and2, with the plus or minus sign corresponding respectively to the cases wheren1,
the index of refraction of medium1, is smaller or larger that the one of region2.

Here, however, we have that in generalr+mn 6= r−mn (and similarly for the transmission
coefficients) and these relations are less trivial (we have used the notationm 6= n = {k, q}).

Using the definitions in Eqs. (27), (28) and (29), we can write

R+ T = 1, (30)

where

R = r+kqr
−
kq = r+qkr

−
qk

T = t+qkt
+
kq = t−qkt

−
kq.

(31)

These relations are general and don’t depend on theqx being real or imaginary. Another
general relations, useful to simplify expressions of the transmission of multi-layered
structures, are

r±mnr
∓
nm = −R× t∓nm

t±nm
. (32)

3.3. Intensity reflection and transmission coefficients.

The general definitions for the intensity reflection and transmission coefficients are

R±
mn = r±mn (r

±
mn)

∗

T±
mn = t±mn (t

±
mn)

∗
= 1− R±

mn,
(33)

where we keep the same notation as before. We will consider now, separately, the cases were
qx is a real number or a pure imaginary.

3.3.1. Forqx real. For qx a real number, we note first that for anym 6= n = {k, q},




(r±mn)
∗
= r∓mn

R = R∗

(34)
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These relations are just a consequence of the definitions ofr±mn in Eqs. (27), (28), and (29),
and in Eqs. (23) and (24). Using Eq. (34) in Eq. (33) results in

R = R and T = T for qx real,

which is valid, for both interfaces and both directions of propagation. Furthermore, using Eq.
(30) we get

R + T = 1,

an expected result.
Explicitly, theR coefficient defined in Eq. (31) is given by

R =
(v+v− − 1)− (u−v+ + u+v−)

(v+v− − 1)− (u−v− + u+v+)
.

Making use of Eqs. (14) and (12), we may write

v+v− = − v2, u±v∓ = −s v e±i(θ−φ)

and u±v± = s v e±i(θ+φ),

wherev is given by Eq. (7) andφ by Eq. (10). Using these expressions we obtain

R =
1 + v2 − 2 s v cos (θ − φ)

1 + v2 + 2 s v cos (θ + φ)
,

where

v cos (θ ± φ) =
vF h̄

E + t′
(qx cos (θ)∓ ky sin (θ)) .

Finally, after algebraic simplification, we obtain

R = R =
kx − qx
kx + qx

. (35)

3.3.2. Forqx pure imaginary. For qx a pure imaginary, we see that




(r±mn)
∗
r±mn = 1

RR∗ = 1

(36)

Using these relations along with Eq. (33), we straightforwardly obtain

R±
kq = 1 and T±

kq = 0 with qx a pure imaginary. (37)

This is an expected result since the transmissionT = 1 − R must be zero in the case where
the wave in thek-region enters in the gap of theq-region. If the incident wave propagates
in the gap region, i.e. it is an evanescent wave, the coefficientsR±

qk andT±
qk are physically

meaningless.
We see from the second expression in (36) thatR is a modulo 1 complex quantity. It

may be written as

R = ei2ϕ , (38)
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with 2ϕ a convenient definition of its argument. To compute this angle, in the spirit of Eq.
(22), we replaceqx by iα in Eq. (35) to obtain

R =
kx − iα

kx + iα
.

Computing the real part of this quantity, we get

cos (2ϕ) =
2E2 cos(θ)2

t′2
− 1

and, after straightforward manipulation,

cos (ϕ) t′ = cos (θ) |E| or else tan (ϕ) =
α

kx
, (39)

a Snell type expression for theqx pure imaginary case.
SinceR = RR∗ = 1 for qx a pure imaginary, a general expression for the intensity

reflection and transmissions coefficients (valid forqx both real and pure imaginary) is given
by

R = 1− T

=

∣∣∣∣∣
kx − qx
kx + qx

∣∣∣∣∣

=

∣∣∣∣∣
1 + v2 − 2s v cos (θ − φ)

1 + v2 + 2s v cos (θ + φ)

∣∣∣∣∣ . (40)

Naturally, Eq. (40) depends ont′, since bothv, θ, andφ depends on this quantity. When
one considers the caseθ = φ = t′ = 0 one obtainsR = 0. This expression is plotted in a
density/contour plot in Fig.3.

4. The barrier.

With the above definitions, the computation of transmissionand reflections coefficients for
any type of multi-interface device follows similar expressions as those found in normal
optics.‡ To illustrate this, we consider in the following a heterostructure made of aq−region
of widthw placed between two semi-infinite slabs ofk-regions, as shown in the Fig. 4. Our
goal will be the derivation of the intensity transmission coefficient for this case, which we will
denoted byTb. We notice that results for barriers of the same height when the spectrum of the
the electrons is linear in every spatial regions was considered in Ref. [38].

In Figure 4, the wave functionΨ1 describes an electron, traveling in the positive direction
of x̂−axis, just before crossing thediopterq− k. This wave function can be seen as resulting
from the coherent superposition of two wave functions, one being itself after a round trip in
the q−region, given byΨ1 t

+
qkt

−
qk e

i2qxw, and another one which is theincidentwave funtion
Ψ0 after crossing the first interfacek− q, equal toΨ0 t

+
kq e

iqxw. Adding these two contribution
and solving in order toΨ1 we obtain,

Ψ1 = Ψ0

t+kq e
iqxw

1− r+qkr
−
qk e

i2qxw
.

‡ There is no analog, however, for the gap-region with normal incidence.
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Figure 3. Intensity transmission for particles crossing the interface from ak-region into a
q-region. The black region corresponds to a zero transmission, a case that correspond to the
total internal reflection in the usual photonic optics.
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Figure 4. Barrier: scheme for the computation of the transmission.

If we denote the amplitude transmission coefficient for thisbarrier astB = Ψ2/Ψ0 and using
the fact thatΨ2 = t+qkΨ1, we finally obtain

tB =
T eiqxw

1−Rei2qxw (41)

where the definitions (30) were used.

4.1. qx real: free propagation.

If there is wave propagation in theq-region,qx is real,R = R andT = T , and

TB = tB t
∗
B = 1− RB =

[
1 +

(
2

π
F
)2

sin2 (qxw)

]−1

. (42)

where we used the finesse definition

F = π

√
R

T
=
π

2

t′

qx
, (43)
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Figure 5. Transmission of a barrier for aq-region width ofw = 50a (top) andw = 300a

(bottom). For a sufficient narrow width, the wave tunnels across theq-region resulting in a
non null transmission. In optics, this behavior is known asfrustratedtotal internal reflection.
The dashed lines marks the region where in the step, the transmission is zero.

to highlight the similarity with an Fabry-Pérot solid etalon (made of glass, for example) in
usual optics.[39] However, this similarity is elusive. In the solid etalon case, in general, the
finesse is almost a constant coefficient since the interfaces’ reflectivities (e.g., in a diopter
glass-air) has a small dependence on the energy (optical resonances are typically far from the
visible part of the spectrum and there’s no gap as in the case of the graphene with a mass
term). In the case treated here,F has a strong dependence on the energyE of the particles
and, furthermore, there is also a gap present. We will revisit a Fabry-Pérot type of device
further in this work.

4.2. Inside the gap: frustrated total internal reflection.

Inside the gap,qx is a pure imaginary and there’s no wave propagation. This is similar to the
total internal reflection in optics, where only an evanescent wave exists that carries no energy
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In the barriers case, there is afrustrated total internal reflection and, in the gap, the
transmission is non zero and increases with decreasing values of the width of theq-region.
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Figure 7. Left: Transmission coefficient for a barrier with a width50a and for different angles
of incidenceθ. At E = 0, all curves have the same value and forθ = π/2, the transmission is
a delta function atE = 0. Right: Zero energy transmission coefficient of a barrier asfunction
of its widthw.

(since in here, the coefficientRkq = 1) and decays exponentially in thex direction (although
keeping the phase termeikyy in they direction).

However, by placing ak-region nearby the evanescent wave, some of the energy of the
totally reflected wave tunnels throughout the gap region, a phenomena known in optics as
frustrated total internal reflection. This phenomena is also described by Eq. (42), whenever
qx becomes a pure imaginary. In this case, replacingqx = iα and using the definitions (22)
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Figure 8. Schemes for the computation of the transfer matrices.

and (38) we may simplify Eq. (42) to

TB = tB t
∗
B = 1− RB =

1

1 + ζ
, (44)

where we have used the definition

ζ =
sinh2 (αw)

sin2 (ϕ)
, (45)

which will be used in the following. IfE = 0, Eq. (39) implies thatϕ = −π/2 and
α = t′/vF h̄. TB is in this case independent ofθ and is equal to

TB(E = 0) = cosh−2

(
w

t′

vF h̄

)
. (46)

This behavior is clearly shown in left panel of Fig. 7. In the right panel of Fig.7 it is shown
how this tunneling transmittance at zero energy varies withthe barrier width. A50% reduction
is accomplished for a barrier with a width of approximately36 a.

5. Transfer matrices

The method used in the last Section for computingtB, although being simple becomes very
difficult to handle for more complex hetero-structures, with more than two interfaces. These
type of cases are usually treated with the use oftransfermatrices. These will be computed in
the following. Figure 8 shows the scheme used to compute the transfer matrix in an interface
k− q andq− k. In both cases, our goal is to deriveΨ1 andΨ′

1 from the knowledge ofΨ0 and
Ψ′

0. Defining (
Ψ1

Ψ′
1

)
= Mmn

(
Ψ0

Ψ′
0

)
,
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Figure 9. The diode heterostructure: two thin slabs ofq−regions of widthw separated by a
k−region of widthd, all inside semi-infinite slabs ofk−regions.

whereMmn is the transfer matrix for the genericm − n interface, and using Eq. (31), we
obtain the result

Mmn =




1

t+nm

r−nm
t−nm

−r
+
mn

t−nm

1

t−nm




(47)

The determinant of this matrix is given by

Det(Mkq) = [Det(Mqk)]
−1 =

t+kq
t−qk

. (48)

As expected,Det(Mkq × Mqk) = 1. The free propagation of a particle in ak− and in a
q−region of widthξ is given, respectively, by

Lk(ξ) =

[
eikxξ 0

0 e−ikxξ

]
; Lq(ξ) =

[
eiqxξ 0

0 e−iqxξ

]
. (49)

6. The diode.

We consider now a more complex system composed by a sandwich of two q-regions of width
w separated by a slab of ak−region with widthd, inside two semi-infinitek−regions. To
derive the amplitude transmission coefficient of such a structure we need to compute the
expression,

td = Mqk Lq(w)Mkq Lk(d)Mqk Lq(w)Mkq.

The result of this expression can be simplified using Eq. (32), resulting in

tD =
T 2 e2iqxw

(R e2iqxw − 1)2 −R(e2iqxw − 1)2 e2ikxd
.

For the most important case where theq−regions are barriers with energy higher than the
energy of the particles, we have a resonant diode. In this case and using the definitions (22)
and (38) we get

tD = t2B ×
[
1− sinh2 (αw)

sinh2 (αw + iϕ)
ei2kxd

]−1

, (50)
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Figure 10. Transmission of a diode structure withw = 50a andd = 100a (top) andd = 200a

(bottom).

wheretB is the amplitude transmission for a simple barrier, given byEq. (41).
We may simplify Eq. (50) by expanding the termsinh (αw + iϕ) and expressing the

result in a complex polar representation. Doing this and using the definition forζ in Eq. (45)
we obtain

sinh2 (αw)

sinh2 (αw + iϕ)
=

ζ

1 + ζ
exp (i2ϕ̃)

with the phase term argument given by

ϕ̃ = − arctan [coth (αw) tan (ϕ)].

The intensity transmission coefficient can now be easily computed, being equal to

TD =
1

1 +
(
2
π
FD

)2
sin2 (ϕ̃+ kxd)

, (51)

where now, thediode finesseFD is given by

FD = π
√
ζ(1 + ζ). (52)
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6.1. Revisiting the Fabry-Ṕerot: etalon made with ”mirrors”.

The expression (51) results in the simple case of a Fabry-Pérot etalon if:

(i) αw ≫ 1, which impliescoth (αw) ∼= 1 andϕ̃ ∼= ϕ;

(ii) E ≪ t′, which implies thatϕ ≈ π/2.

With these approximations we get

FD =
π

2
sinh (2αw)

and then

TD =
1

1 + sinh2 (2αw) cos2 (kxd)
, (53)

an expression that can be derived from a delta function potentials treatment, treated in Section
7.

6.2. The diode tunneling conductance.

Let us now compute the tunneling conductance of the device asfunction of the potential bias
V , the chemical potential of the leads, and the lengthw of the barrier. We shall assume that the
device is operating in the region where the chemical potential of the leads lies inside the gap
of the barrier. The total tunneling current density (i. e. the current per unit of cross-sectional
length) through the device is given by

J(V, w) = − 2e

4π2vF h̄
2

∫
dθEdE cos θ T (E, θ)

× [f(E − µL)− f(E − µR)] (54)

wheref(x) = (1+ex/(kBT ))−1, µL = µ+eV/2, µR = µ−eV/2, andµ the chemical potential
of leads in the equilibrium state. The linear response conductance per unit of cross-sectional
length is given, at zero temperature, by

G(µ, w) =
e2

h̄

|µ|
3π2at

∫ π/2

−π/2
dθ cos θ T (µ, θ). (55)

In Fig. (11) we plotG(µ, w) as function ofµ for several widthsw. It is clear that the value of
G(µ, w) may change by several orders of magnitude, close toµ = 0 by a small change ofµ.
Naturally for wider barriers one obtains a smaller conductance.

6.3. A limiting case.

The limiting case of barrier can be represented by a delta-function potential,V (x, y) =

gσzδ(x). (See next section for complete discussion of delta function potentials in the Dirac
equation.) It is interesting to compute the reflected flux forboth Schödinger and Dirac
electrons for this potential. In the first case one obtains

R =
(2mg/h̄2)2

4k2F cos2 θ + (2mg/h̄2)2
, (56)
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Figure 11. (color on line) Linear response conductanceG(µ,w), per Dirac cone, as function
of the chemical potentialµ, for different values of the widthw. The hopping matrixt is taken
to bet = 2.7 eV andt′ = 0.1eV.

whereas for Dirac electrons the result is

R = tanh2[g/(h̄vF )] . (57)

It is clear that for electrons in grapheneR is angular and energy independent. For the case
g ≫ h̄vF the reflexion tends to unity.

7. The diode: a limiting case.

Finally we want to discuss a limiting case of the resonant tunneling diode made of graphene.
The device is represented in Fig. 9. The corresponding studyfor Schrödinger electrons was
done by Tsu and Esaki.[43]

A limiting situation of the device described in Fig. 9 is one where the barriers are are
describe by a scalar Lorentz potential of the form

V (x, y) = lim
ǫ→0

g
1

2ǫ
[1− θ(|x| − ǫ)]σz

+ lim
ǫ→0

g
1

2ǫ
[1− θ(|x− d| − ǫ)]σz

= gσz[δ(x) + δ(x− d)] . (58)

The connection with the true barrier is made by identifyingg with αt′wa, with α a numerical
constant of dimensions inverse of length. This form of the potential is equivalent to a mass
term and therefore to a gap in the spectrum. However, given the short range nature of the
potential, its effect comes only in the boundary conditionsimposed on the wave function at
the potential position.

The problem of Dirac electrons in delta function potentialshas been studied in the
past[44, 45] and is not without subtleties. [46, 47, 48] The subtleties can be traced back
to the problem of evaluating the integral

∫ ǫ

−ǫ
f(x)δ(x)dx , (59)
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wheref(x) is a discontinuous function atx = 0. If we try to solve the problem of Dirac
electrons with a delta function potential using the same trick[42] one uses for Schrödinger
electrons we face the problem defined by the integral (59). This is so because the wave
function of Dirac electrons in a delta function potential isdiscontinuous at the point where
the delta function is located. There are several strategiesto overcome this difficulty.
[44, 45, 46, 47, 48] The most straightforward was devised by McKellar and Stephenson
[44, 45] and generalized by Dominguez-Adame and Maciá.[47] In short, the Dirac equation
along thex direction can be can be written as

dφ(x)

dx
= Ĝ(x)φ(x) , (60)

whereφ(x) is a spinor wave function. This problem can be formally solved as

φ(x) = Txe
∫ x

x0
Ĝ(x)dx

φ(x0) , (61)

where the operatorTx is the position order operator such that

Tx[Ĝ(x)Ĝ(y)] = Ĝ(x)Ĝ(y)θ(x− y) + Ĝ(y)Ĝ(x)θ(y − x) . (62)

Since we are interested in determine the boundary conditions obeyed by the wave function
φ(x) at the delta function position we consider the infinitesimalintervalx ∈ [−ǫ, ǫ] obtaining

φ(ǫ) = Txe
∫ ǫ

−ǫ
Ĝ(x)dx

φ(−ǫ) . (63)

The integral is dominated by the delta function and for the problem we are treating in this
paper we obtain the following boundary condition

φ(ǫ) = e
−i g

vF h̄
σxσzφ(−ǫ) . (64)

To evaluate how the exponential acts onφ(−ǫ) we use the Lagrange-Silvester formula[47] for
a functionf(M) of a matrixM

f(M) = f(λ1)
1λ2 −M

λ2 − λ1
+ f(λ2)

1λ1 −M

λ1 − λ2
, (65)

whereλ1,2 are the eigenvalues ofM . For the problem at hand, Eq. (65) leads to the following
boundary condition aroundx = 0

(
φa(0

+)

φb(0
+)

)
= cosh g̃

(
φa(0

−)

φb(0
−)

)
+ i sinh g̃

(
φb(0

−)

−φa(0
−)

)
, (66)

whereg̃ = g
vF h̄

is an adimensional interaction constant and0± represent positive and negative
infinitesimals. A similar boundary condition holds forx = d. For the potential (58) we
can now define three different regions, I, II, and III, definedasx < 0, 0 < x < d, and
x > d, respectively. In each of these regions the wave function isa sum of two plane
waves of opposite momentum along thex−direction, with each plane wave multiplied by
the coefficientsAΓ andBΓ, whereΓ =I, II, and III labels the three regions defined above.

Once the matrixT has been computed (see appendix Appendix A) the reflection
coefficient is obtained from

r = −T
∗
12

T ∗
11

, (67)
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Figure 12. (color on line) Top panels: transmitted fluxTf (E = 0.1, θ) for fixed g̃ = 2 and
two d =100a, 200a and for fixedd = 100a and threẽg =0.5, 1, 2. Bottom panels: transmitted
flux Tf(E, θ = 0) for the same previous cases.

and the transmitted fluxTf from

Tf = 1− rr∗ . (68)

For the case of zero electrostatic potentials,Ui = 0, we obtain

Tf =
1

1 + sinh2 (2g̃) cos2 (2dk)
, (69)

which is a similar expression to the one in (53) ifg̃ = αw. It is simple to identify the limit
T → 1, which occurs when2kd = (2n+ 1)π, with n = 0, 1, 2, . . ..

In Figure 12 we show the transmitted fluxTf (E, θ) as function of the energy and of the
angleθ. The barrier between the leads and the center of the device isrepresented by a delta
function potential, therefore wider barriers are represented by larger values of̃g. From Fig.12
we can see that for larger values ofg̃ the transmission in the forward direction is essentially
zero except at some resonant energies, where the transmission goes to one. As function of
the angle we see that there are some angles for which the transmission in also one. When the
length of central part of the device is increase (largerd) the resonances become closer to each
other and more resonances appear.

In Figure 13 we present an intensity plot ofTf (E, θ) for a device withg̃ = 0.5 and
d = 200a. In this figure we can follow the evolution of the resonances in theE versusθ
plane. The six lines of larger transmission are associated with the resonances we see in Fig.
12 for g̃ = 2 andd = 100a.

As before, the linear response conductance per unit of cross-sectional length is given, at
zero temperature, by Eq. (55) and represented in Fig 14. For small values of̃g the conductance
shows smooth oscillations whereas for largerg̃ values strong resonances are observed. The
number of observed resonances depends on the lengthd.
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Figure 13. (color on line) Intensity plot ofTf (E, θ) for a device with̃g = 0.5 andd = 200a.
There are clearly well defined regions of large intensity transmission.
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Figure 14.Linear response conductance per unit of cross-sectional length at zero temperature.
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8. Final remarks.

In this paper we discussed the tunneling properties of Diracelectrons in two-dimensions
when they transverse regions of space where the spectrum presents a finite energy gap. In
the case we considered here the gap is induced by depositing graphene on top of Boron
Nitride, rendering, in this way, the sub-lattices A and B non-equivalent. The consequence
is the opening of a gap in the energy spectrum, that we have parametrized by the parameter
t′ = 0.1t. We have shown that the existence of an energy gap prevents the Klein paradox from
taking place, a necessary condition for building nanoelectronic devices made of graphene. We
have also shown that basic devices like a resonant tunnelingdiode can be made of graphene,
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by intercalating two regions where the spectrum of graphenepresents a gap. We have also
shown that simple analytical expressions can be derived forthe tunneling through these types
of heterostructures. In addition we have showed that a limiting case of the resonant tunneling
diode can be understood by using Dirac delta function potentials.

Clearly that one is lead to think that a full description of the ballistic (no impurities)
transport process in the system should also include the effect of temperature and phonons.
We note, however, that the electron-phonon interaction hasbeen shown to have a small effect
in the optical conductivity of graphene. [49] Which means that phonons should not be very
important in the description of the transport process. Alsothe polaronic effect leads to a
renormalization of the velocityvF in thek−region and to the renormalization of the effective
massmv2F = t′ in the q − region. But since these two parameters can be considered as
effective ones there is no point in including the polaronic effect explicitly. In concerns the
temperature, clearly it will be of no importance when the chemical potential is above the gap.
When the energy is in the gap there will certainly be temperature activated transport adding
on top of the tunneling current. For small temperatures thiswill be a small effect.

We believe our results of relevant for future nanoelectronics applications of graphene.
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Appendix A. Details of section 7 results.

We now give the details that allows one to derive the result 69Applying boundary conditions
derived in Sec. 7 and aT−matrix description[42] for the scattering problem we obtain

(
AIII

BIII

)
= T

(
AI

BI

)
=

(
T11 T12
T ∗
12 T ∗

11

)(
AI

BI

)
(A.1)

with

T = V −1
3 M2V

−1
2 M1 . (A.2)

The several matrices involved in Eq. (A.2) are defined as

M1 = cosh g̃

(
1 1

s1e
iθ1 −s1e−iθ1

)

+ i sinh g̃

(
s1e

iθ1 −s1e−iθ1

−1 −1

)
, (A.3)

V −1
2 =

1

2 cos θ2

(
e−iθ2 s2
eiθ2 −s2

)
, (A.4)

M2 = cosh g̃

(
eik2d e−ik2d

s2e
i(θ2+k2d) −s2e−i(θ2+k2d)

)
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+ i sinh g̃

(
s2e

i(θ2+k2d) −s2e−i(θ2+k2d)

−eik2d −e−ik2d

)
, (A.5)

and

V −1
3 =

1

2 cos θ3

(
e−i(θ3+k3d) s3e

−ik3d

ei(θ3+k3d) −s3eik3d
)
. (A.6)

The momentak2 andk3 are given by

ki =
1

vF h̄

√
(E − Ui)2 − (E − U1)2 sin

2 θ1 , (A.7)

with i = 2, 3. The anglesθi are defined as

θi = arctan
ky
ki
, (A.8)

with ky = |E − U1| sin θ1/(vF h̄). Thesi functions are given bysi = sign(E − Ui), with
i = 1, 2, 3. The potential energiesUi represent some electrostatic potential created in the
corresponding region. Although an analytical expression for T can be produced by carrying
out the four matrix multiplications, the resulting expression is too cumbersome to be given
here. In the special case that allUi = 0, the matrix elements ofT have a simple form given
by

T11 = cosh2 g̃ + e−2idk sinh2 g̃ , (A.9)

and

T12 = −sie−iθ(1 + e−2ikd) cosh g̃ sinh g̃ , (A.10)

with s = signE, k = |E| cos θ/(vF h̄), andθ the incident angle in the barrier.
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