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We report the first measurements of the doubly charmed baryonic B decays B! ��c ��c K. The B� !
��c ��c K

� decay is observed with a branching fraction of �6:5�1:0
�0:9 � 1:1� 3:4� � 10�4 and a statistical

significance of 15:4�. The B0 ! ��c ��c K
0 decay is observed with a branching fraction of �7:9�2:9

�2:3 �
1:2� 4:1� � 10�4 and a statistical significance of 6:6�. The branching fraction errors are statistical,
systematic, and the error resulting from the uncertainty of the ��c ! pK��� decay branching fraction.
The analysis is based on 357 fb�1 of data accumulated at the ��4S� resonance with the Belle detector at
the KEKB asymmetric-energy e�e� collider.

DOI: 10.1103/PhysRevLett.97.202003 PACS numbers: 14.20.Lq, 14.40.Nd

Recently, a number of studies of single charmed baryon
production in B decays have been reported [1– 4]. The
measured branching fractions of the two-body single
charmed baryon decays �B0 ! ��c �p [3] and B� !
�0
c�2455� �p [4] are significantly smaller than theoretical

expectations [5–8]. The multibody single charmed baryon
decays �B! ��c �p���� were found to have branching
fractions about 1 order of magnitude larger than the cor-
responding two-body decays but still below theoretical
predictions. While single charm production proceeds via
a b! c �ud quark transition, production of two charmed
particles occurs via a b! c �cs transition. In contrast to the
single charmed baryon production, the two-body doubly
charmed baryon B decay B� ! ��0

c�
�
c [9] recently ob-

served at Belle has a branching fraction comparable to
theoretical predictions [5]. It would be interesting to check
whether theory can describe multibody double charmed
decays. In this Letter, we report the first observation of the
B� ! ��c ��c K

� and B0 ! ��c ��c K
0 decays, which are

three-body decays that proceed via a b! c �cs transition.
Inclusion of charge conjugate states is implicit unless
otherwise stated. The analysis is based on a data sample
of 357 fb�1 accumulated at the ��4S� resonance with the
Belle detector at the KEKB asymmetric-energy collider
corresponding to 386� 106 B �B pairs.

The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD), a
50-layer central drift chamber (CDC), an array of aerogel
threshold Čerenkov counters (ACC), a barrel-like arrange-
ment of time-of-flight scintillation counters (TOF), and an
electromagnetic calorimeter comprised of CsI(Tl) crystals
located inside a superconducting solenoid coil that pro-
vides a 1.5 T magnetic field. An iron flux return located
outside of the coil is instrumented to detect K0

L mesons and
to identify muons. The Belle detector is described in detail
elsewhere [10]. Two different inner detector configurations

were used. For the first sample of 152� 106 B �B pairs, a
2.0 cm radius beam pipe and a 3-layer silicon vertex
detector were used; for the latter 234� 106 B �B pairs, a
1.5 cm radius beam pipe, a 4-layer silicon detector, and a
small-cell inner drift chamber were used [11]. We use a
GEANT-based Monte Carlo (MC) simulation to model the
response of the detector and determine its acceptance [12].

We detect the ��c via the ��c ! pK���, p �K0, and
��� decay channels. When a ��c and ��c are combined
as B decay daughters, at least one of ��c is required to have
been reconstructed via the pK��� decay process. For
each charged track, the particle identification (PID) infor-
mation from the CDC, ACC, and TOF is used to construct
likelihood functions Lp, LK, and L� for the proton, kaon,
and pion assignments, respectively. Likelihood ratios
La=�La � Lb� are required to be greater than 0.6 to identify
a particle as type a, where b denotes the other two possible
hadron assignments from the three possiblities: proton,
kaon, and pion. For the main mode B� ! ��c ��c K�,
��c ! pK���, ��c ! �pK���, the PID efficiency for
the primary K� is about 95%. Efficiencies for protons,
kaons, and pions from ��c decays are about 98%. The
misidentification probability for pions (or kaons) to be
identified as kaons (or pions) is less than 5%. The proba-
bility for pions or kaons to be identified as protons is less
than 2%. Tracks consistent with an electron or muon
hypothesis are rejected. A ��c candidate is selected if the
mass of its decay products is within 0:010 GeV=c2 (2:5�)
of the nominal ��c mass.

Neutral kaons are reconstructed in the K0
S ! ����

decay. Candidate � baryons are reconstructed in the decay
�! p��. We apply vertex and mass constrained fits for
the K0 and � candidates to improve the momentum reso-
lution. The intersection point of the K0 and � candidate
daughter tracks must be displaced from the beam interac-
tion point: The flight distance should be more than 0.5 mm.
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A K0 candidate is selected if the mass of its decay products
is within 7:5 MeV=c2 (3�) of the K0 mass. A � candidate
is selected if the mass of its decay products is within
2:5 MeV=c2 (2:5�) of the � mass.

The B candidates are identified using the beam-energy-
constrained mass Mbc and the mass difference �MB. The
beam-energy-constrained mass is defined as Mbc ����������������������������������
E2

beam � �
P
~pi�

2
q

, where Ebeam is the beam energy, and
~pi are the three-momenta of the B meson decay products,
all defined in the center-of-mass system (CMS) of the
e�e� collision. The mass difference is defined as �MB �
M�B� �mB, where M�B� is the reconstructed mass of
the B candidate and mB is the world average B meson
mass. The parameter �MB is used instead of the energy
difference �E 	 �

P
Ei� � Ebeam, where Ei is the CMS

energy of the B decay products, since �E shows a cor-
relation with Mbc, while �MB does not [13]. M�B� 	����������������������������������
E�B�2 � �

P
~pi�

2
q

, where E�B� 	 E���c � � E��
�
c � �

E�K�, E���c � 	
�������������������������
~p2

��c
�m2

��c

q
, ~p��c is the ��c momentum

measured via its decay products, and m��c is the value of
the ��c baryon mass [14]. We select events with Mbc >
5:20 GeV=c2 and j�MBj< 0:20 GeV=c2. The prompt K�

or the reconstructed K0
S trajectory and the ��c or ��c

trajectories are required to form a common B decay vertex.
If there are multiple candidates in an event, the candidate
with the best �2

B for the B vertex fit is selected. The B
vertex fit is performed without additional mass constraints
for known particles.

Figure 1 shows �MB and Mbc projections for selected
B� ! ��c ��c K� and B0 ! ��c ��c K0 decay events. The
�MB projection is shown for Mbc > 5:27 GeV=c2, and the

Mbc projection is shown for j�MBj< 0:015 GeV=c2. The
widths determined from single Gaussian fits to MC-
generated events are 2.7 and 3:3 MeV=c2 for Mbc and
�MB, respectively. A two-dimensional binned maximum
likelihood fit is performed to determine the signal yield.
The �MB distribution is approximated by a Gaussian for
the signal plus a first order polynomial for the background,
and theMbc distribution is represented by a single Gaussian
for the signal plus an ARGUS function [15] for the back-
ground. The signal shape parameters are fixed to the values
obtained from a fit to a MC simulation. All yields and
background shape parameters are allowed to float.

From the fit, we obtain signal yields of 48:5�7:5
�6:8 and

10:5�3:8
�3:1 events with statistical significances of 15:4� and

6:6�, for B� ! ��c ��c K
� and B0 ! ��c ��c K

0, respec-
tively. The significance is calculated as

�����������������������������������
�2 ln�L0=Lmax�

p
,

where Lmax and L0 denote the maximum likelihoods with
the fitted signal yield and with the yield fixed at zero,
respectively.

The branching fraction Bij for the ith ��c decay and
the jth ��c decay mode are calculated as Bij 	

Nij=
NB �B"ijBi��
�
c �Bj��

�
c ��, where Nij is the B signal

yield. The detection efficiencies "ij are determined
from MC simulation. The ��c decay branching fractions
Bi��

�
c � are converted to the product B���c !

pK�����i=��pK���� to isolate the common uncertainty
from the branching fraction of ��c ! pK���. The values
of �i=��pK���� are �0:47� 0:04� and �0:180� 0:032�
for the pK0 and ��� modes, respectively [16]. The
overall detection efficiency " for the total signal yield N
is calculated as

P
"ij
�i=��pK�����
�j=��pK�����.

The overall branching fraction is calculated as
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FIG. 1 (color online). Candidate (a),(b) B� ! ��c ��c K
� and (c),(d) B0 ! ��c ��c K

0 decay events: (a),(c) �MB distribution for
Mbc > 5:27 GeV=c2 and (b),(d) Mbc distribution for j�MBj< 0:015 GeV=c2. Curves indicate the fit results.
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NS=
NB �B"B��
�
c ! pK����2�, using the overall signal

yield NS and the decay branching fraction B���c !
pK���� 	 �5:0� 1:3�% [16]. The detection efficiencies
are calculated to be 7.79% for the B� ! ��c ��c K

� decay
and 1.38% for the B0 ! ��c ��c K

0 decay.
The number of B �B pairs NB �B is �386� 4� � 106. The

fractions of charged and neutral B mesons are assumed to
be equal. We obtain branching fractions of

 

B�B�!��c ��c K��	�6:5
�1:0
�0:9�1:1�3:4��10�4

and B�B0!��c ��c K0�	 �7:9�2:9
�2:3�1:2�4:1��10�4;

where the first and the second errors are statistical and
systematic, respectively. The last error is due to the 52%
uncertainty in the absolute branching fraction B���c !
pK����.

Systematic uncertainties in the detection efficiencies
arise from the track reconstruction efficiency (8%–10%
depending on the process, assuming a correlated system-
atic error of about 1% per charged track), the PID effi-
ciency (9%–10% assuming a correlated systematic error of
2% per proton and 1% per pion or kaon), three-body decay
model uncertainty (11% for the B� ! ��c ��c K� decay
and 5% for the B0 ! ��c ��c K0 decay), and MC statistics
(1%–2%). The other uncertainties are associated with
����c �=��pK���� (2%–3%) and the number of NB �B
events (1%). The total systematic error is 17% for B� !
��c ��c K

� and 15% for B� ! ��c ��c K
0.

Figure 2 shows the mass distributions M���c � for B
candidates in the signal region j�MBj< 0:015 GeV=c2

and Mbc > 5:27 GeV=c2. The M���c � mass distributions
are shown for jM���c � �m��c j< 0:010 GeV=c2. The
curves show the results of a fit with the sum of a
Gaussian and a linear background. The means and widths
of the Gaussians are fixed to values obtained from fits to
MC samples. For B� ! ��c ��c K

� decay, we obtain a ��c
yield of 39:5�7:3

�6:5 events and a ��c yield of 48:2�7:7
�7:0 events.

For B0 ! ��c ��c K
0, yields of 11:4�3:8

�3:2 and 10:0�3:8
�3:1 events

are obtained from the ��c and ��c distributions, respec-
tively. These values are consistent with the B signal yields
given above.

We consider possible contributions from other B decays,
which could give a B signal in the �E and �MB distribu-
tions but should produce a uniform distribution in the ��c
mass region. To assess this type of background, we analyze
the ��c sideband 0:015 GeV=c2 < jM���c � �m��c j<
0:055 GeV=c2 and jM���c � �m��c j< 0:010 GeV=c2 and
the ��c sideband 0:015 GeV=c2 < jM���c � �m��c j<
0:055 GeV=c2 and jM���c � �m��c j< 0:010 GeV=c2.
We conclude that other B decays contribute less than
1.7 events at 90% C.L. in the B� ! ��c ��c K� mode and
less than 0.2 events at 90% C.L. in B0 ! ��c ��c K

0; both
contributions are neglected.

Figure 3 shows the M���c ��c � mass distributions
for (a) B� ! ��c ��c K

� decay candidates and
(b)B0 ! ��c ��c K0 decay candidates in the B signal region
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FIG. 2 (color online). M���c � mass distributions for (a) B� ! ��c ��c K� and (b) B0 ! ��c ��c K0 decay candidates in the B signal
region. Curves indicate the fit results.

 

0
1
2
3
4
5
6
7
8
9

10

4.55 4.6 4.65 4.7 4.75 4.8
M(Λc

+Λc
–) (GeV/c2)

E
ve

n
ts

/(
10

 M
eV

/c
2 )

(a)

0

1

2

3

4.55 4.6 4.65 4.7 4.75 4.8
M(Λc

+Λc
–) (GeV/c2)

E
ve

n
ts

/(
10

 M
eV

/c
2 )

(b)

FIG. 3. M���c ��c � mass distributions for (a) B� ! ��c ��c K� and (b) B0 ! ��c ��c K0 decay candidates in the B signal region.
Points with error bars are data. Open histograms—MC simulations for a uniform phase space distribution. Hatched histograms—
normalized ��c sideband data.
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j�MBj< 0:015 GeV=c2 and Mbc > 5:27 GeV=c2. No de-
viations from phase space distributions are evident.

In summary, we have reported the first measurement of
the doubly charmed baryonic B decay B� ! ��c ��c K�

with a branching fraction of �6:5�1:0
�0:9 � 1:1� 3:4� � 10�4

and a statistical significance of 15:4� and the B0 !
��c ��c K0 decay with a branching fraction of �7:9�2:9

�2:3 �
1:2� 4:1� � 10�4 and a statistical significance of 6:6�.
These three-body doubly charmed B decay branching
fractions are about the same order of magnitude (or slightly
smaller) than the branching fraction of the two-body dou-
bly charmed decay B� ! ��0

c�
�
c , which is due to the same

b! c �cs quark transition, also observed by Belle [9]. The
behavior of these b! c �cs decays is qualitatively different
from single charmed baryon decays, where three-body
decays have bigger branching fractions than two-body
decays. The obtained branching fraction is by 5–6 orders
of magnitude higher than expected from naive estimation
for the B! ��c ��c K decay with color suppression, which
is also highly suppressed by phase space [17]. All of this
needs further experimental and theoretical study.
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