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We report the first observation of a charmoniumlike state recoiling from the J= in the inclusive
process e�e� ! J= � anything at a mass of �3:943� 0:006� 0:006� GeV=c2. We also observe the
decay of this state into D� �D and determine its intrinsic width to be less than 52 MeV=c2 at the 90% C.L.
These results are obtained from a 357 fb�1 data sample collected with the Belle detector near the ��4S�
resonance, at the KEKB asymmetric-energy e�e� collider.

DOI: 10.1103/PhysRevLett.98.082001 PACS numbers: 13.66.Bc, 12.38.Bx, 14.40.Gx

Recently, there have been a number of reports of new
charmoniumlike states: X�3872� [1], Y�3940� [2], and
Y�4260� [3], that have not been assigned to any charmo-
nium states in the conventional quark model [4]. Moreover,
charmonium production in hadron interactions, �� � fu-
sion, and e�e� annihilation is not well described by theory.
One striking example is the surprisingly large cross section
for double charmonium production in e�e� annihilation
[5,6]. These experimental results have generated renewed
theoretical interest in the spectroscopy, decays, and pro-
duction of charmonium.

In this Letter, we report the observation of a charmo-
niumlike state, which we denote as X�3940�, produced in
the process e�e� ! J= X�3940�, where other known
charmonia are seen. X�3940� decay to an open charm final
state is also observed. The analysis is based on a 357 fb�1

sample collected by the Belle detector at the ��4S� reso-
nance and nearby continuum at the KEKB asymmetric-
energy e�e� collider.

The J= reconstruction procedure is identical to our
previously published analyses [5,7]. Oppositely charged
tracks that are positively identified as muons or electrons
are used for J= ! ‘�‘� reconstruction. A partial correc-
tion for final state radiation and bremsstrahlung energy loss
is performed by including the four-momentum of every
photon detected within a 50 mrad cone around the electron
direction in the e�e� invariant mass calculation. The two
lepton candidate tracks are required to have a common
vertex, with a distance from the interaction point in the
plane perpendicular to the beam axis smaller than 1 mm
( � 6�). The J= ! ‘�‘� signal region is defined by
jM�‘�‘�� �MJ= j< 30 MeV=c2 ( � 2:5�) and the side-
band by �50; 250	 MeV=c2. J= candidates in the signal
window are subjected to a mass- and vertex-constrained fit
to improve their momentum resolution. QED processes are

substantially suppressed by requiring the total charged
multiplicity (Nch) in the event to be greater than 4.
Background due to J= mesons from B �B events is re-
moved by requiring a center-of-mass (c.m.) momentum
p�J= > 2:0 GeV=c.

For the X�3940� ! D��� �D study, we reconstruct D0 can-
didates using decays to K���, K�K�, K�������,
K0
S�
���, and K����0, and D� candidates using

K�����, K�K���, and K0
S�
�. A �15 MeV=c2 mass

window is used for all modes except D0 ! K�������

(�10 MeV=c2) and D0 ! K����0 (�20 MeV=c2)
(�2:5� in each case). D candidates are refitted to the
nominal D0 or D� masses. To study the contribution of
combinatorial background under the D peak, we use D
sidebands with mass windows 4 times as large. For the
X�3940� ! J= ! search, candidate ! mesons are recon-
structed from �����0 combinations within
�20 MeV=c2 (�2:5�) of the nominal ! mass.

We define the mass of the system recoiling against
the reconstructed particle (F) as: Mrec�F� 
�����������������������������������������
�Ec:m: � E�F�

2 � p�2F
q

, where E�F and p�F are the c.m. en-
ergy and momentum of F, respectively. The Mrec�J= � is
shown in Fig. 1. Here, in addition to previously reported
peaks at the �c, �c0, and �c�2S� masses, there is a fourth
enhancement around 3:94 GeV=c2. The scaled J= side-
band distribution is shown by the hatched histogram. The
open histogram represents the  �2S� ! J= X feed down,
estimated from reconstructed  �2S� ! J= ���� cor-
rected for the  �2S� reconstruction efficiency and
B� �2S� ! J= X�=B� �2S� ! J= �����. Both distri-
butions exhibit no structure and, hence, can be described
by smooth functions. Assuming that the fourth enhance-
ment is due to a single resonance, we perform a binned
likelihood fit to this spectrum that includes the three pre-
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viously seen charmonium states plus a fourth state. A
typical signal Mrec�J= � instrumental resolution is
�30 MeV=c2; the signal shape is further smeared by ini-
tial state radiation (ISR) resulting in a higher mass tail.
The expected signal line shapes are determined from
Monte Carlo (MC) simulation assuming no

���
s
p

dependence
of the form factors (FF). The mass values for all states are
free parameters in the fit, the widths of �c and �c0 are fixed
to PDG values [8], and the �c�2S� width is fixed to
17 MeV=c2 [9]. The X�3940� width is a free parameter.
The background is parametrized by a second order poly-
nomial and a threshold term [

��������������������������������������
Mrec�J= � � 2MD

p
] with a

free normalization to allow for contributions from e�e� !
J= D �D; thresholds for J= D��� �D� are taken into account
in the systematic uncertainties.

The fit results are given in Table I and shown in Fig. 1 as
the solid curve; the dashed curve is the background func-
tion. We note that the masses of the known charmonium
states are �10 MeV=c2 lower than their nominal values.
As the Mrec�J= � scale has been calibrated using the
process e�e� !  �2S�� (the uncertainty due to J= mo-
mentum reconstruction is <3 MeV=c2 [7]), we ascribe
these shifts to a combination of statistical fluctuations
and systematic effects due to the high mass tails of the
peaks. Varying the

���
s
p

dependence of the FF’s in the MC
simulation, we find shifts as large as 5 MeV=c2. The
systematic error in the �c, �c0, and �c�2S� mass is thus
estimated to be 6 MeV=c2. The significance for each signal
is defined as

�����������������������������������
�2 ln�L0=Lmax�

p
, where L0 and Lmax de-

note the likelihoods returned by the fits with the signal

yield fixed at zero and at the fitted value, respectively. The
significance of the X�3940� signal is 5:0�. The fitted width
of the X�3940� state is consistent with zero within its large
statistical error: � 
 39� 26 MeV=c2.

The X�3940� mass is above both the D �D and the D� �D
thresholds. We therefore perform a search for X�3940�
decays into D �D and D� �D final states. Because of the small
product of D��� reconstruction efficiencies and branching
fractions, it is not feasible to reconstruct fully the chain
e�e� ! J= X�3940�, X�3940� ! D��� �D. To increase the
efficiency, we reconstruct the J= and one D meson,
detecting the other �D��� as a peak in the Mrec�J= D�
spectrum. The MC simulation for e�e� ! J= D��� �D pro-
cesses indicates a Mrec�J= D� resolution of about
30 MeV=c2 and a separation between these two pro-
cesses of 2:5�. Figure 2 shows the Mrec�J= D� spectrum
in the D mass window and the scaled D mass sidebands,
where D includes D0 and D�. Some events have multiple
D candidates. In these cases, only the candidate with
invariant mass closest to the nominal D-meson mass is
used. Two enhancements around the nominal D and D�

masses are clearly visible in this distribution. The excess of
realD events compared to theD sidebands at masses above
2:1 GeV=c2 is due to e�e� ! J= D� �D� or J= D��� �D����
processes. A fit to this spectrum is performed using shapes
fixed from MC simulation for three processes (J= D �D,
J= D� �D, and J= D� �D�) and a second order polynomial.
The fit gives ND �D 
 86� 17 (5:1�) and ND� �D 
 55� 18
(3:3�) events in the D and the D� peaks, respectively.
Selecting events from the Mrec�J= D� regions around the
D and D� masses (�70 MeV=c2), we thus effectively tag
the processes e�e� ! J= D �D and J= D� �D. The effi-
ciencies of the D and D� tag procedures are found from
MC calculations to be independent of MD �D��� and equal to
0.097 in both cases, assuming equal fractions for
X�3940� ! D���0 �D0 and D����D�.

We constrain Mrec�J= D� to the D��� nominal mass,
improving the M�D��� �D� � Mrec�J= � resolution by a fac-

TABLE I. Summary of the signal yields, charmonium masses,
and significances for e�e� ! J= �c �c�res.

�c �c�res N M�GeV=c2	 N�

�c 501� 44 2:970� 0:005 15.3
�c0 230� 40 3:406� 0:007 6.3
�c�2S� 311� 42 3:626� 0:005 8.1
X�3940� 266� 63 3:936� 0:014 5.0
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FIG. 2. The Mrec�J= D� distribution for the D signal window
(points with error bars). The hatched histogram corresponds to
scaled D sidebands. The solid line shows the fit described in the
text. The dashed line is the background function.
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FIG. 1. The distribution of Mrec�J= � in inclusive e�e� !
J= X events (points with error bars). The histograms and curves
are described in the text.
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tor of 2.5 (�� 10 MeV=c2 after constraint), according to
the MC simulation. In the X�3940� ! D� �D case, the re-
constructed D either may be directly from the X�3940�
decay or may come from a X�3940� ! D� ! D cascade:
the constraint Mrec�J= D� ! MD� also works in the latter
case, as both X�3940� ! D� �D and D� decays have very
little available phase space. The resulting Mrec�J= � dis-
tributions are shown in Figs. 3(a) (MD region) and 3(b)
(MD� region). For events with multiple entries, the candi-
date with the invariant mass closest to the nominal
D-meson mass is used. An X�3940� peak with a resolution
better than that for the unconstrained Mrec�J= � distribu-
tion is evident in Fig. 3(b), corresponding to the decay
X�3940� ! D� �D. We perform a fit to this distribution. The
signal function is a convolution of a Breit-Wigner function
with a free width and a resolution function fixed to the MC
expectation. The background function is a threshold func-
tion �A� B Mrec�J= �	

���������������������������������������������������
Mrec�J= � �MD� �MD

p
. The

fit finds 24:5� 6:9 signal events with a statistical signifi-
cance of 5:0�. Separate fits to the D��D� and D�0 �D0

distributions yield 7:2� 3:2 and 18:2� 6:0 sig-
nal events, respectively, in good agreement with the MC
expectations (6.4 and 18.1) normalized to the integrated
yield. The X�3940� width is measured to be 15:4�
10:1 MeV=c2, and its mass is 3:943� 0:006 GeV=c2, in
good agreement with the results of the inclusive fit. We
perform a similar fit to the Mrec�J= � distribution in
Fig. 3(a). Since no signal is seen here, we fit this distribu-
tion with X�3940� parameters fixed to the values found by
the previous fit. The signal yield is found to be 0:2�4:4

�3:5
events, and we set an upper limit of 8.1 events at the 90%
C.L.

An enhancement with a similar mass, Y�3940�, decaying
into J= ! has been recently observed by Belle [2] in B

decays. We perform a search for the decay X�3940� !
J= ! to see if X�3940� and Y�3940� could be the same
particle. To increase the efficiency, we reconstruct the !
and only one J= from the J= J= ! final state. The
unreconstructed J= is identified as a peak in the
Mrec�J= !� spectrum. A signal for X�3940� ! J= !
would be seen as a peak near 3:94 GeV=c2 in a distribution
of Mrec�J= � �Mrec�J= !� �MJ= if the reconstructed
J= is prompt and in M�J= !� distribution if the recon-
structed J= is from the X�3940� decay. Since the first case
has a much larger combinatorial background and less
sensitivity, we use only the second case. A scatterplot of
Mrec�J= !� vs M�J= !� in the data is shown in Fig. 4(a),
and an M�J= !� projection with the additional require-
ment jMrec�J= !� �MJ= j< 100 MeV=c2 in Fig. 4(b). A
fit to this distribution is done with the signal parameters
fixed from the result of the D� �D tagged fit; the background
is a threshold function. The fit yields 1:9�3:2

�2:4 signal events
corresponding to a 7.4 events upper limit at the 90% C.L.

The systematic errors for the e�e� ! J= X�3940�
Born cross section and for the X�3940� branching fractions
are summarized in Table II. To estimate the systematic
errors associated with the fitting procedure, we study the
difference in X�3940� yield returned by the fit to the
Mrec�J= � distribution under different assumptions for
the signal and background parametrization. In particu-
lar, in the first fit we use a background function that
includes several threshold functions corresponding to the
production of D� �D and D� �D� and the threshold function
�A� BMrec�J= �	

�������������������������������������
Mrec�J= � �Mthr

p
. We also include the

�c1�2� states in the fit; upper limits on the contributions of
these states were set in our previous study [7]. Different
angular distributions result in different J= (and D) re-
construction efficiencies. In the MC simulation, the J= 
production angle and the J= and X�3940� helicity angle
distributions are assumed to be flat. The extreme possible
angular distributions are considered to estimate the system-
atic uncertainty of this assumption. This uncertainty par-
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tially cancels in the B�X�3940�� due to the common J= 
efficiency. Other contributions come from the Nch > 4
requirement, track reconstruction efficiency, and particle
identification.

The X�3940� mass and width are measured from the fit
to the Fig. 3(b) distribution, as the resolution is much better
there. The systematic errors of the X�3940� mass are
dominated by the 5 MeV=c2 uncertainty associated with
the fitting procedure, which is studied by varying the Breit-
Wigner, signal resolution functions, and background pa-
rametrizations. The uncertainties due to FF’s and momen-
tum scale, even if one of these effects were responsible for
mass shifts in the inclusive fit of theMrec�J= � distribution,
are smaller due to the tagging and refit procedures. A
conservative estimate of the FF’s uncertainty is
<2 MeV=c2, obtained using MC simulation without an
ISR contribution. The same MC simulation results in a
9 MeV=c2 mass shift for the inclusive fit. The J= mo-
mentum scale is verified in Ref. [7], but we conservatively
estimate its systematic effect to be <3 MeV=c2 by biasing
the momentum scale to make a 10 MeV=c2 mass shift for
the inclusive fit. All of these contributions added in quad-
rature give a total uncertainty of 6 MeV=c2. We estimate
the X�3940� width to be smaller than 47 MeV=c2 at the
90% C.L.; this takes into account the fact that the like-
lihood function is not parabolic. When fitting systematics
are taken into account, we find �< 52 MeV=c2 at the 90%
C.L.

The Born cross section for e�e� ! J= X�3940� is
calculated following the procedure used in Ref. [7]. The
Born cross section is 0.70 of the total cross section.
Because of the Nch > 4 selection criterion, the analysis is
not sensitive to X�3940� decays producing two (or zero)
charged tracks. We therefore present the result in terms of
the product of the cross section and the branching fraction
of the X�3940� into more than two charged tracks (B>2):

 �Born �B>2 
 �10:6� 2:5� 2:4� fb: (1)

We calculate the fraction of X�3940� decays with more
than two charged tracks in the final state into D� �D,
B>2�X�3940� ! D� �D�. To remove the correlation between
the inclusive and D� �D tagged samples, we apply a veto on
D� �D tagging in the first sample. Taking into account the

tagging efficiency, we find from the simultaneous fit to the
D� �D tagged and vetoed inclusive spectra:
 

B>2�X�3940� ! D� �D� 
 �96�45
�32 � 22�%

�>45% at 90% C:L:�; (2)

where the systematic errors are taken into account for the
lower limit. In the limit of a vanishing fraction of low
charged multiplicity X�3940� decays, the measured value
of B>2 corresponds to B�X�3940� ! D� �D�. We set upper
limits on the branching fractions of decay of X�3940� into
D �D and X�3940� ! J= ! final states, taking into account
the estimated systematic errors:

 B �X�3940� ! D �D�< 41% at 90% C:L:; (3)

 B �X�3940� ! J= !�< 26% at 90% C:L: (4)

These limits assume that low charged multiplicity X�3940�
decays are negligible and, thus, may be overestimated.

In summary, we have observed a charmoniumlike state
at a mass of �3:943� 0:006� 0:006� GeV=c2, produced
in the process e�e� ! J= X�3940�, both in inclusive pro-
duction and via the X�3940� ! D� �D decay mode. The
combined significance of the signal using inclusive and
D�D tagged reconstruction, after vetoing the D� �D tagged
events in the former sample, is found to be at least 5:9�,
taking into account the systematic errors. We have mea-
sured the Born cross section for the production process, the
branching fraction for X�3940� ! D� �D, and set upper
limits on X�3940� decays to D �D and J= !. The observed
X�3940� decay modes as well as its width indicate that it is
probably not the same as Y�3940�, a state at approximately
the same mass [2]. A possible interpretation of X�3940� as
�c�3S� is discussed in Ref. [4]. �c0�2P� cannot decay to
D� �D and therefore does not contribute to the D� �D tagged
peak. However, a contribution to the inclusive Mrec�J= �
distribution is not excluded. Our results on the �c, �c0, and
�c�2S� mass supersede those of Refs. [5,7].
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